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Abstract. Let k be a field of characteristic p > 0, let q be a power
of p, and let u be transcendental over k. We determine all polynomials
f ∈ k[X] \ k[Xp] of degree q(q − 1)/2 for which the Galois group of
f(X) − u over k(u) has a transitive normal subgroup isomorphic to
PSL2(q), subject to a certain ramification hypothesis. As a consequence,
we describe all polynomials f ∈ k[X] such that deg(f) is not a power
of p and f is functionally indecomposable over k but f decomposes over
an extension of k. Moreover, except for one ramification configuration
(which is handled in a companion paper with Rosenberg), we describe all
indecomposable polynomials f ∈ k[X] such that deg(f) is not a power
of p and f is exceptional, in the sense that X −Y is the only absolutely
irreducible factor of f(X)−f(Y ) which lies in k[X,Y ]. It is known that,
when k is finite, a polynomial f is exceptional if and only if it induces
a bijection on infinitely many finite extensions of k.

1. Introduction

Let C and D be smooth, projective, geometrically irreducible curves over
a field k of characteristic p ≥ 0, and let f : C → D be a separable morphism
over k of degree d > 1. Much information about the map f is encoded in
its monodromy groups, which are defined as follows. Let k(C)/k(D) be the
separable field extension corresponding to f , and let E denote its Galois clo-
sure. The arithmetic monodromy group of f is the group A := Gal(E/k(D)).
Letting ` denote the algebraic closure of k in E, the geometric monodromy
group of f is G := Gal(E/`(D)).

A fundamental problem is to determine the possibilities for the mon-
odromy groups and the ramification of such maps f , where D is fixed and C
(and f) varies. Riemann solved this problem in case k = C, and moreover he
determined how many such maps f have a specified monodromy group and
specified branch points and inertia groups (although it remains unknown
how to write down equations for these f). Riemann’s result can be gener-
alized to the case that k is any algebraically closed field of characteristic
zero; but the problem becomes much more difficult for other fields k. In
case k is an algebraically closed field of characteristic p > 0, the best result
to date was proved by Raynaud [35] and Harbater [25], and describes the
geometric monodromy groups of maps f whose branch points are contained
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in a specified set. However, the problem of determining the possible inertia
groups (not to mention the higher ramification groups) is wide open.

In this paper we explicitly determine all maps f (in positive characteris-
tic) having certain monodromy groups, subject to a constraint on the ram-
ification. The specific situation we consider arises in questions about two
special types of maps f . In many applications, one is interested in maps f
satisfying some additional hypotheses; in practice, one often finds that nat-
ural hypotheses on f imply severe restrictions on the monodromy groups.
Classifying the groups satisfying such conditions often requires deep group
theoretic results (by contrast, no difficult group theory was involved in the
proofs of Raynaud and Harbater). We need some notation to describe our
situation. The map f induces a transitive permutation representation of A
on a set ∆ of size d. Let A1 be a point stabilizer in this representation, and
note that G is also transitive on ∆.

In this paper we study maps f having some of the following conditions;
some of these conditions are geometric and some arithmetic, and all of them
have been studied for over a century. In our list we include translations of
the conditions into properties of the monodromy groups.

(i) f is (arithmetically) indecomposable (i.e., f is not a nontrivial com-
position of maps defined over k). This is equivalent to A1 being a
maximal subgroup of A.

(ii) f is geometrically indecomposable. This is equivalent to A1 ∩ G
being maximal in G.

(iii) f is totally ramified at some point. This says an inertia group in
the Galois closure of f acts transitively on ∆.

(iv) C has genus g. This can be translated to a property of G and the
higher ramification groups, via the Riemann-Hurwitz formula and
Hilbert’s different formula.

(v) The fiber product {(c, d) ∈ C × D : f(c) = f(d)} has no geometric
components defined over k except the diagonal. This says that A
and G have no common orbits on ∆×∆ besides the diagonal.

In case (v) we say f is an exceptional map. These have been studied ex-
tensively (starting with Dickson’s 1896 thesis [6], and subsequently by Schur,
Carlitz, Davenport, Lewis, Bombieri, Fried, Cohen, and others). They are
particularly interesting when k is finite. In this case, f is exceptional if and
only if f is bijective on k′-rational points for all extensions k′/k of degree
relatively prime to some positive integer m (which can always be taken to be
|A :G|). Indeed, as long as the cardinality of k is sufficiently large compared
to the degree of f and the genus of C, exceptionality is equivalent to ei-
ther injectivity or surjectivity of the map induced by f on k-rational points.
Moreover, for finite k, the composition of two maps C → B and B → D
is exceptional if and only if both maps are exceptional; thus, it suffices to
classify the exceptional maps that are arithmetically indecomposable. For
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proofs of these results, see [23, p. 2] and [14, p. 185]. For partial analogues
over infinite fields, see [22, 27, 31].

We will be especially interested in the case that f is a polynomial; here C
has genus g = 0, and f is totally ramified over a rational point of D (namely,
the point at infinity).

In this paper (except for a few cases handled in [19, 20]), we classify the
polynomials f(X) ∈ k[X] such that deg(f) is not a power of char(k) and at
least one of the following holds:

(1) f is arithmetically but not geometrically indecomposable;
(2) f is exceptional and arithmetically indecomposable; or
(3) A has a transitive normal subgroup isomorphic to PSL2(q).

It was shown in [21] that there are significant restrictions on the mon-
odromy groups of an arithmetically indecomposable polynomial. In this
paper we will study the groups that can occur for polynomials f which sat-
isfy either (1) or (2). We will see that these usually give rise to condition
(3). It would be of great value to have a classification of all indecomposable
f for which G is neither alternating nor symmetric; from [21] we know that
the situation in case (3) is one of the main sources of such polynomials f .
In characteristic 0, all such f are known [11, 12, 33]; in that case there are
no polynomials satisfying (1), and the polynomials satisfying (2) have been
classified [13].

We now consider (1) in more detail. The problem here is to find inde-
composable polynomials over k which decompose over a bigger field. There
are many examples of such polynomials in the classical family of additive
polynomials

∑
αiX

pi ; further examples occur in the related family of sub-
additive polynomials, where we say S(X) ∈ k[X] is subadditive if there is a
positive integer m and an additive polynomial L such that L(X)m = S(Xm).
Up to composition with linears, these were the only examples known before
1993. Work of Guralnick and Saxl [21, 22] showed that there are severe
restrictions on the degree of any polynomial satisfying (1). We extend and
refine their result as follows, and in particular we determine all such polyno-
mials whose degree is not a power of the characteristic; these include some
variants of a degree-21 example found by Müller, as well as new examples
of degree 55.

Theorem 1.1. Let k be a field of characteristic p. If f ∈ k[X] is indecom-
posable over k but decomposes over some extension of k, then one of the
following holds:

(i) deg(f) = pe with e ≥ 2;
(ii) deg(f) = 21 and p = 7;
(iii) deg(f) = 55 and p = 11.

For k of characteristic p ∈ {7, 11}, there exist such f of degree not a power
of p if and only if k contains nonsquares; moreover, all such f are described
in Theorem 4.4.
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We note that a new family of examples of degree pe was found recently
by Beals and Zieve [1], and we expect that these examples (and the additive
and subadditive examples) will comprise all examples of degree pe.

Now consider (2). The classical examples of exceptional polynomials are
the additive and subadditive polynomials discussed above (which are excep-
tional precisely when they have no nonzero root in k), the multiplicative
polynomials Xd (which are exceptional when k contains no d-th roots of
unity besides 1), and the Dickson polynomials Dd(X,α). Here for α ∈ k
the Dickson polynomial is defined by the equation Dd(Y + α/Y, α) = Y d +
(α/Y )d, and its exceptionality criteria are similar to those of Dd(X, 0) = Xd.
All of these examples occurred in Dickson’s 1896 thesis [6], and no further
examples were found for almost a century. In fact, the theme of most work in
the century following Dickson’s thesis was to show that compositions of the
known exceptional polynomials (including linear polynomials) comprised all
exceptional polynomials in some situations. Klyachko [26] proved this for
polynomials whose degree is either equal to or coprime to p. Cohen [4] and
Wan [41] proved the same result for degree 2p. The following result of Fried,
Guralnick and Saxl [14, 22] provides a vast generalization of these results:

Theorem 1.2. Let k be a field of characteristic p, and let f ∈ k[X] be inde-
composable and exceptional of degree d > 1. Then the geometric monodromy
group G of f satisfies one of the following conditions:

(i) G is cyclic or dihedral of odd prime degree d 6= p.
(ii) d = pe and G = F

e
p o G1, where Fep acts on itself by translations

and G1 ≤ GL(Fep).
(iii) p ∈ {2, 3} and d = pe(pe − 1)/2 with e > 1 odd, and PSL2(pe) is a

transitive normal subgroup of G.

In particular, the degree of an indecomposable exceptional polynomial is
either (i) a prime distinct from p, or (ii) a power of p, or (iii) pe(pe − 1)/2
with e > 1 odd and p ∈ {2, 3}. Any polynomial in (i) is (up to composition
with linears) a Dickson polynomial Dd(X,α) with α ∈ k; see [34, Appendix]
or [26]. Case (ii) includes the additive polynomials (where G1 = 1) and
the subadditive polynomials (where G1 is cyclic). In joint work with Müller
[17, 18], we have found families of examples in which G1 is dihedral, and
we suspect that no further examples exist in case (ii). This is based on the
following reasoning: let E denote the Galois closure of k(x)/k(f(x)) (with
x transcendental over k), and let F denote the subfield of E fixed by Fep.
We show in [18] that, in any further example of (ii), the genus g of F would
satisfy g > 1 (whereas all known examples have g = 0). But then G1 is a
group of automorphisms of F whose order is large compared to g, and there
are not many possibilities for such a field F [24]. We hope to complete the
analysis of case (ii) in a subsequent paper. The present paper addresses case
(iii), which does not include any classical examples.

Case (iii) was studied intensively in the two years following [14], resulting
in examples with k = Fp for each odd e > 1 and either p = 2 (Müller [32],
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Cohen–Matthews [5]) or p = 3 (Lenstra–Zieve [28]). In the present paper
we analyze this case in detail: we identify all possibilities for the ramifica-
tion in k(x)/k(f(x)), and for all but one such possibility we determine all
the corresponding exceptional polynomials (cf. Theorems 4.2 and 4.3). This
leads to new examples of indecomposable exceptional polynomials, which
are twists of the examples found in [5, 28, 32]. In a companion paper with
Rosenberg [19], we complete the analysis of case (iii) by analyzing the final
ramification possibility (which yields a new family of exceptional polynomi-
als). A simplified version of Theorem 4.2 is as follows (and the shape of
Theorem 4.3 is similar):

Theorem 1.3. Let k be a field of characteristic 3, and let q = 3e with e > 1
odd. The following are equivalent:

(i) there exists an indecomposable exceptional polynomial f ∈ k[X] of
degree q(q − 1)/2;

(ii) k ∩ Fq = F3 and k contains non-square elements.

Moreover, these polynomials f are precisely the following (up to composition
on both sides with linear polynomials in k[X]):

X(X2n − α)(q+1)/(4n)

(
(X2n − α)(q−1)/2 + α(q−1)/2

X2n

)(q+1)/(2n)

,

where n divides (q + 1)/4 and the image of α ∈ k∗ in the quotient group
k∗/(k∗)2n has even order.

For both of the above problems—finding all indecomposable polynomials
f(X) ∈ k[X] of degree not a power of char(k) which either decompose over
a larger field or are exceptional—we use a similar approach. Write k for
an algebraic closure of k, and let x and u be transcendental over k. Our
general strategy is to first translate the desired properties of the polynomial
into properties of the monodromy groups G = Gal(f(X)−u, k(u)) and A =
Gal(f(X) − u, k(u)), then find all group-theoretic configurations satisfying
these properties, and finally, for each group-theoretic possibility, find all
corresponding polynomials. In our cases, a translation to group theory was
done in [14], and in that paper and [21, 22] a restricted list of plausible
pairs (G,A) were given. However, these papers did not use the condition
that k(x)/k(f(x)) is an extension of fields of genus zero; via the Riemann-
Hurwitz genus formula and Hilbert’s different formula, this condition leads
to restrictions on the possible ramification in the extension. We apply this
to each of the pairs (G,A) allowed for our problems by [22], producing a list
of all possibilities for the ramification. The next step is to determine the
possibilities for the Galois closure E of k(x)/k(f(x)); once this is done, we
compute the group Autk(E), find all of its subgroups which are isomorphic
to G, and for each such subgroup we compute the invariant subfield EG and
then compute the corresponding polynomials. This gives all polynomials
over k having the desired group theoretic setup geometrically; the final step
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is to determine which of these polynomials are defined over k and solve our
original problems.

The hardest step in our work is the determination of E. The data we are
given for this is a group G of automorphisms of E, together with knowledge
of the ramification in E/EG (and the fact that EG has genus zero). In our
case, it turns out that E has the shape k(v, w), where vp

e − v = wn and
n is coprime to p. So we must prove that this field is determined by its
ramification over a certain subextension; before stating the result, we give
a simple lemma describing the ramification in the relevant subextension.
Lemma 1.4. Let k be a field containing Fq, let n > 1 be coprime to q,
and let r > 0. For any γ ∈ k∗, let v and w be transcendental over k such
that vq − v = γwn; then the extension k(v, w)/k(wr) is Galois if and only
if r/gcd(n, r) divides q − 1 and k contains a primitive r-th root of unity.
Moreover, for any such r, the ramification is as follows (where E = k(v, w)
and t = wr):

all ramification in E/k(t) occurs over two places of k(t):
the finite prime 0, over which the ramification index is r;

and the infinite place, which is totally ramified (index qr), and(†)
over which the sequence of ramification groups has the shape

I0 	 I1 = · · · = In 	 In+1 = 1.

Theorem 1.5. Let k be a perfect field containing Fpe, let t be transcendental
over k, and let n and r be positive integers such that k contains a primitive
r-th root of unity, p - n, and r/gcd(n, r) divides pe − 1. If both (i) and (ii)
below are satisfied, then any Galois extension E/k(t) having ramification as
in (†) must have the form E = k(v, w) where vp

e − v = γwn and γ ∈ k∗ and
t = wr.

(i) n is the least nonnegative integer congruent modulo r to any number
of the form npi with i ≥ 0.

(ii) Either k = Fpe or pe is the least power of p which is congruent to 1
modulo r/gcd(n, r).

Conversely, if either (i) or (ii) is not satisfied, then there exist Galois ex-
tensions E/k(t) having ramification as in (†) which do not have the above
form.

Condition (i) seems unexpected in this context. It is especially surprising
that this condition is true for n = (pe + 1)/4 and r = (pe − 1)/2 (assuming
pe ≡ 3 (mod 4) and pe > 3); in this case the subgroup of (Z/rZ)∗ generated
by p has order e, but all e elements of the coset of n have least nonnegative
residue lying in the top half of the interval [0, r].

In fact, we do rather more than classify the two special types of poly-
nomials described above. We determine all polynomials of a general class
which contains the polynomials of the two special types. In particular, we
prove the following result (see Theorem 4.1 for a refined version).
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Theorem 1.6. Let k be an algebraically closed field of characteristic p > 0,
let d = (q2 − q)/2 for some power q = pe, and let f(X) ∈ k[X] \ k[Xp] have
degree d. Then the following are equivalent:

(i) G := Gal(f(X)−u, k(u)) has a transitive normal subgroup isomor-
phic to PSL2(q), and the Galois closure of the extension k(x)/k(f(x))
does not have genus (q2 − q)/2.

(ii) There exist linear polynomials `1, `2 ∈ k[X] such that the compo-
sition `1 ◦ f ◦ `2 is one of the following polynomials or one of the
exceptions in Table B (which follows Theorem 4.1):

X(Xm + 1)(q+1)/(2m)

(
(Xm + 1)(q−1)/2 − 1

Xm

)(q+1)/m

with q odd and m a divisor of (q + 1)/2; or

X−q
(e−1∑
i=0

Xm2i
)(q+1)/m

with q even and m a divisor of q + 1 with m 6= q + 1.

In these examples, G ∼= PSL2(q) if m even, and G ∼= PGL2(q) if m odd.

In the examples listed in (ii) (ignoring those in Table B), the cover
f : P1 → P

1 is only ramified over ∞ and 0, and any inertia group at a point
over 0 (in the Galois closure cover) is cyclic of order (q + 1)/m. There is a
point over ∞ (in the Galois closure cover) whose inertia group is the group
of upper-triangular matrices in G, and whose higher ramification groups
(in the lower numbering) satisfy I1 = I2 = · · · = In 6= In+1 = 1, where
n = m/ gcd(m, 2). The Galois closure of k(x)/k(f(x)) is k(v, w) where
vq−v = wn. We also prove some results in case the Galois closure has genus
(q2 − q)/2; we complete the analysis of this case in the papers [19, 20].

This paper is organized as follows. In the next section we determine all
group theoretic possibilities which could correspond to a polynomial as in
the previous theorem. In Section 3 we examine when the group theoretic
data determines the Galois closure E, and in particular prove Theorem 1.5.
In Section 4 we use knowledge of E to classify polynomials satisfying the
properties discussed above. For convenience, we collect various elementary
group theoretic facts in an appendix.

The second author thanks Hendrik Lenstra and Henning Stichtenoth for
valuable conversations.

Notation: Throughout this paper, k is a field of characteristic p ≥ 0,
and k is an algebraic closure of k. Also q = pe and d = q(q − 1)/2. The
letters X and Y denote indeterminates, and (in situations where k is present)
the letters t, u, v, w, x, z denote elements of an extension of k which are
transcendental over k.
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2. Group theory

In this section we determine the possibilities for ramification in the exten-
sion k(x)/k(f(x)), where f(X) ∈ k[X] is a polynomial of degree q(q − 1)/2
whose arithmetic monodromy group A has a transitive normal subgroup iso-
morphic to PSL2(q) (with q being a power of char(k)). We denote the Galois
closure of the extension k(x)/k(f(x)) by E, and write gE for its genus. Then
the geometric monodromy group of f is G = Gal(E/k(f(x))), and we let
G1 = Gal(E/k(x)) denote a one-point stabilizer of the permutation group G.
Recall that, if G is either PSL2(q) or PGL2(q), then a Borel subgroup of
G is any subgroup conjugate to the subgroup of upper-triangular matrices.
We often use without comment the various elementary group theoretic facts
collected in the Appendix.

Theorem 2.1. Let k be a field of characteristic p > 0, and let f(X) ∈
k[X] \ k[Xp] have degree d = q(q − 1)/2 where q = pe. If A has a transitive
normal subgroup L isomorphic to PSL2(q), then all of the following hold
unless q,G,G1 are listed in Table A:

(i) either G = PGL2(q) or both G = PSL2(q) and q ≡ 3 (mod 4);
(ii) G1∩L is a dihedral group of order 2(q+1)/o, where o = gcd(2, q−1);

also q ≥ 4;
(iii) the inertia group of a place of E lying over the infinite place of

k(f(x)) is a Borel subgroup I of G; the higher ramification groups
of this place satisfy V := I1 = I2 = · · · = In 	 In+1 = 1.

(iv) E/k(f(x)) has at most two finite branch points (i.e., ramified finite
places of k(f(x))); the possibilities are:
• One finite branch point, whose inertia group is cyclic of order
|G :L|(q + 1)/(on) where n | ((q + 1)/gcd(4, q + 1)) and n <
q + 1, and gE = (q − 1)(n− 1)/2.
• No finite branch points, where q ≡ 0 (mod 4) and n = q + 1

and gE = (q2 − q)/2.
• One finite branch point, with inertia group of order two and

second ramification group trivial, where q ≡ 0 (mod 4) and
n = 1 and gE = (q2 − q)/2.
• Two finite branch points, both with inertia groups of order two,

of which precisely one is contained in L; here q ≡ 1 (mod 2)
and n = 1, and also G = PGL2(q) and gE = (q2 − q)/2.

q G G1

4 PΓL2(q) C5 o C4

11 PSL2(q) A4

11 PGL2(q) S4

23 PSL2(q) S4

59 PSL2(q) A5

Table A
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In this paper we will determine all polynomials having either the first or
second ramification possibilities (as well as all polynomials corresponding to
the situations in Table A). We will determine the polynomials in the third
and fourth possibilities in the papers [19] and [20], respectively, and in the
latter paper we will also determine all polynomials of other degrees whose
arithmetic monodromy group has a transitive normal subgroup isomorphic
to PSL2(q). We will prove in this paper that the fourth possibility does
not yield any exceptional polynomials, or any indecomposable polynomials
that decompose over an extension field. However, it turns out that the third
possibility does yield exceptional polynomials. At the end of this section
we include a result giving more details about this possibility, which we will
need in [19].

The remainder of this section is devoted to the proof of Theorem 2.1.
First, since L ≤ A ≤ Sd, we must have |PSL2(q)| ≤ |Sd|, so q ≥ 4. Next we
show that L ≤ G. If L 6≤ G then (since GEA) the group L ∩G is a proper
normal subgroup of the simple group L, and hence is trivial. Since L and
G normalize one another and intersect trivially, they must commute. Recall
that the centralizer in Sd of any transitive subgroup has order at most d [9,
Thm. 4.2A]. But we have shown that the centralizer of G has order at least
|L| > d, contradiction. Thus L ≤ G.

We now describe the group-theoretic constraints implied by the hypothe-
ses of Theorem 2.1. The transitive subgroup G ≤ Sd satisfies PSL2(q) ∼=
L E G, and G1 is a point-stabilizer of G. We can identify the permutation
representation of G with the action of G on the set of left cosets of G1 in G.
Thus, our hypothesis of transitivity of L says that LG1 = G.

We use valuation theory to describe the further group-theoretic condi-
tions. We identify the places of k(f(x)) with k ∪ {∞}, and we say that
an element of k ∪ {∞} is a branch point of f if the corresponding place is
ramified in E/k(f(x)). For a place Q of k(f(x)), let P be a place of E lying
over Q, and denote the ramification groups of P/Q by I0(Q), I1(Q), . . ..
Different choices of P yield conjugate ramification groups; this ambiguity is
irrelevant in what follows. We use the following standard properties of these
groups:

• each Ii is normal in I0;
• I1 is the (unique) Sylow p-subgroup of I0;
• I0/I1 is cyclic;
• Ii = 1 for all sufficiently large i.

These properties imply that I1 is the semidirect product of I0 by a cyclic
group of order |I0 : I1|. Moreover, since∞ is totally ramified in k(x)/k(f(x)),
we have I0(∞)G1 = G. We write I = I0(∞) and V = I1(∞).

By combining the Riemann-Hurwitz genus formula with Hilbert’s differ-
ent formula [36, Prop. IV.4], we can express the genus gE in terms of the
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ramification groups:

2gE − 2 = −2d+
∑
Q

|G : I0(Q)|
∑
i≥0

(|Ii(Q)| − 1).

By combining this formula with the analogous one for the extension E/k(x),
we obtain a formula for the (non-Galois) extension k(x)/k(f(x)). We need
some notation to state this formula. For a subgroup H of G, let orb(H) be
the number of orbits of H, and let orb′(H) be the number of orbits with
length coprime to p. Define the index of Q to be

indQ =
∑
i≥0

d− orb(Ii(Q))
|I0(Q) : Ii(Q)|

.

Then our ‘Riemann-Hurwitz’ formula for k(x)/k(f(x)) is

2d− 2 =
∑
Q

indQ.

We also use the inequality

indQ ≥ d− orb′(I0(Q)),

which comes from the relation between the different exponent and ramifica-
tion index [36, Prop. III.13].

Our first lemma shows that G is contained in the automorphism group
PΓL2(q) of L (see the appendix for information about this group); we si-
multaneously prove that G1 ∩ L usually has the desired shape.
Lemma 2.2. G is contained in PΓL2(q). Also, except for the final four cases
listed in Table A, the group L1 := G1 ∩ L is dihedral of order 2(q + 1)/o.

Proof. As noted above, we have q ≥ 4. Since |L :L1| = |G :G1| = d, the
order of L1 is 2(q + 1)/o. This numerical information severely limits the
possibilities for L1; from Dickson’s classification of subgroups of L (Theo-
rem A.1), it follows that L1 has the desired shape except possibly if L1 is
one of the following groups: A4 if q = 11; S4 if q = 23; A5 if q = 59. In any
case, L1 = NL(L1) (since L is simple and L1 is maximal unless q = 4, 7, 9,
or 11, and these special cases are easily handled). Hence G1 = NG(L1).
Since CG(L) is a normal subgroup of G contained in G1, it must be trivial,
so indeed G embeds in the automorphism group PΓL2(q) of L. Finally, the
three exceptional possibilities for L1 occur with q prime, so G is either L or
PGL2(q), and when L1 is S4 or A5 we cannot have G = PGL2(q) since there
is no G1 ≤ G with |G1 :L1| = 2. �

Henceforth assume q,G,G1 do not satisfy any of the final four possibilities
in Table A, and write L1 := G1 ∩L. Then Lemma A.5 says that our action
of G (on the set of left cosets of G1 in G) is uniquely determined (up to
equivalence) by G and q, and does not depend on the specific choice of G1.
Lemma 2.3. I is a Borel subgroup of L or of PGL2(q), unless q,G,G1 are
listed in Table A.



POLYNOMIALS WITH PSL(2) MONODROMY 11

Proof. We first show that V is a Sylow p-subgroup of L if q > 4. If e ≤ 2 then
PΓL2(q)/L has order coprime to p, so V is contained in a Sylow p-subgroup
of L; but this Sylow subgroup has order q, which implies the claim since
q | |V |. Now assume e ≥ 3 and q 6= 64. Then Zsigmondy’s theorem implies
pe− 1 has a primitive prime divisor s. Here s is coprime to 2e, and hence to
|PΓL2(q) :L|, so any µ ∈ I of order s must lie in L. Now, µ acts on V ∩ L
by conjugation, with the identity element as a fixed point, and every other
orbit having size s (since the centralizer in L of an order-p element of L is
a Sylow p-subgroup of L, and hence does not contain µ). Thus |V ∩ L| ≡ 1
(mod s); since also |V ∩ L| divides q, primitivity of s implies that |V ∩ L|
is either 1 or q. We cannot have |V ∩ L| = 1, since in this case V would
embed in PΓL2(q)/L, but the order eo of this group is not divisible by qo/2.
Hence V is a p-group containing a Sylow p-subgroup of L; after replacing
I by a suitable conjugate, we may assume that V ∩ L consists of upper-
triangular matrices, and that V is generated by V ∩ L and a group of field
automorphisms. The conjugated µ still lies in I ∩ L (since L is normal in
PΓL2(q)), and must be upper-triangular (since it normalizes V ∩ L), so it
does not commute with any nontrivial field automorphism (by primitivity).
Thus, as above, |V | ≡ 1 (mod s), so primitivity implies |V | is a power of q.
But |PΓL2(q) :L| = eo is less than q, so V is a Sylow p-subgroup of L. This
conclusion is also true for q = 64, as can be shown by a similar argument
using an order-21 element of I (which must lie in L).

Now, for q > 4, we may conjugate to assume V consists of upper triangular
matrices. Then the normalizer N of V in PΓL2(q) is the semidirect product
of the group of all upper triangular matrices with the group of field auto-
morphisms. Consider an element ν ∈ N whose image in PΓL2(q)/PGL2(q)
has order r; then the order of ν divides rp(q1/r − 1). Since I is generated
by V and an element ν of order divisible by (q − 1)/o, and I ≤ N , for this
ν we have either r = 1 or q = 9. If r = 1 then indeed I is a Borel subgroup
of either L or PGL2(q). If q = 9 and r > 1 then the above divisibility
relations imply |I| = 36, so the conditions IG1 = G and |G :G1| = 36 imply
I ∩G1 = 1; but one can check that there are no such G and G1.

Finally, for q = 4, we have PGL2(q) ∼= A5 and PΓL2(q) ∼= S5, and one
easily checks that, if I is not a Borel subgroup of L, we must have G =
PΓL2(q) and I ∼= C6, with G1 being the normalizer in S5 of a dihedral
group of order 10. �

Henceforth we assume q,G,G1 are not among the triples listed in Table A.
An immediate consequence of this lemma is the structure of the higher ram-
ification groups over the infinite place, as described in (iii) of Theorem 2.1:
recall that the chain I ≥ V ≥ I2(∞) ≥ I3(∞) ≥ . . . is such that every
Ii(∞) is normal in I, and Ii(∞) = 1 for some i. In our case V (= I1(∞)) is
a minimal normal subgroup of I, so every nontrivial Ii(∞) equals V ; hence
there is some n ≥ 1 for which V = I1(∞) = I2(∞) = · · · = In(∞) but
In+1(∞) = 1.
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We complete the proof of Theorem 2.1 by analyzing the possibilities for
the various other chains of ramification groups in light of the Riemann-
Hurwitz formula. We do this in four cases.

2.1. The case q ≡ 3 (mod 4) and I ≤ L. First we compute the number
of fixed points for various types of elements of PΓL2(q) in the action under
consideration. We will use these computations to determine the number and
length of the orbits of cyclic subgroups of PΓL2(q), which control the indices
of finite branch points for the extension k(x)/k(f(x)).

Lemma 2.4. Let ν ∈ PΓL2(q) have order r > 1. For ν ∈ L: if r = 2
then ν has (q + 3)/2 fixed points; if r divides p(q − 1)/2 then ν has no fixed
points; if r > 2 and r divides (q + 1)/2 then ν has one fixed point. If ν is a
field automorphism then it has (q2

0 − q0)/2 fixed points, where q0 = q1/r. An
involution in PGL2(q) \ L has (q − 1)/2 fixed points.

Proof. Since all (q2−q)/2 involutions of L are conjugate, and the centralizer
in L of any such involution is dihedral of order q + 1, we can identify the
action of L on cosets of L1 with the conjugation action of L on the involutions
of L. Then the uniqueness of the action of G on cosets of G1 implies that
that action is equivalent to the conjugation action of G on the involutions of
L, so we examine the latter action. Thus, the number of fixed points of an
element ν ∈ G equals the number of involutions of L which commute with
ν.

If ν ∈ L is an involution, then its centralizer in L is dihedral of order q+1,
and so contains (q+ 3)/2 involutions. Conversely, if the order of ν ∈ L does
not divide q + 1, then ν cannot lie in the centralizer of any involution of L.
If ν ∈ L has order r > 2, where r divides (q + 1)/2, then the normalizer of
〈ν〉 in L is dihedral of order q + 1, so the centralizer of ν in L contains a
unique involution. The centralizer in L of an involution of PGL2(q) \ L is
dihedral of order q−1, and so contains (q−1)/2 involutions. Finally, suppose
ν ∈ PΓL2(q) is a field automorphism of order r, and let q0 = q1/r; then the
centralizer of ν in L is PSL2(q0), which contains (q2

0− q0)/2 involutions. �

We compute ind∞ = (d − 1) + n(q − 1). For any Q ∈ k, if I0(Q) 6= 1
then I0(Q) contains an element ν of prime order r; by Lang’s theorem,
this element is either in PGL2(q) or is conjugate to a field automorphism.
If ν is an involution of L, then indQ ≥ d − orb′(I0(Q)) ≥ d − orb′(〈ν〉) =
(d−(q+3)/2)/2. If ν ∈ L is not an involution, then likewise indQ ≥ d−(d/r)
if d | (q − 1), and indQ ≥ d − 1 − (d − 1)/r if r | (q + 1), and indQ ≥ d if
r = p. If ν is an involution in PGL2(q) \ L then indQ ≥ (d− (q − 1)/2)/2.
Finally, if ν is a field automorphism then indQ ≥ d − s − (d − s)/r, where
s = (q2

0 − q0)/2 and qr0 = q; moreover, if the field automorphism has order p
then indQ ≥ d− s. In any case, we conclude that indQ ≥ (d− (q+ 3)/2)/2.

If there are no finite branch points, then (d − 1) + n(q − 1) = 2d − 2, so
q− 1 | d− 1 which is absurd; hence there is at least one finite branch point.
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If there are at least two finite branch points, then

(d− 1) + n(q− 1) +
∑
Q

indQ ≥ (d− 1) + (q− 1) + (d− (q+ 3)/2) > 2d− 2,

contrary to the Riemann-Hurwitz formula. Hence there is exactly one finite
branch point Q. Similarly, the Riemann-Hurwitz formula would be violated
if I0(Q) contained an element of order p; thus, p - |I0(Q)|.

Now we use another geometric fact—equivalently, we add another condi-
tion to the list of group theoretic restrictions. Consider the field extension
EL/EG: it is unramified over the infinite place of EG (since L contains all
conjugates of I), so it is ramified over at most the single place Q of EG, and
the ramification over that place is tame. Since any nontrivial tame extension
of EG = k(f(x)) ramifies over at least two places, we must have L = G.

Next we consider the extension E/EL1 , which is Galois with group di-
hedral of order q + 1; here EL1 = k(x) has genus zero. This extension is
unramified over the infinite place of EL1 (since gcd(|L1|, |I|) = 1), so all
ramification occurs over places of k(x) lying over Q. Let H be the cyclic
subgroup of L1 of order (q + 1)/2; then EH/EL1 has degree 2 and ramifies
only over places of k(x) lying over Q. But EH/EL1 is a nontrivial extension
of k(x), so it is ramified, whence the ramification index of Q (in E/EG) is
even.

Once again considering the extension E/EG, we have shown that there is
exactly one finite branch point Q, which is tamely ramified of even index.
In particular, the inertia group I0(Q) is cyclic of order 2s, where p - s.
Since I0(Q) ≤ L, by Theorem A.1 we have s | (q + 1)/4. By Lemma 2.4,
I0(Q) has (d − (q + 3)/2)/(2s) orbits of length 2s; if s = 1 then the other
points are fixed, while if s > 1 then only one point is fixed and I0(Q) has
(q + 1)/(2s) orbits of length s. In any case, indQ = d − 1 − (q2 − 1)/(4s).
From 2d− 2 = (d− 1) +n(q− 1) + indQ we conclude that n = (q+ 1)/(4s).

Now we compute the genus of E, using the Riemann-Hurwitz formula for
the extension E/EG: namely, 2gE − 2 equals

−2|G|+ |G : I|((|I| − 1) + n(|V | − 1)) + |G : I0(Q)|(2s− 1)

= −(q3 − q) + (q + 1)
(
q2 − q

2
− 1 + n(q − 1)

)
+
q3 − q

4s
(2s− 1);

simplifying, we find that gE = (n− 1)(q − 1)/2.
This concludes the proof of Theorem 2.1 in this case.

2.2. The case q ≡ 3 (mod 4) and I 6≤ L. Here I is a Borel subgroup of
PGL2(q), so G contains PGL2(q). As above, we compute ind∞ = d − 1 +
n(q−1)/2, and each finite branch point Q satisfies indQ ≥ (d−(q+3)/2)/2;
hence there are at most two finite branch points.

If there are two finite branch points Q1 and Q2 then

d− 1 +n(q− 1)/2 +
∑
Q

indQ ≥ d− 1 + (q− 1)/2 + (d− (q+ 3)/2) = 2d− 3,
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so we must have n = 1, and the indices indQ1 and indQ2 must be (in some
order) (d−(q+3)/2)/2 and (d−(q−1)/2)/2. The inequalities for indQ in the
previous subsection imply that I0(Q1) and I0(Q2) are 2-groups containing
no involutions outside PGL2(q). Since these two inertia groups have order
coprime to p, they are cyclic, so they must have order 2 (otherwise indQj
would be too large). Assuming without loss that indQ1 < indQ2, it follows
that I0(Q1) is generated by an involution in L and I0(Q2) is generated by an
involution in PGL2(q) \ L. The subgroup of G generated by the conjugates
of I0(Q1) and I0(Q2) is PGL2(q), so EPGL2(q)/EG is an unramified extension
of k(f(x)), and thus is trivial: G = PGL2(q). Now we compute the genus
of E:

2gE − 2 = −2(q3 − q) + (q + 1)(q2 − q − 1 + q − 1) + (q3 − q),

so gE = (q2 − q)/2.
Henceforth assume there is at most one finite branch point Q. The same

argument as in the previous subsection shows there must be at least one such
Q, and it must be tamely ramified. Consider the extension EPGL2(q)/EG.
This extension is unramified over the infinite place of k(f(x)) (since PGL2(q)
contains all conjugates of I), so it can only be ramified over Q; hence it is
a tamely ramified extension of k(f(x)) which is ramified over less than two
points, so it is trivial: G = PGL2(q). Thus EL/EG has degree 2, so it is
a tame extension of EG = k(f(x)), whence it must be ramified over both
infinity and Q; hence I0(Q) is cyclic of order 2s and is not contained in
L. It follows that 2s divides either q − 1 or q + 1. In the former case, a
Riemann-Hurwitz computation shows that n = 1 and s = (q − 1)/2, but
then the genus of E would be −q which is absurd. In the other case, we find
that s must be even, n = (q+1)/(2s), and the genus of E is (q−1)(n−1)/2.
This concludes the proof of Theorem 2.1 in case q ≡ 3 (mod 4).

2.3. The case q ≡ 1 (mod 4). First we show that BL1 6= L for every
Borel subgroup B of L; this implies B 6= I, so I is a Borel subgroup of
PGL2(q). For, if BL1 = L, then every Borel subgroup of L has the form Bν

with ν ∈ L1, so Bν ∩L1 = (B ∩L1)ν is trivial. But this is impossible, since
any involution in L1 is contained in some Borel subgroup of L.

Thus, I is a Borel subgroup of PGL2(q), so G ≥ PGL2(q). The remainder
of the proof in this case is similar to the proof in the previous subsection,
so we only give the fixed point computation.

Lemma 2.5. Let ν ∈ PΓL2(q) have order r. If ν is a field automorphism
then ν has no fixed points if r is even, and ν has (q2

0 − q0)/2 fixed points if
r is odd; here q0 = q1/r. If ν ∈ PGL2(q) and r > 2, then ν has one fixed
point if r | (q + 1) and ν has no fixed points if r | p(q − 1). An involution
in L has (q − 1)/2 fixed points; an involution in PGL2(q) \ L has (q + 3)/2
fixed points.
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The proof of this lemma is similar to the proof of Lemma 2.4, except that
in this case we identify the action of G on cosets of G1 with the conjugation
action of G on the involutions in PGL2(q) \ L.

2.4. The case p = 2. Here PGL2(q) ∼= L, so we identify these groups.
In particular, I is a Borel subgroup of L. We begin with a fixed point
calculation.

Lemma 2.6. An involution of L has q/2 fixed points; an element of L of
order r > 1 has no fixed points if r | q− 1, and one fixed point if r | q+ 1. A
field automorphism of order r has no fixed points if r = 2, and has (q2

0−q0)/2
fixed points if r is an odd prime; here q0 = q1/r.

Proof. Since there are (q2 − q)/2 dihedral subgroups of L of order 2(q + 1),
and they are all conjugate, the number of fixed points of an element ν ∈ L
(acting on cosets of L1 in L) equals the number of dihedral subgroups of L
of order 2(q+ 1) which contain ν. This number is certainly zero if the order
r > 1 of ν does not divide 2(q + 1), which happens if r | q − 1. Next, a
dihedral group of order 2(q + 1) normalizes each of its cyclic subgroups of
order dividing q+ 1; since the normalizer in L of a nontrivial cyclic group of
order dividing q+1 is dihedral of order 2(q+1), it follows that a nonidentity
element of L of order dividing q + 1 has exactly one fixed point.

Next consider a field automorphism σ of order 2. Let G be the group
generated by L and σ, so |G :L| = 2. Suppose that σ has a fixed point;
then σ lies in some point-stabilizer G1 ≤ G. Here L1 := G1 ∩ L is dihedral
of order 2(q + 1), and G1 is the normalizer of L1 in G. In particular, σ
normalizes the cyclic subgroup of L1 of order q + 1; let µ be a generator of
this subgroup. Let µ̂ ∈ GL2(q) be a preimage of µ under the natural map
GL2(q)→ L. Then µ̂ has distinct eigenvalues, and the eigenvalues of σµ̂σ−1

are the
√
q-th powers of the eigenvalues of µ̂, so σµ̂σ−1 is conjugate to µ̂

√
q.

Thus, σµσ−1 is conjugate to µ
√
q in L. Since the normalizer of 〈µ〉 in L is L1,

the only powers of µ which are conjugate (in L) to µ
√
q are µ±

√
q. It follows

that σµσ−1 is one of µ±
√
q. A Sylow 2-subgroup of G1 which contains σ

also contains an involution τ ∈ L1, and so must be dihedral of order 4; thus
(στ)2 = 1. But, since τµτ = µ−1, we have µ = (στ)2µ(στ)−2 = µq = µ−1,
which is a contradiction, so in fact σ has no fixed points.

For the remaining cases, we use the following elementary result about
fixed points in a permutation group. Let G1 be a subgroup of the finite
group G, and consider the natural action of G on the set of cosets of G1

in G. For an element ν ∈ G, let ν1, ν2, . . . , νs be representatives of the
conjugacy classes of G1 which are contained in the conjugacy class of ν in
G. Then the number of fixed points of ν is

s∑
i=1

|CG(ν) :CG1
(νi)|.
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We first apply this in case ν ∈ L is an involution; let G = L and let
G1 = L1 be dihedral of order 2(q + 1). Then the conjugacy class of ν in L
consists of all involutions in L, and CL(ν) is a Sylow 2-subgroup of L; all
involutions in a dihedral group of order 2(q + 1) are conjugate, and each
generates its own centralizer. By the above fixed point formula, ν fixes q/2
cosets of L1 in L.

For the final case in the lemma, let σ ∈ PΓL2(q) be a field automorphism
of order r, and assume that r is an odd prime. Write q = qr0. Let G be the
group generated by L and σ, so |G :L| = r. Let H be a cyclic subgroup of
PSL2(q0) of order q0 + 1, and let L1 (respectively, G1) be the normalizer of
H in L (respectively, G). Then L1 is dihedral of order 2(q + 1), so G1 is
generated by L1 and σ and has order 2r(q + 1). The centralizer of σ in G1

is generated by σ and PSL2(q0) ∩ G1; since the latter group is dihedral of
order 2(q0 + 1), the order of the centralizer is 2r(q0 + 1). The centralizer of
σ in G is generated by σ and PSL2(q0), and has order r(q3

0 − q0). We will
show that the conjugacy class of σ in G contains a unique conjugacy class of
G1; by the fixed point formula, it follows that σ has (q2

0− q0)/2 fixed points.
Since σ normalizes L, any conjugate of σ in G has the form µσ with

µ ∈ L; conversely, by Lang’s theorem, if µσ has order r (where µ ∈ L) then
µσ is conjugate to σ in G. If r - q + 1 then σ generates a Sylow subgroup
of G1, so it is conjugate in G1 to any element µσ of order r with µ ∈ L1.
Henceforth assume r | q + 1. Let J be a Sylow r-subgroup of L1 containing
σ. Then J := J ∩L is a Sylow r-subgroup of L1, so it is cyclic of order (say)
rj ; let τ be a generator of J . Since σ normalizes J , we have στσ−1 = τ i

where 1 ≤ i < rj . Then τ i
r

= σrτσ−r = τ , so ir ≡ 1 (mod rj), whence
i ≡ 1 (mod rj−1). Since q + 1 = qr0 + 1 is divisible by r, also r | q0 + 1,
and thus (q + 1)/(q0 + 1) is divisible by r but not by r2. Hence σ does
not centralize J , so i > 1. Next, we compute (τaσ)r = τa(1+i+···+ij−1), so
τaσ has order r if and only if rj divides a(1 + i + · · · + ij−1), i.e., if and
only if rj−1 | a. Conversely, if rj−1 | a then a ≡ b(i − 1) (mod rj); since
τ−bστ b = τ b(i−1)σ, it follows that J contains a unique conjugacy class of
subgroups of order r which are not contained in L. Thus G1 contains a
unique conjugacy class of subgroups of order r which are not contained in
L, and the proof is complete. �

This computation implies that the index of any branch point Q satisfies
indQ > 2d/3−q/2. Since ind∞ = d−1+n(q/2−1) ≥ d−2+q/2, it follows
that there is at most one finite branch point Q, and indQ ≤ d− (q/2).

Since G/L is cyclic, there is a unique group H between L and G such that
|H :L| is the highest power of 2 dividing |G :L|. Then EH/EG is unramified
over infinity, so it is a tame extension of k(f(x)) having only one branch
point, whence it is trivial. Thus H = G, so if G 6= L then |G :L| is a power
of 2. Now assume s := |G :L| is a power of 2. Since G is generated by the
inertia groups, which are conjugates of I and I0(Q), it follows that I0(Q)
maps onto G/L; let ν ∈ I0(Q) map to a generator of G/L. Replacing ν
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by an odd power of itself, we may assume µ has order a power of 2. Since
indQ ≤ d− (q/2), ν must have at least q/2 fixed points; hence ν cannot be
conjugate to a field automorphism, so 〈ν〉 intersects L nontrivially. Since
4 - |L1|, a subgroup of L of order divisible by 4 has no fixed points; thus
4 - |I0(Q) ∩ L|. Hence the Sylow 2-subgroup I1(Q) of I0(Q) has order 2s,
so it is generated by ν. Since the involution in I1(Q) ∩ L is centralized by
I0(Q) ∩ L, the latter group has order a power of 2; hence I0(Q) = I1(Q).
By Lemma 3.8, I1(Q)/I2(Q) is elementary abelian. Since I1(Q) is cyclic
of order 2s, the order of I2(Q) is either e or 2e, so |I2(Q)| > 1. Thus, for
0 ≤ i ≤ 2, the group Ii(Q) contains an involution of L, so orb(Ii(Q)) ≤ q2/4.
But then we have the contradiction

indQ ≥
2∑
i=0

(d− orb(Ii(Q)))/|I0(Q) : I1(Q)|

≥ (d− q2/4) + (d− q2/4) + (d− q2/4)/2 > d− q/2.

Henceforth we assume G = L.
Suppose the ramification over Q is wild. If I0(Q) has a subgroup of order

4 then every orbit of I0(Q) has even length, so indQ ≥ d is too large. Hence
the Sylow 2-subgroup I1(Q) of I0(Q) has order 2, so it is centralized by I0(Q);
but the centralizer (in L) of an involution is the Sylow subgroup containing
the involution, so I0(Q) has order 2. A Riemann-Hurwitz calculation yields
I2(Q) = 1 and n = 1. In this case the genus of E is (q2 − q)/2.

Now suppose the ramification over Q is tame. Then I0(Q) is cyclic of
order s, where s divides either q − 1 or q + 1. If s > 1 and s | q − 1 then
indQ = d−d/s, which implies that n = 1 and s = q−1; but then the genus
of E would be −q, which is absurd. Thus s | q+1, so indQ = d−1−(d−1)/s,
whence n = (q+1)/s. Here the genus of E is (q−1)(n−1)/2. This completes
the proof of Theorem 2.1.

2.5. Preliminary analysis in the case of two wildly ramified branch
points. We now prove the following result, which will be used in [19]:
Lemma 2.7. Let k be a field of characteristic 2, and let q = 2e with e > 1.
Let f ∈ k[X] \ k[X2] have degree q(q − 1)/2, let E be the Galois closure
of k(x)/k(f(x)), and let ` be the algebraic closure of k in E. Suppose that
Gal(E/`(f(x))) ∼= PGL2(q) and k(x)/k(f(x)) is wildly ramified over at least
two places of k(f(x)). Then E/`(f(x)) has precisely two ramified places, both
of degree one, and the corresponding inertia groups are (up to conjugacy) the
order-2 group generated by

(
1 1
0 1

)
and the group of upper-triangular matrices

in PGL2(q). Moreover, the second ramification group over each ramified
place is trivial. The degree [` : k] divides e, and f is indecomposable. Here f
is exceptional if and only if e is odd and [` : k] = e. Finally, there is a curve
C0 over k such that `.k(C0) ∼=` E.

Proof. The facts about ramification follow from Theorem 2.1, using the fact
that PGL2(q) contains a unique conjugacy class of involutions (Lemma A.3).
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Write u := f(x), and let A := Gal(E/k(u)) and G := Gal(E/`(u)) and
G1 := Gal(E/`(x)). Theorem 2.1 implies G1 is dihedral of order 2(q + 1),
so G1 is maximal in G. Pick ν ∈ CA(G). The subfield of E fixed by G.〈ν〉
is `ν(u). Since Gal(`(x)/`ν(x)) ∼= Gal(`(u)/`ν(u)) ∼= Gal(`/`ν), it follows
that Gal(E/`ν(x)) contains an element µν with µ ∈ G. Since `(x)/`ν(x) is
Galois, µν normalizes G1; but since ν commutes with G1, this means that µ
normalizes G1, whence µ ∈ G1 (since G is simple and G1 is maximal in G).
Hence Gal(E/`ν(x)) contains ν, so Eν contains `ν(x). Since ν commutes
with G, the group 〈ν〉 is a normal subgroup of G.〈ν〉, so Eν/`ν(u) is Galois.
But E is the splitting field of f(X)− u over `(u), so it is also the splitting
field of f(X) − u over `ν(u), whence it is the minimal Galois extension of
`ν(u) which contains `ν(x). Thus E = Eν , so ν = 1.

We have shown that CA(G) = 1, so the action of A on G by conjugation
is faithful, whence A ↪→ Aut(G) ∼= PΓL2(q). In particular, [` : k] = |A :G|
divides |PΓL2(q) : PGL2(q)| = e. Next, f is indecomposable over `, since
G1 is a maximal subgroup of G. The existence of a curve C0 over k with
`.k(C0) ∼=` E follows from the fact that A is the semidirect product of G
with a group H of field automorphisms: for `H = k and |H| = |Gal(`/k)|,
so `.EH = E.

Finally, we address exceptionality. By [3, Lemma 6] (or [23, Lemma 4.3]),
f is exceptional if and only if every element of A which generates A/G has
a unique fixed point. By Theorem 2.1, G1 is dihedral of order 2(q + 1); by
Lemma A.2, G1 is the normalizer of its unique subgroup of order 3, and G
has a unique conjugacy class of order-3 subgroups. Thus we can identify
the set of cosets of G1 in G with the set of order-3 subgroups of G, and the
action of G on cosets of G1 corresponds to its action by conjugation on these
subgroups. Moreover, the natural action of A on the order-3 subgroups of
G induces the permutation action of A under consideration.

Every coset in A/G has the form σG where σ ∈ PΓL2(q) is a field auto-
morphism. If σ has order e/e′, then the centralizer of σ in G is PGL2(2e

′
),

which contains 2e
′−1(2e

′ − 1) subgroups of order 3. In particular, if e′ > 1
then σ fixes more than one order-3 subgroup; thus, if f is exceptional then
A = PΓL2(q). Moreover, Theorem 1.2 implies that e must be odd if f is
exceptional.

Conversely, suppose A = PΓL2(q) and e is odd. To prove f is exceptional,
we must show that every element of A which generates A/G has precisely
one fixed point. By an easy counting argument [14, Lemma 13.1], it suffices
to show that there is a generating coset of A/G in which every element
has at most one fixed point. Pick an element ν ∈ A which induces the
Frobenius automorphism on A/G ∼= Gal(Fq/F2). Since A/G has odd order,
ν2 also generates A/G, and moreover if ν2 has at most one fixed point then
so does ν. By replacing ν by ν2s , where s is sufficiently large and 2s ≡ 1
(mod e), we may assume that ν has odd order; thus, if ν normalizes an
order-3 subgroup then it centralizes the subgroup. By Lang’s theorem on
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algebraic groups, there exists τ ∈ PGL2(Fq) such that τντ−1 is the Frobenius
automorphism σ in PΓL2(Fq). Thus CG(ν) is isomorphic to a subgroup of
CPGL2(Fq)

(σ) ∼= PGL2(2), which contains a unique order-3 subgroup. �

The following consequence of Lemma 2.7 describes the ramification in
C → C/B, where C = C0×k ` and B is the group of upper-triangular matrices
in L. Here W = B ∩PGL2(2) and T is the group of diagonal matrices in B.
Corollary 2.8. If C is a curve over ` for which `(C) = E, then the following
hold:

(i) B acts as a group of `-automorphisms on C;
(ii) the quotient curve C/B has genus zero;
(iii) the cover C → C/B has exactly three branch points;
(iv) the inertia groups over these branch points are B, T , and W (up to

conjugacy); and
(v) all second ramification groups in the cover C → C/B are trivial.

Proof. We know that E/`(f(x)) is Galois with group L, and is ramified over
precisely two places, both of which have degree one and have trivial second
ramification group, and moreover the inertia groups are B and W . Thus
there is an action of L as a group of `-automorphisms of C for which the
cover C → C/L has this same ramification. By Riemann-Hurwitz, the genus
of C is q(q − 1)/2. Since the second ramification groups in C → C/L are
trivial, it follows that the same is true in C → C/B.

Let P1 and P2 be points of C whose inertia groups in C → C/L are B
and W , and let Q1 and Q2 be the points of C/L lying under P1 and P2.
Then each of the q+ 1 points of C lying over Q1 has inertia group conjugate
to B. Since B is self-normalizing in L, and the intersection of any two
conjugates of B is cyclic of order q − 1, it follows that the inertia group of
P1 in C → C/B is B, while the inertia groups of the other q points over Q1

are cyclic of order q − 1. Since B has q cyclic subgroups of order q − 1, and
they are all conjugate in B, it follows that Q1 lies under two branch points
of C → C/L, and the corresponding inertia groups are B and T . Since all
involutions in L are conjugate, and each has normalizer of order q, each
of the q2 − 1 involutions in L occurs as the inertia group of precisely q/2
points of C lying over Q2. Thus Q2 lies under q(q − 1)/2 points of C which
ramify in C → C/B, and all these points lie over the same point of C/B.
Hence C → C/B has precisely three branch points, with inertia groups B,
T , and W ; now Riemann-Hurwitz implies that C/B has genus zero, which
completes the proof. �

3. Characterizing certain field extensions by ramification

In this section we study the extensions E/k(z) having certain ramifica-
tion; the specific choice of ramification configuration comes from our desired
application to the classification of degree q(q−1)/2 polynomials having mon-
odromy group normalizing PSL2(q). However, the results in this section are
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of interest for their own sake, as they provide data for the general problem
of determining the ramification possibilities for covers of curves having spec-
ified monodromy group. The goal of this section is to prove Theorem 1.5 of
the introduction.

We begin with three easy facts about elementary abelian field extensions;
a convenient reference for these is [15]. The first result describes the shape
of these extension fields [15, Prop. 1.1].
Lemma 3.1. Let E/F be an elementary abelian extension of degree pe,
where Fpe ⊆ F . Then there exist elements v ∈ E and z ∈ F such that
E = F (v) and the minimal polynomial of v over F is T p

e − T − z.
The converse of this result also holds [15, Prop. 1.2].

Lemma 3.2. Pick z ∈ F , and suppose that Fpe ⊆ F and that the polynomial
T p

e −T − z ∈ F [T ] is irreducible over F . For any root v of this polynomial,
the extension F (v)/F is elementary abelian of degree pe. The map σ 7→
σ(v)− v is an isomorphism between Gal(F (v)/F ) and the additive group of
Fpe. The intermediate fields F ⊂ F0 ⊆ F (v) with [F0 :F ] = p are precisely
the fields F0 = F (vζ), where for ζ ∈ F∗pe we put

vζ := (ζv)p
e−1

+ (ζv)p
e−2

+ · · ·+ (ζv)p + (ζv).

The minimal polynomial for vζ over F is T p − T − ζz.
Note that the values vζ are precisely the images of the various ζv under

the polynomial T p
e−1

+ · · · + T p + T , which is the trace map from Fpe to
Fp. In order to apply this result, we need to know when the polynomial
T p

e−T−z ∈ F [T ] is irreducible; we now give criteria for this [15, Lemma 1.3].
Lemma 3.3. Pick z ∈ F , and suppose Fpe ⊆ F . The following conditions
are equivalent:

(a) T p
e − T − z is irreducible over F .

(b) For all ζ ∈ F∗pe, the polynomial T p − T − ζz is irreducible over F .
(c) For all ζ ∈ F∗pe, the polynomial T p − T − ζz has no roots in F .

There are versions of these three lemmas in which the polynomial T p
e−T

is replaced by any separable monic additive polynomial in F [T ] of degree
pe which has all its roots in F (cf. e.g. [10]). However, the statements are
simplest in the case of T p

e − T , so we restrict to this case in what follows.
Our next results concern the ramification in E/F .

Lemma 3.4. Suppose F = k(w), where k is perfect (and w is transcendental
over k). Let E = F (v), where the minimal polynomial for v over F is
T p

e − T − z (with z ∈ F ). If E/F is unramified over each finite place of F ,
then there is some v′ ∈ E for which v′ − v ∈ F and E = F (v′), and where
moreover the minimal polynomial for v′ over F is T p

e−T−z′ with z′ ∈ k[w].

Proof. For y ∈ k(w), we may replace v by v+y and z by z+yp
e
+y without

affecting the hypotheses. Writing z = a/b with a, b ∈ k[w] coprime, we may
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thus assume that y (and hence z) has been chosen to minimize deg(b). We
will show that z ∈ k[w].

We begin by showing that b is a pe-th power in k[w]. For this, consider
any place Q of k(w) which contains b (equivalently, any irreducible c ∈
k[w] which divides b) and let P be a place of E lying over Q. Let ρ be
the (additive) valuation corresponding to P , normalized so that ρ(E) = Z.
Since P is unramified over Q, the value ρ(h) (for any h ∈ k[w]) is just the
multiplicity of c as a divisor of h. Thus

ρ(vp
e − v) = ρ(z) = −ρ(b) < 0,

so ρ(v) < 0, whence peρ(v) = ρ(vp
e − v) = −ρ(b). Since this holds for every

irreducible factor c of b, we conclude that b is indeed a pe-th power in k[w];
say b = bp

e

0 .
For any irreducible factor c ∈ k[w] of b, the residue field k[w]/(c) is a

finite extension of k, hence is perfect; thus, a is a pe-th power in this field.
In other words, there is some a0 ∈ k[w] such that ap

e

0 − a is divisible by c.
For ṽ := v − a0/b0, we have

ṽp
e − ṽ =

a− ap
e

0 + a0b
pe−1
0

b
.

Since c divides both the numerator and denominator of the right-hand ex-
pression, we can write ṽp

e − ṽ = ã/b̃, where ã, b̃ ∈ k[w] and deg(b̃) < deg(b).
But this contradicts our hypothesis that deg(b) is minimal. This implies that
b has no irreducible factors in k[w], so b ∈ k∗; thus z ∈ k[w], as desired. �

This result shows that, in the case of interest to us, we may assume
z ∈ k[w]. Our next two results describe the ramification in extensions of
this sort.
Lemma 3.5. Suppose F = k(w), where k is perfect. Let E = F (v), where
the minimal polynomial of v over F is h(T ) := T p

e − T − z (where z ∈
k[w]). Then E/k(w) is unramified over each finite place of k(w). If k is
algebraically closed in E and Fpe ⊆ k, then E/k(w) is totally ramified over
the infinite place of k(w).

Proof. First consider a finite place of k(w), and let S be the corresponding
valuation ring of k(w); since h(T ) ∈ S[T ] and h′(T ) = −1 ∈ S∗, the place
is unramified in the extension E/k(w). Now assume that k is algebraically
closed in E and Fpe ⊆ k. By Lemma 3.2, E/k(w) is abelian, so each subgroup
of Gal(E/k(w)) is normal. In particular, this applies to the inertia group
I of a place P of E lying over the infinite place of k(w), so I does not
depend on the choice of P . Thus the fixed field EI is an unramified Galois
extension of k(w) in which k is algebraically closed, so it is a trivial extension;
hence I = Gal(E/k(w)), so the infinite place of k(w) is totally ramified in
E/k(w). �

Now we examine more carefully the ramification over the infinite place, by
studying the higher ramification groups. In particular, we consider the case
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where there is only one jump in the filtration of ramification groups over the
infinite place of k(w); this is what occurs in the situation of greatest interest
to us, namely when z is a power of w.

Proposition 3.6. Suppose F = k(w), where k is perfect and k ⊇ Fpe. Let
E = F (v), where the minimal polynomial of v over F is T p

e − T − z (with
z ∈ k[w]). Assume that no term of z has degree a positive multiple of pe,
and that k is algebraically closed in E. Let I0, I1, . . . be the ramification
groups at a place of E lying over the infinite place of k(w). Then (a) and
(b) below are equivalent, and each implies (c):

(a) I0 = I1 = · · · = In but In+1 = 1.
(b) For every ζ ∈ F∗pe, the polynomial gotten from ζz by replacing each

term αwp
ij by αp

−i
wj (for integers i, j ≥ 0 with j coprime to p) has

degree n.
(c) n is the largest integer coprime to p which divides the degree of a

nonconstant term of z.

We may assume that no term of z has degree a positive multiple of pe: we
can replace v by ṽ := v+y, where y ∈ k[w] is chosen so that z̃ := z+yp

e−y
has the desired property (such an element y exists because k is perfect), and
then F (ṽ) = F (v) and the minimal polynomial of ṽ over F is T p

e − T − z̃.

Proof. By the previous result and Lemma 3.2, I0 = Gal(E/F ) ∼= Fpe .
Lemma 3.2 describes the intermediate fields F ⊂ F0 ⊆ E for which [F0 :F ] =
p: they are the fields F0 = F (vζ) where, for ζ ∈ F

∗
pe , we put vζ :=

(ζv)p
e−1

+ (ζv)p
e−2

+ · · · + (ζv)p + (ζv). The minimal polynomial for vζ
over F is T p − T − ζz.

First we show the equivalence of (a) and (b). We begin by relating the
groups Ii to the corresponding groups for the extensions F (vζ)/F , via [36,
Prop. IV.3] (note that in the statement of that result, eL/K should be re-
placed by eL/K′). The stated result implies that (a) is equivalent to the
following: for each ζ, the ramification groups for F (vζ)/F over the infinite
place of F equal Gal(F (vζ)/F ) until the (n + 1)-th group, which is trivial.
Now we just need to compute the ramification groups over infinity for the
Artin-Schreier extensions F (vζ)/F . We first normalize vζ by replacing it by
ṽζ := vζ + yζ , where yζ ∈ k[w] is chosen so that no nonzero monomial in
ṽpζ − ṽζ = ζz + ypζ − yζ has degree a positive multiple of p; this is possible
because k is perfect. Then F (vζ) = F (ṽζ) and the minimal polynomial for
ṽζ over F is T p − T − z̃, where z̃ is gotten from ζz by replacing each term
αwp

ij (where j is coprime to p) by the term αp
−i
wj . The computation of

the ramification in F (ṽζ)/F is classical in this case, since ñ := deg(z̃) is
coprime to p: the first several ramification groups over infinity equal the full
Galois group, until the (ñ + 1)-th group which is trivial [39, Prop. III.7.8].
This proves the equivalence of (a) and (b). Note that n = ñ is necessarily
coprime to p.
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We now show that (b) implies (c). So, assume (b); then z has a term of
degree npr, and we have seen that n is coprime to p. We just need to show
that z has no term of degree spj with s > n and s coprime to p. For any such
s, write z =

∑
αiw

i with αi ∈ k, and let ẑ = αsw
s+αspw

sp+αsp2wsp
2
+ . . .

be the sum of the terms of z having degree spj . Then (b) implies that,
for every ζ ∈ F∗pe , we have ζαs + (ζαsp)1/p + (ζαsp2)1/p2

+ · · · = 0. From
our assumption that no term of z has degree a positive multiple of pe, we
see that deg(ẑ) ≤ spe−1. Thus, when we raise the previous equation to the
power pe−1, we get h(ζ) = 0, where h(T ) := αp

e−1

s T p
e−1

+ αp
e−2

sp T p
e−2

+ . . .
is a polynomial in k[T ]. Since h(T ) vanishes on Fpe , but deg(h) ≤ pe−1, it
follows that h = 0, so each αspj = 0. This concludes the proof. �

We now show when certain data determines the field k(v, w), where vp
e−

v = wn. The data come from the extension k(v, w)/k(wr) for some r; we are
given the ramification groups over infinity for this extension, and also we
are given that k(v, w)/k(w) is unramified over finite places. We will see that
this data uniquely determines k(v, w) if and only if p, n, r satisfy a certain
arithmetic condition.
Proposition 3.7. Let E ⊇ k(w̃) ⊇ F satisfy [E : k(w̃)] = pe and [k(w̃) :F ] =
r, where k is a perfect field containing Fpe and w̃ is transcendental over k.
Assume that E/F is Galois and is totally ramified over some degree-one
place of F , and that the sequence of ramification groups over this place has
jumps only after the 0-th and n-th groups (where p - n). Also assume that
E/k(w̃) is ramified over only one place, and that r/gcd(n, r) divides pe − 1.
Finally, assume that either k = Fpe or pe is the least power of p congruent
to 1 modulo r/gcd(n, r). Then E = k(v, w) where

(a) k(w) = k(w̃) and F = k(wr);
(b) z := vp

e − v lies in k[w] and has no nonconstant terms of degree
divisible by pe;

(c) n is the largest integer coprime to p which divides the degree of a
nonconstant term of z;

(d) E/k(w) is Galois, and the map σ 7→ σ(v) − v induces an isomor-
phism Gal(E/k(w))→ Fpe; for α ∈ Fpe, let σα be the corresponding
element of Gal(E/k(w));

(e) for τ ∈ Gal(E/F ), put ζ := τ(v)/v; then ζ ∈ F∗pe and τσατ
−1 =

σαζ−n;
(f) every term of z has degree congruent to n mod r.

The proof relies on various results about ramification groups. The stan-
dard reference for these is [36, Ch. IV]; we recall the facts we will need.
Given a Dedekind domain S with field of fractions F , let R be its integral
closure in a finite Galois extension E of F , with Galois group G. Let P be
a prime ideal of R, and put Q = P ∩S. The decomposition group D of P is
the subgroup of G consisting of elements σ ∈ G with σ(P ) = P . When the
extension of residue fields (R/P )/(S/Q) is separable, the i-th ramification
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group Ii of G relative to P (for i ≥ 0) is defined to be the set of σ ∈ G
which act trivially on R/P i+1. The Ii form a decreasing sequence of normal
subgroups of D, and Ii = 1 for i sufficiently large. Here I0 is the inertia
group of P . By a ‘jump’ in the sequence of ramification groups, we mean
an integer i ≥ 0 for which Ii 6= Ii+1. Especially important for our purposes
are results of [36, IV.2], which we now state (our statements differ slightly
from those of [36]). We denote the residue field R/P by `.
Lemma 3.8. The map θ0 : I0/I1 → Aut`(P/P 2) given by θ0(τ) : π 7→ τ(π)
is an injective homomorphism. For i ≥ 1, the map θi(σ) : π 7→ σ(π) − π
induces an injective homomorphism θi : Ii/Ii+1 → Hom`(P/P 2, P i+1/P i+2).
For τ ∈ I0 and σ ∈ Ii/Ii+1, we have θi(τστ−1) = θ0(τ)iθi(σ).

Here P/P 2 is a one-dimensional `-vector space, so Aut`(P/P 2) ∼= `∗.
Likewise P i+1/P i+2 is a one-dimensional `-vector space, so P i/P i+1 is iso-
morphic to Hom`(P/P 2, P i+1/P i+2) via the map taking ψ to π 7→ ψπ. Thus
the right side of the final equation in the lemma makes sense, since it is just
the action of `∗ on the `-vector space P i/P i+1. Finally, note that the final
equation simply amounts to the natural action of P/P 2 on its i-th tensor
power, which explains the i-th power in that equation.

Proof of Proposition 3.7. Let Q be the degree-one place of F over which
E/F is totally ramified, and let P be the place of E lying over Q. Since
P/Q is totally ramified, the inertia group I0 equals G := Gal(E/F ). Since
in addition Q has degree one, the constant fields of F , k(w̃), and E must
all be the same, so they are all k. By replacing w̃ by 1/(w̃− α) if necessary
(with α ∈ k), we may assume that P lies over the infinite place of k(w̃).
Next, I1 is the unique Sylow p-subgroup of I0, so the fixed field EI1 must
equal k(w̃) (since [E : k(w̃)] = pe). Hence Gal(k(w̃)/F ) ∼= I0/I1 is cyclic
of order r; here 〈ν〉 := Gal(k(w̃)/F ) ⊂ Autk(k(w̃)), and the latter group
is isomorphic to PGL2(k) where

( α β
γ δ

)
corresponds to the k-automorphism

of k(w̃) sending w̃ 7→ (αw̃ + γ)/(βw̃ + δ). Since k(w̃)/F is totally ramified
under the infinite place, ν generates the decomposition group under this
place, so ν(w̃) = αw̃ + γ; but ν has order r which is coprime to p, so
either ν is the identity (and we put w = w̃) or α 6= 1, in which case we
put w = w̃ + γ/(α − 1). In any case, there exists w ∈ k[w̃] such that
k(w) = k(w̃) and ν(w) = αw with α ∈ k a primitive r-th root of unity, so
F = k(w)ν = k(wr). This proves (a); note that E/k(w) is totally ramified
over infinity.

Let τ ∈ Gal(E/F ) map to a generator of Gal(k(w)/F ); then τ(w) = ζw
where ζ is a primitive r-th root of unity. Since P is totally ramified over the
infinite place of k(w), and 1/w is a uniformizer for the latter place, we have
1/w ∈ P pe \ P pe+1. If A denotes the valuation ring of E corresponding to
P , and π is any uniformizer of P , then 1/w = yπp

e
for some y ∈ A∗; since

τ(y)− y ∈ P ,

τ(1/w) = τ(y)τ(π)p
e ≡ yτ(π)p

e
(mod P p

e+1).
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But τ(1/w) = 1/(ζw) = ζ−1yπp
e
, so τ(π)p

e ≡ ζ−1πp
e

(mod P p
e+1), whence

θ0(τ) = ζ−1/pe ∈ k∗. Next, θn induces an injective homomorphism I1 →
Pn/Pn+1, and θn(τστ−1) = ζ−nθn(σ) for σ ∈ I1. Iterating, θn(τ iστ−i) =
ζ−inθn(σ), so the image of θn contains all sums of elements ζ−inθn(σ); in
other words, the image of θn contains Fp(ζ−n)θn(σ), which equals Fpeθn(σ)
by hypothesis. Choose σ to be any nonidentity element of I1; then the
image of θn is precisely Fpeθn(σ), and we have an isomorphism from Fpe to
the image of θn via α 7→ αθn(σ) (unlike our previous isomorphisms, this one
is not canonical).

Now we use basic Galois cohomology to pick the element v. A reference
is [36, Chs. VII and X]. We have a homomorphism ρ : I1 → Fpe ⊂ E, which
is a 1-cocycle for the I1-module E. Since H1(I1, E) = 0, the cocycle ρ is a
coboundary, so there exists ṽ ∈ E such that, for each σ ∈ I1, we have ρ(σ) =
σ(ṽ)− ṽ. It follows that the map σ 7→ σ(ṽ)− ṽ is an isomorphism I1 → Fpe ;
we denote by σα the preimage of α ∈ Fpe under this map. In particular, ṽ
has pe conjugates under I1, so indeed E = k(ṽ, w). Also we now know the
shape of the minimal polynomial for ṽ over k(w): it is

∏
α∈Fpe (T−(ṽ+α)) =

(T − ṽ)p
e − (T − ṽ) = T p

e − T − z̃, where z̃ := ṽp
e − ṽ lies in k(w).

By Lemma 3.4 and the remark following Proposition 3.6, there exists
v′ ∈ E such that v′ − ṽ ∈ k(w) and z′ := v′p

e

− v′ lies in k[w] but z′ has no
terms of degree a positive multiple of pe. Note that v′ is only determined up
to addition by an element of k; eventually we will specify the choice of this
element to determine v. Regardless of the choice, we have k(v′, w) = k(ṽ, w)
and σα(v′) − v′ = α; (b) and (d) follow at once, and (c) then follows from
Proposition 3.6.

Let τ ∈ Gal(E/F ) map w 7→ ζw, where ζ has order r. Since θn(τ iσατ−i) =
ζ−inθn(σα), injectivity of θn yields τ iσατ−i = σαζ−in ; since every element of
Gal(E/F ) has the form τ iσα̃, this proves (e).

Finally, we consider (f), and specify the choice of v ∈ v′ + k. For τ as in
the previous paragraph, we have

αζ−n = σαζ−n(v′)− v′ = τσατ
−1(v′)− v′ = τ(σατ−1(v′)− τ−1(v′));

since τ fixes αζ−n, it follows that αζ−n = σατ
−1(v′) − τ−1(v′). But also

αζ−n = σα(ζ−nv′)− ζ−nv′, so, subtracting, we see that y := τ−1(v′)− ζ−nv′
is fixed by each σα; hence y ∈ k(w). Since yp

e − y = τ−1(z′)− ζ−nz′ lies in
k[w] and has no term of degree a positive multiple of pe, in fact y must lie
in k. For β ∈ k, we have

τ−1(v′ + β) = ζ−n(v′ + β) + β(1− ζ−n) + y;

if ζn 6= 1, there is a unique choice of β for which v := v′+β satisfies τ−1(v) =
ζ−nv. If ζn = 1, then by replacing τ by its p-th power (and choosing v′ = v)
we may assume that τ−1(v) = v. At last, for z := vp

e − v ∈ k[w], we have

zτ−1(z) = τ−1(vp
e − v) = ζ−n(vp

e − v) = ζ−nz,
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so all terms of z have degree congruent to n mod r. This completes the
proof. �

Corollary 3.9. Under the hypotheses of Proposition 3.7, suppose the inte-
gers p, n, r satisfy

(∗) if n′, i ≥ 0 and n′ ≡ pin (mod r), then n′ ≥ n.

Then conclusions (a)–(f) of Proposition 3.7 hold if we require in addition
that z = γwn with γ ∈ k∗.

Proof. Let v, w, z be as in the conclusion of the proposition, so z ∈ k[w].
Then the degree of any nonconstant term of z is congruent to n mod r
(by (f)) and has the shape n′pj with 0 ≤ n′ ≤ n (by (c)) and 0 ≤ j < e
(by (b)), so (∗) implies n′ = n. If pe is the least power of p congruent to 1
modulo r/ gcd(n, r), then (∗) implies j = 0 and we are done. If this condition
does not hold then, by the hypothesis of the proposition, k = Fpe . In this
case, write z =

∑e−1
j=0 αjw

npj , where each αj ∈ Fpe and some αj 6= 0 (by
(c)). Let v̂ be an element of an extension of E satisfying v̂p

e − v̂ = wn; then
ỹ :=

∑e−1
j=0 αj v̂

pj satisfies ỹp
e− ỹ = z, so ỹ−y ∈ Fpe . Since [k(v̂, w) : k(w)] =

pe (by Lemma 3.3) and k(v̂, w) ⊇ k(v, w), we have k(v, w) = k(v̂, w), and
the result follows. �

We now present values of the parameters for which (∗) is satisfied.
Lemma 3.10. The criterion (∗) is satisfied if pe ≥ 4 and either of the
following hold:

(i) pe ≡ 3 (mod 4), n | ((pe + 1)/4), r = (pe − 1)/2.
(ii) pe 6≡ 3 (mod 4), n | pe + 1, n < pe + 1, r = pe − 1.

Proof. It suffices to prove (i) in case n = (pe + 1)/4, since we can reduce the
general case to this one by multiplying (∗) by (pe + 1)/(4n). Now,

n · p = n+
pe + 1

2
· p− 1

2
≡ n+

p− 1
2

(mod r),

so

n · pi ≡ n+
p− 1

2
· (1 + p+ · · ·+ pi−1) = n+

pi − 1
2

(mod r).

For 0 ≤ i < e we have

pe + 1
4

+
pi − 1

2
≤ pe + 1

4
+
pe/3− 1

2
=

5pe − 3
12

< r,

so n + (pi − 1)/2 is the least nonnegative residue of npi modulo r. In
particular, the least such number is n; since pe ≡ 1 (mod r), this proves (i).

Now consider (ii). We assume n > 1, since the result is clear for n = 1.
Assume 0 ≤ i < e. Multiplying (∗) by (pe + 1)/n gives

pe + 1
n
· n′ ≡ pi(pe + 1) (mod r).
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The right side is congruent to pi+1, and it follows that its least nonnegative
reside modulo r is itself (unless p = 2 and i = e − 1 in which case it is 1);
but if n′ < n then the left side is already reduced modulo r, so the only
possibility is p odd, (pe+1)/n = 2, and n′ = pi. In that case n ≡ 1 (mod r),
contradiction. �

The specific values in this lemma are the ones we will use elsewhere in
this paper. For completeness, we now present necessary and sufficient con-
ditions for the fields k(v, w) (with vq − v = γwn) to be determined by their
ramification over k(wr). We first prove Lemma 1.4, which describes this
ramification; this lemma has been known for many years.

Proof of Lemma 1.4. By Lemma 3.3, T q−T −γwn is irreducible in k(w)[T ],
so [k(v, w) : k(w)] = q and k(w)∩k(v, w) = k(w). It follows that k(v, w)/k(wr)
has degree qr; suppose this extension is Galois with group G. Since it is
separable, r is coprime to q. Since it is normal, there must be elements of
G which map w to any of its conjugates over k(wr); in particular, there
exists σ ∈ G with σ(w) = ζw, where ζ is a primitive r-th root of unity (and
ζ ∈ k ∩ k(v, w) = k). Write σ(v) =

∑q−1
i=0 yiv

i with yi ∈ k(w); then

γζnvn = σ(v)q − σ(v) =
q−1∑
i=0

(yqi (v + γwn)i − yivi).

By considering the terms of degree i in v, for i = q−1, q−2, . . . , 0 successively,
we find that yi = 0 for i > 1, and also y0 ∈ Fq and ζn = y1 ∈ Fq. This last
statement may be restated as: r/ gcd(n, r) divides q − 1.

Conversely, assume that k contains a primitive r-th root of unity and
r/ gcd(n, r) divides q − 1. Let ζ be an r-th root of unity and let α ∈ Fq;
then ζn ∈ Fq. Then there is a k-automorphism of k(v, w) mapping w 7→ ζw
and v 7→ ζnv+α (since these equations define an automorphism of k(w)[X],
and they preserve the ideal generated by Xq −X − γwn, so they define an
automorphism of the quotient ring which is k(v, w)). These automorphisms
form a group of order qr, and they all fix wr (where [k(v, w) : k(wr)] = qr),
so k(v, w)/k(wr) is Galois. The ramification in this extension is as in (†),
by Lemma 3.5 and Proposition 3.6. �

We conclude this section by proving Theorem 1.5.

Proof of Theorem 1.5. The first part of the theorem follows from Corol-
lary 3.9 once we observe that the subfield EI1 has the form k(w̃); for this,
note that EI1/k(t) is cyclic of degree r with only two branch points (0 and
infinity), both of which have degree one and are totally (and tamely) rami-
fied, so EI1 is a genus zero function field over k having a degree one place,
whence it indeed has the form k(w̃).

Assume that (i) is violated, and let 0 ≤ n′ < n satisfy npi ≡ n′ (mod r)
for some i ≥ 0; since npe ≡ n (mod r), we may assume 0 ≤ i < e. Let v and
w be transcendentals over k satisfying vp

e −v = wnp
i
+wn

′
. By Lemma 3.3,
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[k(v, w) : k(w)] = pe. For any r-th root of unity ζ and any α ∈ Fpe , there is
a k-automorphism of k(v, w) mapping w 7→ ζw and v 7→ ζn

′
v + α. These

automorphisms form a group of order per, and their fixed field is k(wr), so
k(v, w)/k(wr) is Galois. The ramification in this extension is as in (†), by
Lemma 3.5 and Proposition 3.6. Now suppose that k(v, w) = k(v̂, ŵ) where
k(wr) = k(ŵr) and v̂p

e − v̂ = γŵn for some γ ∈ k∗. Then we would have
w = βŵ with β ∈ k∗ and v =

∑pe−1
i=0 yiv̂

i with yi ∈ k(ŵ), so

(βŵ)np
i

+ (βŵ)n
′

= vp
e − v =

pe−1∑
i=0

(
yp

e

i (v̂ + γŵn)i − yiv̂i
)
,

and we get a contradiction by considering successively the terms of degree i
in v̂ for i = pe − 1, pe − 2, . . . , 0.

Now assume (ii) is violated. Pick an integer 1 ≤ i < e such that pi ≡ 1
(mod r/ gcd(n, r)), and let v, w be transcendentals over k satisfying vp

e−v =
wn+βwnp

i
, where β ∈ k\Fq. The above argument shows that k(v, w)/k(wr)

is Galois with ramification as in (†), and that this extension cannot be
written in the form k(v̂, ŵ)/k(ŵr) for any v̂, ŵ ∈ k(v, w) with v̂p

e − v̂ = γŵn

and γ ∈ k∗. �

4. Producing polynomials

In this section we use the results from the previous two sections to prove
refined versions of the results stated in the introduction. We first describe
the polynomials f(X) of degree pe(pe− 1)/2 (over a field k of characteristic
p > 0) whose arithmetic monodromy group has a transitive normal sub-
group isomorphic to PSL2(pe), assuming that either the Galois closure of
the extension k(x)/k(f(x)) does not have genus pe(pe − 1)/2, or this exten-
sion has no finite branch points. We then apply this result to produce all
indecomposable polynomials f (over any field k) such that deg(f) is not a
power of char k and either f is exceptional over k or f decomposes over an
extension of k. We begin with the following refinement of Theorem 1.6:

Theorem 4.1. Let k be a field of characteristic p > 0, let d = (q2 − q)/2
for some power q = pe, and let f(X) ∈ k[X] \ k[Xp] have degree d. Then
the following are equivalent:

(1) Gal(f(X)−u, k(u)) has a transitive normal subgroup isomorphic to
PSL2(q), and the extension k(x)/k(f(x)) either has no finite branch
points, or has Galois closure of genus 6= (q2 − q)/2.

(2) There exist linear polynomials `1, `2 ∈ k[X] such that the compo-
sition `1 ◦ f ◦ `2 is one of the following polynomials or one of the
exceptions in Table B below:

X(Xm + 1)(q+1)/(2m)

(
(Xm + 1)(q−1)/2 − 1

Xm

)(q+1)/m
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with q odd and m a divisor of (q + 1)/2; or

X−q
(e−1∑
i=0

Xm2i
)(q+1)/m

with q even and m a divisor of q + 1.
In these cases, Gal(f(X) − u, k(u)) is either PSL2(q) (if m is even) or
PGL2(q) (if m is odd). Moreover, the Galois closure of k(x)/k(f(x)) is
k(v, w) where vq − v = wm/gcd(m,2).

f1 = X
3
(X

2
+ 3)

2
(X

8 −X6
+ 2X

4 −X2 − 3)
6

f2 = X
3
(X

4
+ 3)(X

16 −X12
+ 2X

8 −X4 − 3)
3

f3 = X
3
(X + 3)

4
(X

4 −X3
+ 2X

2 −X − 3)
12

f4 = (X
3 − 3)X

4
(5 + 6X

3 −X6 − 2X
9

+X
12

)
4

f5 = (X − 11)
3
(X − 10)

4
(X + 3)

6
(X

20 − 5X
19 − 10X

18
+ 7X

17
+X

16
+ 5X

15 − 9X
14 − 10X

13 − 8X
12

+ 11X
11

+ 8X
9

+ 10X
8

+X
7 − 6X

6 − 8X
5

+ 6X
4

+ 12X
3

+ 6X
2 −X − 7)

12

f6 = X
3
(X

2
+ 1)

2
(X

2 − 9)
3
(−3− 8X

2 − 8X
4

+ 11X
6

+ 10X
8 − 10X

12 − 2X
14

+ 7X
16 − 6X

18
+ 5X

20

− 4X
24

+ 8X
26

+ 2X
28

+ 2X
30

+ 6X
32

+ 11X
34 − 7X

36
+ 8X

38
+X

40
)
6

f7 = (X
3 − 1)X

4
(X

3 − 10)
2
(−2−X3

+ 11X
6 −X9

+X
12 − 9X

15 − 5X
18

+X
24

+ 2X
27 − 6X

30
+ 2X

33

− 6X
36 − 3X

39
+ 6X

42
+ 9X

45
+ 4X

48 − 3X
51

+ 8X
54

+ 11X
57

+X
60

)
4

f8 = (X − 41)
6
(X − 6)

10
(X − 9)

15
(19X + 46X

2
+ 21X

3
+ 2X

4
+ 2X

5
+ 16X

6
+ 53X

7
+ 8X

8
+ 42X

9
+ 22X

10

+ 14X
11

+X
12

+ 4X
13

+ 12X
14

+ 33X
15

+ 41X
16

+ 50X
17

+ 27X
18

+ 37X
19

+ 42X
20

+ 8X
21

+ 16X
22

+ 53X
23

+ 28X
24

+ 9X
25

+ 56X
26

+ 39X
27

+ 42X
28

+ 13X
29

+ 14X
30

+ 28X
31

+ 25X
32

+ 26X
33

+ 43X
34

+ 34X
35

+ 10X
36

+ 17X
37

+ 58X
38

+ 25X
39

+ 48X
40

+ 14X
41

+ 15X
42

+ 53X
43

+ 39X
44

+ 58X
45

+ 48X
46

+ 5X
47

+ 8X
48

+ 9X
49

+ 9X
50

+ 9X
51

+ 27X
52

+ 4X
53

+ 13X
54

+ 56X
55

+X
56

)
30

f9 = (X
2 − 32)

3
X

15
(X

2
+ 3)

5
(43 + 13X

2
+ 15X

4
+ 2X

6
+ 57X

8
+ 57X

10
+ 15X

12
+ 43X

14
+ 35X

16
+ 53X

18

+ 35X
20

+ 37X
22

+ 51X
24

+ 5X
26

+ 44X
28

+ 6X
30

+ 3X
32

+ 28X
34

+ 44X
36

+ 26X
38

+ 57X
40

+ 40X
42

+ 41X
44

+ 11X
46

+ 28X
48

+ 57X
50

+ 3X
52

+ 56X
54

+ 6X
56

+ 30X
58

+ 16X
60

+ 26X
62

+ 15X
64

+ 36X
66

+ 19X
68

+X
70

+ 7X
72

+ 53X
74

+X
76

+X
78

+ 34X
80

+ 32X
82

+ 16X
84

+ 28X
86

+ 12X
88

+ 15X
90

+ 53X
92

+ 20X
94

+ 8X
96

+ 8X
98

+ 14X
100

+ 53X
102

+ 54X
104

+ 24X
106

+ 17X
108

+ 29X
110

+X
112

)
15

f10 = (X
3 − 35)

2
X

10
(X

3 − 3)
5
(27 + 45X

3
+ 30X

6
+ 26X

9
+ 41X

12
+ 24X

15
+ 16X

18
+ 43X

21
+ 7X

24

+ 39X
27

+ 24X
33

+X
36

+ 32X
39

+ 47X
42

+ 37X
45

+ 38X
48

+ 18X
51

+ 16X
54

+ 7X
60

+ 24X
63

+ 48X
66

+ 8X
69

+ 54X
72

+ 56X
75

+ 36X
78

+X
81

+ 33X
84

+ 35X
87

+ 31X
90

+ 34X
93

+ 19X
96

+ 17X
99

+ 29X
102

+ 25X
105

+ 16X
108

+ 17X
111

+ 2X
114

+ 8X
117

+ 46X
120

+ 53X
123

+ 54X
126

+ 15X
129

+ 24X
132

+ 2X
135

+ 49X
138

+ 22X
141

+ 36X
144

+ 36X
147

+ 51X
150

+ 15X
153

+ 9X
156

+ 32X
159

+ 6X
162

+ 38X
165

+X
168

)
10

f11 = X
6
(X

5
+ 35)

2
(X

5
+ 32)

3
(54 + 12X

5
+ 49X

10
+ 33X

15
+ 13X

20
+ 31X

25
+ 13X

30
+ 32X

35
+ 6X

40

+ 10X
45

+ 43X
50

+ 11X
60

+ 54X
65

+ 40X
70

+ 49X
75

+X
80

+ 13X
85

+ 37X
90

+ 49X
95

+ 40X
100

+ 10X
105

+ 43X
110

+ 2X
120

+ 24X
125

+ 54X
130

+ 46X
135

+ 8X
140

+ 33X
145

+ 35X
150

+ 23X
155

+ 2X
160

+ 57X
165

+ 15X
170

+ 30X
180

+ 32X
185

+ 39X
190

+ 50X
195

+ 50X
200

+ 36X
205

+ 55X
210

+ 15X
215

+ 30X
220

+ 35X
225

+ 3X
230

+ 53X
235

+ 37X
240

+ 52X
245

+ 31X
250

+ 6X
255

+ 35X
260

+ 37X
265

+ 30X
270

+ 51X
275

+X
280

)
6
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Table B

The first four polynomials in Table B correspond to q = 11, the next
three correspond to q = 23, and the final four correspond to q = 59. The
geometric monodromy group G of each polynomial in Table B is PSL2(q),
except for f3 and f4 where G ∼= PGL2(q). The point-stabilizer G1 of G is
A4 for the first two polynomials, S4 for the next five polynomials, and A5

for the final four polynomials. The Galois closure of k(x)/k(fi(x)) has the
form k(v, w) with vq − v = wm and m = 1 (for i = 1, 3, 5, 8) or m = 2 (for
i = 2, 6, 9) or m = 3 (for i = 4, 7, 10) or m = 5 (for i = 11).

We postpone the proof of Theorem 4.1 until Section 4.2. Here is an outline
of the strategy. Let f(X) ∈ k[X] satisfy the hypotheses of the theorem, and
assume that (1) holds; then Theorem 2.1 lists the possibilities for the rami-
fication in E/k(f(x)), where E denotes the Galois closure of k(x)/k(f(x)).
For each ramification possibility, let G and G1 be the corresponding possi-
bilities for the geometric monodromy group and a one-point stabilizer. Let
I be the inertia group of a place of E lying over the infinite place of k(f(x)).
First we show that EI has genus zero, and that the ramification in E/EI is
described by (†) (cf. Lemma 1.4). Then Theorem 1.5 and Lemma 3.10 imply
that E = k(v, w) where vp

e − v = wn. The automorphism group Autk(E)
was determined by Stichtenoth [38]; in our cases, it has a unique conjugacy
class of subgroups isomorphic to G. We compute the subfield k(û) of E in-
variant under one such subgroup, and also the subfield k(x̂) invariant under
the one-point stabilizer G1. Finally, we compute the rational function f̂ for
which û = f̂(x̂); for suitably chosen û and x̂, the rational function f̂ will in
fact be a polynomial f satisfying (1). Moreover, this construction produces
all polynomials satisfying (1).

4.1. Consequences of Theorem 4.1. We now use Theorem 4.1 to deduce
the remaining results mentioned in the introduction. First consider Theo-
rem 1.2. Our next results classify the examples in case (iii) of Theorem 1.2,
assuming that item (1) of Theorem 4.1 holds. (We will remove this assump-
tion in [19], which leads to a new family of examples in characteristic 2.) We
classify these polynomials up to equivalence, where we say that b, c ∈ k[X]
are equivalent if b = `1 ◦c◦`2 for some linear polynomials `1, `2 ∈ k[X]; triv-
ially, this equivalence relation preserves indecomposability, exceptionality,
and both the arithmetic and geometric monodromy groups.

Theorem 4.2. Let k be a field of characteristic 3, and let q = 3e with e > 1
odd. The following are equivalent:

(i) there exists an indecomposable exceptional polynomial f ∈ k[X] of
degree q(q−1)/2 for which PSL2(q) is a transitive normal subgroup
of Gal(f(X)− u, k(u));

(ii) k ∩ Fq = F3 and k contains non-square elements.



POLYNOMIALS WITH PSL(2) MONODROMY 31

Moreover, for any f as in (i), the Galois closure of k(x)/k(f(x)) is k(v, w)
where vq − v = wn and n divides (q + 1)/4; here n is uniquely determined
by f , and we associate f with n. Conversely, suppose (ii) holds, and fix a
divisor n of (q + 1)/4. Then there is a bijection between

• the set of equivalence classes of polynomials f which satisfy (i) and
are associated with n; and
• the set of even-order elements in k∗/(k∗)2n.

One such bijection is defined as follows: for α ∈ k∗, if the coset α(k∗)2n ∈
k∗/(k∗)2n has even order, then this coset corresponds to the equivalence class
of the polynomial

X(X2n − α)(q+1)/(4n)

(
(X2n − α)(q−1)/2 + α(q−1)/2

X2n

)(q+1)/(2n)

.

In particular, suppose that k is finite and k ∩ Fq = F3. Then, for each
divisor n of (q + 1)/4, there is a unique equivalence class of polynomials
f which satisfy (i) and which are associated with n. For k = F3, or more
generally if k + F9, the examples that arise are precisely the polynomials
described in [28]. If k ⊇ F9 then the polynomials in the theorem are new
examples of indecomposable exceptional polynomials. Finally, let r be the
largest power of 2 dividing [k :F3]; then, for any fixed divisor n of (q+ 1)/4,
the equivalence class of polynomials associated with n and satisfying (i)
contains a polynomial defined over F3r but does not contain any polynomials
defined over proper subfields of F3r .

There exist infinite fields k (for instance, k = F3(y) with y transcendental)
for which there are infinitely many equivalence classes of polynomials over k
satisfying (i). It is interesting to note, however, that for any k (finite or
infinite), any polynomial over k which satisfies (i) is equivalent over k to
one of the polynomials over F3 exhibited in [28], even though the latter
polynomial might not be exceptional over k. We will see below that a
similar remark applies in the case of characteristic 2.

We now prove Theorem 4.2. We first show that exceptionality cannot
hold if G := Gal(f(X)−u, k(u)) ∼= PGL2(q): assume the opposite. Arguing
as in the proof of Lemma 2.2, we can identify A := Gal(f(X) − u, k(u))
with a subgroup of PΓL2(q), so A/G is cyclic. Exceptionality of f implies:
for any µ ∈ A, if µG generates A/G then µ has exactly one fixed point
(cf. [3, Lemma 6] or [23, Lemma 4.3]). Since q ≡ 3 (mod 4), we can view
the permutation actions of G and A as actions on the involutions in L :=
PSL2(q) (as in the proof of Lemma 2.4). For any µ ∈ A such that µG
generates A/G, note that µG = σG for some field automorphism σ, and σ
centralizes PSL2(3) and so fixes at least three involutions of L, contradicting
exceptionality.

In light of Theorem 2.1 it follows that any indecomposable exceptional
polynomial as in Theorem 4.2 must be equivalent over k to one of the poly-
nomials in Theorem 4.1 with m even. There are several ways to proceed;
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the quickest, given what has already been done, is to compute the fields of
definition for the irreducible factors of f(X)−f(Y ) in k[X,Y ], for each poly-
nomial f over k which is equivalent to one of the polynomials in Theorem 4.1
with m = 2n. This bivariate factorization was derived in [42]. This gives
the statement of Theorem 4.2. The result (and its proof) for characteristic
two is similar.
Theorem 4.3. Let k be a field of characteristic 2, and let q = 2e with e > 1
odd. The following are equivalent:

(i) there exists an indecomposable exceptional polynomial f ∈ k[X] of
degree q(q−1)/2 for which PGL2(q) is a transitive normal subgroup
of Gal(f(X) − u, k(u)), and the extension k(x)/k(f(x)) either has
no finite branch points or has Galois closure of genus 6= (q2− q)/2;

(ii) k ∩ Fq = F2.
Moreover, for any f as in (i), the Galois closure of k(x)/k(f(x)) is k(v, w)
where vq − v = wn and n divides q + 1; here n is uniquely determined by f ,
and we associate f with n. Conversely, suppose (ii) holds, and fix a divisor
n of q + 1. Then there is a bijection between1

• the set of equivalence classes of polynomials f which satisfy (i) and
are associated with n; and
• k∗/(k∗)n.

One such bijection is defined as follows: for α ∈ k∗, the coset α(k∗)n ∈
k∗/(k∗)n corresponds to the equivalence class of the polynomial

X

(e−1∑
i=0

(αXn)2i−1

)(q+1)/n

.

Consider the case of finite k, and assume k ∩ Fq = F2. Then each divisor
n of q + 1 corresponds to a unique k-equivalence class of polynomials as in
(i), except when k ⊇ F4 and 3 | n, in which case there are three classes. For
k = F2, or more generally if either k + F4 or 3 - n, this implies that the
only polynomials satisfying (i) are the ones described in [5, 32]. However, if
k ⊇ F4 and 3 | n then we get new examples of indecomposable exceptional
polynomials.

Finally, consider Theorem 1.1. The proofs in [21, 22] show that, in cases
(ii) and (iii), the arithmetic monodromy group A := Gal(f(X) − u, k(u))
is either PSL2(p) or PGL2(p), with p ∈ {7, 11}. Indecomposability of f

1This statement must be modified in case n = q + 1 and k is not perfect. In this case,
we will define a bijection between the set of k-equivalence classes of polynomials f as in (i)
which are associated with q+ 1, and the set of equivalence classes of pairs (α, β) ∈ k∗ × k
modulo the relation: (α, β) ∼ (α′, β′) if there exists γ ∈ k such that γq+1 = α′/α and√
β + γ

√
β′ ∈ k. Specifically, we let the class of (α, β) correspond to the k-equivalence

class of the polynomial

β +

e−1∑
i=0

α2i−1(X + β)q(2
i−1)+2i .
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implies that A is a primitive permutation group of degree (p2 − p)/2. Since
f decomposes over some extension of k, it decomposes over k, so the geo-
metric monodromy group G := Gal(f(X)−u, k(u)) is a normal imprimitive
subgroup of A. Thus we must have A = PGL2(p) and G = PSL2(p). Now
Theorems 2.1 and 4.1 determine f up to equivalence over k, and a straight-
forward computation with coefficients determines which members of these
equivalence classes are indecomposable over k. The result is as follows:
Theorem 4.4. Let k be a field of characteristic p ≥ 0. The following are
equivalent:

(i) There exists an indecomposable polynomial f ∈ k[X] such that f
decomposes over some extension of k and deg(f) is not a power of
p;

(ii) k contains nonsquares and p ∈ {7, 11}.
Moreover, for any f as in (i), the Galois closure of k(x)/k(f(x)) is k(v, w)
where vp − v = wn and n | 2; here n is uniquely determined by f , and we
associate f with n. Conversely, suppose (ii) holds, and fix a divisor n of 2.
Then there is a bijection between

• the set of equivalence classes of polynomials f which satisfy (i) and
are associated with n; and
• the set of nonsquares in k∗/(k∗)2n.

One such bijection is defined as follows: for any nonsquare α ∈ k∗, the coset
α(k∗)2n ∈ k∗/(k∗)2n corresponds to the k-equivalence class ofX(X2n − α)2/n

(
(X2n−α)3+α3

X2n

)4/n
if p = 7

X3(X2n + 3α)2/nh(X2n)6/n if p = 11,

where h(X) = X4 − αX3 + 2α2X2 − α3X − 3α4.

4.2. Proof of Theorem 4.1. Let f(X) ∈ k[X] satisfy the hypotheses of
Theorem 4.1, let q = pe, and assume that item (1) of the theorem holds.
Then Theorem 2.1 applies. Since the conclusion of Theorem 2.1 is unchanged
when we replace k by k, and likewise this replacement does not affect (2) of
Theorem 4.1, we assume henceforth that

k is algebraically closed.

Let E denote the Galois closure of k(x)/k(f(x)), let G = Gal(E/k(f(x)),
and let G1 = Gal(E/k(x)). Let I be the inertia group of a place P of E
lying over the infinite place of k(f(x)), and let V be the Sylow p-subgroup
of I. Assume that the triple q,G,G1 is not listed in Table A (we will
return to the cases in Table A at the end of the proof). Then f satisfies
(i)-(iv) of Theorem 2.1. In particular, G is either PGL2(q) or L, and I is
a Borel subgroup of G, and the higher ramification groups for P satisfy
V = I1 = · · · = In 	 Gn+1 = 1. Also we have q > 3. We first show that
E = k(v, w) where vq − v = wn.
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Lemma 4.5. There exists t ∈ E such that EI = k(t) and the ramification
in E/EI is as in (†) of Lemma 1.4, with r = q − 1 if G = PGL2(q) and
r = (q − 1)/2 otherwise.

Proof. First we show that I has trivial intersection with the inertia group J
of any place of E lying over a finite place of k(f(x)). By (iv) of Theorem 2.1,
any such J is cyclic of order dividing q + 1; since gcd(q + 1, |I|) ≤ 2, if
J ∩ I 6= 1 then J ∩ I has order 2. If q ≡ 3 (mod 4) then 2 | |I| implies that
G = PGL2(q), and all involutions in I lie in G \ L; but the order of J is
divisible by 4, so its involution lies in L, whence J ∩I = 1. If q ≡ 1 (mod 4),
then the involution of J lies in G \ L but the involutions of I lie in L. If
q ≡ 0 (mod 2), then J contains no involution. Thus, in all cases J ∩ I = 1,
so E/EI is unramified over places of EI lying over finite places of k(f(x)).

Next we consider the inertia groups of places of E lying over the infinite
place of k(f(x)); these are precisely the conjugates of I in G (i.e. the Borel
subgroups of G), and, since I is self-normalizing in G, no two of these places
have the same inertia group. The intersection of any two distinct Borel
subgroups of G has order r (by Lemma A.4), so each of the q places of E
which differ from P and lie over the infinite place of k(f(x)) have ramification
index r in E/EI . Hence all ramification in E/EI occurs over two places of
EI , one of which is totally ramified and the other of which has ramification
index r. We now compute the genus of EI :

(q− 1)(n− 1)− 2 = 2gE − 2 = (2gEI − 2)qr+ (qr− 1) + n(q− 1) + q(r− 1),

so gEI = 0. Since k is algebraically closed, it follows that EI = k(t) for some
t. Finally, we can replace t by some (αt + β)/(γt + δ) (with α, β, γ, δ ∈ k)
to make the infinite place of k(t) be totally ramified in E, and to make 0 be
the only finite place of k(t) which ramifies in E/k(t). �

For n 6= q + 1, we will apply Theorem 1.5 to the extension E/EI ; first
we must verify (i) and (ii) of that result. Condition (ii) is trivial, since
r/ gcd(n, r) ≥ (q − 1)/2 >

√
q − 1. For the specific values of n and r under

consideration, condition (i) is proved in Lemma 3.10. Hence Theorem 1.5
applies to the extension E/EI , so E = k(v, w) where vq − v = wn.

Now assume n = q + 1, so p = 2 and gE = (q2 − q)/2. The previous
lemma shows that E/EV is only ramified over one place, where it is totally
ramified with the only jump in the ramification occurring after the n-th
ramification group; this implies that EV has genus zero, so EV = k(w̃).
Then Proposition 3.7 applies to the tower E ⊇ k(w̃) ⊇ EV , so we conclude
that E = k(v, w) where vq−v ∈ k[w]; the degree n′ of any term of vq−v (as
a polynomial in w) satisfies n′ ≡ q+ 1 (mod q− 1) and q - n′, and moreover
q+ 1 is the largest integer coprime to p which divides some such n′. We can
write n′ = r2i where r is odd, 1 ≤ r ≤ q + 1, and 0 ≤ i < e. Then we have
r ≡ 2e+1−i (mod 2e−1), and the only possibilities are r = 2e+1 (and i = 0)
or r = 1 (and i = 1). Thus, vq − v = αw2 + βwq+1, where α ∈ k and β ∈ k∗
(and, by replacing w by β1/(q+1)w, we may assume β = 1). If α 6= 0 then,



POLYNOMIALS WITH PSL(2) MONODROMY 35

by [38, Satz 7], every k-automorphism of E preserves the place P ; hence
Autk(E) is the decomposition group of P in the extension E/EAutk(E), so
it is solvable, and thus has no subgroup isomorphic to L, a contradiction.
Thus E = k(v, w) where vq − v = wq+1.

Our next task is to determine all subgroups of G := Autk(E) isomorphic
to G. Recall that n divides q + 1. We exhibit three subgroups of G. There
is an elementary abelian subgroup U of order q, whose elements fix w and
map v 7→ v+α with α ∈ Fq. There is a cyclic subgroup H of order n(q−1),
whose elements map v 7→ ζnv and w 7→ ζw where ζn(q−1) = 1. And there is
a cyclic subgroup J of order 2 or 4, generated by the automorphism sending
v 7→ 1/v and w 7→ (−1)1/nw/v(q+1)/n, for any choice of n-th root of −1; this
group has order 2 precisely when (−1)1/n = −1. One can verify that these
maps are automorphisms by observing that they are bijections of k(v)[X]
which induce bijections on the ideal generated by vq − v − Xn, so they
are bijective on the quotient E. Let G0 be the group generated by U , H,
and J . Note that each element of U ∪H ∪ J induces an automorphism of
k(v); the induced automorphisms are v 7→ v + α (for α ∈ Fq), v 7→ ζ̂v (for
ζ̂ ∈ F∗q), and v 7→ 1/v. These automorphisms generate the group PGL2(q).
Hence, restriction to k(v) induces a homomorphism ρ : G0 → Autk(k(v))
whose image is PGL2(q); the kernel of ρ is the cyclic subgroup Z of H of
order n (since Z = Gal(E/k(v))), so |G0| = n(q3 − q). Also, Z commutes
with all elements of U , H, and J , so Z lies in the center of G0.

Now we compute the subfield EG0 ; this field equals k(v)PGL2(q). The latter
field was computed by Dickson [8, p. 4]: it is k((vq

2 − y)q+1/(vq − v)q
2+1)

(to verify this, note that this rational function is fixed by each element of
PGL2(q), and its degree is q3 − q = |PGL2(q)|). Since vq − v = wn, we can
rewrite this generator in terms of w: EG0 = k(wn(q−q2)(wn(q−1) + 1)q+1).
Put û := wq−q

2
(wn(q−1) + 1)(q+1)/n; then we have EG0 = k(ûn), so Ĝ :=

Gal(E/k(û)) is a subgroup of G0 of order q3 − q.
Suppose p is odd. Put ũ := w(q−q2)/2(xn(q−1) + 1)(q+1)/(2n), so L̂ :=

Gal(E/k(ũ)) is a subgroup of Ĝ of index two. Then ũ is not fixed by any
nontrivial element of Z, so ρ induces an isomorphism between L̂ and the
unique subgroup of PGL2(q) of index two (namely PSL2(q)). Moreover, L̂
is a normal subgroup of G0 with cyclic quotient of order 2n.

Now suppose n is odd (but we no longer restrict p). Then û is not fixed
by any nontrivial element of Z, so ρ induces an isomorphism Ĝ ∼= PGL2(q);
thus G0 = Ĝ × Z ∼= PGL2(q) × Cn. Note that all elements of Ĝ × Z of
order p are in Ĝ; thus, any subgroup of G0 isomorphic to PSL2(q) contains
all such elements, and so must be the unique subgroup of Ĝ isomorphic to
PSL2(q) (since this subgroup is generated by the elements of order p). If
p = 2 then this subgroup is Ĝ. If p > 2 then this subgroup is L̂. Moreover,
if 1 < n < q + 1 and p > 2, then G0/L̂ is cyclic of order 2n, so Ĝ is the only
subgroup of G0 isomorphic to PGL2(q).
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Next assume that n is even. Then n divides (q + 1)/ gcd(4, q + 1), so
q ≡ 7 (mod 8). In particular, q is odd, so 1 < n < q + 1. From above we
know that G0 has a unique subgroup isomorphic to PSL2(q). We now show
that G0 has no subgroup isomorphic to PGL2(q). We know that G0 has a
normal subgroup L̂ with cyclic quotient of order 2n. If G0 has a subgroup
G̃ isomorphic to PGL2(q), then (since PGL2(q) has trivial center) we would
have G0 = G̃× Z, so G0/L̂ ∼= C2 × Cm 6∼= C2m, a contradiction.

If 1 < n < q + 1, then Stichtenoth proved that |G| = n(q3 − q) [38], so
G = G0; hence G has a unique subgroup isomorphic to PSL2(q), and has a
subgroup isomorphic to PGL2(q) if and only if n is odd, in which case it
has a unique such subgroup. If n = 1 then E = k(v), so G = PGL2(k); this
group has a unique conjugacy class of subgroups isomorphic to PSL2(q), and
a unique conjugacy class of subgroups isomorphic to PGL2(q). Finally, if
n = q+1 (so p = 2) then Leopoldt showed that G = PGU3(q2) [29], and this
group has a unique conjugacy class of subgroups isomorphic to PGL2(q).
Since conjugate groups will lead to the same polynomials, we may assume
in every case that

EG is either k(û) or k(ũ).

We now compute the subfield of E invariant under the one-point stabilizer
G1 of G. Since G has a unique conjugacy class of subgroups isomorphic to
G1, and conjugate groups G1 will lead to the same polynomials, it suffices
to do this for a single point-stabilizer G1.

To complete the proof, we must compute the polynomials f in each of
three cases: q is odd and G = Ĝ ∼= PGL2(q); q ≡ 3 (mod 4) and G = L̂ ∼=
PSL2(q); q even and G = Ĝ ∼= PGL2(q). The computations in each case are
similar, so we only give the details for the first case. Thus, for the remainder
of the proof we assume that

q is odd and G = Ĝ ∼= PGL2(q),

so also
n is odd and G1 is dihedral of order 2(q + 1).

To exhibit such a group G1, view GL2(q) as the invertible Fq-linear maps
on a two-dimensional Fq-vector space, and choose this vector space to be
Fq2 . Then the multiplication maps by the various elements of F∗q2 form a
cyclic subgroup of GL2(q); the group generated by this cyclic group and the
q-th power map has order 2(q2− 1), and its image in PGL2(q) is dihedral of
order 2(q + 1). We make this explicit by choosing a nonsquare γ0 ∈ F∗q and
letting δ ∈ F∗q2 be a square root of γ0. Choose the basis {1, δ} for Fq2/Fq;
with respect to this basis, the matrix for the multiplication map by α+ βδ

(where α, β ∈ Fq are not both zero) is
( α βγ0

β α

)
, and the matrix for the q-

th power map is
(

1 0
0 −1

)
. These matrices generate a dihedral subgroup of

PGL2(q) of order 2(q+1); let G1 be the intersection of Ĝ with the preimage
under ρ of this dihedral group.
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Our next task is to compute the subfield of k(v) fixed by G1; this will
coincide with EG1×Z . Let γ = 1/γ0. Certainly G1 fixes the sum of the
images of v2 under G1, namely

2x̂ :=
1

q − 1

∑
α,β∈Fq

(α,β) 6=(0,0)

((
αv + β

βγ0v + α

)2

+
(

αv − β
βγ0v − α

)2
)
.

Here the factor 1/(q − 1) comes from the fact that the pairs (α, β) and
(αζ, βζ) (with ζ ∈ F∗q) correspond to the same element of G1. Thus each
term of G1 corresponds to a unique pair (α, β) ∈ F2

q with either β = γ or
both β = 0 and α = 1, so

(1) x̂ = v2 +
∑
α∈Fq

(
αv + γ

v + α

)2

;

note that x̂ = b(v)/(vq − v)2 for some monic b(X) ∈ Fq[X] of degree 2q+ 2.
Here b(X) has no term of degree 2q + 1. For any α ∈ Fq, multiply (1) by
(v + α)2 and then substitute v = −α to find (−α2 + γ)2 = b(−α); hence
b(X) = (X2−γ)2+(Xq−X)c(X) where c(X) ∈ Fq[X] is a monic polynomial
of degree q + 2 having no term of degree q + 1. We compute the derivative:
b′(X) = 4X(X2− γ)− c(X) + (Xq −X)c′(X). For any α ∈ Fq, multiply (1)
by (v + α)2, take the derivative of both sides, and then substitute v = −α;
this gives 2α(−α2 + γ) = b′(−α), so c(v) = 2v(v2 − γ) + (vq − v)a(v) where
a(X) = X2 + ξ and ξ ∈ Fq. The choice of ξ is irrelevant, since changing ξ
amounts to adding a constant to x̂; but regardless, it is easy to show that
ξ = 0 (e.g. by computing appropriate terms of (vq − v)2x̂). Hence

b(v) =
(
(v2 − γ) + v(vq − v)

)2 =
(
vq+1 − γ

)2
,

so x̂ = (vq+1 − γ)2/(vq − v)2. Since [k(v) : k(x̂)] = deg(x̂) = 2(q + 1) equals
|G1| and G1 fixes x̂, it follows that EG1×Z = k(v)G1 = k(x̂).

We have shown that k(v)G = k(ûn) and k(v)G1 = k(x̂), where ûn =
(vq

2 − v)q+1/(vq − v)q
2+1; hence ûn = h(x̂) for some h(X) ∈ k(X) which

we now determine. Write h(X) = ξ
∏
i(X − αi)ri , where the αi are distinct

elements of k, the ri are nonnegative integers, and ξ ∈ k∗. Then we have

(2)

(
vq

2−v
vq−v

)q+1

(vq − v)q2−q =
ξ
∏
i

(
(vq+1 − γ)2 − αi(vq − v)2

)ri
(vq − v)2

∑
i ri

.

Let hi(X) = (Xq+1 − γ)2 − αi(Xq −X)2; since γ is a nonsquare in F∗q , no
two hi have a common root, and also no hi has a root in Fq. Since the poles
of the left side of (2) are precisely the elements of Fq, we conclude that each
ri is positive (so h is a polynomial) and

∑
ri = (q2 − q)/2. Equating the

leading coefficients of the two sides of (2) gives ξ = 1. The roots y = ω
of the left side of (2) are precisely the values ω ∈ Fq2 \ Fq, and each has
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multiplicity q + 1; any such ω is a root of hi(X) where

αi =
(ωq+1 − γ)2

(ωq − ω)2
,

so α(q+1)/2
i = −αi. Since 2hi(X)+(Xq−X)2h′i(X) = 2(Xq+1−γ)(X2−γ)q,

any multiple root η of hi must satisfy either ηq+1 = γ or η2 = γ; in the former
case, αi = 0 and hi = (Xq+1 − γ)2, so η is a root of multiplicity two; in the
latter case, αi = γ and hi = (X2− γ)q+1, so η is a root of multiplicity q+ 1.
Hence h(X) ∈ k[X] divides

X(q+1)/2(X − γ)

(
X(q−1)/2 + 1

X − γ

)q+1

;

since both these polynomials are monic of degree (q2 − q)/2, they must be
the same.

We now determine all possibilities for the original polynomial f . We
have shown that h(x̂) = ûn, where EG1×Z = k(x̂) and EG = k(û); we will
modify this polynomial identity to express û as a polynomial in some x̂ with
EG1 = k(x̂). We know that x̂ will be the n-th root of some generator of
k(x̂); from above,

x̂− γ =
(v2 − γ)q+1

(vq − v)2
=

(v2 − γ)q+1

x2n
,

so we choose x̂ = (v2 − γ)(q+1)/n/w2. Then ĥ(X) := h(X + γ) satisfies
ĥ(x̂n) = ûn; taking n-th roots gives

ζû = (x̂n + γ)(q+1)/(2n)x̂

(
(x̂n + γ)(q−1)/2 + 1

x̂n

)(q+1)/n

for some n-th root of unity ζ. We may assume ζ = 1 (by replacing û by ζû).
Thus û = f̂(x̂) where f̂(X) ∈ k[X] is defined by

f̂(X) := X(Xn + γ)(q+1)/2n

(
(Xn + γ)(q−1)/2 + 1

Xn

)(q+1)/n

.

Hence Gal(E/k(x̂)) is an index-n subgroup ofG1×Z which is also a subgroup
of G, so it is G1. Since G1 contains no nontrivial normal subgroups of G,
the Galois closure of k(x̂)/k(û) is E, so the monodromy group of f̂ is G.
The only choices we made which restricted the possibilities for the original
polynomial f were the choices of generators x̂ and û for the fields EG1 and
EG; hence, the polynomials f in this case are precisely the polynomials
`1 ◦ f̂ ◦ `2, where `1 and `2 are linear polynomials in k[X]. This completes
the proof of the theorem in case q is odd and G ∼= PGL2(q). As noted
above, the completion of the proof in the other two cases is similar. In the
statement of the result there is only a single family of polynomials covering
both cases with q odd; this occurs because, when q is odd and G ∼= PSL2(q),
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the resulting polynomials can be obtained by substituting 2n for n in the
above expression for f̂ .

Finally, we consider the group-theoretic possibilities in Table A, which
lead to the polynomials in Table B. The cases with q odd can be treated
in a similar manner to what we have done above; in particular, in each
case a fixed point computation similar to that of Lemma 2.4 can be used
to determine a short list of possibilities for the ramification (as in the proof
of Theorem 2.1), after which Theorem 1.5 implies that the Galois closure
of k(x)/k(f(x)) is k(v, w) where vq − v = wn, and we conclude the proof
precisely as above. Table A also includes the possibility that q = 4, in which
case G = PΓL2(q) ∼= S5. A Riemann-Hurwitz computation shows that I
must be cyclic of order 6, and that the Galois closure E of k(x)/k(f(x))
has genus one. However, the automorphism groups of function fields of
genus one are known: in our case, Autk(E) is the semidirect product HoJ ,
where H is the (abelian) group of translations by points on the elliptic
curve corresponding to E, and J has order either 2 or 24. If Autk(E) has
a subgroup G isomorphic to S5, then G ∩ H is a normal subgroup of G
of index less than 24, so G ∩ H ⊇ A5; in particular, H contains a Sylow
2-subgroup of A5, namely a Klein 4-group, contradicting standard results
about the structure of the group of points on an elliptic curve [37, Cor. 6.4].
Thus there are no polynomials corresponding to the case q = 4 in Table A.
This concludes the proof of Theorem 4.1.

Appendix. Group theoretic preliminaries

In this appendix we summarize the basic group theoretic facts used in this
paper. Let Fq be a field of order q and characteristic p. As usual, GL2(q)
denotes the group of invertible two-by-two matrices over Fq, and SL2(q) is
its subgroup of determinant-one matrices. The centers of these groups are
the scalar matrices, which in the case of GL2(q) are just F∗q and in the case
of SL2(q) are {±1}; the quotients of GL2(q) and SL2(q) by their centers are
denoted PGL2(q) and PSL2(q), respectively. We often write L for PSL2(q).
The orders of these groups are as follows: |GL2(q)| = (q2 − 1)(q2 − q),
|PGL2(q)| = |SL2(q)| = q3 − q, and |PSL2(q)| = (q3 − q)/o, where o =
gcd(2, q − 1).

We now discuss the structure of L = PSL2(q). The most important
property of L is that, for q ≥ 4, it is a simple group [40, §1.9]. For small
q, we have the isomorphisms PSL2(2) ∼= S3, PSL2(3) ∼= A4, and PSL2(4) ∼=
PSL2(5) ∼= A5. For general q, the subgroups of PSL2(q) were determined by
Dickson in 1901 [7, §260]; a treatment in modern language is [40, §3.6]. We
state the result for the reader’s convenience. As above, o = gcd(2, q − 1).

Theorem A.1 (Dickson, 1901). The subgroups of PSL2(q) are precisely the
following groups.

(i) The dihedral groups of order 2(q ± 1)/o and their subgroups.
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(ii) The group B of upper triangular matrices in PSL2(q), and sub-
groups of B (here, the order of B is q(q−1)/o, the Sylow p-subgroup
U of B is elementary abelian and normal in B, and the quotient
group B/U is cyclic).

(iii) A4, except if q = 2e with e odd.
(iv) S4, if q ≡ ±1 (mod 8).
(v) A5, except if q ≡ ±2 (mod 5).
(vi) PSL2(r), where r is a power of p such that rm = q.
(vii) PGL2(r), where r is a power of p such that r2m = q.

This result describes the isomorphism classes of subgroups of L = PSL2(q);
we are also interested in conjugacy classes of subgroups. We only need this
in certain cases.

Lemma A.2. For q > 3, there are (q2 − q)/2 subgroups of L which are
dihedral of order 2(q + 1)/o, and any two of these are conjugate. Let J be
a nontrivial cyclic subgroup of L whose order divides (q + 1)/o; then the
normalizer of J in L is dihedral of order 2(q + 1)/o.

Proof. By Theorem A.1, L has a dihedral subgroup H of order 2(q + 1)/o,
and this subgroup is maximal unless q = 7 (when S4 is a possible overgroup)
or q = 9 (when A5 is a possible overgroup). Since L is simple, it follows
that H is the normalizer (in L) of any of its cyclic subgroups of order more
than two, and also that H is self-normalizing in L. Let H ′ be another
dihedral subgroup of L of order 2(q + 1)/o, and suppose |J | > 2. Let s be
an odd prime divisor of q + 1 if any such exists, and otherwise put s = 2;
then Sylow s-subgroups of H and H ′ are also Sylow subgroups of L, and
so are conjugate, whence their normalizers H and H ′ are conjugate as well.
Likewise, a Sylow s-subgroup of J is conjugate to a cyclic subgroup of H, so
its normalizer is conjugate to H; since J is contained in the normalizer, J is
conjugate to a subgroup of H, so its normalizer is conjugate to H. We have
shown that there is a unique conjugacy class of dihedral subgroups of L of
order 2(q+1)/o, so the size of this class is |L :NL(H)| = |L :H| = (q2−q)/2.
This concludes the proof in case |J | > 2; the case |J | = 2 is included in the
next lemma. �

By an involution of a group, we mean an element of order two.

Lemma A.3. L contains a unique conjugacy class of involutions. For q
odd, PGL2(q) contains two conjugacy classes of involutions. The number of
involutions in PGL2(q) is either q2 (if q odd) or q2 − 1 (if q even). For q
odd, the number of involutions in L is either (q2 − q)/2 (if q ≡ 3 (mod 4))
or (q2 +q)/2 (if q ≡ 1 (mod 4)). For q even, the centralizer of an involution
of PGL2(q) is a Sylow 2-subgroup. For q odd, the centralizer in PGL2(q)
of an involution of PGL2(q) is dihedral of order either 2(q+ 1) or 2(q− 1),
and the centralizer in L of this involution is dihedral of half the size; order
2(q + 1) occurs when q ≡ 3 (mod 4) and the involution is in L, and also
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when q ≡ 1 (mod 4) and the involution is not in L, and order 2(q−1) occurs
otherwise.

Proof. One immediately verifies that a nonidentity element
( α β
γ δ

)
of PGL2(q)

is an involution if and only if δ = −α; it is then a triviality to count the in-
volutions in either PGL2(q) or L. For q even, let U be the group of matrices(

1 ∗
0 1

)
, which is a Sylow 2-subgroup of L; then U is elementary abelian and

is the centralizer (in PGL2(q)) of any nontrivial µ ∈ U . Since any involution
in L is conjugate to an involution in U , the centralizer of an involution is a
Sylow 2-subgroup. But the number of involutions of L which are conjugate
to a fixed involution µ ∈ U is |L :NL(〈µ〉)| = |L :U | = q2 − 1, so L contains
a unique conjugacy class of involutions. Henceforth assume q odd. First
consider the involution

(−1 0
0 1

)
, which lies in L if and only if q ≡ 1 (mod 4):

its centralizer in PGL2(q) (respectively, L) consists of all the diagonal and
antidiagonal elements, and so is dihedral of order 2(q − 1) (respectively,
q − 1). Hence the number of conjugates of this involution by either L or
PGL2(q) is |L|/(q− 1) = (q2 + q)/2. We will show that PGL2(q) contains a
dihedral subgroup H of order 2(q + 1); we now show how the remainder of
the lemma follows from this statement. Since L has no cyclic subgroup of
order q+1, the intersection H∩L is dihedral of order q+1. The center of H
is generated by an involution ν, and ν lies in L if and only if 4 | (q+1). The
centralizer of ν in L contains H ∩ L; this centralizer is a proper subgroup
of L (since no nonidentity element of PGL2(q) centralizes L), so it must be
H ∩L (since H ∩L is maximal unless q = 7 or 9, and in those cases we note
that S4 and A5 have trivial center). Then the centralizer of ν in PGL2(q)
must be H (since it contains H and has H ∩ L as a subgroup of index at
most two). Finally, the number of conjugates of ν by either L or PGL2(q)
is |L :H ∩ L| = |PGL2(q) :H| = (q2 − q)/2, which completes the proof.

Now we must show that PGL2(q) contains a dihedral subgroup of order
2(q + 1). For this, we view GL2(q) as the invertible Fq-linear maps on a
two-dimensional Fq-vector space, and we choose this vector space to be Fq2 .
Then the multiplication maps by the various elements of F∗q2 form a cyclic
subgroup of GL2(q); the group generated by this cyclic group and the q-th
power map has order 2(q2−1), and its image in PGL2(q) is dihedral of order
2(q + 1). �

Let G denote either PGL2(q) or PSL2(q); then a Borel subgroup of G is
any subgroup conjugate to the group of upper-triangular matrices in G.
Lemma A.4. Let G be either PGL2(q) or PSL2(q). A Borel subgroup of
G is self-normalizing. The intersection of any two distinct Borel subgroups
of G is cyclic of order either q − 1 (if G = PGL2(q)) or (q − 1)/2 (if
G 6= PGL2(q)).

Proof. One easily verifies that the upper-triangular matrices B are self-
normalizing, so the same is true of any Borel subgroup of G. Hence there
are |G :B| = q+1 Borel subgroups of G. One of these is the lower-triangular
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matrices, which intersects B in the diagonal. The number of conjugates of
the lower-triangular matrices under B is then the index of the diagonal in
B, namely q, so the conjugation action of G on its Borel subgroups is doubly
transitive, and thus the intersection of any two distinct Borel subgroups is
a conjugate of the diagonal. �

Next we consider the automorphisms of PSL2(q). Since PSL2(q) is a
normal subgroup of PGL2(q), these include conjugation by any element of
PGL2(q); since no nonidentity element of PGL2(q) centralizes PSL2(q), this
gives an embedding of PGL2(q) into the automorphism group Aut(PSL2(q)).
Any σ ∈ Gal(Fq/Fp) induces an automorphism of PSL2(q) by acting on the
matrix entries; these automorphisms are called field automorphisms. The
group Gal(Fq/Fp) normalizes PGL2(q); let PΓL2(q) denote the semidirect
product of PGL2(q) by Gal(Fq/Fp). Then PΓL2(q) = Aut(PSL2(q)) [2,
Thm. 12.5.1].

We need one result about subgroups of PΓL2(q).
Lemma A.5. Let G be a subgroup of PΓL2(q) containing L, where q > 3.
There are precisely (q2 − q)/2 subgroups G1 of G such that |G :G1| = (q2 −
q)/2 and G1 ∩L is dihedral of order 2(q + 1)/o; any two such subgroups G1

are conjugate.

Proof. Let Λ denote the set of dihedral subgroups of L of order 2(q + 1)/o.
By Lemma A.2, we have |Λ| = q(q− 1)/2, and moreover G acts transitively
on Λ by conjugation. Thus, for any H ∈ Λ, we have (q2 − q)/2 = |Λ| =
|G :NG(H)|. Since any two groups in Λ are conjugate, also their normalizers
in G are conjugate. Conversely, if the subgroup G1 of G satisfies |G :G1| =
(q2 − q)/2 and G1 ∩ L ∈ Λ, then G1 normalizes H := G1 ∩ L, so we must
have G1 = NG(H). The result follows. �

The main result on conjugacy classes of PΓL2(q) is the following conse-
quence of Lang’s theorem on algebraic groups [16, 2.7-2]. Let σ ∈ PΓL2(q)
be a field automorphism and µ ∈ PGL2(q); if µσ and σ have the same order,
then µσ = τστ−1 for some τ ∈ PGL2(q). We refer to this result as Lang’s
theorem. In the proof of Lemma 2.7, we need the following more general con-
sequence of Lang’s theorem: if σ is a field automorphism in PΓL2(k), then
for every µ ∈ PGL2(k) there exists τ ∈ PGL2(k) such that τ(µσ)τ−1 = σ.

We also use Zsigmondy’s theorem on primitive prime divisors. For a
prime p and positive integer e, we say that a prime s is a primitive prime
divisor of pe − 1 if e is the least positive integer i for which s divides pi − 1.
Zsigmondy’s theorem says that, for fixed p and e, there exists a primitive
prime divisor of pe − 1 unless either e = 2 (and p + 1 is a power of 2) or
p = 2 (and e = 6). For a proof, see [30, Thm. 6.2] or the original [43]. Note
that a primitive prime divisor of pe − 1 is coprime to e.
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