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Abstract. Let K be a number field and let S be a finite set of places of K which
contains all the Archimedean places. For any φ(z) ∈ K(z) of degree d ≥ 2 which is not

a d-th power in K(z), Siegel’s theorem implies that the image set φ(K) contains only

finitely many S-units. We conjecture that the number of such S-units is bounded by

a function of |S| and d (independently of K, S and φ). We prove this conjecture for
several classes of rational functions, and show that the full conjecture follows from the

Bombieri–Lang conjecture.

1. Introduction

Let K be a number field, let S be a finite set of places of K which contains the set S∞ of
Archimedean places of K, and write oS for the ring of S-integers of K and o∗S for the group
of S-units of K. The genus-0 case of Siegel’s theorem asserts that, for any φ(z) ∈ K(z)
which has at least three poles in P1(K), the image set φ(K) contains only finitely many
S-integers. However, the number of S-integers in φ(K) cannot be bounded independently of
φ(z), even if we restrict to functions φ(z) having a fixed degree, since ψ(z) := βφ(z) satisfies
ψ(K) = βφ(K) for any β ∈ K∗.

Although the number of S-integers in φ(K) cannot be bounded in terms of only K, S,
and deg(φ), such a bound may be possible for the number of S-units in φ(K). In fact we
conjecture that there is a bound depending only on |S| and deg(φ) (and not on K):

Conjecture 1.1. For any integers s ≥ 1 and d ≥ 2, there is a constant C = C(s, d) such
that for any

• number field K
• s-element set S of places of K with S ⊇ S∞
• degree-d rational function φ(z) ∈ K(z) which is not a d-th power in K(z)

we have
|φ(K) ∩ o∗S | ≤ C.

We will prove Conjecture 1.1 in case φ(z) is restricted to certain classes of rational
functions, and we will also prove that the full conjecture is a consequence of a variant of the
Caporaso–Harris–Mazur conjecture on uniform boundedness of rational points on curves of
fixed genus.

We also consider a variant of Conjecture 1.1, which addresses S-units in an orbit of φ
rather than in the image set φ(K). Here, for any α ∈ P1(K), the orbit of α under φ(z) is
the set

Oφ(α) := {φn(α) : n ≥ 1},
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where φn(z) = φ◦· · ·◦φ denotes the n-fold composition of φ with itself. For any φ(z) ∈ K(z)
of degree at least 2 such that φ2(z) /∈ K[z], Silverman [8] showed that Oφ(α) ∩ oS is finite.
However, for any β ∈ K∗ the function ψ(z) := βφ(z/β) satisfies Oψ(αβ) = βOφ(α), so the
size of Oφ(α)∩ oS cannot be bounded independently of φ(z). We conjecture that there is a
uniform bound on the number of S-units in an orbit:

Conjecture 1.2. For any integers s ≥ 1 and d ≥ 2, there is a constant C = C(s, d) such
that for any

• number field K
• s-element set S of places of K with S ⊇ S∞
• degree-d rational function φ(z) ∈ K(z) which is not of the form βz±d with β ∈ K∗
• α ∈ P1(K)

we have
|Oφ(α) ∩ o∗S | ≤ C.

It turns out that this conjecture is a consequence of Conjecture 1.1:

Proposition 1.3. If Conjecture 1.1 is true then Conjecture 1.2 is true.

Remark 1.4. The hypotheses of Conjectures 1.1 and 1.2 imply that [K : Q] ≤ 2s, since
S∞ ⊆ S.

In Section 3 we prove the following preliminary results which show that Conjectures 1.1
and 1.2 would be true if we allowed the constants C in those conjectures to depend on K,
S, and φ, rather than just on s and d. We note that in the case of Conjecture 1.1 this
simply says that φ(K) ∩ o∗S is finite. These results also indicate the special behavior of the
functions excluded in the statements of these conjectures.

Proposition 1.5. Let K be a number field, let S be a finite set of places of K with S ⊇ S∞,
and let φ(z) ∈ K(z) be any rational function.

(a) If |φ−1({0,∞})| 6= 2 then φ(K) ∩ o∗S is finite.
(b) If |φ−1({0,∞})| = 2 then there is a finite set S′ ⊇ S for which φ(K)∩o∗S′ is infinite.

Proposition 1.6. Let K be a number field, let S be a finite set of places of K with S ⊇ S∞,
and let φ(z) ∈ K(z) have degree d ≥ 2.

(a) If φ(z) does not have the form βz±d with β ∈ K∗, then there is a constant C(K,S, φ)
such that every α ∈ P1(K) satisfies |Oφ(α) ∩ o∗S | ≤ C(K,S, φ).

(b) If φ(z) = βz±d with β ∈ K∗ then there exist α ∈ P1(K) and a finite set S′ ⊇ S for
which Oφ(α) ∩ o∗S′ is infinite.

We note that part (a) of each of these propositions follows from Siegel’s theorem. For, if
|φ−1({0,∞})| > 2 then ψ(z) := φ(z)+1/φ(z) has at least three poles so that ψ(K)∩oS is fi-
nite; but ψ(β) is in oS whenever φ(β) is in o∗S , so also φ(K)∩o∗S is finite. Next, if φ−1({0,∞})
is a two-element set other than {0,∞}, then Lemma 3.2 implies that |φ−2({0,∞})| > 2, so
that φ2(K) ∩ o∗S has size N <∞, whence |Oφ(α) ∩ o∗S | ≤ N + 1 = C(K,S, φ).

In Section 2 we prove Conjectures 1.1 and 1.2 for some families of polynomial maps. The
first family consists of monic polynomials in oS [z]:

Theorem 1.7. Let s ≥ 1 and d ≥ 2 be integers. There is a constant C = C(s, d) such that
for any

• number field K
• s-element set S of places of K with S ⊇ S∞
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• degree-d monic polynomial φ(z) ∈ oS [z] which does not equal (z−β)d for any β ∈ K
we have

|φ(K) ∩ o∗S | ≤ C.

Theorem 1.7 proves Conjecture 1.1 for monic polynomials in oS [z]; for such polynomials,
Conjecture 1.2 follows by applying Theorem 1.7 to φ2(z).

We also prove Conjecture 1.2 for monic polynomials in K[z] in which the coefficients of
all but one term are in oS , so long as this exceptional term does not have degree d− 1. We
deduce this from the following more general result in v-adic dynamics.

Theorem 1.8. Let K be a field with a non-Archimedean valuation v, and let φ(z) = adz
d+

· · ·+ a1z + a0 ∈ K[z] be a polynomial satisfying
• v(ad) = 0
• there is exactly one integer i for which v(ai) < 0, and this exceptional i satisfies
i 6= d− 1.

Then for each α ∈ K, the set {n ≥ 1 | v(φn(α)) = 0} contains at most one element.

As an immediate corollary, we have the stated case of Conjecture 1.2:

Corollary 1.9. Let K be a number field, and let S be a finite set of places of K with
S ⊇ S∞. For any monic φ0(z) ∈ oS [z], any α, β ∈ K with β /∈ oS, and any integer i with
0 ≤ i < deg(φ0)− 1, the polynomial φ(z) := φ0(z) + βzi satisfies

|Oφ(α) ∩ o∗S | ≤ 1.

Remark 1.10. Conjecture 1.2 also follows from [5, Thm. 2] for rational functions of the form

φ(z) :=
zd + βd−1z

d−1 + · · ·+ β1z

γd−1zd−1 + γd−2zd−2 + · · ·+ γ1z + 1

with β1, . . . , βd−1, γ1, . . . , γd−1 ∈ oS and φ(z) 6= zd. For, [5, Thm. 2] gives a uniform
bound on the number of elements of K in the backwards orbit of any element of o∗S . This
also bounds the number of S-units in Oφ(α) for any α ∈ K, since if φn(α) ∈ o∗S then
α, φ(α), . . . , φn−1(α) are elements of K in the backwards orbit of φn(α).

We prove our conjectures for some further classes of rational functions in Section 4.
In Section 3 we show that our conjectures are consequences of the following variant of

the deep conjecture of Caporaso–Harris–Mazur [2] concerning rational points on curves of
a fixed genus.

Conjecture 1.11. Fix integers g ≥ 2 and D ≥ 1. There is a constant N = N(D, g) such
that |X(K)| ≤ N for every smooth, projective, geometrically irreducible genus-g curve X
defined over a degree-D number field K.

Theorem 1.12. If Conjecture 1.11 is true then Conjecture 1.1 and Conjecture 1.2 are true.

Remark 1.13. Conjecture 1.11 follows from the Bombieri–Lang conjecture [6].

The referee provided the following geometric explanation of the difference between the
questions of S-integers and S-units in the image set φ(K) of a rational function φ, indicating
possible directions for future work. Writing φ(x/y) = f(x,y)

g(x,y) as the ratio of two coprime
homogeneous polynomials, we see that the S-integral points of φ(K) correspond to the
S-integral points of the quasi-affine variety cut out by

zg(x, y) = f(x, y) in P1 × A1.
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Similarly, the S-unit points in φ(K) correspond to the S-integral points of the variety defined
by

zg(x, y) = wf(x, y) and zw = 1 in P1 × A2.

It would be interesting to seek generalizations of Conjecture 1.1 by considering more gener-
ally what sorts of families of varieties are likely to satisfy uniform boundedness statements
for their S-integral points.

We thank ICERM, where collaboration for this project began at the 2012 ICERM work-
shop on Global Arithmetic Dynamics. We also thank the referee for a thorough report which
improved the exposition and content of this paper.

2. Special classes of rational functions

In this section we prove Theorems 1.7 and 1.8.

Proof of Theorem 1.7. Let K be a number field, let S be a finite set of places of K with
S ⊇ S∞, and let φ(z) ∈ oS [z] be monic of degree d ≥ 2 with φ(z) 6= (z− β)d for any β ∈ K.
Then φ(z) has at least two distinct roots δ1, δ2 in K. Let K ′ = K(δ1, δ2) and let S′ be the
set of places of K ′ which lie over places in S, so that |S′| ≤ [K ′ : K]|S| ≤ d(d − 1)|S| and
δi ∈ oS′ . Then we can write

φ(z) = (z − δ1)(z − δ2)ψ(z),

where ψ(z) is a monic polynomial in oS′ [z]. Let γ ∈ K satisfy φ(γ) ∈ o∗S . Then we must
have γ ∈ oS , so that both ui := γ − δi and ψ(γ) are in oS′ . Since u1u2ψ(γ) = φ(γ) is in o∗S ,
it follows that u1, u2 ∈ o∗S′ . In addition we have

(2.1)
1

δ2 − δ1
u1 −

1
δ2 − δ1

u2 = 1.

Moreover, γ is uniquely determined by u1, so the number of elements γ ∈ oS for which
φ(γ) ∈ o∗S is at most the number of solutions to (2.1) in elements u1, u2 ∈ o∗S′ . Finally, it is
known that the number of such solutions is at most C1C

|S′|−1
2 for some absolute constants

C1, C2 [3] (in fact, we can take C1 = C2 = 256 [1]). Therefore |φ(K) ∩ o∗S | is bounded by a
function of |S′|, and hence by a function of |S| and d. �

Proof of Theorem 1.8. Suppose that Oφ(α) contains a unit of the valuation ring, and let m
be the least positive integer for which v(φm(α)) = 0. Writing γ := φm(α), we will show by
induction that |φn(γ)|v = |ai|d

n−1

v for every n ≥ 1. The strong triangle inequality implies
that |φ(γ)|v = |ai|v, proving the base case n = 1. If δ := φn(γ) satisfies |δ|v = |ai|d

n−1

v for
some n ≥ 1, then |aiδi|v = |ai|1+id

n−1

v and |ajδj |v ≤ |ai|jd
n−1

v for j 6= i, with equality when
j = d. Our hypothesis i < d − 1 implies that dn > 1 + idn−1, so that |φn+1(γ)|v = |ai|d

n

v ,
which completes the induction. It follows that v(φn(γ)) < 0 for every n > 0, so that Oφ(α)
contains exactly one unit, which concludes the proof. �

3. Connection with rational points on curves

In this section we prove Theorem 1.12 and Propositions 1.3, 1.5, and 1.6. We begin by
relating S-units in the image set φ(K) of a rational function to rational points on certain
curves.

Lemma 3.1. Let K be a number field, let S be a finite set of places of K with S ⊇ S∞,
and let φ(z) ∈ K(z) be a nonconstant rational function. For any prime p with p > deg(φ),
there are elements γ1, . . . , γt ∈ o∗S, where t ≤ p|S|, with the following properties:
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• for each i, the affine curve Xi defined by yp = γiφ(z) is geometrically irreducible
• we have |φ(K) ∩ o∗S | ≤

∑t
i=1Ni where Ni is the number of points in Xi(K) having

nonzero y-coordinate.

Proof. First note that yp = γφ(z) is geometrically irreducible for any γ ∈ K∗, since γφ(z)
is not a p-th power in K(z). Dirichlet’s S-unit theorem asserts that o∗S

∼= µK × Z|S|−1,
where µK denotes the group of roots of unity in K. Since µK is cyclic, it follows that
o∗S /(o

∗
S)p ∼= (Z/pZ)r where r ∈ {|S| − 1, |S|}. Let Γ be a set of pr elements in o∗S whose

images in o∗S /(o
∗
S)p are pairwise distinct. For any β ∈ K such that φ(β) ∈ o∗S , we can write

φ(β) = γ−1δp for some γ ∈ Γ and δ ∈ o∗S . Then (δ, β) is a K-rational point on the curve
yp = γφ(z) whose y-coordinate is nonzero. Since the z-coordinate of this point is β, the
result follows. �

We now prove Theorem 1.12.

Proof of Theorem 1.12. By Proposition 1.3, it suffices to show that Conjecture 1.11 implies
Conjecture 1.1. Let K be a number field, let S be a finite set of places of K with S ⊇ S∞,
and let φ(z) ∈ K(z) have degree d ≥ 2. Assume that φ(z) is not a d-th power in K(z),
so that m := |φ−1({0,∞})| is at least 3. Let p be the smallest prime for which p > d and
(p − 1)(m − 2) > 2. Then p = 5 if d = 2 and m = 3, and in all other cases p < 2d by
Bertrand’s Postulate. Let γ1, . . . , γt satisfy the conclusion of Lemma 3.1, so that γi ∈ K∗
and t ≤ p|S|. Writing Xi for the curve yp = γiφ(z), and Ni for the number of points in Xi(K)
having nonzero y-coordinate, it follows that |φ(K)∩o∗S | ≤

∑t
i=1Ni. Since every point on Xi

having nonzero y-coordinate is nonsingular, we see that Ni is bounded above by the number
of K-rational points on the unique smooth projective curve Yi over K which is birational
to Xi. Since p > d, the classical genus formula for Kummer covers [9, Prop. III.7.3] implies
that the genus g of Yi is (p− 1)(m− 2)/2. Thus our choice of p ensures that

2 ≤ g ≤
( 5
2d− 1)(2d− 2)

2
.

If Conjecture 1.11 is true then |Yi(K)| is bounded by a constant which depends only on the
genus of Yi(K) and the degree [K : Q]. Since the genus is bounded by a function of d, and
the degree [K : Q] is bounded by a function of |S| (by Remark 1.4), it follows that |Yi(K)|
is bounded by a constant depending on d and |S|. Since t ≤ p|S| ≤ (5d/2)|S|, this proves
that Conjecture 1.11 implies Conjecture 1.1. �

Our proof of Proposition 1.3 relies on the following well-known lemma.

Lemma 3.2. Let φ(z) ∈ C(z) be any rational function of degree d ≥ 2 which is not of the
form βz±d with β ∈ C∗. Then |φ−2({0,∞})| ≥ 3.

Proof. Writem := |φ−2({0,∞})|, so we must show thatm ≥ 3. Plainlym ≥ |φ−1({0,∞})| ≥
2, so the conclusion holds unless |φ−1({0,∞})| = 2. In this case φ is totally ramified over
both 0 and ∞, so the Riemann–Hurwitz formula (or writing down φ(z)) implies that φ is
unramified over all other points. Since φ(z) does not have the form βz±d, we know that
φ−1({0,∞}) 6= {0,∞}, so that at least one point in φ−1({0,∞}) has d distinct φ-preimages.
Since each point has at least one preimage, we conclude that m ≥ d+ 1 ≥ 3, as desired. �

Proof of Proposition 1.3. If φ(z) 6= βz±d then φ2(z) has a total of at least three zeroes and
poles by Lemma 3.2, and hence is not a d2-th power in K(z). Thus Conjecture 1.1 implies
that |φ2(K) ∩ o∗S | ≤ C(s, d), so that |Oφ(α) ∩ o∗S | ≤ C(s, d) + 1. �
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Part (a) of Proposition 1.5 follows from our proof of Theorem 1.12, by using Faltings’
theorem [4] instead of Conjecture 1.11. We now give a more elementary proof of Proposi-
tion 1.5.

Proof of Proposition 1.5. If |φ−1({0,∞})| > 2 then the function ψ(z) := φ(z)+1/φ(z) satis-
fies |ψ−1({0,∞})| ≥ 3, so ψ(K)∩oS is finite by Siegel’s theorem; but ψ(β) is in oS whenever
φ(β) is in o∗S , so it follows that φ(K) ∩ o∗S is finite. Now assume that |φ−1({0,∞})| = 2, so
that φ(z) = γµ(z)d for some d ≥ 1, some γ ∈ K∗, and some degree-one µ(z) ∈ K(z). Let S′

be a finite set of places of K such that γ ∈ o∗S′ , S
′ ⊇ S, and |S′| > 1. Since µ(K) contains

all but at most one element of K, it follows that φ(K) contains all but at most one element
of γ(o∗S′)

d. Since γ ∈ o∗S′ and |S′| > 1, this shows that φ(K) ∩ o∗S′ is infinite. �

We conclude this section by proving Proposition 1.6.

Proof of Proposition 1.6. If φ(z) does not have the form βz±d then |φ−2({0,∞})| ≥ 3 by
Lemma 3.2, so Proposition 1.5 implies that φ2(K) ∩ o∗S has size N <∞, whence

|Oφ(α) ∩ o∗S | ≤ N + 1 = C(K,S, φ).

Now consider φ(z) = βz±d with β ∈ K∗ and d ≥ 2. Any α ∈ K∗ satisfies Oφ(α) ⊆ o∗S′
where S′ is the union of S with the set of places v of K for which |α|v 6= 1 or |β|v 6= 1. If
α ∈ K∗ is not a root of unity then Oφ(α) is infinite, so that Oφ(α) ∩ o∗S′ is infinite. �

4. Additional Remarks

We make two final remarks. First, the proofs of Theorems 1.7 and 1.8 can be modified
to treat some classes of Laurent polynomials. For example, let d and d′ be distinct positive
integers, and let φ(z) = (γdzd + · · ·+ γ1z + γ0)/zd

′
where γi ∈ oS and γd, γ0 ∈ o∗S . Suppose

in addition that the numerator is not a d-th power in K[z]. Then |φ(K) ∩ o∗S | ≤ C(s, d) for
any α ∈ P1(K). Indeed, since γ0 and γd are assumed to be units, φ(β) cannot be in o∗S if
|β|v 6= 1 for some v /∈ S. Thus we need only consider β ∈ o∗S , and now the desired bound
follows from the proof of Theorem 1.7.

As another example, consider φ(z) = (γdzd+· · ·+γ1z+γ0)/zd
′

where d > d′, γi ∈ K, and
there is some v /∈ S for which |γd|v > max(1, |γi|v) for each i < d. Then |Oφ(α) ∩ o∗S | ≤ 1
for any α ∈ P1(K), as the orbit of an S-unit cannot contain another S-integer by the proof
of Theorem 1.8. Both this class of examples and the previous class are quite special, but
they serve as further evidence for Conjectures 1.1 and 1.2.

We conclude this paper by noting that the constant C in Conjectures 1.1 and 1.2 must
depend on both s and d. The necessity of dependence on s is clear. Dependence on d is
also required, since by Lagrange interpolation one can construct polynomials φ(z) ∈ K[z]
in which the first several φi(α) take on any prescribed distinct values in K while also φ(z)
has at least two zeroes (and hence is not βz±d).
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