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Abstract. The study of finite projective planes involves planar func-
tions, namely, functions f : Fq → Fq such that, for each a ∈ F∗

q , the
function c 7→ f(c + a) − f(c) is a bijection on Fq. Planar functions are
also used in the construction of DES-like cryptosystems, where they are
called perfect nonlinear functions. We determine all planar functions on
Fq of the form c 7→ ct, under the assumption that q ≥ (t − 1)4. This
resolves two conjectures of Hernando, McGuire and Monserrat. Our ar-
guments also yield a new proof of a conjecture of Segre and Bartocci
about monomial hyperovals in finite Desarguesian projective planes.

1. Introduction

Let q = pr where p is prime and r is a positive integer. A planar function
is a function f : Fq → Fq such that, for every a ∈ F∗

q , the function c 7→
f(c+a)−f(c) is a bijection on Fq. Planar functions can be used to construct
finite projective planes, and they have been studied by finite geometers since
1968 [6]. They arose more recently in the cryptography literature where they
are called perfect nonlinear functions [22], the idea being that these functions
are optimally resistant to linear and differential cryptanalysis when used in
DES-like cryptosystems. Many authors have investigated the planarity of
monomial functions f(x) = xt with t > 0. Since xt is planar on Fq if and
only if xt+q−1 is planar, and likewise if and only if xtp is planar, the study
of planar monomials reduces at once to the case that t < q and p - t.

The only known examples of planar monomials xt over Fpr with p - t and
t < pr are

(1.1) t = pi + 1 if 0 ≤ i < r and p r
gcd(i,r) is odd; and

(1.2) t = 3i+1
2 if p = 3 and 2 < i < r and gcd(i, 2r) = 1.

A folk conjecture in the subject asserts that there are no further examples.
This is known to be true for r = 1 [14], r = 2 [4], and r = 4 [5]. However,
as noted in [5, 3], the methods used in these papers will likely not extend to
much larger values of r. In this paper we prove this conjecture for all large
r:
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Theorem 1.4. If c 7→ ct is a planar function on Fpr , where pr ≥ (t − 1)4

and p - t, then either (1.1) or (1.2) holds.

Note that each of the known planar monomials over Fq has the property
that it is also planar over Fqk for infinitely many integers k. One consequence
of our result is that no other planar monomials have this property:

Corollary 1.5. For any prime p and any positive integer t, the function
c 7→ ct is a planar function on Fpk for infinitely many k if and only if either

• t = pi + pj where p is odd and i ≥ j ≥ 0; or

• t = 3i+3j

2 where p = 3 and i > j ≥ 0 with i 6≡ j (mod 2).

This corollary resolves two conjectures of Hernando, McGuire and Mon-
serrat [13, Conjectures PN2 and PN3]. It is the first known characterization
of the known planar monomials among all planar monomials.

Corollary 1.5 was proved in the case t ≡ 1 (mod p) by Leducq [16]. Thus,
the bulk of our effort addresses the case t 6≡ 1 (mod p). In this case, Corol-
lary 1.5 was proved in [13] if t and p satisfy any of eight different conditions.
We show that none of these extra conditions are needed. Our approach
is completely different from that of [16] and [13]. Whereas those papers
rely on dozens of pages of computations involving the singularities of an
associated (possibly singular and reducible) plane curve, we focus on the
functional decomposition of a certain univariate polynomial. In particular,
our most novel contribution is a method for testing whether a polynomial
can be written as a function of a Dickson polynomial.

After reviewing some background material in the next section, we prove
Theorem 1.4 and Corollary 1.5 in Sections 3 and 4, respectively. Then in
Section 5 we show that our techniques yield a simple proof of the Segre–
Bartocci conjecture about hyperovals in Desarguesian projective planes, and
in Section 6 we discuss how generally our techniques will apply to related
problems.

2. Background results

In this section we present the known results about exceptional polynomi-
als, Dickson polynomials, and functional decomposition which will be used
in our proofs. We begin with some definitions.

Definition 2.1. A polynomial F (x) ∈ Fq[x] is linear if it has degree one.

Remark. What we call linear polynomials are sometimes called affine poly-
nomials.

Definition 2.2. A polynomial F (x) ∈ Fq[x] of degree at least 2 is indecompos-
able if there do not exist nonlinear G,H ∈ Fq[x] such that F (x) = G(H(x)).

Definition 2.3. A polynomial F (x) ∈ Fq[x] is exceptional if there are infin-
itely many k for which the function c 7→ F (c) is a bijection on Fqk .
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Plainly every polynomial in Fq[x] of degree at least 2 can be written
as the composition of indecomposable polynomials in Fq[x]. Moreover, for
G,H ∈ Fq[x], if G(H(x)) is exceptional then both G and H are exceptional
(in fact the converse holds as well [25], but it will not be used in this pa-
per). Thus, every nonlinear exceptional polynomial is the composition of
indecomposable exceptional polynomials. Much difficult mathematics has
been used in the study of indecomposable exceptional polynomials (see e.g.
[9, 11, 25]), and much remains to be done. However, we will not need any
deep results about exceptional polynomials. Instead we will only rely on the
following two known results.

Proposition 2.4. If F (x) ∈ Fq[x] has degree at most q1/4, and the function
c 7→ F (c) induces a bijection on Fq, then F is exceptional.

Proposition 2.5. If F (x) ∈ Fq[x] is an indecomposable exceptional poly-
nomial of degree coprime to q, then there are linear µ, ν ∈ Fq[x] such that
µ ◦ F ◦ ν is one of the following polynomials:

• xm for some prime m which is coprime to q − 1, or
• Dn(x, a) for some a ∈ F∗

q and some prime n which is coprime to

q2 − 1.

In this result, Dn(x, a) denotes the degree-n Dickson polynomial of the
first kind with parameter a. This is a polynomial in Fq[x] which satisfies the
functional equation

Dn(x+
a

x
, a) = xn +

(a
x

)n
.

These polynomials are closely related to the Chebyshev polynomials of the
first kind. Here we note only that, in light of the above functional equation,
Dn(x, a) has degree n and satisfies Dn(−x, a) = (−1)nDn(x, a). Thus, if
n is odd then Dn(x, a) is an odd polynomial, in the sense that all of its
terms have odd degree. For more information about Dickson polynomials,
see [1, 17].

Remark. Proposition 2.4 follows easily from Weil’s bound on the number of
rational points on a curve over a finite field, combined with a quick argu-
ment using either Galois theory [10] or the fundamental theorem of sym-
metric polynomials [24]. See [25, Rem. 8.4.20] for the history of this result.
Proposition 2.5 is a slight variant of a result from [15]; see [20] for a proof
in the stated form. The proof of this result only depends on Weil’s bound,
group-theoretic results due to Burnside and Schur, and a quick and easy
genus computation. Weil’s bound follows from the Riemann-Roch theorem,
and the two group-theoretic results are proved in a few pages in [17, 21]. So,
although deep tools have been used in the study of exceptional polynomials,
Propositions 2.4 and 2.5 do not depend on such tools.

The next result is well-known, but we include a proof for the reader’s
convenience.
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Lemma 2.6. For G,H ∈ Fq[x], if G ◦H is an odd polynomial and deg(G)
is coprime to q then H(x)−H(0) is odd.

Proof. Suppose otherwise. Let axα and bxβ be the leading terms of G and
H, respectively, and let cxγ be the highest-degree term of H having even
degree. Then α and β are odd, and γ is both even and positive. Writing
δ := (α − 1)β + γ, and noting that δ is even, it follows that the coefficient
of xδ in G ◦H is aαbα−1c. Since this is nonzero, G ◦H has a term of even
degree, which contradicts our hypothesis. �

Remark. The above lemma has been rediscovered many times. It is not
true without the hypothesis on deg(G); one counterexample from [2] is G =
(x+1)s(x−1)q−s and H = xq+(x+1)q−s(x−1)s with q odd and 0 < s < q.

Lemma 2.7. Let µ, ν ∈ Fq[x] be linear, and let G ∈ Fq[x] have degree larger
than 1 and coprime to q. If both G and µ ◦G ◦ ν are odd, then ν(0) = 0.

Proof. Write ν(x) = cx + d, and let ax and bxβ be the leading terms of
µ and G. Then the coefficient of xβ−1 in µ ◦ G ◦ ν is abβcβ−1d. But this
coefficient is zero by hypothesis, so d = 0. �

One of the nice features of the polynomials f(x) = xt is the following well-
known criterion for planarity of c 7→ f(c), which we will often use without
explicit mention.

Lemma 2.8. For any positive integer t, the function c 7→ ct is planar on
Fq if and only if the function c 7→ (c+ 1)t − ct is bijective on Fq.

Proof. Planarity asserts that c 7→ (c + a)t − ct is bijective for each a ∈ F∗
q ;

composing on the right with c 7→ ac and on the left with c 7→ c/at yields the
stated criterion. �

Finally, we recall Lucas’s theorem about binomial coefficients mod p (see
e.g. [19, 8]):

Lemma 2.9. Let p be prime and let m and n be positive integers. Write
m = m0 +m1p+m2p

2 + · · ·+msp
s and n := n0 + n1p+ n2p

2 + · · ·+ nsp
s

where 0 ≤ mi, ni ≤ p− 1 for each i. Then(
n

m

)
≡
(
n0
m0

)(
n1
m1

)
. . .

(
ns
ms

)
(mod p).

3. Proof of Theorem 1.4

We now prove Theorem 1.4. Suppose that xt is a planar function on
Fpr where pr ≥ (t − 1)4 and t > 2 and p - t. Planarity implies that, for

F̂ (x) := (x + 1)t − xt, the function c 7→ F̂ (c) is a bijection on Fpr . By

Proposition 2.4, F̂ is an exceptional polynomial over Fpr (and hence over

Fp), so there are infinitely many k for which F̂ induces a bijection on Fpk ;

equivalently, there are infinitely many k for which xt is a planar function on
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Fpk . If t ≡ 1 (mod p) then [16, Cor. 1.7] implies that (1.1) holds. Henceforth
assume that t 6≡ 1 (mod p).

Since F̂ (−1− x) = (−1)t+1F̂ (x), bijectivity of F̂ on Fpr implies that p is
odd and t is even. Thus also c 7→ F (c) is a bijection on Fpr , where

F (x) := 4tF̂
(x

4
− 1

2

)
= (x+ 2)t − (x− 2)t.

Since F̂ is an exceptional polynomial over Fpr and Fp, also F is exceptional
over these fields. Since p - t, we have deg(F ) = t − 1, so deg(F ) > 1.
Hence F can be written as the composition of indecomposable polynomials
over Fp. Write F = F̂1 ◦ F̂2 with F̂i ∈ Fp[x] and F̂2 indecomposable. Put

F1(x) := F̂1(x + F̂2(0)) and F2(x) := F̂2(x) − F̂2(0), so that F1, F2 ∈ Fp[x]
are such that F = F1 ◦ F2 and F2(0) = 0 and F2 is indecomposable. Since
F is exceptional, it follows that F2 is exceptional. Since deg(F ) = t − 1
is coprime to p, by Proposition 2.5 there are linear µ, ν ∈ Fp[x] such that
either

(3.1) F2 = µ ◦ xm ◦ ν for some prime m which is coprime to p− 1

or

F2 =µ ◦Dn(x, a) ◦ ν for some a ∈ F∗
p and some prime n(3.2)

which is coprime to p2 − 1.

In particular, since p is odd and deg(F ) is coprime to p, it follows that in
(3.1) we have m ≥ 3 and (m, 2p) = 1, and in (3.2) we have n ≥ 5 and
(n, 6p) = 1.

Since t is even, F is an odd polynomial. Now Lemma 2.6 implies that
F2(x)−F2(0) = F2(x) is odd. Recall that F2 = µ ◦H ◦ ν where µ, ν ∈ Fp[x]
are linear and H is either xm or Dn(x, a). Since deg(H) is odd, we know
that H is odd. By Lemma 2.7, we must have ν(x) = c0x with c0 ∈ F∗

p.
Thus F = G ◦ H(c0x) where G := F1 ◦ µ is in Fp[x]. If H = xm with
m ≥ 3 then F ∈ Fp[xm], which is false since the coefficient of x in F is
t(2t−1− (−2)t−1) which (since t is even and coprime to p) equals t2t, and in
particular is nonzero. Thus we must have H(x) = Dn(x, a) where n ≥ 5 is
odd and a ∈ F∗

p. Now put

A(x) := F ◦ 1

c0

(
x+

a

x

)
.

Then

A(x) = G ◦
(
xn +

(a
x

)n)
is an element of Fp[xn, x−n]. But also

A(x) =
( x
c0

+
a

c0x
+ 2
)t
−
( x
c0

+
a

c0x
− 2
)t
.
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Now pick b ∈ F∗
p2 such that b2 = a, and put c = 2c0/b and

B(x) :=
1

2

(c0
b

)t
A(bx).

Then B ∈ Fp2 [xn, x−n] and

B(x) =
1

2

(
(x+ x−1 + c)t − (x+ x−1 − c)t

)
.

The coefficient of xt−1 in B(x) is tc, which is nonzero, so n | (t− 1). Since
B is a Laurent polynomial all of whose terms have degree divisible by n,
and n ≥ 5 is odd, it follows that the coefficients of xt−3, xt−5, and xt−7 in
B must be zero. We now compute these coefficients.

The coefficient of xt−3 in B is

tc(t− 1) +

(
t

3

)
c3,

which equals

ct(t− 1)
( t− 2

6
c2 + 1

)
.

Since this coefficient is zero, we must have

(3.3)
t− 2

6
c2 = −1.

Here, if p = 3, we first interpret t−2
6 as a rational number, and then view

this rational number as an element of Fp; in particular, if p = 3 then t ≡ 2
(mod 3) but t 6≡ 2 (mod 9).

Suppose for the moment that neither of the following holds:

p > 3 and t ≡ 1

2
(mod p), or(3.4)

p = 3 and t ≡ 1

2
(mod 9).(3.5)

We will obtain a contradiction from the fact that the coefficients of xt−5 and
xt−7 in B are zero. The coefficient of xt−5 in B is

tc

(
t− 1

2

)
+

(
t

3

)
c3(t− 3) +

(
t

5

)
c5;

in light of (3.3), we can rewrite this expression as

− t− 2

6
c2 · tc

(
t− 1

2

)
+

(
t

3

)
c3(t− 3)− 6

t− 2
c−2 ·

(
t

5

)
c5

which simplifies to

c3
t(t− 1)

2

(t− 1
2)(t− 4)

15
.

Since this equals zero, but neither (3.4) nor (3.5) holds, we must have either

p > 5 and t ≡ 4 (mod p), or(3.6)

p = 5 and t ≡ 4 (mod 25).(3.7)
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In particular, p > 3 and t ≡ 4 (mod p). Since (3.4) does not hold, we have
t 6≡ 1

2 (mod p). Next, the coefficient of xt−7 in B is

tc

(
t− 1

3

)
+

(
t

3

)
c3
(
t− 3

2

)
+

(
t

5

)
c5(t− 5) +

(
t

7

)
c7;

again using (3.3), we can simplify this expression to

−2c5t(t− 1)
(t+ 1)(t− 1

2)(t− 3)(t− 5)

33 · 5 · 7
.

Since this equals zero, and 4 ≡ t 6≡ 1
2 (mod p), we must have 4 ≡ t ≡ −1

(mod p), whence p = 5. But since p = 5, the vanishing of the coefficient of
xt−7 implies that t ≡ −1 (mod 25), which contradicts (3.7). This contra-
diction shows that in fact either (3.4) or (3.5) must hold.

Now assume that either (3.4) or (3.5) holds. In either case, (3.3) implies
that c2 = 4, so c = 2ε with ε ∈ {1,−1}. Hence

2B(x) = (x+ x−1 + 2ε)t − (x+ x−1 − 2ε)t.

Since B(x) ∈ Fp[xn, x−n], it follows that B(x2) ∈ Fp[x2n, x−2n]. But we
compute

2B(x2) =
(
x+

ε

x

)2t
−
(
x− ε

x

)2t
= 2

∑
0<i<2t
i odd

(
2t

i

)
εix2t−2i.

Since n | (t − 1), we see that 2n | (2t − 2i) if and only if n | (i − 1). Thus,
the condition B(x2) ∈ Fp[x2n, x−2n] asserts that

if i is odd and i 6≡ 1 (mod n) then

(
2t

i

)
≡ 0 (mod p).

Write 2t =
∑s

j=0 ejp
j where ej is an integer satisfying 0 ≤ ej ≤ p − 1.

Since either (3.4) or (3.5) holds, we have 2t ≡ 1 (mod p), so e0 = 1. First
consider i = 1 + 2pj for any 1 ≤ j ≤ s. Clearly i is odd, and since the only
prime factors of i− 1 are 2 and p, neither of which divides n, we also have
i 6≡ 1 (mod n). Thus we must have

(
2t
i

)
≡ 0 (mod p), so Lucas’s theorem

(Lemma 2.9) implies ej < 2. Hence every ej is either 0 or 1. Next, for any

0 < j < k ≤ s, consider the three values i1 = pj , i2 = pk, and i3 = 1+pj+pk.
Each of these values is odd, but since i3 = 1 + i1 + i2 we cannot have
i1 ≡ i2 ≡ i3 ≡ 1 (mod n). Thus there is some i ∈ {pj , pk, 1 + pj + pk}
for which

(
2t
i

)
≡ 0 (mod p), so (again by Lucas’s theorem) we must have

either ej = 0 or ek = 0. Since 2t > 1, the only remaining possibility is that
2t = 1 + ps for some s > 0. Writing q := ps, we compute

F ◦ (x2 + x−2) = (x2 + x−2 + 2)t − (x2 + x−2 − 2)t

= (x+ x−1)1+q − (x− x−1)1+q

= 2(xq−1 + x1−q).
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But also D(x) := D q−1
2

(x, 1) satisfies

D ◦ (x2 + x−2) = xq−1 + x1−q,

so F (x) = 2D(x). Since F (x) is exceptional over Fpr , it follows that D(x)
is exceptional over Fpr as well. By an easy classical result (see e.g. [7,

Thm. 54]), D(x) is exceptional over Fpr if and only if q−1
2 is coprime to

p2r − 1. But both of these numbers are divisible by (pgcd(s,2r) − 1)/2, so we
must have p = 3 and gcd(s, 2r) = 1. This concludes the proof.

4. Proof of Corollary 1.5

We now prove Corollary 1.5. The “if” direction is known and easy: for,
if p is odd and i ≥ j ≥ 0 then

(x+ 1)p
i+pj − xpi+pj − 1 = xp

i
+ xp

j

induces a homomorphism from the additive group of Fpk to itself, and there-
fore induces a bijection on Fpk if and only if it has no nonzero roots in Fpk .

But its nonzero roots are the (pi−j−1)-th roots of −1, and there are no such

roots of −1 in Fpk if either i = j or k = (i − j)u with u odd. Thus xp
i+pj

is planar on Fpk for infinitely many k. Next, for t = 3i+3j

2 where p = 3
and i > j ≥ 0 and i 6≡ j (mod 2), the argument at the end of the previous
section shows that

(x+ 1)t − xt = 2Ds(x− 1, 1)

where s := 3i−3j

2 . Since s is coprime to 32− 1, Dickson’s result [7, Thm. 54]
implies that Ds(x, 1) is exceptional over F3, so xt is planar on F3k for infin-
itely many k.

Conversely, fix a prime p and a positive integer s, and suppose that c 7→ cs

is a planar function on Fpk for infinitely many k. Writing s = pjt with p - t,
it follows that c 7→ ct is planar on Fpk for infinitely many k. In particular,

c 7→ ct is planar on Fpr for some r such that pr ≥ (t − 1)4, so Theorem 1.4
implies that either (1.1) or (1.2) holds. The result follows.

5. The Segre–Bartocci conjecture

We now show how a simple modification of our argument yields a new
proof of the Segre–Bartocci conjecture about monomial hyperovals in finite
Desarguesian projective planes. This conjecture was only proved for the first
time quite recently, by Hernando and McGuire [12], by means of a lengthy
calculation involving singularities of a certain plane curve. Our proof is
vastly shorter and simpler.

A hyperoval in P2(Fq) is a set of q + 2 points in P2(Fq) which does not
contain three collinear points. It turns out that such an object can only
exist if q is even. It is easy to see that, for a suitable choice of coordinates
on P2(Fq), any hyperoval can be written in the form

{(1 : c : H(c)) : c ∈ Fq} ∪ {(0 : 0 : 1), (0 : 1 : 0)}
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for some H(x) ∈ Fq[x]. Denote this set by D(H(x), q). Segre and Bartocci
conjectured in 1971 [23] that the values t = 6 and t = 2i (with i > 0)
are the only positive integers t for which there are infinitely many k such
that D(xt, 2k) is a hyperoval. By considering slopes of lines between two
points, one can reformulate this conjecture as asserting that t = 6 and
t = 2i are the only positive integers t for which the polynomial F̂ (x) :=
xt−1 + xt−2 + · · ·+ 1 is exceptional over F2 (see, for instance, [18, p. 505]).

Assume F̂ is exceptional. Then F̂ (0) 6= F̂ (1), so t is even. Assume t > 2, so

that deg(F ) = t− 1 > 1. Put F (x) := F̂ (x+ 1), so

F (x) =
(x+ 1)t + 1

x
.

Then F is an odd polynomial, so the first part of the proof of Theorem 1.4
shows that F = G ◦H where H is either xm (with m > 1 odd) or Dn(x, 1)
(with n > 1 coprime to 6). If F = G(xm) with m > 1 odd then t must be
a power of 2: for, if 2j and 2k are distinct terms in the binary expansion of
t, then F has terms of degrees 2j − 1 and 2k − 1 and 2j + 2k − 1, and the
gcd of these three degrees is 1. Finally, suppose F = G ◦ Dn(x, 1). Then
we have F (x+ x−1) = G(xn + x−n) ∈ F2[x

n, x−n]. In order to compute the
coefficients of the Laurent polynomial F (x+ x−1), we write

F (x+ x−1) =

t∑
i=1

(
t

i

)
(x+ x−1)i−1.

Since the coefficient of xt−1 in F (x+x−1) is nonzero, we see that n | (t−1), so
that the coefficients of xt−3 and xt−7 must be zero. But one easily checks that
this only occurs when t = 6, which implies the Segre–Bartocci conjecture.

6. Final remarks

We conclude with some remarks about how generally our techniques will
apply to related questions. In our proof of Theorem 1.4, we applied the re-
sult of [16] to handle the case t ≡ 1 (mod p). This played a crucial role, since
if t ≡ 1 (mod p) then f(x) := (x+ 1)t − xt has degree divisible by p, which
is problematic because there is no known classification of indecomposable
exceptional polynomials of degree divisible by p. There are partial results in
this direction (see e.g. [9, 11, 25]), but most of them depend on the classifi-
cation of finite simple groups, and so cannot be considered to be elementary.
But even if we were willing to use consequences of this classification, we do
not know how to avoid the use of [16] in the proof of Theorem 1.4 or Corol-
lary 1.5. It seems strange that in our approach the case t 6≡ 1 (mod p) is so
much easier than the case t ≡ 1 (mod p), whereas in the approach of [13, 16]
these two cases are of comparable difficulty. Might this suggest that there
should be a simple proof of the case t ≡ 1 (mod p) from the perspective of
exceptional polynomials?
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In the case that t 6≡ 0, 1 (mod p), we used known results about exceptional
polynomials to reduce Theorem 1.4 to the question of whether (x+ 1)t− xt
is the composition of linear polynomials with polynomials of the form xm

or Dn(x, a) for values of m and n satisfying certain constraints. We then
introduced a method for determining which polynomials from some infinite
collection can be written as a function of either (bx+ c)m or Dn(bx+ c, a).
This method seems to apply very generally: for instance, it applied at once
to the polynomials arising in the Segre–Bartocci conjecture, and we do not
see any special feature of the polynomials (x+1)t−xt and xt−1+xt−2+· · ·+1
which would make the method better suited to these polynomials than to
any others.
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[19] É. Lucas, Sur les congruences des nombres eulériens et des coefficients différentiels
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