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Abstract. We construct classes of permutation polynomials over
FQ2 by exhibiting classes of low-degree rational functions over FQ2

which induce bijections on the set of (Q + 1)-th roots of unity.
As a consequence, we prove two conjectures about permutation
trinomials from a recent paper by Tu, Zeng, Hu and Li.

1. Introduction

A polynomial f(x) ∈ Fq[x] is called a permutation polynomial if the
function α 7→ f(α) induces a permutation of Fq. Since they were first
studied in the mid-19th century, one of the driving questions about
permutation polynomials has been to construct examples having es-
pecially simple shapes. This requires polynomials which are nice in
two ways: they have a simple algebraic form, and also they induce a
function on Fq which has the nice combinatorial property of being a
permutation. The vast majority of known examples of “nice” permu-
tation polynomials have the form xrh(xd) where h ∈ Fq[x] and d > 1
is a divisor of q − 1. The reason this form is special is that a general
result (see Lemma 2.2) asserts that xrh(xd) permutes Fq if and only if
gcd(r, d) = 1 and xrh(x)d permutes the set of (q−1)/d-th roots of unity
in F∗

q. This leads to the question of producing collections of polynomials
which permute the set µk of k-th roots of unity in Fq for certain values
of k. There are two simple types of polynomials which permute µk: for
arbitrary k one can use polynomials of the form βxn + (xk − 1) · g(x)
where β ∈ µk and gcd(n, k) = 1, and if k = Q − 1 where q = Qr then
one can use h(x) − h(0) where h(x) ∈ FQ[x] permutes FQ. These two
simple types of permutations of µk account for essentially all published
examples of permutation polynomials over finite fields. Indeed, it is
difficult to identify any other polynomials having “nice” form which
permute µk. In this paper we present classes of permutation polyno-
mials obtained from a new variant of this construction, in which

• µk is not the multiplicative group of a subfield of Fq
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• the induced function on µk is most naturally presented as a
rational function rather than a polynomial.

It is perhaps surprising that there are permutations of µk which can
be represented by a rational function having an especially simple form,
but which cannot be represented by an especially simple polynomial.
We obtain the following classes of permutation polynomials.

Theorem 1.1. Let Q be a prime power, let n > 0 and k ≥ 0 be
integers, and let β, γ ∈ FQ2 satisfy βQ+1 = 1 and γQ+1 6= 1. Then

f(x) := xn+k(Q+1) ·
(
(γxQ−1 − β)n − γ(xQ−1 − γQβ)n

)
permutes FQ2 if and only if gcd(n+2k,Q−1) = 1 and gcd(n,Q+1) = 1.

Theorem 1.2. Let Q be a prime power, let n, k be integers with n > 0
and k ≥ 0, and let β, δ ∈ FQ2 satisfy βQ+1 = 1 and δ /∈ FQ. Then

f(x) := xn+k(Q+1) ·
(
(δxQ−1 − βδQ)n − δ(xQ−1 − β)n

)
permutes FQ2 if and only if gcd(n(n+ 2k), Q− 1) = 1.

The following corollary illustrates these results in the special case
n = 3, for certain values of β, γ, δ.

Corollary 1.3. Let Q be a prime power, and let k be a nonnegative
integer. The polynomial g(x) := xk(Q+1)+3 + 3xk(Q+1)+Q+2− xk(Q+1)+3Q

permutes FQ2 if and only if gcd(2k + 3, Q− 1) = 1 and 3 - Q.

Specializing even further to the values k = Q− 3, k = 1, and k = 0
yields the following consequence.

Corollary 1.4. Let Q be a prime power with 3 - Q. Then

(1) x2Q−1 + 3xQ − xQ2−Q+1 is a permutation polynomial over FQ2.
(2) xQ+4 + 3x2Q+3−x4Q+1 is a permutation polynomial over FQ2 if

and only if Q 6≡ 1 (mod 5).
(3) x3 + 3xQ+2 − x3Q is a permutation polynomial over FQ2 if and

only if Q ≡ 2 (mod 3).

In case Q = 22m+1, the first two parts of this corollary were conjec-
tured by Tu, Zeng, Hu and Li [11]. Conversely, these conjectures were
the impetus which led to the present paper.

The proofs of our results rely on exhibiting certain permutations of
the set of (Q+1)-th roots of unity in FQ2 . The permutations we exhibit
are represented by Rédei functions, namely, rational functions over a
field K which have the form µ ◦xn ◦µ−1 where µ(x) is a degree-one ra-
tional function having coefficients in an extension of K, and µ−1 is the
rational function such that µ−1(µ(x)) = x. For further results about
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such functions, see for instance [2, 8, 9] and [4, Ch. 5]. Although per-
mutation polynomials on subgroups of F∗

q have also been studied [1],
the present paper is the first to examine Rédei functions as permuta-
tions of such subgroups, and especially the first to notice that Rédei
functions can permute subgroups of F∗

q other than the multiplicative
groups of subfields of Fq.

We prove Theorems 1.1 and 1.2 in the next two sections, and deduce
the corollaries in Section 4. We conclude this paper by using our ap-
proach to give a very simple proof of a substantial generalization of the
main result of [11].

2. Proof of Theorem 1.1

In this section we prove Theorem 1.1. We begin by describing the
permutations of a group of roots of unity which are induced by degree-
one rational functions.

Lemma 2.1. Let K be a field of characteristic p ≥ 0, let d > 2 satisfy
p - d, and let µd be the set of d-th roots of unity in K. For any degree-
one `(x) ∈ K(x), we have `(µd) = µd if and only if either

• `(x) equals either ρx or ρ/x with ρ ∈ µd, or
• p > 0 and d = Q+ 1 for some power Q of p, where in addition
`(x) = (εQx+ ρ)/(ρQx+ ε) with ε, ρ ∈ F∗

Q2 and εQ+1 6= ρQ+1.

Proof. Write `(x) = (αx + β)/(γx + δ) where α, β, γ, δ ∈ K satisfy
∆ := αδ − βγ 6= 0. We may assume that α, β, γ, δ are in the subfield
K0 of K which is generated by µd, since if `(µd) = µd then `(x) is
a degree-one rational function which maps at least three elements of
K0 into K0, whence `(x) ∈ K0(x). Since deg(`) = 1, the condition
`(µd) = µd is equivalent to `(µd) ⊆ µd, and hence to the assertion that
(αρ+ β)d = (γρ+ δ)d for every ρ ∈ µd. Thus `(µd) = µd if and only if
the polynomial f(x) := (αx+β)d−(γx+δ)d−(αd−γd)(xd−1) vanishes
on µd. Since deg(f) < d, this condition asserts that f(x) is identically
zero, or equivalently that (αx + β)d − (γx + δ)d = (αd − γd)(xd − 1).
Hence `(µd) = µd if and only if both of the following conditions hold:

(1) βd − δd = γd − αd

(2) for each 0 < i < d such that p -
(

d
i

)
, we have αiβd−i = γiδd−i.

In particular, condition (2) with i = 1 asserts that αβd−1 = γδd−1, so
since αδ 6= βγ we see that α = 0 if and only if δ = 0, and likewise
β = 0 if and only if γ = 0. If either α = δ = 0 or β = γ = 0
then `(x) = ρxj with ρ ∈ K∗ and j ∈ {1,−1}, and plainly such a
function `(x) permutes µd if and only if ρ ∈ µd. Henceforth assume
that α, β, γ, δ are nonzero. The conclusion of condition (2) can now
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be reformulated as (αδ/(βγ))i = (δ/β)d. If this conclusion holds for
each of two consecutive integers i, then it follows that αδ/(βγ) = 1,
contrary to our hypothesis that ∆ 6= 0. Hence if `(µd) = µd then for
any 0 < i < d−1 we have either p |

(
d
i

)
or p |

(
d

i+1

)
, so that p > 0 and by

Lucas’s theorem on binomial coefficients mod p [6, 3] we conclude that
d = Q + 1 for some power Q of p. Henceforth assume that p > 0 and
d = Q + 1 for some power Q of p, so that K0 = FQ2 . The hypotheses
of condition (2) are only satisfied by i = 1 and i = Q, so condition (2)
asserts that αβQ = γδQ and αQβ = γQδ. Upon solving for γ via the
first equation and substituting the resulting value into both the second
equation and condition (1), we find that `(µd) = µd if and only if all of
the following hold:

• γ = α(β/δ)Q

• αQβ = αQ(β/δ)Q2
δ

• βQ+1 − δQ+1 = αQ+1(β/δ)Q2+Q − αQ+1.

The second condition is automatically true, and the third condition
asserts that (δQ+1−αQ+1) · ((β/δ)Q+1− 1) = 0, or equivalently that at
least one of α/δ or β/δ is in µQ+1. When the above conditions hold,
we have ∆ = αδ − βα(β/δ)Q = α(δ − βQ+1/δQ), so the hypothesis
∆ 6= 0 asserts that β/δ /∈ µQ+1. Hence the above conditions hold if
and only if α/δ ∈ µQ+1 with γ = α(β/δ)Q and β/δ /∈ µQ+1. Writ-
ing α/δ = εQ−1 with ε ∈ F∗

Q2 , these conditions assert that `(x) =

(δεQ−1x+β)/(δεQ−1(β/δ)Qx+ δ) = (εQx+βε/δ)/((βε/δ)Qx+ ε) where
(βε/δ)Q+1 6= εQ+1, as desired. �

The next lemma was first proved in [12].

Lemma 2.2. Pick h ∈ Fq[x] and integers d, r > 0 such that d | (q−1).
Then f(x) := xrh(x(q−1)/d) permutes Fq if and only if both

(1) gcd(r, (q − 1)/d) = 1 and
(2) xrh(x)(q−1)/d permutes the set of d-th roots of unity in F∗

q.

This lemma has been used in several investigations of permutation
polynomials, for instance see [7, 12, 13, 14, 15]. Since the proof of
Lemma 2.2 is short, we include it here for the reader’s convenience.

Proof. Write s := (q − 1)/d. For ζ ∈ µs, we have f(ζx) = ζrf(x).
Thus, if f permutes Fq then gcd(r, s) = 1. Conversely, if gcd(r, s) = 1
then the values of f on Fq consist of all the s-th roots of the values of

f(x)s = xrsh(xs)s.
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But the values of f(x)s on Fq consist of f(0)s = 0 and the values of
g(x) := xrh(x)s on (F∗

q)s. Thus, f permutes Fq if and only if g permutes
(F∗

q)s, which equals the set of d-th roots of unity in F∗
q. �

We now prove Theorem 1.1.

Proof of Theorem 1.1. Write h(x) := (γx − β)n − γ(x − γQβ)n and
r := n + k(Q + 1). By Lemma 2.2, f(x) = xrh(xQ−1) permutes FQ2 if
and only if gcd(n+k(Q+1), Q−1) = 1 and g(x) := xrh(x)Q−1 permutes
the set µQ+1 of (Q+ 1)-th roots of unity in FQ2 . Henceforth we assume
that gcd(n+k(Q+1), Q−1) = 1, or equivalently gcd(n+2k,Q−1) = 1;
note that this implies n is odd if Q is odd, so that (−1)n = −1 in FQ.

We begin by showing that h(x) has no roots in µQ+1. For α ∈ µQ+1,
if h(α) = 0 then one easily verifies that α 6= γQβ so that δ := (γα −
β)/(α − γQβ) satisfies δn = γ, and thus in particular δ /∈ µQ+1. But
we compute

δQ =
γQα−1 − β−1

α−1 − γβ−1
=
γQβ − α
β − γα

= δ−1,

which is impossible since δ /∈ µQ+1. Hence h(x) has no roots in µQ+1,
so h(µQ+1) ⊆ F∗

Q2 , whence g(µQ+1) ⊆ µQ+1. Thus, g permutes µQ+1 if
and only if g is injective on µQ+1.

Next, for α ∈ µQ+1 we compute

h(α)Q = (γQα−1−β−1)n−γQ(α−1−γβ−1)n =
(γQβ − α)n − γQ(β − γα)n

(βα)n
,

so that

g(α) = αr−nβ−n (γQβ − α)n − γQ(β − γα)n

(γα− β)n − γ(α− γQβ)n
.

Thus g is injective on µQ+1 if and only if

G(x) := β
(γQβ − x)n − γQ(β − γx)n

(γx− β)n − γ(x− γQβ)n

is injective on µQ+1. For `(x) := (x− γQβ)/(γx− β), we have

G = `−1 ◦ xn ◦ `,

so G is injective on µQ+1 if and only if xn is injective on `(µQ+1).
Since β ∈ µQ+1 we have β = −1/εQ−1 for some ε ∈ F∗

Q2 , so that

`(x) = (x + γQ/εQ−1)/(γx + 1/εQ−1) = (εQx + γQε)/(γεQx + ε). By
Lemma 2.1 we have `(µQ+1) = µQ+1, so xn is injective on `(µQ+1) if
and only if gcd(n,Q+ 1) = 1. This concludes the proof. �
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3. Proof of Theorem 1.2

In this section we prove Theorem 1.2. Throughout this section, Q
is a prime power,and µd denotes the set of d-th roots of unity in FQ.
We begin by determining the bijections µQ+1 → FQ ∪ {∞} which are
induced by degree-one rational functions.

Lemma 3.1. Let Q be a prime power, and let ` ∈ FQ(x) be a degree-one
rational function. Then `(x) induces a bijection from µQ+1 to FQ∪{∞}
if and only if `(x) = (ρx+ ρQ)/(εx+ εQ) for some ρ, ε ∈ F∗

Q2 such that

ρQ−1 6= εQ−1.

Proof. If ` maps µQ+1 into FQ ∪ {∞} then ` maps at least Q + 1 ≥ 3
elements of FQ2 into FQ2 ∪ {∞}, so ` ∈ FQ2(x). Thus we may write
` = (αx+β)/(γx+δ) where α, β, γ, δ ∈ FQ2 satisfy αδ 6= βγ. Moreover,
we may assume that `−1(∞) is in µQ+1, so that γ 6= 0 and δ/γ ∈ µQ+1.
Then ` induces a bijection from µQ+1 to FQ ∪ {∞} if and only if the
numerator of `(x)Q− `(x) is divisible by h(x) := (xQ+1− 1)/(x+ δ/γ).
The product of this numerator with (γx+ δ) is

(αQxQ + βQ)(γx+ δ)− (γQxQ + δQ)(αx+ β)

= (αQγ − γQα)xQ+1 + (αQδ − γQβ)xQ + (βQγ − δQα)x+ (βQδ − δQβ),

which is congruent mod xQ+1 − 1 to

g(x) := (αQδ − γQβ)xQ + (βQγ − δQα)x+ (αQγ − γQα+ βQδ − δQβ).

Thus g(x) is divisible by h(x) if and only if g(x) is a constant multiple
of h(x). Since

h(x) =
xQ+1 − (−δ/γ)Q+1

x+ δ/γ
=

Q∑
i=0

xi(−δ/γ)Q−i,

we see that h(x) has a term of degree Q − 1, but if Q > 2 then g(x)
has no such term. Thus if Q > 2 then g(x) is divisible by h(x) if and
only if g(x) is the zero polynomial, or equivalently

αQδ = γQβ and αQγ + βQδ ∈ FQ.

Since δ/γ ∈ µQ+1, the second condition follows from the first, as αQγ+
βQδ = γQ+1β/δ + βQδ = δQβ + βQδ is in FQ. If these conditions hold
then αδ − βγ = αδ − αQδ/γQ−1 is nonzero precisely when α/γ /∈ FQ.
Writing δ/γ = εQ−1 with ε ∈ F∗

Q2 , the condition `(µQ+1) = FQ ∪ {∞}
therefore asserts (ifQ > 2) that `(x) = (αx+(α/γ)Qδ)/(γx+δ) = (αx+
εQ−1αQ/γQ−1)/(γx+γεQ−1) or equivalently `(x) = (ρx+ρQ)/(εx+ εQ)
where ρ = αε/γ, in which case α/γ /∈ FQ asserts that ρ/ε /∈ FQ. This
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yields the desired conclusion when Q > 2, and it is easy to check that
the same conclusion holds when Q = 2. �

Remark 3.2. A geometric explanation for the “if” implication of
Lemma 3.1 is given in [5], based on analyzing singular cubic curves
via [10, Prop. III.2.5].

We now prove Theorem 1.2.

Proof of Theorem 1.2. Write h(x) := (δx−βδQ)n− δ(x−β)n and r :=
n + k(Q + 1). By Lemma 2.2, f(x) = xrh(xQ−1) permutes FQ2 if and
only if gcd(n + k(Q + 1), Q− 1) = 1 and g(x) := xrh(x)Q−1 permutes
µQ+1. Henceforth we assume that gcd(n + k(Q + 1), Q − 1) = 1, or
equivalently gcd(n + 2k,Q− 1) = 1; note that this implies n is odd if
Q is odd, so that (−1)n = −1 in FQ.

We begin by showing that h(x) has no roots in µQ+1. Our hypothesis
δ /∈ FQ implies that h(β) = (δβ − βδQ)n = βn(δ − δQ)n 6= 0. For
α ∈ µQ+1 \ {β}, if h(α) = 0 then θ := (δα − βδQ)/(α − β) satisfies
θn = δ, so in particular θ /∈ FQ. But we compute

θQ =
δQα−1 − β−1δ

α−1 − β−1
=
δQβ − αδ
β − α

= θ,

which is a contradiction. Hence h(x) has no roots in µQ+1, so h(µQ+1) ⊆
F∗

Q2 , whence g(µQ+1) ⊆ µQ+1. Thus, g permutes µQ+1 if and only if g
is injective on µQ+1.

Next, for α ∈ µQ+1 we compute

h(α)Q = (δQα−1−β−1δ)n−δQ(α−1−β−1)n =
(δQβ − αδ)n − δQ(β − α)n

(αβ)n
,

so that

g(α) = αr−nβ−n (δQβ − αδ)n − δQ(β − α)n

(δα− βδQ)n − δ(α− β)n
.

Since r − n = k(Q + 1) and αQ+1 = 1, it follows that g is injective on
µQ+1 if and only if

G(x) := −β (δQβ − xδ)n − δQ(β − x)n

(δx− βδQ)n − δ(x− β)n

is injective on µQ+1. For `(x) := (δx− βδQ)/(x− β), we have

G = `−1 ◦ xn ◦ `.
so G is injective on µQ+1 if and only if xn is injective on `(µQ+1).
Writing −β = εQ−1 with ε ∈ F∗

Q2 , we see that `(x) = (δεx+(δε)Q)/(εx+

εQ), so by Lemma 3.1 we have `(µQ+1) = FQ ∪ {∞}. Thus xn is
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injective on `(µQ+1) if and only if gcd(n,Q − 1) = 1, which concludes
the proof. �

4. Proofs of Corollaries 1.3 and 1.4

In this section we prove Corollaries 1.3 and 1.4.

Proof of Corollary 1.3. If Q ≡ 0 (mod 3) then g(1) = 0 = g(0) so
g(x) does not permute FQ2 . If Q ≡ 1 (mod 3) then put n = 3 and
β = 1, and let γ be a primitive cube root of unity in FQ. In this
case, Theorem 1.1 says that (γ − 1)g(x) permutes FQ2 if and only if
gcd(3 + 2k,Q − 1) = 1. Finally, if Q ≡ 2 (mod 3) then put n = 3
and β = δ, where δ is a primitive cube root of unity in FQ2 . In this
case, Theorem 1.2 says that (δ − 1)g(x) permutes FQ2 if and only if
gcd(3 + 2k,Q− 1) = 1. �

Proof of Corollary 1.4. Items (2) and (3) follow at once from the cases
k = 1 and k = 0 of Corollary 1.3. The case k = Q− 3 of Corollary 1.3
asserts that g(x) := xQ2−2Q + 3xQ2−Q−1 − xQ2+Q−3 is a permutation
polynomial over FQ2 if and only if gcd(2Q − 3, Q − 1) = 1, which

always holds. Thus g(xQ2−2) is a permutation polynomial over FQ2 , as

is the reduction of g(xQ2−2) mod xQ2 − x. Since this reduction equals

x2Q−1 + 3xQ − xQ2−Q+1, item (1) of Corollary 1.4 follows. �

5. The main result of [11]

In this section we give a simple proof of a generalization of [11,
Thm. 1]. Our proof is completely different from the one in [11]. Once
again, µQ+1 denotes the set of (Q+ 1)-th roots of unity in FQ.

Theorem 5.1. Let Q be a prime power, let r be a positive integer,
and let β be a (Q + 1)-th root of unity in FQ2. Let h(x) ∈ FQ2 [x] be a
polynomial of degree d such that h(0) 6= 0 and(

xd · h(1/x)
)Q

= β · h(xQ).

Then f(x) := xrh(xQ−1) permutes FQ2 if and only if all of the following
hold:

(1) gcd(r,Q− 1) = 1
(2) gcd(r − d,Q+ 1) = 1
(3) h(x) has no roots in µQ+1.

Remark 5.2. The polynomials h(x) satisfying the hypotheses of Theo-
rem 5.1 can be described explicitly in terms of their coefficients. They
are h(x) =

∑d
i=0 aix

i where a0 6= 0 and, for 0 ≤ i ≤ d/2, we have
ai ∈ FQ2 and ad−i = (βai)

Q.
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Proof of Theorem 5.1. By Lemma 2.2, we see that f(x) permutes FQ2

if and only if gcd(r,Q− 1) = 1 and g(x) := xrh(x)Q−1 permutes µQ+1.
We may assume that h(x) has no roots in µQ+1, since otherwise g
cannot permute µQ+1. Then any α ∈ µQ+1 satisfies

g(α) = αrh(α)Q

h(α)
= αrh(α−Q)Q

h(α)
= αr−dβ,

so g permutes µQ+1 if and only if gcd(r − d,Q+ 1) = 1. �

We now illustrate Theorem 5.1 in the special case h(x) = xd + β−1.

Corollary 5.3. Let Q be a prime power, let r and d be positive integers,
and let β be a (Q+ 1)-th root of unity in FQ2. Then xr+d(Q−1) + β−1xr

permutes FQ2 if and only if all of the following hold:

(1) gcd(r,Q− 1) = 1
(2) gcd(r − d,Q+ 1) = 1
(3) (−β)(Q+1)/ gcd(Q+1,d) 6= 1.

Proof. Since h(x) := xd + β−1 satisfies the hypotheses of Theorem 5.1,
the Corollary will follow from Theorem 5.1 once we show that the final
conclusion in the Corollary is equivalent to the final conclusion in the
Theorem. For this, note that h(x) has roots in µQ+1 if and only if −β−1

is in (µQ+1)
d, which equals µ(Q+1)/ gcd(Q+1,d). �

In case Q is even, Corollary 5.3 is a refinement of [11, Thm. 1].
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