PERMUTATION POLYNOMIALS ON F, INDUCED
FROM REDEI FUNCTION BIJECTIONS ON
SUBGROUPS OF F

MICHAEL E. ZIEVE

ABSTRACT. We construct classes of permutation polynomials over
Fg2 by exhibiting classes of low-degree rational functions over Fe
which induce bijections on the set of (@ 4 1)-th roots of unity.
As a consequence, we prove two conjectures about permutation
trinomials from a recent paper by Tu, Zeng, Hu and Li.

1. INTRODUCTION

A polynomial f(z) € F,[z] is called a permutation polynomial if the
function a — f(«) induces a permutation of F,. Since they were first
studied in the mid-19th century, one of the driving questions about
permutation polynomials has been to construct examples having es-
pecially simple shapes. This requires polynomials which are nice in
two ways: they have a simple algebraic form, and also they induce a
function on [F, which has the nice combinatorial property of being a
permutation. The vast majority of known examples of “nice” permu-
tation polynomials have the form z"h(z?) where h € F [z] and d > 1
is a divisor of ¢ — 1. The reason this form is special is that a general
result (see Lemma 2.2) asserts that z"h(z?) permutes F, if and only if
ged(r,d) = 1 and 2" h(x)? permutes the set of (¢—1)/d-th roots of unity
in [F;. This leads to the question of producing collections of polynomials
which permute the set i, of k-th roots of unity in F, for certain values
of k. There are two simple types of polynomials which permute py: for
arbitrary k one can use polynomials of the form Sz" + (2% — 1) - g(x)
where (€ py and ged(n, k) = 1, and if k = Q — 1 where ¢ = Q" then
one can use h(z) — h(0) where h(z) € Fg[z] permutes Fg. These two
simple types of permutations of j; account for essentially all published
examples of permutation polynomials over finite fields. Indeed, it is
difficult to identify any other polynomials having “nice” form which
permute pg. In this paper we present classes of permutation polyno-
mials obtained from a new variant of this construction, in which

® /. is not the multiplicative group of a subfield of I,
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e the induced function on gy is most naturally presented as a
rational function rather than a polynomial.

It is perhaps surprising that there are permutations of p; which can
be represented by a rational function having an especially simple form,
but which cannot be represented by an especially simple polynomial.
We obtain the following classes of permutation polynomials.

Theorem 1.1. Let Q) be a prime power, let n > 0 and k > 0 be
integers, and let 3,y € Fgz satisfy B9 =1 and 9T # 1. Then

(&) 1= KO (32971 - )" (29— 526)")
permutes Fge if and only if ged(n+2k, Q—1) = 1 and ged(n, Q+1) = 1.

Theorem 1.2. Let () be a prime power, let n, k be integers with n > 0
and k >0, and let 3,5 € Fg2 satisfy B9 =1 and § ¢ Fg. Then

f(l’) — xn+k(Q+1) . ((5(%@*1 o ﬁ(SQ)n N 5($Q71 . ﬁ)n)
permutes Fge if and only if ged(n(n + 2k),Q — 1) = 1.

The following corollary illustrates these results in the special case
n = 3, for certain values of 3,~, 0.

Corollary 1.3. Let QQ be a prime power, and let k be a nonnegative
integer. The polynomial g(x) = aF@FTVF3 4 3gHQFDFR+2 _ gh(Q+1)+3Q
permutes Fge if and only if ged(2k +3,Q —1) =1 and 31 Q.

Specializing even further to the values k =Q — 3, k=1, and £ =0
yields the following consequence.

Corollary 1.4. Let Q) be a prime power with 31 Q. Then

(1) 22971 4+ 329 — Q=@+ 45 4 permutation polynomial over Fge.

(2) 29 4322013 — 1@+ s g permutation polynomial over Fg: if
and only if Q@ %1 (mod 5).

(3) 2® + 329*2 — 239 is a permutation polynomial over Fqe if and
only if @ =2 (mod 3).

In case Q = 221 the first two parts of this corollary were conjec-
tured by Tu, Zeng, Hu and Li [11]. Conversely, these conjectures were
the impetus which led to the present paper.

The proofs of our results rely on exhibiting certain permutations of
the set of ((Q+1)-th roots of unity in Fge2. The permutations we exhibit
are represented by Rédei functions, namely, rational functions over a
field K which have the form pox™o ™! where p(x) is a degree-one ra-
tional function having coefficients in an extension of K, and p~! is the
rational function such that p=1(u(z)) = x. For further results about
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such functions, see for instance [2, &, 9] and [1, Ch. 5]. Although per-
mutation polynomials on subgroups of F; have also been studied (1],
the present paper is the first to examine Rédei functions as permuta-
tions of such subgroups, and especially the first to notice that Rédei
functions can permute subgroups of F; other than the multiplicative
groups of subfields of F,.

We prove Theorems 1.1 and 1.2 in the next two sections, and deduce
the corollaries in Section 4. We conclude this paper by using our ap-
proach to give a very simple proof of a substantial generalization of the
main result of [11].

2. PROOF OF THEOREM 1.1

In this section we prove Theorem 1.1. We begin by describing the
permutations of a group of roots of unity which are induced by degree-
one rational functions.

Lemma 2.1. Let K be a field of characteristic p > 0, let d > 2 satisfy
ptd, and let pg be the set of d-th roots of unity in K. For any degree-
one ((x) € K(x), we have (pq) = pq if and only if either
e ((x) equals either px or p/x with p € ug, or
e p>0andd=CQ+1 for some power () of p, where in addition
U(x) = (%2 + p)/(p%z + €) with €, p € Fp, and 9T # ptt,

Proof. Write ((z) = (ax + )/(yx + 0) where a, 3,7,0 € K satisfy
A = ad — [y # 0. We may assume that o, 3,7, are in the subfield
Ky of K which is generated by pg, since if ¢(uq) = pq then £(z) is
a degree-one rational function which maps at least three elements of
Ky into Ky, whence f(z) € Ky(x). Since deg(¢) = 1, the condition
U(pq) = pq is equivalent to €(pg) C pg, and hence to the assertion that
(ap + B)E = (yp+ 0)? for every p € pg. Thus £(ug) = g if and only if
the polynomial f(z) := (ax+5)4— (yx+0)%— (a?—~?)(2¢—1) vanishes
on pg. Since deg(f) < d, this condition asserts that f(z) is identically
zero, or equivalently that (ax + 3)¢ — (yz + §)? = (a? — %) (z¢ — 1).
Hence ¢(pq) = pg if and only if both of the following conditions hold:

(1) 5~ 5% =7 o

(2) for each 0 < i < d such that p{ (?), we have o397 = 44§97,

In particular, condition (2) with i = 1 asserts that o341 = v§¢1, so
since ad # [y we see that o = 0 if and only if 6 = 0, and likewise
G = 0if and only if v = 0. If either @« = d = 0or § =~ =0
then ((x) = pz’ with p € K* and j € {1,—1}, and plainly such a
function ¢(z) permutes pq if and only if p € py. Henceforth assume
that «, 3,v,9 are nonzero. The conclusion of condition (2) can now
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be reformulated as (ad/(37))" = (6/8)¢. If this conclusion holds for
each of two consecutive integers i, then it follows that ad/(Gv) = 1,
contrary to our hypothesis that A # 0. Hence if ¢(uq) = pq then for
any 0 < i < d—1 we have either p | (‘Z) orp | (z‘il)? so that p > 0 and by
Lucas’s theorem on binomial coefficients mod p [0, 3] we conclude that
d = @) + 1 for some power () of p. Henceforth assume that p > 0 and
d = @ + 1 for some power ) of p, so that Ky = Fg2. The hypotheses
of condition (2) are only satisfied by i = 1 and i = @, so condition (2)
asserts that a89 = 469 and a?p = +?§. Upon solving for v via the
first equation and substituting the resulting value into both the second
equation and condition (1), we find that ¢(ug) = pg if and only if all of
the following hold:

o v =a(B/0)°
e a%3 = aQ(ﬁ/é)QQ(S
o FOFT _ §RH1 = QF1(3/§)@+RQ — @+,

The second condition is automatically true, and the third condition
asserts that (69+1 —a@*t1). ((3/8)9L — 1) = 0, or equivalently that at
least one of /6 or 3/0 is in pgi1. When the above conditions hold,
we have A = ad — Ba(B/6)? = a(§ — B9+1/§9), so the hypothesis
A # 0 asserts that 5/6 ¢ pugi+1. Hence the above conditions hold if
and only if a/d € pgyy with v = «(3/6)? and 3/§ & uger. Writ-
ing a/6 = €97 with ¢ € Fp:, these conditions assert that ((z) =
(6697w + ) /(0€971(B/0) %+ 0) = (e%x + Be/0) /((Be/6)%w + €) where
(Be/0)@Ht #£ €9+ as desired. O

The next lemma was first proved in [12].

Lemma 2.2. Pick h € F[x] and integers d,r > 0 such that d | (¢—1).
Then f(z) = a"h(x'9"D/?) permutes B, if and only if both

(1) ged(r, (g~ 1)/d) =1 and

(2) 2"h(z)@ D/ permutes the set of d-th roots of unity in .

This lemma has been used in several investigations of permutation
polynomials, for instance see [7, 12, 13, 14, 15]. Since the proof of
Lemma 2.2 is short, we include it here for the reader’s convenience.

Proof. Write s := (¢ — 1)/d. For ( € ps, we have f(Cx) = (" f(x).
Thus, if f permutes F, then ged(r,s) = 1. Conversely, if ged(r,s) =1
then the values of f on [, consist of all the s-th roots of the values of

f(a:,)s — xT‘Sh(l,S)S'
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But the values of f(z)® on F, consist of f(0)° = 0 and the values of
g(x) := a"h(x)® on (F;)*. Thus, f permutes F, if and only if g permutes
(F7)?, which equals the set of d-th roots of unity in F}. O

We now prove Theorem 1.1.

Proof of Theorem 1.1. Write h(z) := (yz — 8)" — y(x — v2B)" and
r:=n+k(Q+1). By Lemma 2.2, f(x) = 2"h(2%"!) permutes Fgq if
and only if ged(n+k(Q+1),Q—1) = 1 and g(z) := 2"h(x)?~! permutes
the set pig41 of (@ + 1)-th roots of unity in Fg2. Henceforth we assume
that ged(n+k(Q+1),Q—1) = 1, or equivalently ged(n+2k, Q—1) = 1;
note that this implies n is odd if @ is odd, so that (—1)" = —1 in Fg.

We begin by showing that h(z) has no roots in pg11. For o € pgya,
if h(a) = 0 then one easily verifies that a # 793 so that § := (ya —
B)/(a — v903) satisfies 6" = =, and thus in particular § ¢ ug.;. But
we compute

et =B _%B-a o,
a1 -1 o )
at =98 B —ra
which is impossible since § ¢ pg41. Hence h(z) has no roots in pg41,

80 h(pg+1) € Fpye, whence g(pg+1) € pg+1- Thus, g permutes pgy1 if
and only if g is injective on pgy1.
Next, for o € pgy1 we compute

(798 — a)" —9(f —ya)"
(Bar)r ’

h()? = (% a7 R (a s ) =

so that

Thus g is injective on pg4 if and only if

(V98 — )" =998 — )"

(yz = B)" —(z —2°6)"

is injective on pgyi. For £(z) := (x —y9B)/(yx — (), we have
G=("'oz"ol,

G(z):=p

so G is injective on pg4q if and only if 2™ is injective on ¢(ug+1).
Since 3 € ugy1 we have 8 = —1/e97! for some € € Ffz2, so that
l(z) = (x+~9/e9 ) /(yx +1/e97Y) = (92 + 1%€)/(ve%r + €). By
Lemma 2.1 we have {(pg41) = pg+1, so ™ is injective on £(pg4q) if
and only if ged(n, @ + 1) = 1. This concludes the proof.
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3. PROOF OF THEOREM 1.2

In this section we prove Theorem 1.2. Throughout this section, @)
is a prime power,and g denotes the set of d-th roots of unity in FQ.
We begin by determining the bijections ug+1 — Fg U {oo} which are
induced by degree-one rational functions.

Lemma 3.1. Let () be a prime power, and let £ € FQ(x) be a degree-one
rational function. Then {(x) induces a bijection from pg+y to FoU{oo}
if and only if {(z) = (px + p9)/(ex + €?) for some p,e € Fo: such that
pOt £ €97

Proof. If £ maps pig+1 into Fg U {oo} then ¢ maps at least Q@ +1 > 3
elements of Fgz into Fgz U {00}, so ¢ € Fg2(x). Thus we may write
(= (ax+f)/(yr+3) where o, 3,7, 9 € Fee satisty ad # By. Moreover,
we may assume that £~ (c0) is in pgy1, so that v # 0 and §/v € g1
Then ¢ induces a bijection from pg41 to Fg U {oo} if and only if the
numerator of £(z)? — {(z) is divisible by h(z) := (29Tt —1)/(x +3/7).
The product of this numerator with (yx + ¢) is

(a%2? + 89 (yo +0) — (7929 + 09)(az + )

= (a% = 7%a)z%! + (a9 — 79B)29 + (B9 — §%)x + (896 — 690),
which is congruent mod z®*! — 1 to
g(z) = (a%6 — 19B)2? + (6% — 6%z + (a% — 1 %a + 9 — 699).
Thus g(z) is divisible by h(z) if and only if g(x) is a constant multiple
of h(x). Since

19— (=59 - -
h = = ¢ —5 Qi
0= g = Lo
we see that h(x) has a term of degree @ — 1, but if ) > 2 then g(z)
has no such term. Thus if @ > 2 then g(z) is divisible by h(x) if and
only if g(x) is the zero polynomial, or equivalently

a5 =793 and a%y+ B9 € F.

Since 6/v € pig+1, the second condition follows from the first, as a9 +
B9 =~9T13/5 + 395 = 698 + $96 is in Fg. If these conditions hold
then ad — By = ad — a?§/y9~1 is nonzero precisely when a/y ¢ Fo,.
Writing §/v = €971 with € € Fy.. the condition {(ug+1) = Fo U {oo}
therefore asserts (if Q > 2) that {(z) = (ax+(a/7)?06)/(yr+5) = (ax+
€?71a@ /4971 /(yo + 7€) or equivalently £(x) = (px+ p?)/(ex + €9)
where p = ae/~, in which case a/y ¢ F( asserts that p/e ¢ Fg. This
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yields the desired conclusion when () > 2, and it is easy to check that
the same conclusion holds when ) = 2. O

Remark 3.2. A geometric explanation for the “if” implication of
Lemma 3.1 is given in [5], based on analyzing singular cubic curves
via [10, Prop. II1.2.5].

We now prove Theorem 1.2.

Proof of Theorem 1.2. Write h(z) := (dz — 869)" —6(xz — )" and r :=
n+k(Q+1). By Lemma 2.2, f(z) = 2"h(z?"!) permutes Fge if and
only if ged(n + k(Q +1),Q — 1) = 1 and g(z) := 2"h(x)?~! permutes
po+1. Henceforth we assume that ged(n + k(Q +1),Q — 1) = 1, or
equivalently ged(n + 2k, @ — 1) = 1; note that this implies n is odd if
@ is odd, so that (—1)" = —1 in Fy,.

We begin by showing that h(x) has no roots in pig11. Our hypothesis
§ ¢ Fg implies that h(8) = (63 — 309)" = B"(6 — §9)™ # 0. For
a € pge1 \ {8}, if h(a) = 0 then 6 := (da — 39) /(o — 3) satisfies
6™ = 4§, so in particular 6 ¢ Fg. But we compute

§Ra~t — 371§ B 9B —ad B
al—pt  B-—a
which is a contradiction. Hence h(x) has no roots in pg41, so h(ug+1) C
F2, whence g(ug+1) C pig+1- Thus, g permutes g4 if and only if g
is injective on fiQ41.
Next, for o € pg41 we compute

QQ_

0,

(698 — ad)" — 69(8 — a)"
()" ’

h(a)? = (% —578)" a7 =

so that o 0
_ _r—n —n(5 ﬁ_a(s)n_é (ﬁ_a)n
) = G 3y~ a(a— )
Since r —n = k(Q + 1) and a9*! = 1, it follows that g is injective on
tg+1 if and only if

(698 — x6)" — 098 — )"

(0x — BO@)" = 6(z — B)"

is injective on pgyy. For £(x) := (dz — B69)/(z — (), we have
G=("loz"ol.

so G is injective on pg4q if and only if 2™ is injective on ¢(ug+1).

Writing —8 = ¢¥~! with e € 2, we see that {(z) = (Sex+(6€)9)/(ex+

€?), so by Lemma 3.1 we have {(ugi1) = Fg U {oo}. Thus z" is

G(z) = —p
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injective on ¢(pg11) if and only if ged(n, @ — 1) = 1, which concludes
the proof. O

4. PROOFS OF COROLLARIES 1.3 AND 1.4

In this section we prove Corollaries 1.3 and 1.4.

Proof of Corollary 1.3. If @ = 0 (mod 3) then g(1) = 0 = ¢(0) so
g(z) does not permute Fpz. If Q = 1 (mod 3) then put n = 3 and
B = 1, and let v be a primitive cube root of unity in Fg. In this
case, Theorem 1.1 says that (y — 1)g(z) permutes Fg2 if and only if
ged(3 + 2k,QQ — 1) = 1. Finally, if @ = 2 (mod 3) then put n = 3
and B = 0, where ¢ is a primitive cube root of unity in Fg2. In this
case, Theorem 1.2 says that (§ — 1)g(x) permutes F2 if and only if
ged(34+2k,Q —1) = 1. O
Proof of Corollary 1.4. Items (2) and (3) follow at once from the cases
k=1 and k = 0 of Corollary 1.3. The case k = () — 3 of Corollary 1.3
asserts that g(z) := 2@ 720 4 32Q°-Q-1 _ ;@°+Q=3 i 3 permutation
polynomial over Fg: if and only if ged(2Q) — 3,Q — 1) = 1, which
always holds. Thus g(:cQz_Q) is a permutation polynomial over Fgq, as

is the reduction of g(xQ2_2) mod z@° — . Since this reduction equals
22@1 4 32@ — @ -Q+1 jtem (1) of Corollary 1.4 follows. O

5. THE MAIN RESULT OF [l1]

In this section we give a simple proof of a generalization of [I1,
Thm. 1]. Our proof is completely different from the one in [I1]. Once
again, f1g4+1 denotes the set of () + 1)-th roots of unity in Fy,.

Theorem 5.1. Let () be a prime power, let r be a positive integer,
and let B be a (Q + 1)-th root of unity in Fg2. Let h(x) € Fge(x] be a
polynomial of degree d such that h(0) # 0 and

(z*- h(1/2)) = 8- h(z?).

Then f(z) := 2"h(z9~1) permutes Fq2 if and only if all of the following
hold:

(1) ged(r,@ —1) =1

(2) ged(r ~d.Q+1) = 1

(3) h(z) has no roots in g4

Remark 5.2. The polynomials h(x) satisfying the hypotheses of Theo-
rem 5.1 can be described explicitly in terms of their coefficients. They
are h(z) = .0 a;x’ where ag # 0 and, for 0 < i < d/2, we have
a; € Fge and a4-; = (Ba;)?.
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Proof of Theorem 5.1. By Lemma 2.2, we see that f(z) permutes Fge
if and only if ged(r, @ — 1) = 1 and g(z) := 2"h(z)?~! permutes pg; 1.
We may assume that h(z) has no roots in g1, since otherwise g
cannot permute pg11. Then any o € pg; satisfies

rh(a)Q rh(aiQ)Q r—d

so g permutes pig4; if and only if ged(r —d,Q +1) = 1. O

We now illustrate Theorem 5.1 in the special case h(x) = 2% + 371

Corollary 5.3. Let Q be a prime power, let r and d be positive integers,
and let 3 be a (Q +1)-th root of unity in Fgz. Then x"T4Q~1 4 g=lar
permutes Fg2 if and only if all of the following hold:

(1) ng<T7Q - 1) =1

(2) ged(r—d,Q+1)=1

(3) (_5)(Q+1)/gcd(Q+1,d) £1.

Proof. Since h(x) := 2¢+ 37! satisfies the hypotheses of Theorem 5.1,
the Corollary will follow from Theorem 5.1 once we show that the final
conclusion in the Corollary is equivalent to the final conclusion in the
Theorem. For this, note that h(z) has roots in ug1 if and only if —5~*

is in (pgy1)?, which equals H(Q+1)/ ged(Q+1,d) - O
In case @ is even, Corollary 5.3 is a refinement of [I |, Thm. 1].
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