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Abstract. Several recent papers have given criteria for certain
polynomials to permute Fq, in terms of the periods of certain gen-
eralized Lucas sequences. We show that these results follow from
a more general criterion which does not involve such sequences.

1. Introduction

A polynomial over a finite field is called a permutation polynomial if
it permutes the elements of the field. These polynomials first arose in
work of Betti [5], Mathieu [25] and Hermite [20] as a way to represent
permutations. A general theory was developed by Hermite [20] and
Dickson [13], with many subsequent developments by Carlitz and oth-
ers. The study of permutation polynomials has intensified in the past
few decades, due both to various applications (e.g., [8, 11, 14, 30]) and
to an increasing appreciation of the depth of the subtleties inherent to
permutation polynomials themselves (for instance, work on permuta-
tion polynomials led to a bound on the automorphism group of a curve
with ordinary Jacobian [19]).

The interesting aspect of permutation polynomials is the interplay
between two different ways of representing an object: combinatorially,
as a mapping permuting a set, and algebraically, as a polynomial. This
is exemplified by one of the first results in the subject, namely that
there is no permutation polynomial over Fq of degree q−1 if q > 2 [20].
Much recent work has focused on low-degree permutation polynomials,
as these have quite remarkable properties: for instance, a polynomial of
degree at most q1/4 which permutes Fq will automatically permute Fqn
for infinitely many n. The combined efforts of several mathematicians
have led to a handful of families of such polynomials, and to an avenue
towards proving that there are no others [13, 12, 9, 15, 26, 10, 23, 16,
17, 18].
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A different line of research focuses not on the degree of a permutation
polynomial but instead on the number of terms. The simplest class of
nonconstant polynomials are the monomials xn with n > 0, and one
easily checks that xn permutes Fq if and only if n is coprime to q − 1.
However, for binomials the situation becomes much more mysterious.
Despite the attention of numerous authors since the 1850’s (cf., e.g.,
[5, 25, 20, 6, 7, 27, 31, 29, 32, 21, 34, 3, 24]), the known results seem
far from telling the full story of permutation binomials. This brings us
to the present paper. The recent papers [34, 2, 3, 1] gave criteria for
certain binomials to permute Fq, in terms of the period of an associated
generalized Lucas sequence. Many of these results involved binomials
of the form xu +xr where gcd(u− r, q− 1) ≥ (q− 1)/7; in our previous
paper [35] we showed that these results can be derived more simply
(and more generally) without using such sequences. In this paper we
consider the remaining results from [34, 2, 3, 1].

In [3], Akbary and Wang considered binomials of the form f(x) =
xu + xr with u > r > 0. They gave sufficient conditions for f to
permute Fq in terms of the period of the sequence (an mod p), where
p is the characteristic of Fq and, with d := (q − 1)/ gcd(q − 1, u− r),

an :=

d−1
2∑
t=1

(
2 cos

π(2t− 1)

d

)n
.

(One can show that every an is an integer.)
As an application, they gave necessary and sufficient conditions for

xu + xr to permute Fq in the following two special cases:

(1) p ≡ 1 (mod d) and d | logp q.
(2) p ≡ −1 (mod d).

The proofs in [3] relied on facts about the coefficients of Chebychev
polynomials, Hermite’s criterion, properties of recursive sequences, la-
cunary sums of binomial coefficients, and various unpublished results
about factorizations of Chebychev polynomials, among other things. In
this paper we give quick proofs which avoid these ingredients and yield
more general results. Our treatment does not involve the sequence
an: instead, we show that when the Akbary–Wang condition on an is
satisfied, the hypotheses of our more general result are also satisfied.

We will prove the following sufficient condition for permutation bi-
nomials, in which (for any d > 0) µd denotes the set of dth roots of
unity in the algebraic closure of Fq:

Theorem 1.1. Pick u > r > 0 and a ∈ F∗q. Write s := gcd(u−r, q−1)
and d := (q − 1)/s. Suppose that (η + a/η) ∈ µs for every η ∈ µ2d.
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Then xu + axr permutes Fq if and only if −a /∈ µd, gcd(r, s) = 1 and
gcd(2d, u+ r) ≤ 2.

We emphasize that, unlike [3], we allow binomials having non-monic
terms. The condition in [3] looks quite different from that in Theo-
rem 1.1, since the former requires a constraint on the period of (an mod p);
however, in Section 3 we will show that the hypotheses of Theorem 1.1
are satisfied whenever the hypotheses of [3, Thm. 1.1] are satisfied.

In [1], the two families of permutation binomials from [3] are general-
ized to families of permutation polynomials of the form xr(1+xs+x2s+
· · ·+ xks), with similar proofs to those in [3]. We now exhibit two gen-
eral families of permutation polynomials which include the polynomials
from [3] and [1] as special cases.

Theorem 1.2. Let d, r > 0 satisfy d | (q − 1). Suppose that q = qm0
where q0 ≡ 1 (mod d) and d | m, and pick h ∈ Fq0 [x]. Then f(x) :=
xrh(x(q−1)/d) permutes Fq if and only if gcd(r, (q−1)/d) = 1 and h has
no roots in µd.

This is equivalent to a result of Laigle-Chapuy [22], who has a dif-
ferent proof. The first class of permutation binomials from [3] is the
special case that q0 = p and h = xe + 1, where gcd(e, d) = 1.

In our next result we use the notation hk(x) := xk−1 +xk−2 + · · ·+1.

Theorem 1.3. Pick integers t ≥ 0 and r, v, k, ` > 0, and put s :=
gcd(q − 1, v), d := (q − 1)/s, and d0 := d/ gcd(d, ` − 1). Suppose that

q = qm0 , where m is even and q0 ≡ −1 (mod d). Pick ĥ ∈ Fq0 [x] and

let h := hk(x)tĥ(h`(x)d0). Then f := xrh(xv) permutes Fq if and only
if gcd(r, s) = 1, gcd(2r + (k − 1)tv, 2d) = 2 and h has no roots in µd.

The second class of permutation binomials from [3] is the special case
that q0 = p and h = h2.

Remark. Some of the above results appear in [4]. Specifically, a similar
proof of Theorem 1.2 is given as [4, Cor. 2.3], and a special case of
Theorem 1.3 is [4, Thm. 4.4]. These results were obtained indepen-
dently and simultaneously in December 2006. Q. Wang has informed
us that he obtained [4, Thm. 4.1] after reading a preliminary version
of the present paper. However, [4] does not contain the main result of
this paper, namely that recursive sequences are not needed for results
on permutation polynomials. The publication of the present paper was
delayed due to misunderstandings caused by the overlap with [4].

Notation: Throughout this paper, q is a power of the prime p, and
µd denotes the set of dth roots of unity in the algebraic closure of Fq.
Also, hk(x) := xk−1 + xk−2 + · · ·+ 1.
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2. Proofs

We begin with a simple lemma reducing the question of whether a
polynomial permutes Fq to the question of whether a related polynomial
permutes a particular subgroup of F∗q.

Lemma 2.1. Pick d, r > 0 with d | (q − 1), and let h ∈ Fq[x]. Then
f(x) := xrh(x(q−1)/d) permutes Fq if and only if both

(1) gcd(r, (q − 1)/d) = 1 and
(2) xrh(x)(q−1)/d permutes µd.

Proof. Write s := (q − 1)/d. For ζ ∈ µs, we have f(ζx) = ζrf(x).
Thus, if f permutes Fq then gcd(r, s) = 1. Conversely, if gcd(r, s) = 1
then the values of f on Fq consist of all the sth roots of the values of

f(x)s = xrsh(xs)s.

But the values of f(x)s on Fq consist of f(0)s = 0 and the values of
g(x) := xrh(x)s on (F∗q)

s. Thus, f permutes Fq if and only if g is
bijective on (F∗q)

s = µd. �

Remark. A version of this result is in [28, Thm. 2.3]. A different crite-
rion for f to permute Fq was given by Wan and Lidl [33, Thm. 1.2].

The difficulty in applying Lemma 2.1 is verifying condition (2). Here
is one situation where this is easy:

Corollary 2.2. Pick d, r, n > 0 with d | (q − 1), and let h ∈ Fq[x].
Suppose h(ζ)(q−1)/d = ζn for every ζ ∈ µd. Then f(x) := xrh(x(q−1)/d)
permutes Fq if and only if gcd(r + n, d) = gcd(r, (q − 1)/d) = 1.

Our next results give choices for the parameters satisfying the hy-
potheses of Corollary 2.2.

Proof of Theorem 1.2. We may assume gcd(r, (q − 1)/d) = 1, since
otherwise f would not permute Fq (by Lemma 2.1). Since q0 ≡ 1
(mod d), we have

qd0 − 1

q0 − 1
=

d−1∑
i=0

qi0 ≡ 0 (mod d).

Hence q0−1 divides (qd0−1)/d, which divides (q−1)/d. Since d | (q0−1),
it follows that d divides (q − 1)/d; so since gcd(r, (q − 1)/d) = 1 we
have gcd(r, q − 1) = 1.

For ζ ∈ µd we have ζ ∈ Fq0 , so h(ζ) ∈ Fq0 . Since f(0) = 0, if f
permutes Fq then h(ζ) 6= 0. Conversely, if h(ζ) 6= 0 then (since q0 − 1
divides (q− 1)/d) we have h(ζ)(q−1)/d = 1. Now the result follows from
Corollary 2.2 (with n = d). �
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Remark. Theorem 1.2 is a reformulation of a result from [22]. Note
that [22, Thm. 4.3] is false, a counterexample being P = x3 + x over
F3; to correct it one should remove the polynomials P .

We now exhibit some polynomials h for which we can determine
when h has roots in µd.

Corollary 2.3. Pick positive integers d, e, r, k, t with d | (q − 1) and
gcd(d, e) = 1. Suppose that q = qm0 where q0 ≡ 1 (mod d) and d | m.
Then f(x) := xrhk(x

e(q−1)/d)t permutes Fq if and only if gcd(k, pd) =
gcd(r, (q − 1)/d) = 1.

Remark. The case that q0 = p, k = 2, and t = 1 was treated in [3]. The
case that q0 = p, t = e = 1, and both q and d are odd was treated in
[1]. The results in both [3] and [1] involved the superfluous condition
gcd(2r + (k − 1)es, d) = 1.

Proof of Theorem 1.3. Our hypotheses imply the divisibility relations

q0 − 1 =
q2

0 − 1

q0 + 1

∣∣∣∣ q − 1

q0 + 1

∣∣∣∣ q − 1

d
= s.

We may assume h(xe) has no roots in µd, since otherwise Lemma 2.1
would imply that f does not permute Fq. Since gcd(d, e) = 1, this says

that h has no roots in µd. Hence ĥ(h`(x)d0) has no roots in µd. For
ζ ∈ µd \ µ1, the hypothesis d | (q0 + 1) implies that ζq0 = 1/ζ, so

h`(ζ)q0 =

(
ζ` − 1

ζ − 1

)q0
=
ζ−` − 1

ζ−1 − 1
=
h`(ζ)

ζ`−1
;

hence h`(ζ)d0q0 = h`(ζ)d0 , so h`(ζ)d0 ∈ Fq0 . Also h`(1) ∈ Fq0 . Thus, for

any ζ ∈ µd we have ĥ(h`(ζ
e)d0) ∈ F∗q0 . Since (q0 − 1) | s, we conclude

that h(ζe)s = hk(ζ
e)ts. As above, hk(ζ)t(q0−1) = 1/ζt(k−1), so h(ζe)s =

1/ζe(k−1)ts/(q0−1); hence the result follows from Corollary 2.2. �

Remark. There would be counterexamples to Theorem 1.3 if we did
not require m to be even; such examples would necessarily have d =
2. Also, Theorem 1.3 immediately generalizes to the case that h is
the product of several polynomials having the same shapes as the two
factors of h described in the theorem. Moreover, we may replace h by
any polynomial congruent to it modulo xd − 1.

Corollary 2.4. Pick positive integers t, d, e, r, k with d | (q − 1) and
gcd(d, e) = 1, and put s := (q − 1)/d. Suppose that q = qm0 where m is
even and q0 ≡ −1 (mod d). Then f(x) := xrhk(x

e(q−1)/d)t permutes Fq
if and only if gcd(r, s) = gcd(k, pd) = 1 and gcd(2r+(k−1)tes, 2d) = 2.
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Remark. The hypotheses of Corollary 2.4 are satisfied whenever d is
an odd prime divisor of q − 1 such that p has even order modulo d.
The case that d = 7, t = 1, and k = 2 was treated in [2], although the
result in [2] includes the superfluous condition 2s ≡ 1 (mod p). The
case that q0 = p, t = 1, and k = 2 was treated in [3]. The case that
q0 = p, t = e = 1, and both q and d are odd was treated in [1].

Now we prove a general sufficient criterion for permutation binomi-
als:

Theorem 2.5. Pick u > r > 0 and a ∈ F∗q. Write s := gcd(u−r, q−1)
and d := (q − 1)/s. Suppose that (η + a/η) ∈ µs for every η ∈ µ2d.
Then xu + axr permutes Fq if and only if −a /∈ µd, gcd(r, s) = 1 and
gcd(2d, u+ r) ≤ 2.

Proof. Write e := (u − r)/s, so that gcd(e, d) = 1. By Lemma 2.1,
f(x) := xu + axr permutes Fq if and only if gcd(r, s) = 1 and g(x) :=
xr(xe + a)s permutes µd. In particular, if xu + axr permutes Fq then
g has no roots in µd, or equivalently −a /∈ µd. Henceforth we assume
gcd(r, s) = 1 and −a /∈ µd, so f permutes Fq if and only if g is injective
on µd. This condition is equivalent to injectivity of g(x2) on µ2d/µ2.
But for η ∈ µ2d we have

g(η2) = η2r(η2e + a)s

= η2r+es

(
ηe +

a

ηe

)s
= η2r+es.

Finally, x2r+es is injective on µ2d/µ2 if and only if gcd(2r+ es, 2d) ≤ 2.
Since 2r + es = u+ r, this completes the proof. �

Theorem 2.5 can be generalized (with the same proof) to polynomials
with more terms:

Theorem 2.6. Pick r, e, d, t > 0 where d | (q − 1) and gcd(e, d) = 1.

Put h = xtĥ(xd) where ĥ ∈ Fq[x]. Pick a ∈ F∗q. Suppose that every

η ∈ µd gcd(2,d) satisfies both η + a/η ∈ µt(q−1)/d and ĥ((η2e + a)d) ∈
µ(q−1)/d. Then f(x) := xrh(xe(q−1)/d + a) permutes Fq if and only if
gcd(2r + et(q − 1)/d, d) = 1 and gcd(r, (q − 1)/d) = 1.

3. Permutation binomials and generalized Lucas

sequences

In this section we explain how our sufficient condition for permuta-
tion binomials (Theorem 2.5) implies the analogous condition from [3],
namely [3, Thm. 1.1]. We begin by stating the latter result.
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It is easy to show that if f(x) := xr + xu (with 0 < r < u) permutes
Fq then f(x) = xr(1 + xes), where

(∗) sd = q − 1, gcd(r, s) = gcd(e, d) = 1, d is odd, and r, e, s > 0.

Conversely, with p denoting the characteristic of Fq, [3, Thm. 1.1] says:

Theorem 3.1. For q, s, d, r, e as in (∗), the binomial f(x) = xr(1+xes)
permutes Fq if gcd(2r + es, d) = 1, 2s ≡ 1 (mod p), and the sequence

an :=

d−1
2∑
t=1

(
2 cos

π(2t− 1)

d

)n
consists of integers satisfying an ≡ an+s (mod p) for every n ≥ 0.

Suppose the hypotheses of Theorem 3.1 are satisfied, and put ζ =
exp(πi/d). Then

2an = 2

d−1
2∑
t=1

(
ζ2t−1 +

1

ζ2t−1

)n
=

∑
η∈C\{−1}
ηd=−1

(
η +

1

η

)n
.

Note that the hypotheses of Theorem 3.1 imply that q is odd (since
s > 0 and 2s ≡ 1 (mod p)). Also, we now see that an ∈ Z[ζ] and that
an is fixed by every element of Gal(Q(ζ)/Q), so an ∈ Q ∩ Z[ζ] = Z.

Let ζ̂ denote a fixed primitive (2d)th root of unity in Fq, and let ψ be

the homomorphism Z[ζ] 7→ Fq which maps ζ 7→ ζ̂. Then ψ(an) ≡ an
(mod p), so the condition an ≡ an+s (mod p) is equivalent to∑

η∈Fq\{−1}
ηd=−1

((
η +

1

η

)s
− 1

)
·
(
η +

1

η

)n
= 0.

This condition holds for all n ≥ 0 if and only if∑
η∈Fq\{−1}
ηd=−1

((
η +

1

η

)s
− 1

)
· P
(
η +

1

η

)
= 0

for every P ∈ Fq[x]. Pick representatives η1, η2, . . . , η(d−1)/2 for the
equivalence classes of µ2d \ (µd ∪ µ2) under the equivalence relation
η ∼ 1/η. Then the values ηi + 1/ηi are distinct elements of Fq, so there
are polynomials P ∈ Fq[x] taking any prescribed values at all of the
ηi + 1/ηi. In particular, choosing P to be zero at all but one of these
elements, we find that

(1)

(
η +

1

η

)s
= 1
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for every η such that ηd = −1 but η 6= −1. The hypotheses of The-
orem 3.1 imply that s is even and 2s ≡ 1 (mod p), so (1) holds for
η = −1. Moreover, since d is odd and s is even, the fact that (1) holds
when ηd = −1 implies that (1) holds when ηd = 1 as well.

Thus, whenever the hypotheses of Theorem 3.1 hold, we will have
(η + 1/η)s = 1 for every η ∈ µ2d. Since the latter is precisely the
hypothesis of Theorem 2.5 in the case a = 1, we see that Theorem 2.5
implies Theorem 3.1.
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[5] E. Betti, Sopra la risolubilità per radicali delle equazioni algebriche irridut-
tibili di grado primo, Annali di Scienze Matematiche e Fisiche 2 (1851), 5–19
(=Opere Matematiche, v. 1, 17–27).

[6] F. Brioschi, Des substitutions de la forme Θ(r) ≡ ε(rn−2 + ar(n−3)/2) pour un
nombre n premier de lettres, Math. Ann. 2 (1870), 467–470 (=Opere Matem-
atiche, v. 5, 193–197).

[7] L. Carlitz, Some theorems on permutation polynomials, Bull. Amer. Math. Soc.
68 (1962), 120–122.

[8] W. Chu and S. W. Golomb, Circular Tuscan-k arrays from permutation bino-
mials, J. Comb. Theory A 97 (2002), 195–202.

[9] S. D. Cohen, The distribution of polynomials over finite fields, Acta Arith. 17
(1970), 255–271.

[10] S. D. Cohen and R. W. Matthews, A class of exceptional polynomials, Trans.
Amer. Math. Soc. 345 (1994), 897–909.

[11] C. J. Colbourn, T. Klove and A. C. H. Ling, Permutation arrays for power-
line communication and mutually orthogonal Latin squares, IEEE Trans. Inf.
Theory 50 (2004), 1289–1291.

[12] H. Davenport and D. J. Lewis, Notes on congruences. I, Quart. J. Math. Oxford
Ser. (2) 14 (1963), 51–60.

[13] L. E. Dickson, The analytic representation of substitutions on a power of a
prime number of letters with a discussion of the linear group, Annals Math.
11 (1896-7), 65–120 and 161–183.

[14] J. F. Dillon and H. Dobbertin, New cyclic difference sets with Singer parame-
ters, Finite Fields Appl. 10 (2004), 342–389.

[15] M. D. Fried, R. M. Guralnick and J. Saxl, Schur covers and Carlitz’s conjecture,
Israel J. Math. 82 (1993), 157–225.

[16] R. M. Guralnick and P. Müller, Exceptional polynomials of affine type, J. Al-
gebra 194 (1997), 429–454.



ON SOME PERMUTATION POLYNOMIALS 9

[17] R. M. Guralnick, P. Müller and M. E. Zieve, Exceptional polynomials of affine
type, revisited, preprint.

[18] R. M. Guralnick, J. Rosenberg and M. E. Zieve, A new family of ex-
ceptional polynomials in characteristic two, Ann. of Math. (2), to appear,
arXiv:0707.1837 [math.NT].

[19] R. M. Guralnick and M. E. Zieve, Automorphism groups of curves with ordinary
Jacobians, in preparation.

[20] Ch. Hermite, Sur les fonctions de sept lettres, C. R. Acad. Sci. Paris 57 (1863),
750–757.

[21] S. Y. Kim and J. B. Lee, Permutation polynomials of the type x1+((q−1)/m)+ax,
Commun. Korean Math. Soc. 10 (1995), 823–829.

[22] Y. Laigle-Chapuy, Permutation polynomials and applications to coding theory,
Finite Fields Appl. 13 (2007), 58–70.

[23] H. W. Lenstra, Jr., and M. E. Zieve, A family of exceptional polynomials in
characteristic three, in: Finite Fields and Applications (Glasgow, 1995), 209–
218.

[24] A. M. Masuda and M. E. Zieve, Permutation binomials over finite fields, Trans.
Amer. Math. Soc., to appear, arXiv:0707.1108.
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