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Abstract. I present a construction of permutation polynomials
based on cyclotomy, an additive analogue of this construction, and
a generalization of this additive analogue which appears to have
no multiplicative analogue. These constructions generalize recent
results of José Marcos.

Dedicated to Mel Nathanson on the occasion of his sixtieth birthday

1. Introduction

Writing Fq for the field with q elements, we consider permutation
polynomials over Fq, namely polynomials f ∈ Fq[x] for which the map
α 7→ f(α) induces a permutation of Fq. These polynomials first arose
in work of Betti [6], Mathieu [28], and Hermite [20], as a tool for
representing and studying permutations.

Since every mapping Fq → Fq is induced by a polynomial, the study
of permutation polynomials focuses on polynomials with unusual prop-
erties beyond inducing a permutation. In particular, permutation poly-
nomials of ‘nice’ shapes have been a topic of interest since the work of
Hermite, in which he noted that there are many permutation polyno-
mials of the form

f(x) := axi(x
q−1
2 + 1)− bxj(x

q−1
2 − 1)

with q odd, i, j > 0, and a, b ∈ F∗q. The reason for this is that f(α) =

2aαi if α ∈ Fq is a square, and f(α) = 2bαj otherwise; thus, for
instance, f is a permutation polynomial if 2a and 2b are squares and
gcd(ij, q − 1) = 1.

More generally, any polynomial of the form f(x) := xrh(x(q−1)/d)
induces a mapping on Fq modulo d-th powers, so testing whether f
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permutes Fq reduces to testing whether the induced mapping on cosets
is bijective (assuming that f is injective on each coset, or equivalently
that gcd(r, (q − 1)/d) = 1). The vast majority of known examples
of ‘nice’ permutation polynomials have this ‘cyclotomic’ form for some
d < q−1; see for instance [1–5, 7, 9–25, 29–34, 36–43]. Moreover, there
is a much longer list of papers proving nonexistence of permutation
polynomials of certain shapes, and nearly all such papers again address
these polynomials f(x) having cyclotomic behavior.

In the recent preprint [26], Marcos gives five constructions of per-
mutation polynomials. His first two constructions are new classes of
permutation polynomials having the above cyclotomic form. His third
construction is a kind of additive analogue of the first, resulting in poly-
nomials of the form L(x)+h(T (x)) where T (x) := xq/p+xq/p2

+· · ·+x is

the trace polynomial from Fq to its prime field Fp, and L(x) =
∑

aix
pi

is any additive polynomial. The idea of the analogy is that T (x) in-
duces a homomorphism Fq → Fp, just as x(q−1)/d induces a homo-
morphism from F∗q to its subgroup of d-th roots of unity. The fourth
construction in [26] is a variant of the third for polynomials of the form
L(x)+h(T (x))(L(x)+c), and the fifth construction replaces T (x) with

other symmetric functions in xq/p, xq/p2
, . . . , x.

In this paper I present rather more general versions of the first four
constructions from [26], together with simplified proofs. I can say noth-
ing new about the fifth construction from [26], although that construc-
tion is quite interesting and I encourage the interested reader to look
into it.

2. Permutation polynomials from cyclotomy

In this section we prove the following result, where for d ≥ 1 we
write hd(x) := xd−1 + xd−2 + · · ·+ x + 1.

Theorem 1. Fix a divisor d > 2 of q − 1, integers u ≥ 1 and k ≥ 0,
an element b ∈ Fq, and a polynomial g ∈ Fq[x] divisible by hd. Then

f(x) := xu
(
bxk(q−1)/d + g(x(q−1)/d)

)
permutes Fq if and only if the following four conditions hold:

(1) gcd(u, (q − 1)/d) = 1,
(2) gcd(d, u + k(q − 1)/d) = 1,
(3) b 6= 0,
(4) 1 + g(1)/b is a d-th power in F∗q.

The proof uses the following simple lemma.
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Lemma 2. Fix a divisor d of q−1, an integer u > 0, and a polynomial
h ∈ Fq[x]. Then f(x) := xuh(x(q−1)/d) permutes Fq if and only if the
following two conditions hold:

(1) gcd(u, (q − 1)/d) = 1,

(2) f̂(x) := xuh(x)(q−1)/d permutes the set µd of d-th roots of unity in F∗q.

I discovered this lemma in 1997 when writing [35], and used it in
seminars and private correspondence, but I did not publish it until
recently [42, Lemma 2.1]. For other applications of this lemma, see
[27, 42, 43].

Proof of Theorem 1. In light of the lemma, we just need to determine

when f̂(x) permutes µd, where

f̂(x) := xu(bxk + g(x))(q−1)/d.

For ζ ∈ µd\{1} we have g(ζ) = 0, so f̂(ζ) = b(q−1)/dζu+k(q−1)/d. Thus, f̂
is injective on µd\{1} if and only if b 6= 0 and gcd(d, u+k(q−1)/d) = 1.

When these conditions hold, f̂(µd\{1}) = µd\{b(q−1)/d}, so f̂ permutes

µd if and only if f̂(1) = b(q−1)/d. Since f̂(1) = (b+g(1))(q−1)/d, the latter
condition is equivalent to (1 + g(1)/b)(q−1)/d = 1, as desired. �

The case g = hd of Theorem 1 is [26, Thm. 2], and [26, Prop. 4] is
the case that g = h5(h5 − x3 − x4) and d = u = k − 2 = 5.

Remark. The key feature of the polynomials in Theorem 1 as a par-

ticular case of Lemma 2 is that the induced mapping f̂ on µd \ {1} is
a monomial, and we know when monomials permute µd. For certain
values of d, we know other permutations of µd: for instance, if q = q2

0

and d =
√

q0 − 1 then µd = F∗q0
, so we can obtain permutation poly-

nomials over Fq by applying Lemma 2 to polynomials f(x) for which

the induced map f̂ on F∗q0
is any prescribed permutation polynomial.

This construction already yields interesting permutation polynomials
of Fq coming from degree-3 permutation polynomials of Fq0 ; see [35]
for details and related results.

3. Permutation polynomials from additive cyclotomy

Lemma 2 addresses maps Fq → Fq which respect the partition of
F∗q into cosets modulo a certain subgroup. In this section we give an
analogous result in terms of cosets of the additive group of Fq modulo
a subgroup. Let p be the characteristic of Fq. An additive polynomial

over Fq is a polynomial of the form
∑k

i=0 aix
pi

with ai ∈ Fq. The key
property of additive polynomials A(x) is that they induce homomor-
phisms on the additive group of Fq, since A(α + β) = A(α) + A(β)
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for α, β ∈ Fq. The additive analogue of Lemma 2 is as follows, where
we write im B and ker B for the image and kernel of the mapping
B : Fq → Fq.

Proposition 3. Pick additive A, B ∈ Fq[x] and an arbitrary g ∈ Fq[x].
Then f(x) := A(x) + g(B(x)) permutes Fq if and only if A(ker B) +

f̂(im B) = Fq, where f̂(x) := g(x) + A(B̂(x)) and B̂ ∈ Fq[x] is any

polynomial for which B(B̂(x)) is the identity on im B. In other words,

f permutes Fq if and only if f̂ induces a bijection im B → Fq/A(ker B),
where Fq/A(ker B) is the quotient of the additive group of Fq by the
subgroup A(ker B).

Proof. For β ∈ ker B we have f(x + β) = A(x) + A(β) + g(B(x)) =
f(x)+A(β). Thus, for α ∈ Fq we have f(α+ker B) = f(α)+A(ker B).

Since Fq = ker B + B̂(im B), it follows that f(Fq) = f(B̂(im B)) +

A(ker B). Since f(B̂(γ)) = A(B̂(γ)) + g(B(B̂(γ))) = A(B̂(γ)) + g(γ)
for γ ∈ im B, the result follows. �

Corollary 4. If f permutes Fq then A is injective on ker B and f̂ is
injective on im B.

Proof. If A(ker B) + f̂(im B) = Fq then

q ≤ #A(ker B) ·#f̂(im B) ≤ #(ker B) ·#(im B) = q,

where the last equality holds because B defines a homomorphism on
the additive group of Fq. The result follows. �

Corollary 5. Suppose A(B(α)) = B(A(α)) for all α ∈ Fq. Then
f permutes Fq if and only if A permutes ker B and A(x) + B(g(x))
permutes im B.

Proof. Since A and B commute, and A(0) = 0, it follows that A(ker B) ⊆
ker B. Thus, by the previous corollary, if f permutes Fq then A per-
mutes ker B. Henceforth assume that A permutes ker B. By the propo-

sition, f permutes Fq if and only if ker B + f̂(im B) = Fq; since the

left side is the preimage under B of B(f̂(im B)), this condition may

be restated as B(f̂(im B)) = im B. For γ ∈ im B we have B(f̂(γ)) =

B(g(γ)) + B(A(B̂(γ))) = B(g(γ)) + A(B(B̂(γ))) = B(g(γ)) + A(γ),

so B(f̂(x)) permutes im B if and only if B(g(x)) + A(x) permutes
im B. �

One way to get explicit examples satisfying the conditions of this
result is as follows: if B = xq/p + xq/p2

+ · · · + xp + x and A ∈ Fp[x],
then A(B(x)) = B(A(x)), so f permutes Fq if and only if A permutes
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ker B and A(x) + B(g(x)) permutes im B = Fp. In case g is a constant
(in Fq) times a polynomial over Fp, this becomes (a slight generalization
of) [26, Thm. 6]. The following case of [26, Cor. 8] exhibits this.

Example. In case q = p2 and B = xp + x and A = x, the previous
corollary says f(x) := x+g(xp+x) permutes Fp2 if and only if x+g(x)p+
g(x) permutes Fp, which trivially holds when g = γh(x) with h ∈ Fp[x]
and γp−1 = −1. For instance, taking h(x) = x2, it follows that x +
γ(xp+x)2 permutes Fp2 . By using other choices of h, we can make many
permutation polynomials over Fp2 whose degree is a small multiple
of p. This is of interest because heuristics suggest that ‘at random’
there would be no permutation polynomials over Fq of degree less than
q/(2 log q). The bulk of the known low-degree permutation polynomials
are exceptional, in the sense that they permute Fqk for infinitely many k;
a great deal is known about these exceptional polynomials, for instance
see [19]. It is known that any permutation polynomial of degree at most
q1/4 is exceptional. However, the examples described above have degree
on the order of q1/2 and are generally not exceptional.

Our final result generalizes the above example in a different direction
than Proposition 3.

Theorem 6. Pick any g ∈ Fq[x], any additive A ∈ Fp[x], and any

h ∈ Fp[x]. For B := xq/p + xq/p2
+ · · ·+ xp + x, the polynomial f(x) :=

g(B(x)) + h(B(x))A(x) permutes Fq if and only if A permutes ker B
and B(g(x)) + h(x)A(x) permutes Fp and h has no roots in Fp.

Proof. For β ∈ ker B we have f(x + β) = f(x) + h(B(x))A(β). Thus,
if f permutes Fq then A is injective on ker B and h has no roots in
Fp. Since A(B(x)) = B(A(x)) and A(0) = 0, also A(ker B) ⊆ ker B,
so if f permutes Fq then A permutes ker B. Henceforth assume A
permutes ker B and h has no roots in Fp. Since im B = Fp and h(Fp) ⊆
Fp \ {0}, we have h(B(α)) ∈ Fp \ {0} for α ∈ Fq. Thus, for α ∈ Fq

we have f(α + ker B) = f(α) + ker B, so f permutes Fq if and only if
B(f(Fq)) = im B. Now for α ∈ Fq we have B(f(α)) = B(g(B(α))) +
B(h(B(α))A(α)), and since h(B(α)) ∈ Fp this becomes B(f(α)) =
B(g(B(α))) + h(B(α))B(A(α)) = B(g(B(α)) + h(B(α))A(B(α)), so
B(f(Fq)) is the image of im B under B(g(x)) + h(x)A(x). The result
follows. �

In case g = γh + δ with γ, δ ∈ Fq, the above result becomes a gen-
eralization of [26, Thm. 10]. In view of the analogy between Lemma 2
and Proposition 3, it is natural to seek a ‘multiplicative’ analogue of
Theorem 6. However, I have been unable to find such a result: the
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obstacle is that the polynomial f in Theorem 6 is the sum of products
of polynomials, which apparently should correspond to a product of
powers of polynomials, but the latter is already included in Lemma 2.
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