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Abstract

Cycles of Polynomial Mappings

by

Michael Ernest Zieve

Doctor of Philosophy in Mathematics

University of California at Berkeley

Professor Hendrik W. Lenstra, Jr., Chair

Let R be a ring and f(z) € R[z] a polynomial over R; we study the finite
cycles of fin R, namely the m-tuples of distinct elements z4, ..., z,, € R such that
flz1) = x2, f(a2) = @3,..., f(¥m-1) = T, and f(z,) = 1. One phenomenon we
repeatedly observe is that the possible cycle lengths m are severely restricted. For
instance, if R = Z is the ring of integers, then no polynomial over R has cycles of
length greater than two. We give results restricting the cycle lengths for various types
of rings. Our most difficult results deal with discrete valuation rings R. For these
rings it is not too hard to control the part of the cycle length which is relatively prime
to characteristic of the residue field, but the part of the cycle length which i1s a power
of the residue characteristic is much more elusive. We prove various bounds in this
last case, and give examples illustrating that are bounds are nearly best possible. We

also study numerous other properties of cycles of polynomial mappings.
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Chapter 1
Introduction

This thesis is concerned with cycles of polynomial mappings of rings. Given a
ring R and a polynomial f(x) € R[z], there is an induced mapping f : R — R sending
y to f(y). We are primarily interested in the behavior of this mapping under iteration.
In particular, we study those finite subsets of R which are preserved by the mapping f;
a cycle of f is an m-tuple (z1,x2,...,2,,) of distinct elements of R for which f maps
Ty — Ty — XT3 -+ — T, — x1. In the next chapter we prove various results about
cycles of polynomial mappings, some of which we highlight below. We begin Chapter 3
by explaining how these results fit into the general framework of nonarchimedean
dynamical systems: essentially, when we put a nonarchimedean valuation on R we
can geometrically study the dynamical behavior of the map f under iteration. In the
remainder of Chapter 3 we attempt to give a panoramic view of the various studies
which from our perspective form pieces of the field we call nonarchimedean dynamics;
our goal is to convey our belief that these numerous different studies, some of which
are quite far removed from one another in goals and techniques, should in fact be
viewed as pieces of a single broad field of mathematics.

We now summarize the results of Chapter 2. The first five results provide
various restrictions on the lengths of cycles of polynomial mappings. The thrust of
these results is that there are severe arithmetic restrictions on the cycle lengths. The
idea behind the proofs of these results is that one can study a cycle in a ring R

by studying the relationships between the lengths of the projections of the cycle
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modulo successive powers of I. Naturally, one can prove more precise results when
one considers a restricted class of rings R. Thus, Theorems 7 and 8 give very precise
results about the cycle lengths in case R is a discrete valuation ring; Theorem 8 is
the deepest result in this thesis, and we postpone its intricate and difficult proof until
Section 2.3. All of these results are ‘nonexistence’ results, in the sense that they show
various numbers cannot occur as cycle lengths under appropriate circumstances; we
complement these results with three ‘existence’ results, namely Proposition 10 and
the surrounding examples. Proposition 12 treats a different problem: if R is a discrete
valuation ring, it discusses the possibilities for the least power of the maximal ideal
modulo which the elements of the cycle are all distinct. The next result completely
determines which cycle lengths occur over the rings of p-adic integers, and the final
result of Section 2.1 shows an ‘integrality’ result: under certain circumstances, cycles
in the fraction field of a domain must actually lie in the domain itself.

The passage from Section 2.1 to Section 2.2 is accompanied by a change in
tone. Whereas in Section 2.1 we give deep results relying on intricate hypotheses, in
Section 2.2 we include only results of a lighter type, namely charming results which
hold in extreme generality. Here R is an integral domain. We begin by showing how
a cycle in R leads to several solutions of an equation v + v = w in units u,v of R
(with w € R fixed). Such unit equations have been thoroughly studied, and there are
various circumstances in which one has control over the solutions of such equations;
we discuss this in the first subsection of this section. The next subsection gives some
consequences for cycles; in particular, Corollary 25 shows the surprising result that,
if some polynomial over the integral domain R has a cycle in R of length a prime
number p, then there are polynomials over R having cycles in R of any prescribed
length less than p. An immediate consequence is that the set of prime numbers
occurring as cycle lengths of polynomial mappings of an integral domain R is an
initial segment of the set of prime numbers. We conclude this section with further
general results, including criteria on R for the existence of cycles in R of prescribed
lengths.

In Section 2.3 we prove Theorem 8, which bounds the power of p in the cycle

length of a polynomial mapping of a discrete valuation ring of characteristic zero and
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residue characteristic p. The proof relies on a series of combinatorial lemmas, as well
as two deep algebraic results, one of which was proven for us by Hendrik W. Lenstra,
Jr. We also discuss how one can prove better bounds for polynomials satisfying
certain mild hypotheses.

The results mentioned above deal with polynomial mappings of rings. In
Section 2.4 we discuss the extent to which the corresponding results remain valid in
the setting of power series over complete local rings; and in Section 2.5 we study ra-
tional functions over rings and rational mappings of the projective line over a nonar-
chimedean field. Finally, in Section 2.6 we give various examples illustrating the

general theory.
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Chapter 2

The main results

Let R be a ring and f(z) € R[z] a polynomial over R; we will study the
finite cycles of f in R, i.e. the m-tuples of distinct elements x4, ... , z,, € R such that
flz1) = xq, f(22) = 23,..., f(¥m-1) = Tm and f(z,,) = z1. Here, and throughout
this chapter, all rings are assumed to be commutative with a multiplicative identity
element 1. We shall prove various results about the cycles of polynomial mappings.
We then consider other classes of mappings, including power series over complete local
rings and certain rational maps on a ring or on P! of a nonarchimedean field. Our
proofs of the results for rational maps amount to reducing to the case of polynomials;
this is rather different from what we do for power series. Our proofs in the power
series case are the same as the proofs in the polynomial case, although there are
some technical difficulties that must be addressed; in Section 2.4 we summarize the
differences between the proofs in the polynomial and power series cases. Thus, the
reader primarily interested in power series should consult Section 2.4 while reading
the rest of this chapter.

We now give some notation. For a function f, by f* we denote the k*! iterate
of f. Some of our results hold only under the assumption that R is a discrete valuation
ring; there is some terminology we will constantly use in this circumstance. Namely,
whenever we speak of a discrete valuation ring R, we use the following notation: m is
the maximal ideal, 7 is a uniformizer, Kk = R/m is the residue field, p = char(x) the

residue characteristic, e = ordy,(p) the ramification index, and K is the fraction field
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of R. Finally, we use the term nonarchimedean field to refer to a field K together

with a nonarchimedean valuation on K.

2.1 Results

We begin with a preliminary description of the possible cycle lengths.

Proposition 1. Let R be a ring and let I be a proper ideal of R which conlains every
zero-divisor in R. Let f(x) € R[x] have a cycle (z1,...,2,) in R. Then either m =k
orm = ks orm = ksp"™, where n is a positive integer, k is the length of the projected
cycle in R/I (i.e. the size of the image of {x1,..., 2} in R/1), p is the additive
order of 1 in R/I, and s is the least positive integer for which 3" :25((f*) (z1))' € 1.

It is possible that p or s (or both) might not exist; in those cases the result still
holds, but with even fewer possibilities for m. For instance, if s does not exist (which

happens e.g. if (f*)'(x1) € I) then m = k.
Corollary 2. With notation as above, if (f*)'(x1) € I, then m = k.

Borrowing some terminology from complex dynamics, if (f*)(z1) € I we say the cycle
is attracting; thus, this corollary may be interpreted as saying that attracting cycles

inject modulo 1.

A

Proof of Proposition 1. To start with, we may assume z; = 0: for, consider f(z) =
f(z+x1) — x1; this polynomial has the cycle (0, x5 — 21, ..., %, —x1). Since this cycle
is a translate of the original cycle, its projection in R/I has the same length, i.e. the

same k as does the original cycle. Moreover, it has the same s, since
X koo k
(F50) = T /(@i = 20) = [T F(2i) = (FF) (21);
=1 =1
thus, it suffices to prove the result in case ;1 = 0.
Clearly k divides m, so we consider g = f*, for which 0 lies in an m/k-cycle

in I. Say g(z) = b+ ar (mod z?), where b = g(0) € I and a = ¢'(0) = (f*)'(0). If

b =0, then m = k; now assume b # 0. By an easy induction,

gj(x) = b(1 +a+---+aj_1) taly (mod (b],]:z:,:z:Z)).
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Since 0 is in an m/k-cycle of g, there is a least positive integer ¢ for which
g'(0) = 0 (mod bl); clearly ¢ divides m/k. Let ¢ = 1 +a+ - -+ a~'. Then t
is the least positive integer for which there is some v € [ such that b(c — ) = 0;
thus ¢ — « 1s either zero or a zero-divisor, and in any case must be in I, so ¢ € [.
Conversely, if ¢ € I then clearly bc € b1; thus, ¢ is the least positive integer for which
l+a+--+a~tel, sot=s Sncea —1=(a—1)(1+a+---+a")el, we
have a* =1 (mod 7).

Now consider h(z) = ¢°(z) = b+ ax (mod x?); this polynomial has an
m/ks-cycle in I containing 0. Here b = 0 (mod bI) and & = a' = 1 (mod I). If
b =0, then m = ks; now assume b #£ 0. As above, let I be the least positive integer
for which h{(()) =0 (mod ?)]); clearly  divides m/kt. As above, { is the least positive
integer for which Zf;(l) @' liesin I;since @ = 1 (mod I), this says 7 is the least positive
integer in 1, so t = p.

Next consider {(z) = hP(z); this polynomial has an m/ksp-cycle in I con-
taining 0. As above, either m = ksp or there is another factor p dividing m, i.e. ksp?
divides m. We can continue in this manner; since at each stage we either find m or
introduce another factor p in m, after finitely many steps we will have introduced all

factors p in m, hence will have found m, which must have the desired form. m

In case I is a prime ideal we can restate the Proposition by relating s to the

multiplicative order of (f*)'(x1) in (R/I)*.

Corollary 3. With notation as above, suppose in addition that I is a prime ideal.
Then either m = k or m = kr or m = krp™, where r is the multiplicative order
of (f*)(x1) in (R/I)*. In particular, we have m = krp" where k < #R/I and
r | #(R/T).

Proof. Note that r = 1 if and only if (f*)'(z1) =1 (mod I), in which case s = p; in
this case the Proposition implies that either m = k or m = kp”, which is equivalent
to the desired conclusion. Now suppose r > 1; then a = (f*)'(z1) # 1 (mod I),

so, since [ is prime, @/ — 1 = (a — 1)(1 +a + --- + a’71) lies in I precisely when
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l4+a+---4+a' € 1. Thus r exists precisely when s exists, and if they exist they

are equal, which completes the proof. =

This corollary applies to local rings, such as Z /p'Z. 1t also applies to subrings
of number fields. For this chapter we are primarily concerned with the case of discrete

valuation rings, so we restate the corollary in this case.

Corollary 4. Let f(z) € R[z] have a cycle (z1,...,2,) in the discrete valualion
ring R. Then either m = k or m = kr or m = krp", where n is a positive integer,
k is the length of the projected cycle in k (i.e. the size of the image of {x1,..., 2}
in k), and v is the multiplicative order of (f*)(z1) in k* (set r = oo if (f*)'(x1) € m).

This corollary severely restricts the possible cycle lengths, as indicated by our next

result.

Corollary 5. Let f(z) € R[z] have a cycle of length m in the discrete valuation
ring R. Then m = kb where k is the length of the projected cycle in k (so k < #k).
Under f* the cycle splils into k disjoint cycles of length b, each lying in some coset
ofmin R. Then b=1r or b=rp", where r is the order of a cyclic subgroup of k* (so
r| #K*).

Our next task is to bound n. This only matters in case the residue char-
acteristic is positive. When the discrete valuation ring R has positive characteristic,
any value of n can occur; Poonen provided a proof of this shortly after I posed the

question to him [19]. T present his proof below.

Lemma 6 (Poonen). Let R be a complete discrete valuation ring of characteris-
tic p > 0. For any n > 0 there exist polynomials z¥ + cx € R[z] (with ¢ € 1 + m)
having cycles in m of length p™.

Proof. [Poonen] Let g(x) = Tx 4 2? € F,[[T]][z]. Let K =F,((T)), and let v be the
valuation of the algebraic closure K of K which is normalized by v(T) = 1. Let x;
be a nonzero solution to g(x) = 0, so v(z1) = 1/(p—1). Let x5 be a nonzero solution

to g(x) = x1, so v(zz) = 1/p(p — 1), and so on.
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Make the F,-vector space generated by zi,...,z) into an F,[T]-module by
letting T' act as the additive polynomial g. This module is generated by x; and
is isomorphic to the module F,[T]/(T*). Now let F(z) = z + g(x), which acts as
1 + 7. Then x; is a periodic point of F' of period equal to the order of 1 + 7" in
the multiplicative group (F,[T]/T*)*, which is the least integer no less than log, k.
Choosing k£ = p™ makes this order be n.

Now, the field L. = K(zy) is a totally ramified extension of K of degree
p*~1(p — 1), so its field of constants is F,. In other words, by the classification of
local fields of characteristic p, there is an isomorphism L 2= F,((¢)). Under this
isomorphism, F(z) becomes a polynomial f(z) = z? + cx with coefficients in F,[[¢]]
and ¢ — 1 € tF,[[t]], and z} becomes a periodic point (in tF,[[¢]]) of f of period n.
Finally, F,[[{]] embeds into R, so the result is proved. =

Theorem 7. Let R be a discrete valuation ring of characteristic p > 0. For any
n > 0 there exists f(x) € R[z], of degree p, having a cycle (y1,....yp;n) in m with
f'(y1) =1 (mod m).

Proof. Let R be the completion of R; the previous result produces a monic polynomial
g(z) € R[z], of degree p, having a cycle (z1,...,2pn) inm (with ¢’(z1) =1 (mod m)).
Now choose elements yq,...,y,» in R so that each y; — z; is in a sufficiently high
power of m; the Lagrange interpolation formula produces a polynomial f(z) over the
fraction field of R which has the cycle (y1,...,y,n), and in fact the polynomial must
lie in R[z] and must satisfy f'(z;) =1 (mod m). m

When the discrete valuation ring R has characteristic zero, the situation
is very different (and significantly more difficult). Here there is a bound on n, as

indicated by the following result.

Theorem 8. Suppose R is a discrete valuation ring of characteristic zero, and p > 0.
Let h(x) € R[z] have a cycle (x1,...,2,) inm, and suppose that h'(z1) =1 (mod m).
Then m = p", where the integer n satisfies n < 1 + (log(2e) — log (p—1))/log p.
Moreover, if p=2 then n <1+ (loge/log2).
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Our proof of this result is rather complicated, and we postpone it until
Section 2.3; there we also discuss possible improvements of this bound. We now
briefly summarize the idea of the proof: when z; = 0 (which we may assume, as
above) we show that the first several coefficients of fpi(x) — z are in rather high
powers of m, for each small ¢; then, once they are in sufficiently high powers, we show
we must in fact have fpi(()) = 0. We now show that this bound on n is nearly best

possible, by giving a family of examples for which the value of n is within 1 of our

bound.

Example 9. Let R be the valuation ring of K = Q,(pn), where pi,n is the group of
p"-th roots of unity, and let { be a primitive p"-th root of unity, so ( =1 (mod m).
Then K/Q, is totally ramified, of degree e = p"~!(p—1). For any nonzero y € m, the
polynomial f(z) = (z € R[z] has the p"-cycle (y,y(,y(?, ..., y(?"~!), and the power
of p in the cycle length, namely n, satisfies

log e — log (p — 1
| loge og(p—1)
log p

n=1

In fact, if R is the valuation ring of Q,(u,n), and we have any a < #&,
b | #£*, and ng < n, then there is a polynomial in R[z] having an abp™-cycle in R,
for which a is the length of the projected cycle in k. We will prove this in Example 11.
First we give the following result, which essentially reduces the problem of determining
the lengths of cycles in R to the problem of determining the lengths of cycles in m.
We prove it for local rings; in the special case of discrete valuation rings with finite

residue fields, a more difficult proof has been given by Pezda [18].

Proposition 10. Let R be a local ring with mazimal ideal m. Suppose some polyno-
mial g(x) € R[z] has a cycle in m of length m. Then, for any k < #R/m, there is a
polynomial in R[x| having a cycle in R of length km. In fact, if the cycle of length m is
(Y15, Ym), and aq, ... , a are any elements of R lying in distinct classes (mod m),

then there is a polynomial in R[x] which has the cycle

o= (a1 +yi, a2+ y1,..., a0k +y1,01 + Y2, 0k + y2,01 + Y340y Gk + Ym).
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Proof. 1t suffices to construct polynomials f;(x) € R[z] (for 1 < j < k) such that, for

each ¢ and /,

1 ifi=y
filai +ye) = L
0 ife#y;
for, given such polynomials, the polynomial
k-1
(g(;r: — ak) + Cl1) : fk(l') + Z(:U + agy1 — ad) ’ fd(l')
d=1

has the desired cycle o. So now we need only construct f;. To this end, let h;(z) =
[1(z —a;—y,), where the product is over all ¢, r with ¢ # j. Then each h;(a;+ys) € R,

SO

f)=1-1] (1 ST )

s=1 aj + ys)
is an element of R[z]. This polynomial f; takes the desired values at the points

a;+y;,. W

We can now show that Corollary 5, along with the bound in Theorem 8, is
nearly best possible.

Example 11. Let R be the valuation ring of K = Q,(pn), where i,n is the group of
p"-th roots of unity, and let { be a primitive p"-th root of unity, so ( =1 (mod m).
Then K/Q, is totally ramified, of degree ¢ = p"~!(p—1). Let a be a primitive (p—1)™®
root of unity in R. Pick any @ < p (= #k), b | p— 1 (= #£*), and ng < n. For
any nonzero y € m, the polynomial f(z) = oP~1/2(?" "™ ¢ ¢ R[z] has the bp™-cycle
(y,y¢,yC% ..., yC*™~1) in m; by the previous proposition, there is a polynomial in

R[z] having an abp™-cycle in R.

Next we show that, in many cases, all the powers of p in the cycle length

must occur already modulo some small power of m.

Proposition 12. Suppose R is a discrete valuation ring of characteristic 0 and
residue characteristic p > 0. Let f(xz) € R[x] have a cycle in R of length yp™,
where y is not divisible by p. Let g + 1 be minimal such that the projected cycle
(mod m?*!) has length divisible by p™—in other words, this is the first power of m
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modulo which we already see the entire p-power in the cycle length. If the completion
of R does not contain the p™ roots of unity (which occurs, for instance, if p—11e)
then q < e. If the completion of R contains a primitive p* root of unity, then ¢ can

be arbitrarily large.

There is an explicit formula for ¢: namely, if (z1,...,2,,) is the cycle, and

p | m, then (for any 7) we have

q = ordn(Titm/p — Ti).

Proof. If the completion R of R contains a primitive p™ root of unity w, then flz) =
wz has the p-cycle (zg,wxq,...,wP 'zg) C m, for any nonzero ¥y € m; by choosing
zo in a sufficiently high power of m, we can make ¢ arbitrarily large (for polynomials
and cycles in fx’) To achieve this with polynomials and cycles in R, simply choose
elements yo, ..., y,_1 in R so that each y; — w'z; is in a sufficiently high power of m;
the Lagrange interpolation formula produces a polynomial over the fraction field of R
which has the cycle (yo,...,y,-1), and in fact the polynomial must lie in R[z].
Conversely we show that, if ¢ > e, then the completion of R contains the
p'h roots of unity; this will finish the proof. By taking the appropriate iterate of our
polynomial, we may assume that the cycle in question is a p-cycle; by conjugating by a
translation we may assume the cycle contains 0. These operations do not affect ¢. Say
the cycleis (0, zy, g, ..., 2,-1); then ordy(z1) = ¢. Thus f(z) = 21 +az +agz®*+. . .;

by an easy induction,
Pla)=n(l+at - +a™) (mod (zf,2)),
so from f?(0) = 0 we conclude that
l+a+--+a'=0 (modz).

This implies that

(a—1)P=a"-1=0 (modm),
so a =1 (modm). Put ¥(z) =1+z+ -+ 27" so ¥(a) = 0 (mod m?). Thus
ordw((a)) > q > e. Write b = a — 1; then ¢¥(a) = "~ 4+ p(1 + ¢) € pm, where
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t € m. Thus 5"~ = —p(1 + s) for some s € m. Since 1 + s is a (p — 1)*® power in the
completion R of R, this implies that —p is a (p — 1) power in R; thus, the fraction
field of R contains the field Q,(7+/=p), which contains the p'" roots of unity. m

Next we determine precisely which cycle lengths occur over the rings Z, of

p-adic integers. This has also been done by Pezda [18], using a different method.

Theorem 13. Suppose f(x) € Z,[x] has a cycle of length m in Z,. Then m =k or
m = kr for some integers k,r such that 1 < k < p and r divides p—1; except if p =2
or p = 3, in which case m = kp is also a possibility. Conversely, all of the above

values of m do occur as lengths of cycles in Z, for polynomials in Z,[x].

Proof. By Corollary 4 and Theorem 8, the only possible cycle lengths not mentioned
in the above theorem are m = 12 and m = 18, both for p = 3. In particular, these
two lengths can occur only if the order of (f*)(z) in (Z,/pZ,)* is r = 2 for any z in
the cycle, and in addition there is an extra factor of p. But this cannot occur, since,
by the above proposition, the factor of p arises in passing from (mod p) to (mod p?),
so in fact we must have r = 1.

As for the existence assertion, it follows from Proposition 10, the existence
of cycles of length p — 1 in pZ,, and the existence of cycles of length p in pZ, for
p =2 and p = 3. The last fact is the easiest to verify, since we simply mention that
f(z) = —x has the cycle (2, —2) in 2Z,, and that f(z) = (6 — z)(z + 1)/2 has the
3-cycle (0,3,6) in 3Zs. Finally, the existence of cycles of length p — 1 in pZ, is also
quite easy to verify: just let « € Z, be a primitive (p — 1)™ root of unity, and note

that f(z) = az has the cycle (p, pa,pa?, ..., paP™%). =

The final result of this section shows that, if the leading coefficient of the
polynomial is a unit in R, then any cycle in the fraction field of R must actually be
in R.

Proposition 14. Let R be an integrally closed domain, with fraction field K. Let
f(z) € Rlz] be a polynomial with degree d > 2 whose leading coefficient is a unit.
Then any finite cycle of f in K must actually lie in R.
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Proof. Any element in K which lies in an n-cycle of f is a root of the monic polynomial

f"(z) —x € R[z], henceisin R. m

2.2 More results

In this section we prove several results about cycle lengths in quite general
rings. Throughout this section R denotes an integral domain. We begin with a trivial

but useful lemma.

Lemma 15. [f there is a polynomial in R[x| having an m-cycle in R, then there is

a polynomial in R[z] having an m-cycle (zy,...,2,) in R with 1 =0 and z, = 1.

Proof. Say f(z) € R[z] has the cycle (y1,...,y,) in R. Then ¢g(z) = f(z4+31) —y1 €
R[z] has the cycle (0,42 — y1,...,ym — y1) in R; that is, by conjugating by the
translation = — z + y; we may assume y; = 0. Let the cycle of g be (0,2, ..., zx).
Then h(z) = g(z22)/ 22 has the cycle (0,1, z3/22, ..., 2m/22). Since g(x) is in the ideal
(z2,2) of R[z], if w is any multiple of z; then also g(w) is a multiple of z; thus, each
z; = g(#;_1) is a multiple of z,, so the above cycleis in R. Since f(z) = 2o+ 3%, a;2?,

f(za)29) = 1 + ¥4, a;257 2" € R[z]. This completes the proof. m

Lemma 16. If f(z) € R[z]| has a cycle (x1,29,...,2,) in R, then each (x;4; —

zi)/(xjp1 — x1) s @ unil in R.

Proof. For any positive integer r, x; — x, divides f(xy) — f(2¢) = Tk41 — Ts41; thus,

(= x0) | (Tpg1 — Togr) | - | (2 — 20),
so the numbers zp,; — x44,, for variable ¢, are all associates. m

Corollary 17. If f(x) € R[x] has a cycle (x1,...,2,) in R, then x;y; — x; divides

Tigjr — Ty

Proof. Since z;4;—xz; divides each of z;1 ;. — iy j(r-1), Titj(r—1)—Titj(r=2), - - - »Titj— s

it also divides their sum z;4;, — ;. =
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Corollary 18. If f(z) € R[z| has a cycle (z1,...,2,) in R, and j is coprime to m,

then each (x,4; — ;) /(22 — x1) is @ unit in R.

Proof. Let r be a positive integer with j» =1 (mod m); the previous corollary implies
that z;y; — z; divides ;41 — z;. The previous corollary also implies that z;41 — z;
divides z;; — x;, so x;4; — x; 1s an associate of x;41 — z;, which is an associate of

r9 — x1; by Lemma 16. =

Corollary 19. If f(z) € R[x] has a cycle (z1,...,2,) in R and m is not squarefree,
let ¢ be the product of the distinct prime divisors of m. Then the equation u + v =

(2441 — x1)/(x2 — 1) has at least (m) solutions in units u,v of R.

Proof. For each 5, 1 < 3 < m, which is coprime to m, also ¢ — 7 is coprime with m;

we have

Li+1 — L1 4 Lo+l — Tj+1 _ Tgr1 — 41

Y
Ty — X1 Ty — X1 Ty — I

where the previous corollary implies that each of the addends is in R*. =

In the next subsection we will explain that there are quite general circumstances
under which an equation v + v = w in units u,v of R (with w € R fixed) can have
only finitely many solutions; thus, in such circumstances any sufficiently large cycle
length must be squarefree. But in fact squarefree cycle lengths cannot be too large
either, as our next result indicates. Here we use the simplest unit equation, namely
u+wv = 1. An exceptional unit of a ring is a unit u for which v — 1 1s also a unit.

This terminology is due to Nagell [16].
Corollary 20. If f(z) € R[x| has a cycle (x1,...,2,) in R, and j(j — 1) is coprime

tom, then (x; — x1)/(x2 — x1) is an exceptional unit in R.

Proof. By Corollary 18, y = (2; — x1)/(22 — x1) is a unit. Corollary 18 also implies

that y — 1 = (2; — 22) /(22 — 1) is a unit. m

As above, under quite general circumstances, there are only finitely many exceptional

units in a given ring K. Thus, if there are too many integers j, with 1 < 57 < m,
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for which j(5 — 1) is coprime to m, then there cannot be an m-cycle in R. We now
investigate the number of such j.

Define tp(m) = #{j € Z/mZ: j(j — 1) € (Z/mZ)*. This function is similar
to the Euler totient ¢(m). In particular, it is multiplicative: if @ and b are coprime,
then in the bijection Z/ab < Z/a x Z/b sending j to (j,7), the set of j € Z/mZ
for which j(3 — 1) € (Z/mZ)* maps to the product of the corresponding subsets of
Z/aZ and Z/bZ. At the prime power p', we have ¥(p®) = p*~*(p—2). Thus, we have
the following formula for 1»(m): if the prime factorization of m is m = [Jr_, p2*, then
W(m) =15, p2~'(p—2). Note that ¢»(m) = 0 if and only if m is even. Also, for any
positive integer n there are only finitely many m with ¢(m) = n; thus, ¥ (m) — oo
as the odd number m — oco. In particular, if R has only finitely many exceptional

units, then there cannot be any long cycles of odd length in R.

2.2.1 Exceptional units and the Lenstra constant

As above, an exceptional unit of a ring is a unit u for which v — 1 is also a
unit. Exceptional units were originally studied in case R is the ring of integers of an
algebraic number field. In that case both Chowla [1] and Nagell [15] proved that R
has only finitely many exceptional units. In fact, the set of exceptional units can be
effectively determined by Baker’s methods [4, Lemme 4]. Furthermore, when R is a
ring of S-integers in a number field, there are bounds on the number of exceptional
units [2, 3] and on the height of any exceptional unit. Unfortunately, the bound on the
height is quite large, thus prohibiting explicit determination of all exceptional units
in R by this method. However, de Weger has worked on reducing the bounds. For a
few rings classical diophantine techniques have been used to determine the exceptional
units. For instance, see the papers of Nagell [16, 17] and Wasén[25]. Various examples
of exceptional units are given by Lenstra [6]. Nagell [17] determined the exceptional
units in the ring of integers of the real subfield of the seventh cyclotomic field. He
also determined all exceptional units in the ring of integers of every number field
whose unit group has rank at most one, see [16] for references. He also shows that

exceptional units in quartic CM fields are scarce; this was done for general CM fields
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by Gyory [5].

Nagell [15] noted that, when u is an exceptional unit, also 1/u and 1 —u are
exceptional units. Lenstra [6] mentioned that, if u,v and u/v are exceptional units,
then also (1 —u)/(1—v) is an exceptional unit; he also noted that any automorphism
of the ring maps the exceptional units of the ring to themselves.

Recently Schlickewei [21] has shown that, in any finitely generated subgroup
of C*, there are only finitely many solutions to the equation = + y = 1; moreover he
gives an explicit bound for the number of solutions, which depends only on the rank
of the group. This result applies to unit equations v + v = w.

One application of exceptional units is in the determination of the Lenstra

constant of a ring. The Lenstra constant of a ring R was defined (but not christened)

in [6] to be

(2.1) L(R) = sup{k: thereexist zy,...,2,, € R such that z; —z; € R"

for all ¢, j for which 1 <i < 5 < m}.

Lenstra combined an idea of Hurwitz with an argument from the geometry of packings
to show that, in the ring of integers R of an algebraic number field, if L(R) is suffi-
ciently large then the usual norm is a Euclidean algorithm on R. Given a sequence
T1,..., Ty, € Rasin (2.1), each (z; — x1)/(xq — x1) with 3 <7 < m is an exceptional
unit; thus, to determine the Lenstra constant of a ring one could attempt to list all
exceptional units, then check every sequence 0,1, 3, ..., z,, where z3,...,z,, are ex-
ceptional units. Unfortunately, as mentioned above it is not so easy to determine the
exceptional units in a general ring, and even once they are known, the determination
of the Lenstra constant is still ‘hard’ (NP-complete).

In practice the Lenstra constant of a ring is determined by giving identical
upper and lower bounds for it. Define M to be the smallest norm of a (proper) ideal
of R:

M(R) = min{#(R/I): I C Ris an ideal, I # R}.

Clearly M is a prime power whenever it is finite.

Lemma 21 (Lenstra). We have 2 < L < M.
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Proof. First, the sequence (0,1) shows that L > 2. To prove L < M, let z1,..., 2,
as in (2.1), and let I be a proper ideal of R; since I does not contain any of the units

x; — xj, the elements z1, ..., z, have distinct images in R/I, so #(R/I) > m. =

When R is the ring of integers of a number field of degree n, the ideal I = 2R yields
M < 27 thus, L. < 2". It is not known whether there is a better upper bound on
L, in terms of n alone; there exist number fields of arbitrarily large degree for which
L > n, but this is a long ways off. To give a lower bound for the Lenstra constant, it
of course suffices to write down a suitable sequence xq, ..., z,,.

We now give some examples from [6]. Let R be the valuation ring of the field
K = Q(p,), where p1,, denotes the group of m™ roots of unity (and (,, is a generator
of fi,). Then L(R) < M(R) = p, and the sequence (C; -1/ —1) (1 << p)
shows that L(R) > p, so L(R) = p. Now let R be the valuation ring of Q(f,); then
L(R) > p for any prime divisor p of m; further, L > 1 + m/q, where ¢ is the largest
prime power dividing m, because of the sequence 0,1,(,, ¢%,...,("/D71 Let R be
the valuation ring of Q(¢,) "R = Q((, 4+ ("), where p is an odd prime; then m = p
unless p is a Fermat prime, in which case M = p — 1. Moreover, Leutbecher and
Niklasch [9] used p-torsion on the unit circle to construct a sequence demonstrating
that L > p — 1 in this case. For p = 7,11, and 13 it is known that L = p [9, 6, 8, 7.
Various rings of integers of number fields have been shown to be norm-Euclidean by
means of Lenstra’s method, and in each case a lower bound on the Lenstra constant

is computed; see [6, 8, 12, 7, 9].

2.2.2 Connection with cycle lengths

We now apply the results of the previous two subsections to give results
about the possible cycle lengths. First, if R is any integral domain of characteristic
zero whose unit group is a finitely generated subgroup of C*, then Schlickewei’s result
implies, by Corollary 20, that there is no m-cycle in R if )(m) exceeds the number of
exceptional units plus two. In particular, there is a bound on the odd numbers which
occur as cycle lengths. Likewise, there is no m-cycle in R if m is not squarefree and

$#(m) exceeds the number of solutions to any unit equation in R, so there is a bound
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on the non-squarefree numbers which occur as cycle lengths. Combining these two
bounds gives a bound on the possible cycle lengths. When R is a ring of S-integers
in a number field, one gets a better bound on m by using Evertse’s result [2], which
gives a sharper bound on the number of solutions to a unit equation in this case.
We can give an especially good bound on the prime numbers which occur

as cycle lengths.

Lemma 22. If a polynomial over R has a p-cycle in R, where p is prime, then

p < L(R).
Proof. This follows at once from Corollary 18. =

Next we show that this bound is sharp.

Lemma 23. [fm < L(R), then there exists a polynomial over R having an m-cycle
in R.

Proof. Since m < L(R), there are z1,...,2,, € R for which each z; — 2, € R*.
Let K be the fraction field of R. There is a unique polynomial over K, of degree less
than m, which has the cycle (z1,...,2,). This is given explicitly by the Lagrange
interpolation formula, as

——

f(z) = zn:l’i—l—l(iﬂ —z)(x—x).. (r—x)... (¢ —xm).

T (e — )i —22) . (75— 1)« (25— T)

Since the denominator of each summand is a unit in R, in fact f(z) € R[z]. =

Corollary 24. The set of prime numbers which occur as lengths of cycles of polyno-
mials over R is the set of prime numbers < L(R).

Corollary 25. If there exists a polynomial over R having a p-cycle in R, where p is

prime, then for any m < p there exists a polynomial over R having an m-cycle in R.

In fact, for any number m (not just primes), one can write down algebraic
conditions which are necessary and sufficient for the existence of a polynomial over R

which has an m-cycle in R. This follows from the following general result.
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Lemma 26. Let R be an integral domain. Lel ay,...,a,, be distinct elements of
R, and let By,...,0B, be arbitrary elements of R. Then there exists a polynomial
f(z) € R[z] such that (for each 1 < i < m) f(a;) = Bi, tf and only if, for each
2<k<m,

II (a—-ay)

1<i<j<k

divides the determinant of the matrix

B B . B
1 1 - 1
aq Qg (673
af o3 aj
a’f_Q ag_Q ai_Z

Proof. 1f there exists such a polynomial f(x) € R[z], then, by considering the re-
mainder of f upon division by (z — ay)...(z — a,,) we see we may assume [ has
degree less than m. Let K be the fraction field of R. There is a unique polynomial
in K[z] of degree less than m which maps every a; — ;. Thus, this polynomial has
coefficients in R if and only if there is a polynomial over R with the desired property.
Say this specific polynomial in K[z]is 375" a;z*. The condition that each f(a;) = 3
may be stated as

m—1
1 aq A ag ﬁl
m—1
1 (8%] B 8 7)) aq ﬂg
-1 /
T Y Ui I _ﬂm_

Note that the square matrix is Vandermonde, and has determinant
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which is nonzero. Thus, by Cramer’s rule,

/ m—1
1 aq ﬂl A

m—1
1 1 [8%)) }32 e Qo

a; = — - 5
[

-1

1 am o Bm ... o

where the column of 3’s replaces the column o'~'. Thus, f(z) € R[z] if and only if
V,, divides each of these determinants.

Now we induct on m. First, if there is some polynomial over R having an
m-cyclein R, then each of these determinants is divisible by V,,, In particular, the last
of these determinants is the one we need. Conversely, suppose that V,, divides each
of the determinants, and that there is a polynomial g(z) € R[z] mapping «; to j; for
each ¢ < m. Again we may assume ¢ has degree less than m — 1; thus, adding some
R-linear combination of lower rows to the first row, we can replace the matrix we
have by the same one in which each j; is replaced by 0 except 3,,, which is replaced
by Bm — g(aym). The resulting matrix has the same determinant, so this determinant
is still divisible by V,,,. But this determinant is just the product of 3,, — g(a,,) with

the Vandermonde determinant V,,_;; thus, [T"7" (a,, — a;) divides 3,, — g(c,,,). Hence

In = 9l0m) T2~ 2 € Rlal.

=1 (Oém - al) =1

h(z) =

so also ¢g(z) + h(z) € R[z] and g + h maps «; to 3; whenever 1 < ¢ < m. This

completes the proof. =

In the case of 4-cycles this provides the following nice criterion:

Corollary 27. Let R be an integral domain. There exists a polynomial in R[z]| having
a 4-cycle in R, if and only if there exist units u,v € R* for which u+v and u+1 are
associates, and for which 1 +u+v € R*.

We conclude with a result about cycle lengths in rings with just a few units.
For a ring R, let C'(R) denote the set of lengths of cycles in R; in other words, C(R)

is the set of m for which there exists a polynomial in R[z]| having an m-cycle in R.
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Lemma 28. Let R be a domain for which R* C {1,—1}.
o [f char(R) =0 or 2 then C(R) = {1,2}.
e [f char(R) =3 then C(R) = {1,2,3}.

Note that these are all the cases, since if p = char(R) > 0 then R* contains
F,*,so |[R*|>p—1>2if p>3.

Proof. Let (z1,...,2,) be a cycle of f in R. Put y; = ;41 — 2;. By Lemma 16,
the y;’s are associates of each other; hence every y; = £y;. The sum of the y;’s
is zero; if the y;’s are not all equal, there is a minimal j for which y; = —;, but
then z;41 = z;_1, so m = 2. If all the y;’s are the same, then m must equal the
characteristic of R. Note that f(z) = —=z has the cycles (0) and (1,—1), so the
lengths m =1 and m = 2 always occur. Finally, f(z) = x 4+ 1 has the cycle (0,1, 2).
This completes the proof. =

This result applies, for instance, to Fy, F3, Z, Z[\/—5], and polynomial rings over
these rings. Note that L(R) is at most two more than the number of exceptional
units of R, so certainly if R* is finite then there is a bound on the prime numbers

occurring as cycle lengths.

2.3 Bounding the p-power in the cycle length

In this section we prove the following result.

Theorem 8. Let R be a discrete valuation ring of characteristic zero. Let h(x) €
R[z] have a cycle (z1,...,2,) in m, and suppose that h'(x1) = 1 (mod m). Then

m = p", where the integer n satisfies

?

log p

if p =2 we have the stronger inequality n < 1+ (loge)/log2.
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Everything besides the bound on n follows from Proposition 1; further, by
conjugating by the translation L(z) = x# — x1, we may assume our cycle contains
0. Henceforth we will make this assumption. In the first subsection we state some
preliminary lemmas; in Section 2.3.2 we complete the proof of this theorem, by proving
Theorem 33; in the next subsection we discuss how close our bound on n is to being
optimal, and mention various other results which follow from (slight modifications
of) our arguments; and in Section 2.3.4 we finally prove the preliminary lemmas.

There is one special piece of notation which we use in this section, but not
in the rest of this thesis. Namely, here we denote the k" iterate of a function f by
f°F rather than just f*.

Finally, we mention that our proof holds in somewhat greater generality—
one need only assume that R is a ring, m is an ideal of R which contains every
zero-divisor in R, the additive order of 1 in R/m is a prime number p, there is some
¢ > 0 for which p ¢ m’, the only number f?’(0) lying in every m' is 0 itself, and:
for e satisfying p € m® but p ¢ m**!, and for each £ such that 2¢/(p — 1) < p, if
7(0) ¢ mi then p- f7(0) ¢ m+,

2.3.1 Some combinatorial lemmas

Let f(z) = z 4+ YL, bz’ € Z[bo, by, ..., b4)[z] be a generic polynomial of
degree d; let f°? be the p'™ iterate of f. The coefficient of z? in f?(z) — z is a
polynomial in by, by, . . ., by; thus, it is a sum of terms ¢-[J%, b2, where ag, o1, ..., ag >

0 and c¢ is a nonzero integer. It is convenient to put «; = 0 for ¢ > d.

Lemma 29. We have

(1) Tizoli = Dai = — 1

(2) If B < p—1, then ag + 02, a; > 1 except for the monomials (ﬁ)b‘ix (for
1<i<p)

(3) If B =0, then ag > 1; in fact, ag > 2 except for the monomials (zil)bob‘{ (for
0<l<p-—1).
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(4) If B =1, then ap+ a1 > 1.

Now assume p is prime, and let g(x) € F,[bo, b1, ..., bg][x] be the reduction
of f°» modulo p. Then the coefficient of z° in g(z) — x is a sum of terms c¢- %, b2,
where ag,aq,...,04 > 0 and ¢ € F, is nonzero. Then the results of the previous

lemma apply to g; moreover, we have the following result for g.

Lemma 30. For0 < g <p-—1,
(1) YiZei>p
(2) 200 + a1 > p— 1.

We postpone the proofs of these lemmas until Section 2.3.4.

2.3.2 The main result

Let R be a discrete valuation ring having characteristic zero, residue char-
acteristic p > 0, and ramification index e < co. Let f(z) € R[z] be a polynomial
such that f(0) and f’(0) — 1 are in m, and such that 0 is in a finite cycle of f. Then
the length of this cycle is a power of p, say p"; we will give a bound for n.

Let c¥ be the coefficient of z* in the polynomial for* — z, and let Ck =
ordm(cf). We know that C3,CY > 1, and every CF is a nonnegative integer. We
will use the lemmas of the previous section to show that, for each k, the C* must
be reasonably large; but we will then show that, once the C¥ are large enough (for
some k), we must in fact have C§ = oo, whence ¢& = 0 and n < k. The lemmas of

the previous section are applicable because fOkar1 is the pth iterate of f°pk; thus, cf"'l
k

is a sum of terms ¢ [[,(c¥)*, where ay,...,ay > 0 and ¢ is a nonzero integer. Note
that ordy, of such a term is given by ordy(c) + %, a; CF. We consider separately the
terms for which p { ¢ and the terms for which p | ¢. For terms of the first type we
know the a; must satisfy the criteria of both lemmas from the previous section; thus,

for any such term ord, is at least as big as

p—1 p—1 p—1
D;?-I-l :min{ZmCﬁ: Z%’ZP, 200 + a7 > p—1, Z(i—l)aigj—l}.
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For terms with p | ¢ we know the «; must satisfy Lemma 29, so any such term has
ordy, > EJ]'CH, where Ef‘H is defined as follows: for j > 2, put
E]’?-I-lzmin{e—l—Cf: O§€§p—1,€7§1};
and for j < 2 put B¢t = e + CF and EF' = min{e + C§, e + CF}. In summary,
k41 . B+l gokt1
CJ-+ Zmln{Dj+ , Ej+ }

Proposition 31. Ifp > 2, then for every nonnegative integer k such that 2e/(p—1) >
PPt we have C§,CF > (p* +1)/2 and Cé“,...,C’;j_l > (pF —1)/2.

Proof. The proof is a straightforward induction on k. The result is clear for £ = 0.
Assuming the bounds hold for k, we have Df"’l >y a;CF; by (2) of Lemma 30,
ap+a; > (p—1)/2, so, also applying (1) of Lemma 30, we have

k
k1 pr—1 p=1 _p
Dj >p- 5 + =

2 2
Next, from 025 (i — 1)ay < j — 1, we have
p—1 p—1
ap>1—j4+> (—Day>1—j+> a;>1—j+p—ag—a,
=2 =2

so0 209 + a1 > p+ 1 —j. Thus, for j <1, we have ag + a1 > (p+ 1)/2, so the same
argument as above gives Df“ > (pF*! +1)/2. Now we make use of the inductive
hypothesis (for k+ 1), namely that 2¢/(p—1) > p*, or equivalently e > (p**! —p*)/2.
We have EJ]'C+1 >e+ (pF —1)/2 > (p"* —1)/2; and for j < 1, the same steps give
EF > (pH14+1)/2. =

We have now shown that the C* are large when k is large; in our next result we will
show that C§ = oo whenever the C¥ are sufficiently large. To show this we need the
following observation: if D! > e + C¥ and Cf, CF > 0, then CF' = e 4 CF; this
follows from (3) of Lemma 29, which implies that ci™ is a sum of terms which are

all in mi*+e+Cs except for the single term pck.

Proposition 32. If p > 2 and 2¢/(p — 1) < p* and we have (for some w > 0)
Ce,Cy > (pF+1)/2 and CP,...,C1 > (pF — 1)/2, then CYT' = e + CY and
CYt > (pF 4+ 1)/2 and Oy, ..., C0H > (pF —1)/2; thus, C§F = er + CY'.
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Proof. This follows in an elementary manner from the above observation and the
lemmas of the previous section. m
log (2¢) — log (p — 1

log p '
Proof. Let £ be the least integer such that 2¢/(p — 1) < p*; by Proposition 31 we
have C&, CF > (p* +1)/2 and C%, . . ., O£—1 > (p* —1)/2. By Proposition 32 we have

Theorem 33. For p odd, we have the bound n <1+

OS5 = er + C%. Since 0 is in a cycle of f of length p”, for any m > n we have
cr = for"(0) = 0, so C" = oo; thus Cf = oo, so n < £. But

=14 log (2e) —log (p — 1)
log p

so the proof is complete. m

For p = 2, the above arguments must be modified slightly, and when this is
done they yield the bound n — 1 <log e/ log 2.

2.3.3 Improving the main result

The bound in Theorem 8 is nearly best possible, in light of Example 11.
That example demonstrates that for every odd p there are infinitely many fields K
for which the bound in Theorem 8 is achieved; and for p = 2, there are infinitely many
fields K for which a number one less than the bound is achieved. In this subsection
we discuss how one can improve the bound in Theorem 8 under certain additional
hypotheses. Throughout this section R denotes a discrete valuation ring.

Hua-Chieh Li [10] used rather different methods to prove the following result.

Theorem 34 (Li). If f(z) € R|[[z]] satisfies
(1) f(0) € m and f'(0) =1 (mod m);
(2) for each r >0, we have f(z) # x; and

(3) f has a fized point in m,
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and 0 s in a finite cycle of f of length p™, then

However, without the fixed point hypothesis this bound on n is not generally

true.

Example 35. The polynomial f(z) = 34 (5z —x?)/2 € Z3[z] has the 3-cycle (0, 3,6)

in 3Zs. Here
loge —log(p—1) ]
log p B log 3

log 2
_ 8 <l=n

I+

The argument we used to prove Theorem 33 gives more information about n
when we know more about certain of the C¥. For instance, we now prove a result

which implies Li’s result.
Theorem 36. Under the hypotheses of Theorem 8, if the cycle lies in m* then

ngl_l_loge—log(p—l)‘

log p

It is easy to see that this result implies Theorem 34 (at least for polynomials;
but the same proof works for power series, as will be explained in Section 2.4). To
see the implication for polynomials, note that, if ¢ € m is a fixed point of f, then a
is a root of f(z) — 2 = Y2, ¢;z'; but ordp(cia) > ordy(c;) > 1 and, for i > 2,
ordm(c;a’) > i - ordp(a) > i > 2, so the nonarchimedean nature of K implies that
ordm(cg) > 2. The same argument shows that the power series analogue of Theorem 36
implies Theorem 34.

The proot of Theorem 36 is completely analogous to the proof of Theo-
rem 33, and we will not give the details. We only mention the versions one needs
of Propositions 31 and 32. The version of Proposition 31 is: for every & > 0 such
that e/(p — 1) > p*~1, we have C¥ > pF + 1, CF > p*, and Cé“,...,C']f_l > pF — 1.
And the version of Proposition 32 is: if e¢/(p — 1) < p*, C¥ > p* + 1, C¥ > p*, and
Cy,...., 00, 2 p* — 1, then C¥*" = er + C¥. The proofs of these two results are
similar to those of Propositions 31 and 32, and Theorem 36 follows from these results

just as Theorem 33 follows from Propositions 31 and 32.
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We mention one more result, about the nonexistence of cycles satisfying

certain conditions.

Theorem 37. Given f(z) € R[z] satisfying f(0) € m. Suppose that p > 5 and 0 s
in a cycle of length m (a power of p); if r = ordw(f(0)) satisfiesr > e, and p—11e,

then m = 1.

Proof. Suppose to the contrary that m = p", where n > 1. Write g(z) = fpn_l(:z:)
as = + Yiso a;z', and put A; = ordy(a;); thus, a; = ¢! and A; = CP'. Since
#(R/m)* is coprime to p, Corollary 4 implies that f’(0) = 1 (mod m). Now, note
that Ag > CJ =r > e (by (3) of Lemma 29) and that A; > 1 (by (4) of Lemma 29).
Also, since fpn_l(()) # 0, we have Ay < oo.

Now, 0 = ¢?(0) is a sum of many terms, most of which are in me+4o+1,
Precisely, if the term is divisible by p, then (3) of Lemma 29 implies, since Ag, A; > 0,
that the term is in m*t#0+1 unless the term is pag. Further, except for the term aga’ ™",
every term which is not divisible by p has ag > 2. If ag > 3 or a; > 1, then the
term is in m**t40+!: the only remaining possibility is if ap = 2 and a3 = 0. By (1)
of Lemma 29, we must have ap = 1 and a; = 0 for ¢ > 2, which contradicts (1) of

etAotl except possibly the

Lemma 30. Thus, all terms involved in 0 = ¢?(0) are in m
terms pag and aga’”". Since p— 11 e, these two terms have different valuations; since
ordm(pag) = e + Ag < e + Ag + 1, this implies that the sum of all these terms is not

in m*t4o+! which is absurd, since the sum is 0. m

Corollary 38. Ifp > 5 and p—11te, then there is no polynomial f(x) € R[z] having
a cycle in pR of length p” with n > 0.

For, if there were such a cycle, we could conjugate by z — a (for any element a of the

cycle), after which we could apply the above result.

2.3.4 Proofs of the combinatorial lemmas

In this section we prove the two lemmas of Section 2.3.1. We begin with
the second lemma, which is more interesting. Our proofs make use of the following

trivial result:
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Lemma 39. Given f(z) = x4+ YLy bix' € Z[bo, by, ..., b4][z]. For any k > 0, any
term cxP Ty b3 in f*(x) — x in which Yisp@i >0, < p—1, and ap < p—1,

must have ¢ divisible by p.

Proof. The result is clear for k& = 0; now induct on k. Each relevant term of f°% =
F(fo*=1) arises from some monomials of f°*~1) by using some (nonconstant) term of
[, namely either byz® for some s > 2 or (1+b1)z. In either case, each of our inductive
hypotheses applies to the involved monomials of fo*~1)  except for the hypothesis
that 37,5, a; > 0; let us refer to this last hypothesis as Hypothesis S. If we use the
term (1 + by)x, or a term bsx® with s < p, then one of these involved monomials
must satisfy Hypothesis S, and consequently must vanish modulo p, so also does the
resulting term of f°*. If we use a term b,z® with s > p, then the resulting term of f°*
is divisible by a multinomial coefficient (*5*), any such coefficient vanishes (mod p)
unless one of the *’s is at least p, in which case our term is divisible by the p* power
of some monomial in f°*~1). But any such monomial is divisible by either by or z, so

either ag > p or # > p, a contradiction. This completes the proof. m

Now we give the proofs for the two parts of Lemma 30. We will use the
following notation: g(x) € F,[bo, b1, ..., b4][z] is the reduction of f°® modulo p. Then
the coefficient of z” in g(z) — x is a sum of terms c- [, b3, where ag, aq,...,aq >0

and ¢ € F, is nonzero. It is convenient to set o; = 0 for z > d.
Lemma 40. For 0 < 8 < p—1, we have Y720 o; > p.

Proof. By Lemma 39, we only need to consider monomials in which 37,5, a; = 0. In
the ring S = F,[bo, b1, ..., b,—1], let m be the ideal (by, b1,...,b,_1), and let R be the
ring S/m?. Let A = R[z]/(2?). Then A contains the element y = x 4+ Y02, b;a’,
and (in A) we have y* = 0. Define an R-module homomorphism o : A — A by
o:x—y. Since A is a free R-module of rank p, we may view ¢ as a matrix over R,
i.e. 0 € M,y,(R) (here we choose the basis {1, z,z% ..., 2P7'} for A). Write 0 = 1+e¢,
where 1 denotes the identity matrix and € € M,,,(R). Since y — z € m[z], we have

€ € Myy,(m). Thus, 0? —1 = €’ € M,y,(m?), which is what we are trying to prove. m

Lemma 41. For 0 < 3 <p—1 and p odd, we have 2a9 + a1 > p — 1.
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Proof. (due to Lenstra) Here we let R = F,[bg, by, ..., bs]/mP~1/2 where m = (by, b?).
Let o : R[z] — R[z] be the R-algebra homomorphism defined by o : & +— 2+ % b;z".
Then oP(z) = = + 350 c;z', where the ¢; € R are almost all zero. The lemma is
equivalent to the assertion that ¢; = 0 for 0 <4 < p — 1. Now, since b = 0, we have
o(z?) = (x + Zbixi)p =P 4+ by + Z Wx'? € (zP),
i>1

so o induces a map & : R[z]/(z?) — R[z]/(z?). The lemma is equivalent to the
assertion that &? is the identity.

Consider the homomorphism F,[bg, b] — F,[u, b]/(07") defined by by —
ub? and by — by; its kernel is (bg, b2)P~1/2. Thus,

R = (F,[bo, bi]/(bo, b3)7772) [by, bs, ..., ba] = R = (Fy[u, bs]/(57")) [bas bs, .. ., bal.

Next, since by is not a zero divisor in R’, we may adjoin b; "' to R’, to make S = R'[b;'].
As above, we have a map o : S[z] — S[z] which induces & : S[z]/(z?) — S[z]/(z?),
and it suffices to show that &? is the identity.

Consider the polynomial ¢(T) = b+ b,T+---+b, TP~ € S[T]. Since b; is
nilpotent, by = ub?, and by is a unit, we conclude from the theory of Newton polygons
that there is a factor b, 4+ b7 + T of g in S[T] for which ) € (b?) and b} € (b;). Say
by = b?co and b, = bycy; since T? + ¢, T + ¢y is monic, we may adjoin to S a root 7 of
this polynomial, to get S* = S[y]. Then § = by is a root of b + b, T + T?, and hence
of g. Now put y = z — 8, so y? = 2P — b{~? = 0. Then S’[z"]/(x”) has an S’-basis
Ly,...,y?~'. We have

p—1 )
cy=cx—6 = y+ > bi(y+0)
=0
p—1 ) p—1 '
= Y bty (L4 ibis ) +y*(...)
=0

=1

= y-(I+a+y*-(..),

where we have used the fact that g(6) = 0 and we define ¢ = 02 ib;6'"! € S’. Thus,

=

& acts on our S’-basis as a triangular matrix with diagonal entries 1,(1 + €), (1 +
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€)% ...,(1+¢)P " Since € € (b1,8) = (b1), we know e#~! = 0. Now, in the ring F,[v],

we have .
b » 1 P_1
S (1 4v) = d+o)r-1 -
=0 v

so, upon substituting v = €, we find that Ef:_(}(l + €)' = 0. Thus, we have a ring
homomorphism Z = Z[c]/(1 + ¢+ -+ + ¢*7') — S’ defined by ¢ — 1 + €. Since
7 = Z[e*™/?] by the map ¢ — €*™/?, in Z[z] we have [[' (z — ¢!) = z¥ — 1. Hence,
in S'[z] we have [["2; (2 — (1 + €)*) = 2” — 1, so the characteristic polynomial of the
matrix corresponding to & is just z¥ — 1, whence (by the Cayley-Hamilton theorem)

&P is the identity. This completes the proof. m

Finally, we prove a result of which Lemma 29 is a special case.

Lemma 42. Lel f(z) = x + XL, bz’ € Zlbo, by, ..., b4)[x] be a generic polynomial;
let f°%(z) be the k™ iterate of f, for k > 0. The coefficient of ° in f°*(z)—z is a poly-
nomial in by, by, ..., by; thus, il is a sum of terms c-[[1_, b3, where ap, ay,...,ag >0

and ¢ is a nonzero integer. Then

(1) Tizoli = i = — 1

(2) If B < k —1, then ap + 52 o > 1 except for the monomials (ﬁ)b‘{x (for
1<t<k).

(3) If B =0, then ag > 1; in fact, ag > 2 except for the monomials (zﬁ)bob{ (for
0<l<k-1).

(4) If B =1, then ap+ a7 > 1.

Proof. For any sequence a = (g, a1, @z, ..., a4) of nonnegative integers, let S(a) =
ap 4+ 2%, a,. We associate to a the monomial b3°...55% Then the only nonzero

monomials in f°*(z) — x having S = 0 are those arising from

k

(1+ bl)k:r: —r = E (E)b‘ix;

=1
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for all other monomials we have S > 1. We now show that much of the lemma follows

from part (1). fap=az=as=---=a_1 =0 and S > 1, then by (1) we have
d d
B—1=>(i—Da;=> (k—1a; > k—1,
1=0 i=k

so 3 > k; thus, (2) follows from (1). Similarly, the first part of (3) follows from (1),
and (4) follows from (1). So we have only to prove (1) and the second part of (3).

We prove each of these assertions by induction on S. They are both true for

S =0. For S =1 the only term is

k-1 k-1

oY (1+6) 1 = D (a+by)

k

for which the assertions hold. For S > 1, both statements are vacuously true for
k = 0; now induct on k. Each term of f°*F = f(fo(k_l)) arises from some monomials
of fo*=1) by using some (nonconstant) term of f, namely either b,z* for some s > 2
or (1 4 by)z (the term by is irrelevant, since S > 1). In either case, our inductive
hypotheses apply to the involved monomials of fo*=1) since their S values are no
larger than the present S. For bsz® we have

Z(z Do, = (s—1)+ Z Z(z — Doy

involved
monomials

= (s—=1)+ Z (degree — 1)

involved
monomials

= (- (B-5)=p-1L
And if 3 = 0, every involved monomial has ag > 1, so we have ag > s > 2. Next
for (1 + by)z, there is a unique involved monomial of Fot=1 which has the same
value of 9, so each of our assertions follows from the corresponding assertion for this

monomial. This completes the proof. m
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2.4 Power series over complete local rings

We will now show that the results above for polynomials over a local ring
remain true for power series over a complete (Noetherian) local ring. The above
arguments basically work for power series as well as polynomials, but one must use
extreme care when composing power series to make sure that the formal composite of
two power series is actually the same function as the composition of the two functions
involved.

The possible difficulties are illustrated by the following example, which I

learned from Lenstra.

Example. Let R be a complete valuation ring. Put f(z) = 2? — z and let g(z) €
R[[z]] be the formal inverse (under composition) of f(z). Thus, go f(2) = z as formal
power series. But

(9o f)(1) =1#0=g(0) =g(f(1)).
Here one can successively solve for the coeflicients of ¢ from the relation g(z*—z) = z;
alternatively, one can write down an explicit formula for them involving binomial
coefficients, if one uses the relation g(z)* — g(z) = z. Finally, ¢ will always have

positive radius of convergence.

To deal with the composition of power series, we cite the following result

from [20, page 120].

Fact. Let K be a complete nonarchimedean field, and let f(z) =3 a,z™ and g(z) =
Y b,x™ be formal power series over K. Suppose that 3~ b,y" converges for a spe-
cific y € K. Put 7 = maX,» |bs||y]", and assume lim,_ |a,|7™ = 0. Define
Cm = 2%, a, b, where bW = ¥ biy...b;, and B = 1. Then h(z) =

n=0 InOp" J14etin=m
Yoo Cma™ (the formal composition of f and g) converges at y, and satisfies

Using this fact, one can indeed verify that the arguments for polynomials
also apply to power series; there are a few extra points which must be checked. The

setup is as follows: f(z) € R[[z]] has a cycle (zy,...,2,) in R, where R is a complete
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Noetherian local ring with maximal ideal m and residue characteristic p. Now, first
we must verify that f defines a mapping m/m’ — m/m’ for any positive integer j (or
even, if f converges on all of R, a mapping R/m’ — R/m’). And next we must verify
that the formal iterates of the power series f define the same function as the iterates
of the function f. Other than these two points, there is no trouble in replacing the
word ‘polynomial’ by the phrase ‘power series’ in the results and proofs of section 2.1,
with the sole exception of Proposition 14 whose proof depends crucially on the fact
that f is a polynomial. For the proof of Theorem 8, and the proofs of the other results
of section 2.3, observe the following: given any f(z) = = + 3.2, b;z* € R[[z]], the
coefficient of % in fP(z) — z is a sum of terms ¢ [[32, b3, where ¢ # 0 and the «; are
nonnegative integers almost all of which are zero. If a; = 0 for ¢ > d, then this term
also occurs in the coefficient of 2 in ¢?(z) — z, where g(z) = z + X0 b;z?; since ¢ is
a polynomial, Lemmas 29 and 30 apply. Thus, the results of these two lemmas apply
to power series as well as to polynomials; since all the arguments of Sections 2.3.2 and
2.3.3 rely only on these lemmas, all the results of those sections are valid for power
series as well as for polynomials.

We now verify the two technical points mentioned above.

Claim. Let D C R be the domain of convergence of f, so either D =m or D = R.
Then f defines a mapping D/m/ — D/wm’, for any j > 1, and also f defines a
mapping D — D.

Proof. First note that if D = m, then f(0) € m, for otherwise f would map any
element of m outside m, so [ could not have a cycle. Now, say f(z) = 2, fiz’;
then f: D — D, and for any j there is some r such that f(y) = >/, fiy* (mod m’)
for all y € D. Thus, for any j, since the polynomial >°/_, f;z; defines a mapping
D/m/ — D/m, also f defines a mapping D/m? — D/m/. m

Claim. Let D be the domain of convergence of f. For any posilive inleger j, the j™*
formal iterate of f and the ;™ ilerate of the function f : D — D agree as funclions
on D.
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Proof. This follows by induction from the above fact, since if f?~! has this property
then also does f/ = fi~'of. m

From the above, we get (for instance) the following translation of Corollary 4

and Theorem 8.

Theorem 43. Let R be a complete Noetherian local ring with mazimal ideal m and
residue characteristic p, let f(x) € R[[z]], and suppose there is a cycle (x1,...,2m)
of f in R. Let k be the length of the projected cycle in R/m and let v be the order
of (f¥)'(x1) in (R/m)* (put r = 0 if (f*)(x1) € m). Then we have either m = k,
m = kr, or, if p > 0, m = krp", where (if R has characteristic zero) the positive
integer n satisfies n < 1+41log(2¢/(p — 1))/ log p, and moreover n < 1+loge/log?2 if
p=2.

2.5 Rational functions and rational maps

In this section we generalize the idea of Proposition 14 to show that our
results apply to a more general class of rational functions than just polynomials. We

begin with a straightforward generalization.

Proposition 44. Let h(z) = f(z)/g(x) be a rational function over a ring R, where
f.g € R[z]. Let 0 = (x1,...,2,) be a cycle of h in R, and assume that every g(z;)

is a unit in R. Then there is a polynomial over R having the cycle o.
Our proof relies on the following lemma.

Lemma 45. If S s a finite set of units in a ring R, then there is a polynomial
Ys(x) € R[z] such that Ys(a) = 1/a for each a € S.

Proof. Define tg to be the polynomial for which [],c5(1 — 2/a) = 1 — 2tpg(z). Then
Ys(a) =1/a for each a € S. =

Proof of Proposition /4. For S = {g(z1),...,9(xm)}, note that f(z)- ¢s(g(z)) has

the cycle o. =
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Thus, any cycle which occurs for a rational function with the special property of the
proposition, also occurs for a polynomial; so our results which depend only on the
particular cycle (and not on the corresonding polynomial) apply in the setting of the
proposition. Thus, Propositions 10 and 12, Theorems 13 and 37, and Corollary 38
remain valid when we generalize their hypotheses from polynomials to rational func-
tions satisfying the condition of the above proposition. In fact, we will see that most

of our other results apply as well to rational functions as in the above proposition.

Lemma 46. Let 6 be a polynomial satisfying the conclusion of Proposition 4/, let 1
be a proper ideal of R containing all the zero-divisors, and let k be the length of the
projected cycle in R/I. If m >k, then (h*)(z1) = (6%)(z1) (mod I).

This lemma implies that Proposition 1, its corollaries, and Theorems 8 and 36 remain
valid when their hypotheses are generalized from polynomials to rational functions
satisfying the condition of the above proposition, since the conclusions of those results
depend only on the cycle and on the image of (f*)'(z;) in R/I (and all of these results

certainly hold in the more general context in case m = k).

Proof of Lemma 46. We first show that, for any two polynomials 6,4 € R[z] having
the same cycle (y1,...,y¢) (with £ > 1) which lies in the coset z1 + I of R, we have
6'(11) = ¥'(y1) (mod I). Hereys—ys = 6(y2)—6(y1) = (y2—u1)6'(y1) (mod (yz—y1)2)§
the same holds for 7, so (y2—y1)(8'(y1) —=7'(y1)) € (y2—y1)?, whence (y2—y1)(8'(y1) —
v (y1) — (y2 — y1)d) = 0 for some d € R. Since I contains all the zero-divisors of R,
we have (8'(y1) — v (y1) — (y2 — y1)d) € I, so also (6'(y1) —~'(y1)) € I, as desired.
We apply this to the polynomials &, where § = #* and ~ is a poly-
nomial which has the same cycle (1, g41, Tokt1,. .., Tm—ks+1) as does h*. Thus,
it suffices to show that (A*)(z1) = +'(z1) (mod I). Note that h* = r/s, where
r,s € Rlz] and each s§'(zp41) € R*. Here v(z) = r(z) - ¥s(s(x)), where S =

{s(z1),s(xp41)s- -5 8(Tm_ps1)}. Since [[,es(l — /) =1 — ztpg(x), we have

—sCany(stan) — s(ote) = e T (100,

S(Il) aZs(z1) @
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so, from s(z1) = s(xy41) (mod I) we conclude that ¢5(s(z1)) = —1/s(z1)* (mod 7).
Thus ~'(21) = r'(21)/s(x1) — r(x1)/s(x1)* (mod I), and this last expression is just
(h*)'(x1), completing the proof. m

We now extend the above results to a broader class of rational functions.
The verification itself is easy, the main difficulty lies in finding the right definition;
we thank Silverman [23] for his help in discovering this definition. In [14] Morton
and Silverman gave a related definition, and thus studied a somewhat smaller class
of rational functions; in this section we follow the development of that paper when
possible. It is interesting to note that the methods Morton and Silverman use to derive
results similar to ours, namely methods of algebraic geometry, seem quite unrelated
to our methods.

For the remainder of this section, R is a domain, K its fraction field, p is
a prime ideal of R, and k is the fraction field of the domain R/p. By R, we mean
the localization of R at the prime p: so k = Rp/pR,. Finally, ¢ denotes a rational
function ¢ : PY(K) — P'(K) of degree d > 1 defined over K; that is, a pair of coprime

homogeneous polynomials in K[X, Y] of degree d.

Definition. The rational map ¢ : P'(K) — P'(K) has good reduction with respect
to p at the element [zq : yo] of P!(K) (where we assume zq,y0 € R, are not both in
pR,) if there exist homogeneous polynomials ¢, ¢, € Rylz,y], of the same degree,
such that the map ¢ is given by

o[z : y]) = o1z, 9) : dalz, )],

and the maps ¢, ¢s : A?(k) — A'(k), gotten by reducing the coefficients of ¢; and
¢ modulo pRy, do not have (%, yo) as a common root (for a € Ry, we let @ denote

the image of a in R, /pRy).

In [14] rational maps were considered which have good reduction with respect to p
at all points of P'(K'); we will see that one only needs good reduction at all points of

whatever cycle is under consideration.
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Lemma 47. If ¢ has good reduction with respect to p al [z : yo| and v has good
reduction with respect to p at [z1 : y1] = é([xo : yo]), then o ¢ has good reduction
with respect to p al [zg : yo).

Proof of Lemma /6. We have ¢1, g, 11,12 as in the definition. Put X = ¢1(z0, y0)
and Y = ¢&,(z0,y0); by hypothesis, at most one of X and Y is in the ideal pR,.
Similarly, Z = vy(x1,y1) and W = ty(z1,91) are not both in pR,. so z; and y, are
not both in pR,. Since [z1 : y1] = ¢([zo : yo]) = [X : Y], we have X = uz; and
Y = uy; for some nonzero u € K; but since each of (z1,y;) and (X,Y) isin Ry X R,
but not in pRy X pRy, we must have u € R}.

Let d' be the degree of ©. Then v1 = ¢1(¢1(x,y), Pa(z,y)) and v =
Yo(o1(z,y), d2(x,y)) are homogeneous polynomials in Rylz,y] of degree dd’, and
vod([z:y]) = [n(z,y) : 1a(z,y)]. Since y (o, y0) = 1 (X, V) = u¥thy (z1,51) = ' Z
and similarly ~,(zo,y0) = u® W, either v (o, yo) or ¥2(zo,y0) is in Ry, s0 (20, y0) is

not a common root of 4; and 3,. This completes the proof. m

Corollary 48. If ¢ has good reduction with respect to p at all points of a finite cycle
of ¢ in PY(K), then the same is true for any iterate of ¢.

Corollary 49. If ¢ has good reduction with respect to p al [xg : yol, then 1o o1 has
good reduction with respect to p at [yo : xo]. Here v =1y/x.

We give one more definition before stating the main result of this section: if
Y : P! — P! is a rational map which fixes the point P, then 1 induces a linear map

on the cotangent space of P! at P,
U5 Qp(PY) — Qp(P).

This cotangent space is one dimensional, so the map is multiplication by a scalar.
We denote this scalar by ¢'(P) and call it the derivative of v at P. Note that
this definition agrees with the usual definition of derivative of a rational function
(z) € K(z) whenever P # oo.

Now we give the main result of this section.
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Theorem 50. Let K be a nonarchimedean field and let p be the maximal ideal of
the valuation ring of K, suppose that the residue class field « has characteristic p,
and that e is the ramification index. Let ¢ : P! — P! be a rational map of degree
at least two defined over K, and suppose there is a cycle of ¢ in PY(K), of length
m, consisting of points at which ¢ has good reduction with respect to p. Let k be the
length of the projected cycle in P'(x), and let r be the order of(;{k)'(]a) in k*, for any
point P in the cycle (if (576)’(15) =0 then r =0.) Then either m =k, m = kr, or, if
p >0, m = krp", where, if K has characteristic zero, the posilive inleger n salisfies

n <1+ log(2e/(p—1))/logp and moreover n < 1+ loge/log?2 if p = 2.

Proof of Lemma 46. We may assume that some point P in the cycle lies in the val-
uation ring R of K: for, otherwise we simply conjugate ¢ by the reciprocal map
v [z,y] — [y, z]; the new map has a cycle consisting of the reciprocals of the ele-
ments of the original cycle, and the new map has good reduction at all points of the
new cycle by Corollary 49. Thus, the k'! iterate of ¢ has P as a fixed point mod p;
we will consider the cycle of length m/k consisting of all points of the original cycle
which are congruent mod p to the point P. This cycle of length m/k lies in R; since
#* has good reduction with respect to p at all points of this cycle, the denominator
of ¢*, evaluated at any point of the cycle, must be a unit in R. Thus, we are in the

situation described in Proposition 44. This completes the proof. m

A weaker result has been shown by Morton and Silverman [14, Thm.1.1]; their result
differs from ours in that they do not bound n, and they require the additional hy-
pothesis that ¢ has good reduction everywhere. Their proof relies on the calculation
of multiplicities in certain divisors in [13], and is entirely different from ours.

The proof of the theorem amounts to reducing to the simpler setting of
Proposition 44; previously we noted that several of our results for polynomials hold
as well for rational functions satisfying the conditions of that proposition. Thus the
same is true for rational functions with good reduction. Namely, Propositions 10
and 12, Theorems 13, 36 and 37, and Corollary 38 remain valid if we extend their
hypotheses to cover not just polynomials but rational functions with good reduction

on the relevant cycle.
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2.6 Examples

We conclude this chapter by giving several examples. We begin by dis-
cussing p-cycles in the maximal ideal. Here R is a discrete valuation ring of residue
characteristic p, and m is the maximal ideal of R. One simple type of p-cycle is

(0,6,2b,...,(p— 1)b), where b € m (b # 0). This is a cycle for the polynomial

p =

which has coefficients in R whenever (p—2)ordy(b) < e = ordyu(p). Thus, there exists
some such b precisely when p < e + 2.

We now give several examples demonstrating that Theorem 8 is best pos-
sible, at least when p or e is small. Suppose R is a discrete valuation ring of mixed
characteristic, and let 7 be a uniformizer. If e = 1, Theorem 8 implies there is no
p-cycle in m unless p < 3, in which case there is no p?-cycle in m. If ¢ = 1 and
p < 3 then the previous example provides polynomials over R having p-cycles in R.
If e = 2, Theorem 8 implies there is no p-cycle in m unless p < 5. in which case there
is no p*-cycle unless p = 2, in which case there is no p*-cycle. Again, each of the
remaining possibilities does occur. For instance,

— 4w —wlr A+ e +An el + 372 — Pt — 223
(=1+7) 2 (1 +nx)
is in R when p = 2 and e = 2, and has the cycle (0,7, 7% 7 + x%). And, if % = 5,

f(z) =

then the polynomial

f(2) (6x* + 4002> + 78122 + 2737z — 50) + 7(—92* — 642> — 8902* — 501z + 62)
) =
62 — 107

has the cycle (0,7,27,5 4+ 3%, —5 + 4x). Moreover, the following is true, although

our proof is not too pleasant: if p =5 and e = 2 and 5/7?% is a square in R/m, then
there is a polynomial over R having a 5-cycle in m. Further, if p =5 and e = 2 and
#(R/m) = 5, then there only exists a polynomial with a 5-cycle if 5/72 is a square
in R/m, and in this case, if the cycleis (0,7, ax, br,cx), then m contains a — 2, b — 3,
and ¢ — 4. It would be nice to have an intuitive explanation for these strange facts.

We give our (non-intuitive) proof below.
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If there exists a polynomial over R having a 5-cycle in m, then there exists
a polynomial over R, of degree at most 4, having a 5-cycle in m of the form ¢ =
(0,7, am,br,ex). 1t is also necessary that 0,1,a,b, ¢ all be distinct (mod m); we will
assume that, in some order, a,b, ¢ are congruent to 2,3,4 (mod m). The Lagrange
interpolation formula is a formula for the unique polynomial over K (the fraction field
of R) which has the cycle 0. When we write out this formula we find that the constant
term and the coefficient of z are already in R. The coefficient of 2% is in R if and only
if the ordered triple (a,b,¢) (mod m) is either (2,3,4) or (4,3,2). If the coefficient
of % is in R, then (a,b,¢) = (4,3,2) (mod m); and if « = 2 + Awx, b = 3 + Bn, and
¢ =4+ Cr, then the coefficient of 2° is in R if and only if A + B + C' € m. Finally,
if the previous coefficients are in R, then the coefficient of z* is in R if and only if
(A—2B)* = —5/7* =5/7? (mod m), which has a solution (A, B) if and only if 5/7>
is a square in R/m.

Russo and Walde in [24, Theorems 7,8] describe the 2-adic periodic points
of a polynomial z? + ¢ € Zy[z]. We give a generalization of their results, along the

lines of [14, Corollary 1.2].

Proposition 51. Let R be a discrele valuation ring having finite residue field k of
size q and characteristic p, and let f(x) = S aiz? € R[x]. Put a = f(0) and
b= f(1) — f(0), and let r be the multiplicative order of a in k* (put r =0 if a € m).
Let a € R be a periodic point for f of period m. Then

1 fa—1lemandbem
p ifa—lemandbdgm
1 ifa—1dmand a+b/(a—1)€Em
roifa—1¢gmand a+b/(a—1)¢m.

Proof of Lemma 46. Let k be the length of the projected cycle modulo the maximal
ideal m of R; then f*(x) is a polynomial in z?, so (f*)'(a) € m. By Proposition 4,
this implies that m = k.

Since z? = z for any z in the residue field k = R/m, we see that [ acts

as a linear map on k, mapping = — f(0) + (f(1) — f(0))z. Put b = f(0) and
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a = f(1) — f(0); then the ¢*! iterate of f|, is given by
fi(x) :agzz;—l—b(l—l—a—l—---—l—ag_l);

thus,
fg(w)_wz{ﬁb ?fazl
(a£—1)<x—|—ﬁ) ifa##1.
Now we simply consider each of the various cases. If ¢ = 1 (mod m) then
f(a) —a € mif and only if £b € m, so k, the least such £, is either 1 (if 6 € m) or p. If
a# 1 (mod m) then k is the least positive integer for which (a* — 1) (a + afl) €m;
thus, k is either 1 (ifa+b/(a —1) Em)orr. =

We remark that the reason one can get such a precise result is that the
polynomials considered in this proposition have the property that all of their p-adic
cycles are attracting. Of course, this is not generally true for polynomials over a

discrete valuation ring; moreover, this is in marked contrast to the situation over C.
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Chapter 3

Non-archimedean dynamical

systems

In its most general incarnation, a dynamical system is a function f from a
set to itself. Omne is interested in the behavior of points of the set under repeated
application of f. In particular, the basic object of study is the orbit {f"(x) : n > 0},
where z is a point in the set and f" denotes the n'! iterate of f. In this generality,
one of the only ways to distinguish different orbits is to compare their sizes; so it is
natural to pay special attention to the finite orbits. This is what we have done in the
previous chapter, in case the dynamical system is a polynomial mapping of a ring,
or a power series over a complete nonarchimedean ring, or a rational function over
a ring or a rational map on the projective line over a nonarchimedean field (in some
of these cases we are considering dynamical systems in which the function f is only
defined on some subset of the underlying set).

When the underlying set of a dynamical system is endowed with the struc-
ture of a metric space, one can ask various topological questions about an orbit. For
instance, does the orbit have limit points? Is it closed? What does it ‘look like’? The
classical dynamical systems were rational functions on the Riemann sphere; these
have been extensively studied. It is natural to ask whether the phenomena which
occur in these classical systems will also occur in other dynamical systems. We con-

centrate on the case when the underlying set of the dynamical system is endowed with
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the structure of an ultrametric space; examples of this are polynomial mappings (or
rational maps) of a ring with a prescribed ideal, power series over a complete nonar-
chimedean ring, and rational maps on the projective line over a nonarchimedean field.
In the past few years various aspects of these ‘nonarchimedean’ dynamical systems
have been studied. In this chapter we summarize the present state of this theory,
incorporating the results of several unpublished investigations. One common theme
in the classical theory is that the finite orbits determine the dynamical behavior to a
surprisingly large extent; to date this seems to be true to an even greater extent in
the nonarchimedean case, but it could be that this perception will change as the field

of nonarchimedean dynamics matures.

3.1 Local dynamics

Let K be a complete nonarchimedean field, and let f(z) = Y22, a;z° be a
power series over K having no constant term. Supposing that f has nonzero radius of
convergence, f defines a mapping from its domain of convergence into K. We would
like to understand the dynamics of this mapping “near” the fixed point 0. To do this,
we attempt to find simple maps with especially transparent dynamics, such as linear
polynomials, which have the same behavior in some small neighborhood of 0 as does
f. We also attempt to make this neighborhood as large as possible. It is not hard to
show that these results imply corresponding results for the dynamics of an analytic

mapping sufficiently close to any finite orbit.

3.1.1 Background

This problem has long been studied when K is a field complete with respect
an archimedean (rather than nonarchimedean) valuation. In the nonarchimedean case
it turns out that, if the linear coefficient a; is neither 0 nor a root of unity, and K has
characteristic zero, then f is locally conjugate (near 0) to its derivative 9 (z) = aqz.
This 1s not generally true in the archimedean case, and the difficulty there has become

known as the problem of “small divisors”. We now briefly review the situation in the
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archimedean case. First, it is a simple matter to show that, when a; is neither 0 nor
a root of unity, there is a unique formal power series L(z) = z + 322, u;z* for which
f(L(z)) = L(aiz). This equation is known as the Schréder functional equation .
Since the formal solution is unique, the question of the existence of a local conjugacy
amounts to asking whether [ has a positive radius of convergence. If |a;| < 1, the
convergence is easily established. Likewise, if |a1| > 1 we can linearize on the other
side by considering the inverse map. But the set of a; with |a;] = 1 and a; not a
root of unity, for which there is a holomorphic function f(z) = 3.2, a;z* whose series
L diverges, forms a dense subset of the unit circle |z| = 1. Siegel became the first
to overcome a small divisors problem, when he showed that if a; on the unit circle
satisfies a certain diophantine condition, then L converges. His delicate estimation
technique of the series L (Cauchy majorants) did not apply to many other instances
of a small divisors problem. Subsequently, much more powerful estimation techniques
were developed; Zehnder applied one of these powerful iteration techniques to recover
Siegel’s result. Herman and Yoccoz noted that Zehnder’s proof essentially worked
for nonarchimedean fields as well; they also noticed that the diophantine condition is
satisfied when K is a nonarchimedean field of characteristic zero. However, Zehnder’s
proof, as generalized by Herman and Yoccoz, is quite difficult; also, it does not produce
an explicit lower bound on the radius of convergence of L. We have discovered a
drastically simpler proof of the result of Herman and Yoccoz; moreover, our proof
gives an explicit lower bound on the radius of convergence of L. Finally, one should
consider the case when L does not converge (for instance, when a; is 0 or a root of
unity), and attempt to produce some simple map (with easily describable dynamics)

other than ayz to which f is conjugate in this case. This has not yet been done.

3.1.2 Local conjugacy

We would like to state our result on convergence of L. First we need some
background on power series over a complete nonarchimedean field. For any complete
nonarchimedean field K, by |- | we denote the valuation on K; by B(r) we denote the

‘open’ ball around 0 of radius r, namely {z : |z| < r}. Let f(z) =32, a;a' € K|[[z]]
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be a power series over K having no constant term. The radius of convergence of f is

r=-——--

1
lim sup \/|a;| '

Define

C=C(f) = sup /]ai

1>2
D = D(f) = Sl>1p i_\l/ |Cli/£ll| if aq 7£ 0.
122

If r > 0, it follows at once that ' < oo and D < oco. The quantities C' and D play
a key role in our study of the local conjugacy problem. Our next result, and the
discussion which follows, illustrates the geometric significance of C'. Before stating
this result we observe that the set of formal power series without constant term over
a field K is a group under composition; we call the inverse of an element of this group

its ‘formal inverse’.

Claim. If |a;| = 1, then the formal inverse g(x) = S22, bx* of f satisfies || = 1
and C(g) = C(f).

Again suppose |a;| = 1. Then for |z| < 1/C we have |a;z'| < C*7Yz|' =
|z|(C|z|)* — 0 as ¢ — oo, so f converges on B(1/C); moreover, f : B(1/C) —
B(1/C). The above Claim implies that the formal inverse g of f also maps B(1/C)
to itself. Our hypotheses ensure that f(g(z)) = g(f(x)) = x whenever x € B(1/C),
so f and g are inverse bijections on B(1/C). Moreover, it is easy to see that they are
isometries of this ball.

We now turn to the problem of local conjugacy, first solving it formally.

Proposition 52. For any f(z) = Y2, a;x’ € K|[z]], where K is a field, if a; is
neither 0 nor a root of unity then there is a unique L(z) = Y52, biz' € K|[[z]] with
by =1 such that o L = Lo f formally, where ¢(z) = a;x.

The proof amounts to simply writing out the functional equation and successively
solving for the various coefficients b;.
We study the convergence of L by estimating C'(L). We now present our

explicit result.
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Theorem 53. Keep the notation and hypotheses from the previous result, adding the

assumption that K is complete with respect to a nonarchimedean valuation. Then
(1) If 0 < |a1| < 1 then C(L) < C(f)/|a].
(2) If lar] > 1 then C(L) < D(f)/|an].
(3) If la1| = 1 but ay is not a root of unity in the residue field then C(L) < C(f).

(4) Now suppose ay is a primitive ("™ root of unity in the residue field, and let p

denote the residue characteristic. Put § = |a% —1|.
(4a) If p =0 then C(L) < C(f)/0M".
(4b) Now suppose that p > 0 and K has characteristic zero.

(401) If 0" < [p|t/P=t < 0°"7" for some I > 1, or if the leftmost inequality holds for
1 =0, then

=1 1 N1/t
c(L) < e (077 e )

I—-1

(4b2) If 07~ = |p|'/*=" for some I > 1 then for ¢ = |a€p1 — 1| we have

p=1 ;o1 \1/¢
c(ry < o)/ (077 6 e )

Our proof is quite straightforward. We merely use the recursive formulas

for the b; derived in the proof of Proposition 52 to inductively bound |b;].

3.1.3 Dynamics near a periodic point

The above results show that, if f(z) = 322, a;2' € K|[[z]] has a; being
neither zero nor a root of unity, then in a certain explicit neighborhood of the fixed
point 0 the dynamics of the map f are the same (isometrically) as the dynamics of
the map ayz. Thus to understand the dynamics near the fixed point 0 one need only
understand the corresponding dynamics for the simple map a;z. These dynamics are
completely transparent; the upshot is that the local dynamics in the nonarchimedean

case are very rigid.
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3.2 Global dynamics

Further away from a periodic point the dynamics are more difficult to de-
scribe. Little successful work has been done on this problem. An approach which
seems fruitful is based on our technique for controlling cycle lengths in Chapter 2. For
simplicity we describe this in the case of polynomial mappings of a ring R together
with an ideal I of R. The approach is based on considering the relationships between
the images of an orbit in the various rings R/I™. Again the situation is quite rigid.
For example, consider the simple case R = Z,, and [ = pZ,: let T' be the projection
in R/I" of some orbit in R of a polynomial f(z) € R[z]. Then the projection of this
orbit in R/I™*" is contained in the preimage of T in this ring; if these two sets are
equal, then the projection of the orbit in R/I"*? equals the preimage of T in this ring,
and so on. It follows that the closure of the orbit is a closed ball in the metric space R;
thus, from a fairly innocuous condition one can conclude precise global information
about the orbit. The situation for general discrete valuation rings is similar, though
quite a bit more complicated due to the presence of wild ramification. Still, using
arguments like those in Chapter 2, one can prove various results in this setting.

The situation is vastly more complicated when one considers polynomial
mappings of a nonarchimedean field. Here one can even get behavior which would
technically be called ‘chaotic’. This brings to mind an analogy with archimedean
dynamics, namely the Fatou and Julia sets. For a given rational mapping of the
Riemann sphere, the sphere can be written as the disjoint union of two subsets,
on one of which the dynamics is not too complicated (the Fatou set) and on the
other of which the dynamics is often very complicated and even chaotic. Perhaps
for polynomial mappings of the valuation ring of a nonarchimedean field, the ring
should be viewed as a subset of a sort of Fatou set. In the classical case the Julia set
is the closure of the set of repelling periodic points (a repelling periodic point of a
map [ is a point z lying in a cycle of length n and satisfying |(f")(z)| > 1). In our
nonarchimedean setting it is in fact true that a polynomial over the valuation ring of
a nonarchimedean field has no repelling periodic points in the valuation ring (since

ly| <1 for all points y in the valuation ring), so perhaps this is evidence supporting
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our speculative analogy.

3.3 Further work and ruminations

In this section we very briefly describe the other work that has been done
on nonarchimedean dynamics. First there is Lubin’s approach to nonarchimedean
dynamical systems, based on his paper [11] which lays out the basic tools to be used
in future investigations. This approach has the flavor of formal group theory. Lubin
carefully studies the linearizing map L as in Proposition 52, which may also be viewed
as the logarithm of the formal group F(z,y) = L™'(L(z)+ L(y)) (the original map f
is an automorphism of this formal group). He shows how one can learn much about
the dynamics of f by considering properties of the logarithm [ and of a related object
which he calls the ‘Lie logarithm’. As an easy consequence of this approach, one can
produce a simple proof of Sen’s theorem on ramification in local fields [10].

One can also study a sort of ‘arithmetic dynamics’, namely dynamical sys-
tems on a number field (especially those coming from polynomials or rational func-
tions). By passing to the completion at a nonarchimedean valuation, one can apply
the various results from the nonarchimedean case to the arithmetic case. There are
new phenomena in the arithmetic case, though, so a global approach is required.
Preliminary work in this direction has been done by Call, Morton, and Silverman
among others. Here there are various conjectures which seem to be quite far out of
reach. Foremost among these is the Uniform Boundedness Conjecture of Morton and
Silverman [13], which is a quite general conjecture motivated by the corresponding
conjecture for torsion on abelian varieties. In the simplest case this conjecture as-
serts the existence of a number N such that no quadratic polynomial over Q has a
cycle in @ of length exceeding N (the existing evidence suggests that one can even
take N = 3.) But even in this simple case, a proof of the conjecture would be an
outstanding achievement: Morton has shown that no quadratic polynomial over Q
has a 4-cycle in Q, and now Flynn, Poonen and Schaefer have found an excellent but
difficult proof that there are no 5-cycles either. Even the nonexistence of 6-cycles

seems beyond the reach of known methods.



CHAPTER 3. NON-ARCHIMEDEAN DYNAMICAL SYSTEMS 49

An exciting feature of these arithmetic dynamical systems is their connection
with units in a number field. Narkiewicz noticed that from a cycle of a polynomial in
a ring, one can produce several units (a special case of our results in Section 2.2). This
observation was generalized to rational maps by Morton and Silverman [13], who also
gave a method for using two cycles of coprime lengths to produce many more units.
Morton and Silverman call these units ‘dynamical units’. Given a number field K, by
adjoining the elements of a cycle (of a rational map) we construct a field extension
containing various dynamical units. Since the Galois action on the units is simple to
describe, this provides useful information about the field extension. It is unfortunate
that the dynamical units do not in general span a subgroup of finite index in the full
unit group, but even so the partial information provided by the dynamical units is
far more than one knows for arbitrary field extensions.

Finally, one can generalize to higher-dimensional maps, such as n-tuples of
polynomials (or power series) in n variables or rational maps of higher-dimensional
varieties (instead of merely the projective line). The results to date in this case are
rather preliminary. For instance, Pezda has shown that, as in the one-dimensional
case, there are various restrictions on the possible cycle lengths; but it seems there
should be many further restrictions, perhaps of a qualitatively different sort, beyond
what Pezda gives. Also one can approach the local and global dynamics using methods
similar to the ones described above; the partial results known so far suggest only that
many interesting phenomena await discovery and explanation. On a different note,
Silverman has done a bit of work on higher-dimensional arithmetic dynamics. Here
it seems one can prove precise results only for very special types of mappings. The
main example studied so far are the Hénon maps; in the classical case of complex
dynamics, these maps have been extensively studied since they have the unusual
dynamical behavior called strange attractors. Silverman [22] has derived various
arithmetic information about the cycles of the Hénon map defined over a number
field. By first studying the nonarchimedean dynamical behavior of these maps, we
have discovered a different type of arithmetic information about the cycle lengths
which, among other things, yields a bound on the cycle lengths of any specific Hénon

map. Thus, in this one case the global and local approaches provide complementary
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results.

I conclude this thesis with an invitation. Today only a handful of mathe-
maticians study nonarchimedean dynamical systems. To my mind this area is quite
broad, amenable to techniques of various different flavors, and has important applica-
tions to algebraic number theory. There is a vast supply of questions and conjectures
awaiting resolution. I hope that more mathematicians will join in the study of this

young exciting area of mathematics.
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