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1. Introduction

The first theorem about cardinal characteristics of the continuum is Cantor’s
classical result [37] that the cardinality ¢ = 2%° of the continuum is strictly
larger than the cardinality Ng of a countably infinite set. The distinction
between Ny and ¢ was soon put to good use, especially in real analysis, where
countable sets were shown to have many useful properties that cannot be
extended to sets of cardinality ¢. Here are a few familiar examples; more
examples are implicit throughout this chapter.

e Countably many nowhere dense sets cannot cover the real line. (The
Baire Category Theorem)

e If countably many sets each have Lebesgue measure zero then so does
their union.

e Given countably many sequences of real numbers, there is a single
sequence that eventually dominates each of the given ones.

e Let countably many bounded sequences of real numbers Sy, = (Zk,n)new
be given. There is an infinite subset A of w such that all the corre-
sponding subsequences S [ A = (Z,n)neca converge.

Each of these results becomes trivially false if the hypothesis of count-
ability is weakened to allow cardinality ¢. It is natural to ask whether the
hypothesis can be weakened at all and, if so, by how much. For which
uncountable cardinals, if any, do these results remain correct?

If the continuum hypothesis (CH) is assumed, the answer is trivial. The
results are false already for 8y because N; = ¢. But the continuum hypoth-
esis, though not refutable from the usual (ZFC) axioms of set theory, is also
not provable from them, so one can reasonably ask what happens if CH
is false. Then there are cardinals strictly between Ny and ¢, and it is not
evident whether the results cited above remain valid when “countable” is
replaced by one of these cardinals.

Not only is it not evident, but it is not decidable in ZFC. For example, it
is consistent with ZFC that ¢ = Ny and all the cited results remain correct
for Ny, but it is also consistent that ¢ = Ny and all the cited results fail for
N;. It may seem that this undecidability prevents us from saying anything
useful about extending the results above to higher cardinals. Fortunately,
though little can be said about extending any one of these results, there are
surprising and deep connections between extensions of different results. For
example, if the Lebesgue measure result quoted above remains true for a
cardinal k, then so do the results about Baire category and about eventual
domination.

A major goal of the theory of cardinal characteristics of the continuum
is to understand relationships of this sort, either by proving implications



1. Introduction 3

like the one just cited or by showing that other implications are unprovable
in ZFC. The cardinal characteristics are simply the smallest cardinals for
which various results, true for 8o, become false. (The characteristics corre-
sponding to the four results cited above are called cov(B), add(L£), b, and
s, respectively, so the implication at the end of the preceding paragraph
would be expressed by the inequalities add(£) < cov(B) and add(£) < b.)
We shall be concerned here only with results about X that are false for ¢,
so the characteristics we consider lie in the interval from X; to ¢, inclusive.

A second goal of the theory, which we touch on only briefly here, is to
find situations, in set theory or other branches of mathematics, where cardi-
nal characteristics arise naturally. Wherever a result involves a countability
hypothesis, one can ask whether it extends to some uncountable cardinals.
Quite often, one can extend it to all cardinals below some previously stud-
ied characteristic. (Of course, if the result fails for ¢, one can simply use
it to define a new characteristic, but this is of little value unless one can
relate it to more familiar characteristics or at least give a simple, combinato-
rial description of it.) Such applications are fairly common in set-theoretic
topology — notice that the two standard survey articles on cardinal char-
acteristics, [41] and [110], appeared in topology books. They are becoming
more common in other branches of mathematics as these branches come up
against set-theoretic independence results.

We digress for a moment to comment on the meaning of “continuum” in
the name of our subject. In principle, “continuum” refers to the real line
R or to an interval like [0,1] in R, regarded as a topological space. It is,
however, common practice in set theory to apply the word also to spaces
like “2, “w and [w]“. Here “X means the space of w-sequences of elements
of X, topologized as a product of discrete spaces. Thus, “2 consists of
sequences of zeros and ones; it may be identified with the power set Pw
of w. [w]” is the subspace of Pw consisting of the infinite sets. All these
spaces are equivalent for many purposes, since any two become homeomor-
phic after removal of suitable countable subsets. We remark in particular
that there is a continuous bijection from “w to [0,1), whose inverse is con-
tinuous except at dyadic rationals. This bijection, which takes the sequence
(ag,ai,...) € Yw to the number whose binary expansion is ag ones, a zero,
ai ones, a zero, ..., also behaves nicely with respect to measure. Lebesgue
measure on [0,1) corresponds to the product measure on “w obtained from
the measure on w giving each point n the measure 2~"~1. Similarly, the
obvious “binary notation” map from “2 onto [0, 1], which fails to be one-
to-one only over the dyadic rationals, makes Lebesgue measure correspond
to the product measure on “2 obtained from the uniform measure on 2. In
view of correspondences like these, we shall, without further explanation,
apply cardinal characteristics like cov(B) and add(£) to all these versions
of the continuum (with the corresponding measures), although they were
defined in terms of R (with Lebesgue measure).



Another aspect of our subject’s name also deserves a brief digression. Are
these cardinals really characteristics of the continuum, or do they depend
on more of the set-theoretic universe? Of course they depend on the class
of cardinals; a characterstic that ceases to be a cardinal in some forcing
extension will obviously cease to be a characteristic there also. So a more
reasonable question would be whether the characteristics are determined by
the continuum and the cardinals. More specifically, can cardinal character-
istics of the continuum be changed by a forcing that neither adds reals nor
collapses cardinals? Mildenberger [77] has shown that, for certain charac-
teristics, such changes are possible but only in the presence of inner models
with large cardinals.

We adopt the following standard notations for dealing with “modulo fi-
nite” notions on the natural numbers. First, V*°z means “for all but finitely
many z”; here z will always range over natural numbers, so the quantifier
is equivalent to “for all sufficiently large z.” Similarly 3°z means “for in-
finitely many x” or equivalently “there exist arbitrarily large x such that.”
Notice that these quantifiers stand in the same duality relation as simple V
and 3, namely —=V*°z is equivalent to 3*°z—. An asterisk is often used to in-
dicate a weakening from “for all” to “for all but finitely many.” In particular,
for subsets X and Y of w, we write X C* Y to mean that X is almost in-
cluded (or included modulo finite) in Y, i.e., V°z (z € X = z € Y). Sim-
ilarly, for functions f,g € “w, we write f <* g to mean V*°z (f(z) < g(z)).
We often use “almost” to mean modulo finite sets. For example, an almost
decreasing sequence of sets is one where X,,, O* X,, whenever m < n.

We use the standard abbreviations (some already mentioned above): ZFC
for Zermelo-Fraenkel set theory including the axiom of choice, CH for the
continuum hypothsis (¢ = N;), and GCH for the generalized continuum
hypothesis (2%« = R, for all cardinals R,).

2. Growth of Functions

The ordering <* on “w provides two simple but frequently useful cardinal
characteristics, the dominating and (un)bounding numbers.

2.1 Definition A family D C “w is dominating if for each f € “w there is
g € D with f <* g. The dominating number 0 is the smallest cardinality of
any dominating family, ® = min{|D| : D dominating}.

2.2 Definition A family B C “w is unbounded if there is no single f € “w
such that g <* f for all g € B. The bounding number b (sometimes called
the unbounding number) is the smallest cardinality of any unbounded family.

2.3 Remark Had we used the “everywhere” ordering (f < g if Va (f(z) <
g(z))) instead of the “almost everywhere” ordering, ® would be unchanged,



2. Growth of Functions 5

as any dominating D could be made dominating in the new sense by adding
all finite modifications of its members. But b would drop down to Ny, as
the constant functions form an unbounded family in the new sense.

Both b and ? would be unchanged if in their definitions we replaced “w
with “R or with the set of sequences from any linear ordering of cofinality
w.

The following theorem gives all the constraints on b and d that are prov-
able in ZFC.

2.4 Theorem ¥; < cof(b) = b < cof(d) <0< c.

Proof. That N; < b means that, for every countably many functions g, :
w — w, there is a single f >* all of them. Such an f is given by f(z) =
maxn<z gn (IL')

To prove that b < cof(0), let D be a dominating family of size 9, and
let it be decomposed into the union of cof(d) subfamilies D¢ of cardinalities
< 0. So there is, for each £, some f; not dominated by any g € D¢. There
can be no f dominating all the f¢, for such an f would not be dominated
by any g € D. So {fe : £ < cof(d)} is unbounded.

The proof that cof(b) = b is similar, and the rest of the theorem is
obvious. 4

Hechler [56] has shown that, if P is a partially ordered set in which
every countable subset has an upper bound, then P can consistently be
isomorphic to a cofinal subset of (“w,<*). More precisely, given any such
P, Hechler constructs a ccc forcing extension of the universe where there is
a strictly order-preserving, cofinal embedding of P into (“w, <*). (Hechler’s
proof, done soon after the invention of forcing, has been reworked, using a
more modern formulation, by Talayco in [108, Chapter 4] and by Burke in
[35].) Hechler’s result implies that the preceding theorem is optimal in the
following sense.

2.5 Theorem Assume GCH, and let b', 0, and ¢’ be any three cardinals
satisfying
Ny < cof(b') = b < cof(d') <V < ¢

and cof(c') > No. Then there is a ccc forcing extension of the universe
satisfying b=1b', 0 =0, and ¢ = ¢'.

Proof. Apply Hechler’s theorem to P = [0']<®" partially ordered by inclu-
sion. The regularity of b’ implies that any < b’ elements in P have an
upper bound, but some b’ elements (e.g., distinct singletons) do not. From
cof(d’) > b’ and GCH we get that |P| = 0'. Fewer than 0’ elements of P
cannot be cofinal, for their union (as sets) has cardinality smaller than 9.



These observations imply that b = b’ and ® = ?’ in the forcing extension
given by Hechler’s theorem. Finally, to get ¢ = ¢/, adjoin ¢’ random reals;
these will not damage b or 0, as the ground model’s “w is cofinal in the “w
of any random real extension. 4

To see that b < 0 is consistent, it is not necessary to invoke Hechler’s
theorem. The original Cohen models [39] for the negation of CH have b = 8
and 0 = ¢. In fact, if one adjoins k > N; Cohen reals (by the usual product
forcing) to any model of set theory, then the resulting model has b = ¥;
while 0 becomes at least k.

The contrary situation, that b = 0, has the following useful characteriza-
tion.

2.6 Theorem b = 0 if and only if there is a scale in “w, i.e., a dominating
family well-ordered by <*.

Proof. It D = {f¢ : £ < b} is a dominating family of size b, then we obtain
a scale {ge : £ < b} by choosing each g¢ to dominate f¢ and all previous
gy (n < £); this can be done because we need to dominate fewer than b
functions at a time.

Conversely, if there is a scale, choose one and let B be an unbounded
family of size b. By increasing each element of B if necessary, we can arrange
for B to be a subset of our scale. But then, being unbounded, it must be
cofinal in the well-ordering <* of the scale. Therefore it is a dominating
family. -

There are several alternative ways of looking at b and 0. We present two
of them here and refer to [41], [55] and [57] for others.

The first of these involves the “standard” characteristics of an ideal, de-
fined as follows.

2.7 Definition Let 7 be a proper ideal of subsets of a set X, containing
all singletons from X.

e The additivity of Z, add(Z), is the smallest number of sets in Z with
union not in 7.

e The covering number of T, cov(Z), is the smallest number of sets in
7 with union X.

e The uniformity of Z, non(7), is the smallest cardinality of any subset
of X not in 7.

e The cofinality of Z, cof(Z) is the smallest cardinality of any subset B
of 7 such that every element of 7 is a subset of an element of B. Such
a B is called a basis for 7.
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It is easy to check that both cov(Z) and non(Z) are > add(Z) and
< cof(Z). In fact, add(Z) is a lower bound for the cofinalities cof(non(Z))
and cof(cof(Z7)) also. In this chapter, Z will always be a o-ideal, so its ad-
ditivity (and therefore the other three characteristics) will be uncountable.
Furthermore, 7 will have a basis consisting of Borel sets; since there are only
¢ Borel sets, the cofinality (and therefore the other three characteristics) will
be < ¢. (That the other three characteristics are < ¢ follows already from
the simpler fact that the underlying set X is the continuum.)

The ideal relevant to the present section is the o-ideal K, generated by
the compact subsets of “w, i.e., the ideal of sets coverable by countably
many compact sets. Its connection with <* was pointed out by Rothberger
in [90].

2.8 Theorem add(K,) = non(K,) = b and cov(K,) = cof (K,) = 0.

Proof. Since a subset of the discrete space w is compact if and only if it is
finite, the Tychonoff theorem implies that a subset of “w is compact if and
only if it is closed and included in a product of finite subsets of w. There
is no loss of generality in taking the finite subsets to be initial segments, so
we find that all sets of the form

{fe“w: f<g}=]l0,9(n)]

new

are compact and every compact set is included in one of this form. It follows
that all sets of the form {f € “w : f <* g} (with <* instead of <) are in K,
and every set in X, is a subset of one of these. (The last uses that b > N;
to show that countably many bounds g for countably many compact sets
are all <* a single bound.)

This connection between K, and <* easily implies the theorem. B

Recalling that “w is homeomorphic, via continued fraction expansions,
to the space of irrational numbers R — Q (topologized as a subspace of R),
we see that the theorem remains valid if we interpret K, as the o-ideal
generated by the compact subsets of R— Q. In particular, 9 is characterized
as the minimum number of compact sets whose union is R — Q. (Here the
choice of “continuum” is important. The corresponding cardinals for the
spaces “2, [0,1], and R are clearly 1, 1, and No, respectively.)

Yet another way of looking at the ordering <* and the associated car-
dinals b and 0 involves partitions of w into finite intervals. (The earliest
reference I know for this idea is Solomon’s [102].)

2.9 Definition An interval partition is a partition of w into (infinitely
many) finite intervals I,, (n € w). We always assume that the intervals are
numbered in the natural order, so that, if 4,, is the left endpoint of I,, then



io = 0 and I, = [in,int1). We say that the interval partition {I, : n € w}
dominates another interval partition {J, : n € w} if V*°n 3k (Jy C I,,). We
write I P for the set of all interval partitions.

2.10 Theorem 0 is the smallest cardinality of any family of interval parti-
tions dominating all interval partitions. b is the smallest cardinality of any
family of interval partitions not all dominated by a single interval partition.

Proof. We prove only the first statement, as the second can be proved sim-
ilarly or deduced from the proof of the first using the duality machinery of
Section 4.

Suppose first that we have a family F of interval partitions dominating
all interval partitions. To each of the partitions {I,, = [in,int1) : 7 € w}
in F, associate the function f: w — w defined by letting f(z) be the right
endpoint of the interval after the one containing z; thus if x € I, then
f(x) = ip42 — 1. We shall show that these functions f form a dominating
family, so o < |F|. Given any g € “w, the required f dominating g is
obtained as follows. Form an interval partition {J,, = [jn,Jjnt1) : 1 € w}
such that whenever z < j, then g(x) < jny1; it is trivial to do this by
choosing the j, inductively. Let {I,, = [in,int+1) : n € w} in F dominate
this {J, : n € w}, and let f be the function associated to {I, : n € w}.
To see that g(z) < f(x) for all sufficiently large z, we chase through the
definitions as follows. Let n be the index such that = € I,, and let (since x
is sufficiently large) k¥ be an index such that J; C I,y1. Then as z < ji,
we have g(z) < jr+1 — 1 <ippe — 1 = f(z). This completes the proof that
0 < |F|.

To produce a dominating family of interval partitions of cardinality 0, we
begin with a dominating family D of cardinality 0 in “w, and we associate
to each g € D an interval partition {J, = [jn,jnt+1) : B € w} exactly
as in the preceding paragraph. To show that the resulting family of 0
interval partitions dominates all interval partitions, let an arbitrary interval
partition {I,, = [in,int1) : 1 € w} be given, associate to it an f € “w as
in the preceding paragraph, and let ¢ € D be >* f. We shall show that
the {J, : n € w} associated to this g dominates {I,, : n € w}. For any
sufficiently large n, we have f(j,) < g(jn) < jnt1 — 1. By virtue of the
definition of f, this means that the next I after the one containing j,, lies
entirely in J,. 4

3. Splitting and Homogeneity

In this section, we treat several characteristics related to the “competition”
between partitions trying to split sets and sets trying to be homogeneous
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for partitions. We begin with a combinatorial definition of a characteristic
already mentioned, from an analytic point of view, in the introduction.

3.1 Definition A set X C w splits an infinite set Y C w if both YN X and
Y — X are infinite. A splitting family is a family S of subsets of w such that
each infinite Y C w is split by at least one X € S. The splitting number s
is the smallest cardinality of any splitting family.

Having defined s differently in the introduction, we hasten to point out
that the definitions are equivalent.

3.2 Theorem s is the minimum cardinality of any family of bounded w-
sequences Sg = (Z¢ n)new Of real numbers such that for no infinite Y C w do
all the corresponding subsequences S¢ |Y = (®¢n)necy converge. The same
is true if we consider only sequences consisting of just zeros and ones.

Proof. The second assertion, where all S¢ are in “2, is a trivial rephrasing
of the definition of s; just regard the sequences S¢ as the characteristic
functions of the sets in a splitting family. The key point is that, for the
characteristic function of X, convergence means eventual constancy, and so
convergence of its restriction to Y means that Y is not split by X.

Half of the first assertion follows immediately from the second. To prove
the other half of the first assertion, use the fact that a bounded sequence of
real numbers converges if (though not quite only if) for each k the sequence
of k! binary digits converges. .

The last part of the preceding proof implicitly used the fact that s is
uncountable. We omit the easy, direct proof of this, because it will also
follow from results to be proved later (8; < t < b < s5; see Section 6).

Theorem 2.10 makes it easy to relate s to 0.

3.3 Theorem s <.

Proof. By Theorem 2.10, fix a family of 0 interval partitions dominating
all interval partitions. To each partition II = {I,, : n € w} in this fam-
ily, associate the union ¢(IT) = J,, 2, of its even-numbered intervals. We
shall show that these 0 sets (II) constitute a splitting family. To this end,
consider an arbitrary infinite subset X of w. Associate to it an interval par-
tition (X)) in which every interval contains at least one member of X. Our
dominating family of interval partitions contains a IT that dominates 1 (X).
But then each interval of II, except for finitely many, includes an interval
of ¥(X) and therefore contains a point of X. It follows immediately that
both ¢(II) and its complement (the union of the odd-numbered intervals)
contain infinitely many points of X. So ¢(II) splits X. 4

We record for future reference the basic property of the constructions ¢
and 1 that makes the preceding proof work: For any interval partition IT
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and any infinite X C w,
IT dominates (X) =  (II) splits X.

The inequality in the theorem can consistently be strict. For example, if
one adds k > Ny Cohen reals to a model of set theory, then in the resulting
model 0 > k (as remarked earlier) while s = X; because any ®; of the added
Cohen reals constitute a splitting family.

The splitting number is the simplest of a family of characteristics defined
in terms of structures that are not simultaneously homogeneous (modulo fi-
nite) on any one infinite set. For s, the “structures” are two-valued functions
and “homogeneous” simply means constant. Other notions of structure and
homogeneity are suggested by various partition theorems. We shall charac-
terize the analog of s arising from Ramsey’s theorem and briefly mention a
few other analogs afterward.

3.4 Definition A set H C w is homogeneous for a function f : [w]” — k
(a partition of [w]™ into k pieces) if f is constant on [H|". H is almost
homogeneous for f if there is a finite set F' such that H — F' is homogeneous
for f. par,, is the smallest cardinality of any family of partitions of [w]™ into
two pieces such that no single infinite set is almost homogeneous for all of
them simultaneously.

We note that pat; is simply s and that the definition of par, would be
unchanged if we allowed partitions into any finite number of pieces (for any
such partition could be replaced with the finitely many coarser partitions
into two pieces). We note also that the use of almost homogeneity in the
definition is essential; it is easy to produce countably many partitions with
no common infinite homogeneous set.

3.5 Theorem For all integers n > 2, par,, = min{b,s}.

Proof. Notice first that pat,, < par,, if n > m, because any partition [w]™ —
2 can be regarded as a partition of [w]™ ignoring the last n —m elements of
its input. In particular, we have par, < s, and if we show par, < b then
the < direction of the theorem will be proved. For the > direction, we must
consider arbitrary n, but in fact we shall confine attention to n = 2 since
the general case is longer but not harder.

To show pat, < b, let B C “w be an unbounded family of size b, assume
without loss of generality that each g € B is monotone increasing, and
associate to each such g the partition of [w]? that puts a pair {z < y} into
class 0 if g(z) < y and into class 1 otherwise. We shall show that no infinite
H C w is almost homogeneous for all these partitions simultaneously. Notice
first that a homogeneous set of class 1 must be finite since, if z is its first
element, then all the other elements are majorized by g(x). So suppose,
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toward a contradiction, that H is infinite and almost homogeneous of class
0 for all the partitions associated to the functions g € B. Consider the
function h sending each natural number z to the second member of H
above z. For each z, we have z < y < h(z) with both y and h(z) in H. By
almost homogeneity of H, we have, for each g € B and for all sufficiently
large x, g(y) < h(z) and thus, by monotonicity of g, g(x) < h(z). Thus,
g <* h for all g € B, contrary to our choice of B.

To show pat, > min{b, s}, suppose we are given a family of £ < min{b, s}
partitions f¢ : [w]? — 2; we must find an infinite set almost homogeneous
for all of them. First, consider the functions

femiw =22 fe{n,z}.

(This is undefined for x = n; define it arbitrarily there.) Since the number
of these functions is k- Ny < g, there is an infinite A C w on which they are
almost constant; say fe¢ ,(z) = je(n) for all > g¢(n) in A. Furthermore,
since K < s we can find an infinite B C A on which each j; is almost
constant, say je(n) = i¢ for all n > be in B. And since K < b we have a
function h majorizing each g from some integer ¢ on. Let H = {z¢ <
1 < ...} be an infinite subset of B chosen so that h(z,) < x,41 for all
n. Then this H is almost homogeneous for each f;. Indeed, if z < y
are elements of H larger than be and ¢, then y > h(z) > g¢(z) and so

_|

fel{z,y}) = feo(y) = je(@) =i

One can define characteristics analogous to par,, using stronger partition
theorems in place of Ramsey’s theorem, for example Hindman’s finite sums
theorem [58] or the Galvin-Prikry theorem [48] and its extension to analytic
sets by Silver [101]. It is not difficult to see that these characteristics are
bounded above by min{b,s}. The Silver and (a fortiori) the Galvin-Prikry
variants of par are easily seen to be bounded below by the characteristic
defined in Section 6. Eisworth has also obtained (private communication)
a lower bound of the form min{b,s'}, where s’ is the following variant of s.
A cardinal  is < s’ if, for any & reals, there exist

1. a transitive model N of enough of ZFC containing the given reals,

2. U € N such that N satisfies “U is a non-principal ultrafilter on w,”
and

3. an infinite a C w almost included in every member of U.

Eisworth’s proof uses forcing techniques from [60], but a direct combina~
torial proof can be based on [17, Theorem 4]. Note that, if we weakened
requirement (2) in the definition of s’ to say only that I/ is a non-principal
ultrafilter in the Boolean algebra of subsets of w in N (but & need not be in
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N), then the cardinal defined would be simply s. It is not known whether
s' < ¢ is consistent.

For the variant of patr based on Hindman’s theorem, the best lower bound
known to me is the characteristic p defined in Section 6. The proof that
this is a lower bound uses the construction from Martin’s axiom mentioned
in [16, page 93], the observation that Martin’s axiom is applied here to a
o-centered poset, and Bell’s theorem (Theorem 7.12 below).

One can also consider weaker sorts of homogeneity. For example, define
par, . to be the smallest cardinality of a family F of functions f : w = w
such that there is no single infinite set A C w on which all the functions
from F are almost one-to-one or almost constant, where “almost” means,
as usual, except at finitely many points in A. (The subscript 1, ¢ refers to
the canonical partition theorem for sets of size 1.) Each function f gives
rise to a partition f' : [w]? — 2, where f'({z,y}) = 0 just when f(z) =
f(y). The sets where f is one-to-one or constant are the homogeneous sets
of f', so par; . > pary. In fact equality holds here, because par; . is <
both s and b. To see the former, associate to each set X from a splitting
family its characteristic function. To see the latter, fix a family of b interval
partitions not dominated by any single interval partition (by Theorem 2.10)
and associate to each of these partitions a function f constant on exactly
the intervals of the partition. Since such an f is not constant on any infinite
set, it suffices to show that there is no infinite A on which each f is almost
one-to-one. But if there were such an A, then we could build an interval
partition in which each interval contains at least three elements of A, and
this partition would dominate all the partitions in our chosen, allegedly
undominated family.

We now shift our focus from counting partitions to counting candidates
for homogeneous sets.

3.6 Definition A family R of infinite subsets of w is unsplittable if no single
set splits all members of R. It is o-unsplittable if no countably many sets
suffice to split all members of R. The unsplitting number ¢, also called the
refining or reaping number, is the smallest cardinality of any unsplittable
family. The o-unsplitting number t, is the smallest cardinality of any o-
unsplittable family.

Obviously, ¢ < t,. It is not known whether strict inequality here is
consistent with ZFC.

We omit the proof of the following theorem since it involves nothing
beyond what went into the proof of Theorem 3.2.

3.7 Theorem t, is the minimum cardinality of any family of infinite sets
Y C w such that, for each bounded sequence {x,)nc. of real numbers, the
restriction (Tn)ncy to some Y in the family converges. If we consider only
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sequences of zeros and ones, then the corresponding minimum cardinality is
t.

We emphasize that, although in Theorem 3.2 the cardinal was the same
for real-valued sequences as for two-valued sequences, the analogous equality
in the present theorem is an open problem.

3.8 Theorem b <.

Proof. As in the proof of Theorem 3.3, let ¢ be the operation sending any
interval partition to the union of its even-numbered intervals, and let ¢ be
an operation sending any infinite subset X of w to an interval partition
in which every interval contains at least one member of X. Let R be an
unsplittable family of v infinite subsets of w; thanks to Theorem 2.10, we can
complete the proof by showing that no interval partition IT dominates all the
partitions ¢(X) for X € R. But, as we showed in the proof of Theorem 3.3
and recorded for reference immediately thereafter, if II dominated all these
¥(X), then ¢(IT) would split every X € R, contrary to the choice of R. -

We next introduce the homogeneity cardinals associated to Ramsey’s
theorem and the “one-to-one or constant” theorem. As in the discussion of
partition counting, we could define homogeneity cardinals from Hindman’s
theorem, the Galvin-Prikry theorem, etc., but (as there) not much could be
said about them.

3.9 Definition hom,, is the smallest size of any family # of infinite subsets
of w such that every partition of [w]™ into two pieces has an almost homo-
geneous set in H. hom,; . is the smallest size of any family H of infinite
subsets of w such that every function f : w — w is almost one-to-one or
almost constant on some set in H.

This definition would be unchanged if we deleted “almost,” for we could
put into H all finite modifications of its members. Notice that hom; = v and
that hom,, > hom,, if n > m (the reverse of the corresponding inequality
for pat).

3.10 Theorem For all integers n > 2, hom,, = max{0,t,}. In addition,
max{?,t} < hom; . < max{d,t, }.

Proof. Although this proof contains only one idea not already in the proof of
Theorem 3.5 and the subsequent discussion of pat, ., we repeat some of the
earlier ideas to clarify why we now have t in one assertion and t, elsewhere.

To show that max{d,t} < hom,; ., we assume that # is as in the defini-
tion of hom,; ., and we show that its cardinality is > both ¢ and 9. For the
former, we find that 7 is unsplittable because if X splits H then the char-
acteristic function of X is neither almost one-to-one nor almost constant
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on H. For the comparison with 0, associate to each H € H an interval
partition I such that each of its intervals contains at least three members
of H. By Theorem 2.10, we need only check that every interval partition
O is dominated by such a IIy. Given O, let f be constant on exactly its
intervals, and find H € H on which f is almost one-to-one (as f is not con-
stant on any infinite set). But then any interval of Iy (except for finitely
many) contains three points from H, all from different intervals of O, so it
must contain a whole interval of ©. So we have the required domination.

Next, we show that hom, < max{r,,0} by constructing an H of size
max{t,,0} with the homogeneity property required in the definition of
hom,. (Note the similarity of this construction with the argument prov-
ing par, > min{b,s}.) Let D C “w be a dominating family of size 9. Let
R be a o-unsplittable family of size t,. For each A € R, let R4 be an
unsplittable family of ¢ subsets of A. For each h € D, each A € R, and
each B € Ra, let H = H(h, A, B) be an infinite subset of B such that, for
any ¢ < y in H, h(z) < y. The family H of all these sets H(h, A, B) has
size at most max{t,,0}, and we shall now show that it contains an almost
homogeneous set for every partition f : [w]? — 2. Given f, define (as in the
proof of Theorem 3.5) fr, : w = 2: 2 — f{n,z}. As R is o-unsplittable, it
contains an A on which each f,, is almost constant, say f,(z) = j(n) for all
x > g(n) in A. The function j : A — 2 is almost constant on some B in the
unsplittable family R4, say j(n) = for all n > b in B. And D contains an
h dominating g, say h(z) > g(z) for all x > ¢. It is now routine to check
(as in the proof of Theorem 3.5) that f is constant with value ¢ on all pairs
of elements larger than b and ¢ in H(h, A, B).

The proof that hom,, < max{r,,0} for n > 2 is similar to the preceding
but uses n rather than two nestings of o-unsplittable families (with no o
needed for the last one). We omit the details.

The preceding arguments, along with the observation that “one-to-one or
constant” is a special case of homogeneity for partitions of pairs, establish
that

max{t,@} S (’)Uml’c S homz S (’)01‘1‘13 S R S maX{to—,a}.

All that remains to be proved is that t, < hom,, and this requires a method
not involved in Theorem 3.5. The following argument is due to Brendle [31].
(Shelah had previously established the corresponding result for homs.)

Let H be as in the definition of hom,, and let countably many functions
fn:w — 2Dbegiven. We seek a set in H on which each f,, is almost constant.
Define, for each z € w, the sequence of zeros and ones T = (f,,(z))new, SO
Zn = fo(z). Then define a partition of [w]? by putting {z < y} into class
0 if T lexicographically precedes 3 and into class 1 otherwise. Let H € H
be almost homogeneous for this partition, let H' be a homogeneous set
obtained by removing finitely many elements from H, and from now on let
2 and y range only over elements of H'. Suppose H' is homogeneous for
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class 0. (The case of class 1 is analogous.) Then as z increases, Zp can
only increase. That is, if the value of fo(z) ever changes, then it changes
from 0 to 1 and remains constant forever after. Once Ty has stabilized, Z
can only increase and must therefore stabilize. Continuing in this way, we
see that, as x increases through values in H', each Z,, eventually stabilizes.
This means that each f,(x) is almost constant on H' and therefore on H,
as required. -

3.11 Remark The last paragraph of this proof is similar to the proof that
cardinals & satisfying the partition relation kK — (k)3 are strong limit
cardinals. The nature of the stabilization, where each component moves at
most once after all its predecessors have stabilized, is also reminiscent of the
proof that all requirements are eventually satisfied in a finite-injury priority

argument.

4. Galois-Tukey Connections and Duality

We interrupt the description and discussion of particular cardinal character-
istics in order to set up some machinery that is useful for describing many
(though not all) of the characteristics and the relationships between them.
This machinery was isolated by Vojtas [111] under the name of “generalized
Galois-Tukey connections”; the basic ideas had been used, but neither iso-
lated nor named, in earlier work of Fremlin [46] and Miller (unpublished).
The definitions of many cardinal characteristics have the form “the small-
est cardinality of any set Y (of objects of a specified sort) such that every
object = (of a possibly different sort) is related to some y € Y in a specified
way.” And many proofs of inequalities between such cardinals involve the
construction of maps between the various sorts of objects involved in the
definitions. This is formalized as follows.

4.1 Definition A triple A = (A_, A, , A) consisting of two sets Ay and a
binary relation A C A_ x A, will be called simply a relation. In connection
with such a relation, we call A_ the set of challenges and A, the set of
responses; we read £ Ay (meaning (z,y) € A) as “response y meets challenge
x'”

4.2 Definition The norm ||A|| of a relation A = (A_, A4, A) is the small-
est cardinality of any subset Y of A, such that every x € A_ is related by
A to at least one y € Y. That is, it is the minimum number of responses
needed to meet all challenges.

The definitions of cardinal characteristics in the preceding sections (as
well as many others) amount to norms of relations. Furthermore, charac-
teristics tend to come in pairs whose relations are dual to each other in the
following sense.
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4.3 Definition If A = (A_, Ay, A) then the dual of A is the relation
At = (A4, A, —A) where - means complement and A is the converse of
A; thus (z,y) € ~A if and only if (y,z) ¢ A.

4.4 Example Let © be the relation (Yw,“w,<*). Then ||D|| = 0 and
|D4]] = [|(“w,“w, #*)|| = b. By Theorem 2.10, the same equations hold
if we replace ® with ®' = (IP,1P,is dominated by). (Recall from Defini-
tion 2.9 that IP is the set of interval partitions.)

Let SR be the relation (P(w),[w]“,does not split). Then [|R]| = v and
1985 = 5.

Let $om, be the relation (P,[w]¥, H) where P is the set of partitions
f:[w]™ = 2 and where fHX means that X is almost homogeneous for f.
Then ||$Hom,|| = hom,, and ||Hom,,*|| = par,,.

Let 7 be an ideal of subsets of X. Let Cov(Z) be the relation (X,Z, €)
and let Cof(Z) be the relation (Z,Z, C). Then ||Cov(Z)|| = cov(I), ||[Cov(Z)*|| =
non(7), ||Cof (Z)|| = cof(Z), and ||Cof(Z)*|| = add(Z).

In general, we name the relation corresponding to a characteristic by
capitalizing the name of the characteristic, except when another name is
readily available, e.g., as the dual of a previously defined relation.

4.5 Remark We remarked earlier that the definition of ? would be un-
affected if we replaced <* by <. That is, 0 is the norm not only of the
D defined above but also of (Yw,“w,<). The dual of this last relation,
however, has norm g, not b.

Similar remarks apply to S8 and $om. It was for the sake of duality that
we used “modulo finite” even in definitions where it could have been left
out.

The following example indicates another situation where a change in a
relation does not affect its norm but might affect the norm of the dual.

4.6 Example Let R, be the relation (“P(w), [w]“, does not split), where
an w-sequence of sets is said to split X if at least one term in the sequence
splits X. Then ||R,|| = t, and [|R,*|| =s.

Thus, both v and ¢, can be regarded as duals of 5. Duality is well-defined
on relations but in general not on characteristics.

4.7 Remark For any relation A, one can define a relation A, that is re-
lated to A as R, in the preceding example is related to R. That is,

A-o' = (wA—JA-HAO')

where fA,a means that f(n)Aa for all n € w. Thus, ||As||, also written
[|A]ls, is the minimum number of answers needed so that every countably



4. Galois-Tukey Connections and Duality 17

many challenges can be met simultaneously by a single one of these answers.
For some relations, the o construction produces nothing new; for example,
0, = 0. But for other relations, interesting new characteristics arise in this
way. We already mentioned t, above; s, is studied in, for example, [63] and
[72].

Clearly, ||As|| > |JAl].- Whether the reverse inequality is provable in
ZFC or whether strict inequality is consistent is, as we mentioned above,
an open problem for A = R. It is also open for A = R+; that is, it is
not known whether s, > s is consistent. On the other hand, it is known
that cov(L), > cov(L) is consistent. See Bartoszynski’s chapter in this
handbook for a proof that cov(L) can consistently have countable cofinality;
it is easy to see that no ||A,|| can have countable cofinality.

Notice that the transformation A — A, does not commute with duality.
Indeed, in all non-trivial cases, (A,)* has the same norm as A, whereas,
as indicated above, (A1), may well have a different norm.

The next definition captures the construction used in the proofs of many
cardinal characteristic inequalities.

4.8 Definition A morphism from one relation A = (A_, A, A) to another
B = (B_,B;,B) is a pair ¢ = (p_, p4) of functions such that

ey :B — A

[ ] Q0+ H A+ — B+

e Forallbe B_ and a € Ay, if ¢_(b)Aa then bBy,(a).

We use the terminology “morphism” instead of Vojtds’s “generalized
Galois-Tukey connection” partly for brevity and partly because our con-
vention differs from his as to direction. A morphism from A to B is a
generalized Galois-Tukey connection from B to A.

It is clear from the definitions that if ¢ = (¢_, ¢4 ) is a morphism from
A to B then ¢+ = (¢4, p_) is a morphism from B+ to AL.

Relations and morphisms form (as the name “morphism” suggests) a
category in an obvious way, and we shall use the notation ¢ : A — B for
morphisms. The category has products and coproducts, but these seem to

be of little relevance to cardinal characteristics. Duality is a contravariant
involution.

4.9 Theorem If there is a morphism ¢ : A — B then ||A|| > ||B|| and
AL < [IBH].

Proof. It suffices to prove the first inequality, as the second follows by ap-
plying the first to the dual morphism ¢=.
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Let X C A, have cardinality ||A|| and contain responses meeting all
challenges in A_. Then Y = ¢4 (X) C By has cardinality < [|A]|, so we
need only check that it contains responses meeting all challenges from B_.
Given b € B_, find in X a response x meeting ¢_(b). Then ¢4 (z) isin ¥V
and meets b because, by definition of morphism, ¢_(b) Az implies bBy, (z).

_|

Morphisms and Theorem 4.9 were implicit in several proofs of inequalities
in the preceding sections. For example, the proof of Theorem 2.10 exhibits
morphisms in both directions between © and ®' = (IP, I P,is dominated by),
where IP is the set of all interval partitions. Both morphisms consist of
the same two maps (in opposite order). One map sends any interval parti-
tion to the function sending any natural number z to the right endpoint of
the next interval of the partition after the interval containing z. The other
sends any function f € “w to an interval partition {[jn,jnt+1) : 7 € w} such
that f(z) < jp41 for all z < j,. The existence of this pair of morphisms
implies not only that 9 = ||D’||, but also, by duality, b = [|©'*||. The latter
is the second assertion of Theorem 2.10, whose proof we omitted earlier.

The preceding example is somewhat atypical in that the same maps give
morphisms in both directions between the same relations. Usually, one has
a morphism in only one direction, and therefore an inequality rather than
equality between cardinal characteristics. For example, the essential point
in the proof of s < 0 (Theorem 3.3), can be expressed by saying that the
functions ¢ and 1 defined in that proof constitute a morphism (¢, ¢) : ' —
R+, It follows that they also constitute a morphism (¢, %) : R — D' L. sowe
have b < ¢t (Theorem 3.8). Morphisms, duality, and Theorem 4.9 codify the
observation that Theorems 3.3 and 3.8 have “essentially the same proof.”

If 7 is an ideal on X containing all singletons, then in view of Example 4.4,
the inequalities add(Z) < cov(Z) < cof(Z) and add(Z) < non(Z) <
cof (Z) follow from the existence of morphisms from Cof(Z) = (Z,Z,C)
to both Cov(Z) = (X,Z,€) and its dual Cov(Z)* = (Z, X, ). The first
of these can be taken to be (S,id), where S is the singleton map z= — {z}
and id is the identity map. The second can be taken to be (id, N), where
N sends each I € 7 to some element of X — I.

The inequalities ||A,|| > [|A]], for all A, also arise from morphisms A, —
A. The map on challenges sends each a € A_ to the constant function
w — A_ with value a, and the map on responses is the identity function.

The inequalities par,, < b and par,, < s in Theorem 3.5 and their duals
hom,, > 0 and hom,, > vin Theorem 3.10 are also given by morphisms, as an
inspection of the proofs will show. The same goes for Brendle’s improvement
of the last of these inequalities, with t, in place of ¢, and the same goes for
the analogous inequalities for par; . and hom, ..

But the same cannot be said (yet) for the reverse inequalities, pat,, >
min{b,s} and its dual hom, < max{9,t,}, simply because the minimum
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and maximum here are not (yet) realized as the norms of natural relations.
There are, fortunately, several ways to combine two relations into a third
whose norm is the maximum (or the minimum) of the norms of the first two.
Two of these provide what we need in order to present in terms of morphisms
the proofs of the inequalities just cited; we present a third combination along
with these two because of its category-theoretic naturality.

To avoid trivial exceptions, we assume in the following that, in the re-
lations (A_, A;, A) under consideration, the sets Ay are not empty. We
also adopt the convention of using a boldface letter for the relation whose

components are denoted by the corresponding lightface letter; thus A =
(A— ’ A-i-a A)

4.10 Definition The categorical product AxBis (A_UB_, A, xBy,(C),
where LI means disjoint union and where C(a,b) means zAa if x € A_ and
zBbif x € B_.

The conjunction AAB is (A x B_,A, x By, K), where (z,y)K(a,b)
means zAa and yBb.

The sequential composition A;Bis (A_ x 4+ B_, A, x By, S), where the
superscript means a set of functions and where (z, f)S(a, b) means zAa and
f(a)Bb.

The dual operations are the categorical coproduct A+B = (A+ x B+)+,
the disjunction AV B = (At AB+)+, and the dual sequential composition
AB = (A+;BH)L.

The two categorical operations are, as their names suggest, the product
and coproduct in the category of relations and morphisms.

The conjunction was called the product in a preprint version of [111]
and has therefore sometimes been called the old product. It is a sort of
parallel composition. A challenge consists of separate challenges in both
components and a (correct) response consists of (correct) responses in both
components separately.

Sequential composition describes a two-inning game between the chal-
lenger and the responder. The first inning consists of a challenge z in A
followed by a response a there; the second inning consists of a challenge f(a)
in B, which may depend on the previous response a, followed by a response
b there. To model this in a single inning, we regard the whole function f as
part of the challenge. As in the case of conjunction, a correct response in
the sequential composition must be correct in both components.

Notice that one can obtain a description of disjunction by simply changing
the last “and” to “or” in the definition of conjunction. The dualization of
sequential composition is more complicated; not only does “and” become
“or” but the functional dependence changes so that the response in B can
depend on the challenge in A.

The following theorem describes the effect of these operations on norms.
Its proof is quite straightforward and therefore omitted.
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4.11 Theorem 1. ||A x B|| = max{||A]|,|/B]|}-
2. max{||Al, B[} < [[AAB| < [A]l-[IB]|.
3. [|A; B = [|A[l - [|B]].
4- |A + BJ| = min{[|A[], |B[}.
J. [[AVB| = min{[|Al], B[}
6. | ASB]| = min{[|Af], || B[}.

When the norms are infinite, maxima and products are the same, so the
second and third items in the theorem simplify to ||A A B|| = ||A;B|| =
max{||A],|/B||}. (In the finite case there is no such simplification. Both of
the inequalities involving || AAB|| can be strict; consider A = B = (3,3,#).)

4.12 Example In the proof of Theorem 3.10, the part showing that hom, <
max{t,,0} actually gives a morphism from R, ; (RAD) to Hom,, as detailed
below. By Theorems 4.9 and 4.11, the existence of such a morphism implies
both hom, < max{t,,t,0} = max{r,,0} and par, > min{s, b} (the part of
Theorem 3.5 that really involves all three cardinals simultaneously).

To exhibit the morphism implicit in the proof of Theorem 3.10, we first
describe R,; (R A D). Following the definitions, we find that a challenge
here amounts to a triple (S, F, G) where S is an w-sequence of subsets S,, of
w, F is a function assigning to each infinite A C w a subset F'(A4) of w, and
G is a function assigning to each such A a function G(A4) € “w. A response
is a triple (A4, B, h) where A and B are infinite subsets of w and h € “w. The
response (A, B, h) meets the challenge (S, F, Q) if (1) A is not split by any
component S, of S, (2) B is not split by F(4), and (3) G(A) <* h. Using
the notation (f,, 7, g, H) of the proof of Theorem 3.10 and the notation
e 4 for the increasing enumeration of an infinite A C w, we can describe the
morphism from R, ; (RAD) to Hom, as follows. The “challenge” part sends
any partition f : [w]? = 2 to (S, F,G), where S,, has characteristic function
fn, where F'(A) has characteristic function joe4, and where G(A) = g. (The
j and g in the proof of Theorem 3.10 depend on A.) The “response” part of
the morphism sends a triple (A, B,h) to H(h,A,es(B)). The verification
that these two operations constitute a morphism is as in Theorems 3.5 and
3.10. (The need for e4 in the present discussion but not in the earlier
proofs results from our tacit use, in the earlier proofs, of the equivalence
between splitting phenomena in w and the analogous phenomena in any
infinite subset A. e4 serves to make the equivalence explicit.)

We remark that the formal structure, R,; (R A D), reflects the intuitive
structure of the proof of Theorem 3.5. That proof invoked the hypothesis
K < s twice (corresponding to R, and R) and & < b once (corresponding to
D). The first use of k < s logically precedes the other two (corresponding
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to sequential composition) because the unsplit set A obtained at the first
step is used to produce the j and g for the other two steps. The second use
of k < s and the use of kK < b can proceed in parallel, as neither depends
on the other (corresponding to conjunction).

4.13 Example Sequential composition also occurs naturally in much sim-
pler situations. Consider, for example, the following variant of unsplitting;:
R = (¥3, [w]¥, is almost constant on). Its norm t3 is the minimum number
of infinite subsets of w not all split by a single partition of w into three
pieces. This cardinal is easily seen to be equal to t, but one direction of
the proof involves a sequential composition. A “3-unsplittable” family is
obtained by starting with an unsplittable family and then forming, within
each of its sets, a further unsplittable family. The union of the latter fami-
lies is then 3-unsplittable (and even 4-unsplittable). In terms of morphisms,
one obtains R; R — Rs (as well as the trivial Rz — R).

Equipped with the concept of morphism, we can address an issue that was
glossed over in the introduction. If one believes the continuum hypothesis
(CH), then the theory of cardinal characteristics becomes trivial, for they
are all equal to N;. Nevertheless, there is non-trivial combinatorial content
in proofs like those of Theorems 2.10 and 3.3, even if CH holds and makes the
theorems themselves trivial. That combinatorial content is used to construct
the morphisms ® < ®' — R, so one might hope that the existence of such
morphisms is what the argument “really” proves, a non-trivial result even
in the presence of CH. Yiparaki [113] showed that this hope is not justified;
CH implies not only the equality of all our cardinal characteristics but also
the existence of morphisms in both directions between the corresponding
relations. The last part of the following theorem embodies this result.

4.14 Theorem Let A = (A_,A;,A) and B = (B_, B4, B) be two rela-
tions and let k be an infinite cardinal.

1. |A|| € & if and only if there is a morphism from (k,k,=) to A.
2. If ||A|| = |A¢| = K, then there is a morphism from A to (k, &, <).
3. If ||A+|| = |A_| = &, then there is a morphism from (k,k,<) to A.

4. If ||Al| = |A4| = ||IBL]| = |B=| > No, then there is a morphism from
A to B.

Proof. The “if” direction of (1) is immediate from Theorem 4.9 and the fact
that ||(k, k, =)|| = . For the “only if” direction, let ¢4 : kK — A4 enumerate
a set of at most k responses meeting all challenges; then for each challenge
a € A_let p_(a) be any a < k such that ¢ (a) meets a.

For (2), let ¢4+ : Ay — K be any one-to-one map. Then, for any a < &,
the set {a € Ay : py(a) < a} has cardinality smaller than k = ||A]], so
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some challenge in A_ has no correct response in this set. Let ¢_(a) be any
such challenge.

Note that (2) remains true if we replace (k, k, <) with (k,x,<). Then
dualization gives (3).

Finally, to prove (4), just compose the morphisms A — (k,k,<) — B
given by (2) and (3). o

If CH holds, then part 4 of this theorem applies to most of the relations in
Example 4.4 above, for the cardinals involved are 8;. The only exceptions
are Cov(Z) and Cof(Z), but even here we can (indirectly) apply part 4
when 7 is the ideal of measure zero sets or the ideal of meager sets in R or a
similar ideal. More precisely, if 7 is an ideal on R and Z has a cofinal subset
To of size < ¢, then part 4 applies directly to variants of Cov(Z) and Cof (Z)
with 7 replaced by Zy. But it is trivial to check that there are morphisms in
both directions between these variants and the original relations. In effect
then, part 4 provides morphisms in both directions between any two of the
relations we are considering; CH trivializes not only the inequalities between
cardinal characteristics but also the morphisms between the corresponding
relations.

Nevertheless, there is still some hope of using morphisms to describe
the combinatorial content of the theory in a way that makes good sense
even when CH holds. This hope is based on the observation that the mor-
phisms given by Theorem 4.14 are highly non-constructive; they involve
well-orderings of the continuum (and similar sets). By contrast, the mor-
phisms given by the proofs of cardinal characteristic inequalities are much
better behaved. They consist of Borel maps with respect to the usual topolo-
gies on the sets involved (like “w and P(w)). Two clarifications are in order
here. One is that, when the sets involved are bases Z; for some ideals, as
in the preceding paragraph, then the sets in 7y should be coded by reals in
some standard way. For example, if 7 is the ideal of meager (resp. measure
zero) sets in R, then 7y can be taken to consist of the F,, (resp. G5) members
of Z, and there are well-known ways of coding such sets (or arbitrary Borel
sets) by reals. The second clarification is that Pawlikowski and Rectaw have
shown [84] that, with suitable coding, the morphisms can be taken to con-
sist of continuous maps; nevertheless, we shall continue to use “Borel” as
our main criterion of simplicity.

The existence of Borel morphisms seems to serve well as a codification of
the combinatorial content of proofs of cardinal characteristic inequalities.
On the one hand, the usual proofs provide Borel morphisms. On the other
hand, when an inequality is not provable then, although it may hold in
specific models and even have morphisms attesting to it (e.g., in models of
CH), there will never be Borel morphisms attesting to it. The following
theorem establishes this last fact for the particular unprovable inequality
0 < 5. Similar arguments can be given for other unprovable inequalities,
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but they usually involve notions of forcing more complicated than the Cohen
forcing used here. We remark that the theorem proves a bit more than was
claimed above; a morphism ¢ attesting to ? < s cannot have even one of
its two constituent functions ¢4 Borel. (The weaker result that ¢+ cannot
both be Borel in this situation was established in [22].)

4.15 Theorem If ¢ is a morphism Rt — D, then neither ¢y nor ¢_ is
a Borel function.

Proof. Recalling the definitions of R and ©, we see that

pfw = W],
¢+ Plw) = “w, and
p—_(a)is split by b = a <* ¢4 (b).

Suppose first that ¢_ were a Borel function, with code p (in a standard
coding system for Borel sets and functions). Adjoin to the universe a Cohen-
generic function ¢ : w — w, and define d = $_(c), where ¢_ is the Borel
function coded by p in V[¢]. Thus d € [w]” in V[c]. The ground model reals
form a splitting family in the Cohen extension V[c| (because they form a
non-meager family there; see Subsection 11.3 and the proof of Theorem 5.19
below). So there is a real » € V N P(w) that splits d. In the ground model
V, let g = ¢4+ (r) and notice that, because ¢ is a morphism,

Vz € “wlp_(z) is split by r = z <* ¢g].

This is a I} statement about 7, g, and the code p of p_. So it remains true
in Vc], where p codes ¢_ and where z can take ¢ as a value. Thus we find,
in V[c], since ¢_(c) = d is split by r, that ¢ <* g. But this is absurd; a
Cohen-generic ¢ € “w cannot be dominated by a g from the ground model.
This contradiction shows that ¢ cannot be a Borel map.

Now suppose instead that ¢ were a Borel function, with Borel code p.
Let ¢ € P(w) be Cohen-generic and let e = @4 (c), where ¢4 is the Borel
function coded by p in Vc]. Thus e € “w in V[c]. The ground model reals
are unbounded in “w in a Cohen extension, so fix r € V N“w with r £* e.
Let ¢ = ¢_(r), an infinite subset of w in V. Because ¢ is a morphism,

Vz € P(w)[q is split by z = 7 <* ()]

As before, this is a [T} statement about ¢, r, and p, so it remains true in V[c].
There c is a possible value of z and p codes @4, so from r £* e = @4 (c) we
can infer that ¢ is not split by c. This is absurd, as every infinite subset of
w in the ground model V is split by the Cohen subset ¢ of w. 4

The use of Borel morphisms can also clarify the need for sequential (and
other) composition operations on relations. Specifically, a forcing argument
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is used in [22] to show that some naturally occurring morphisms involving
sequential compositions (e.g., the proof of Theorem 5.6 below) cannot be
simplified to use conjunctions or products or even sequential composition in
a different order. Mildenberger [76] and Spinas [106] have obtained similar
results by combinatorial methods in some cases where the forcing method
of [22] does not apply. A forcing argument in [27] shows that the sequential
composition R,; (R A D) used in the proof of hom, < max{r,,0} cannot
be replaced by simply R, A ®. But other potential simplifications in this
problem and similar simplifications in other problems, though they seem
unlikely, have not been proved impossible.

4.16 Remark Let A and B be relations where A4 and B4 are sets of reals.
Call a morphism ¢ : A — B semi-Borel (on the positive side) if ¢4 is a
Borel function. Thus, Theorem 4.15 asserts that certain morphisms cannot
be semi-Borel.

Call a set X of reals small with respect to A if there is no semi-Borel
morphism from (X, X, =) to A. Without “semi-Borel,” this definition would
say simply that |X| < ||A]|, by the first part of Theorem 4.14. With “semi-
Borel” smallness is a weaker notion, related to the topological (or Borel)
structure of X, not just to its cardinality. It can be expressed as “no image
of X under a Borel function to A4 contains responses meeting all challenges
from A_.

The smallness properties associated in this way to the relations involved
in Cichon’s diagram were introduced and studied by Pawlikowski and Rectaw
[84], who connected them with various classical smallness properties of sets
of reals. Bartoszyniski’s chapter in this handbook contains extensive infor-
mation about this topic.

5. Category and Measure

Despite their origins in real analysis, Baire category and Lebesgue measure
are, to a large extent, combinatorial notions. As such, they have close
ties with some of the objects discussed in the preceding sections. We give
here a rather cursory presentation of some of these combinatorial aspects of
category and measure. For a more complete treatment, see Bartoszynski’s
chapter in this handbook and the book [5] of Bartoszyriski and Judah.
Recall Definition 2.7 of the four cardinal characteristics add, cov, non,
cof associated to any proper ideal (containing all singletons) on any set.
We shall be interested in these and in the corresponding relations (CofL,
Cov, Cov™', and Cof, respectively, from Example 4.4) when the ideal is
either the o-ideal of meager (also called first category) sets or the o-ideal
of sets of Lebesgue measure zero (also called null sets). We use B and L re-
spectively to denote these two ideals. (The notation stands for “Baire” and
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“Lebesgue”; other authors have used C for “Category,” K for “Kategorie,”
M for “meager,” M for “measure,” and N for “null.”) As indicated in the
introduction, we do not distinguish notationally between the meager ide-
als on various versions of the continuum, R, “2, “w, etc., and similarly for
measure. The various versions of each cardinal characteristic are equal; the
various versions of each relation admit morphisms in both directions. We
tolerate an additional, equally innocuous ambiguity by not distinguishing
between an ideal and a basis for it. Thus, we may pretend that B consists
of meager F, sets and that £ consists of G5 null sets. If we discuss Borel
morphisms, we further identify F, and G sets with some standard encoding
as reals.

We begin our treatment of Baire category by giving a convenient combi-
natorial description of meagerness in the space “2. This idea was introduced
in a more specialized context by Talagrand [107].

5.1 Definition A chopped real is a pair (z,1I), where € “2 and II is an
interval partition of w. Recall that we introduced the notation I P for the set
of all interval partitions; we write CR for the set “2 x I P of chopped reals.
A real y € “2 matches a chopped real (z,1I) if z [T = y [ I for infinitely
many intervals I € II.

5.2 Theorem A subset M of “2 is meager if and only if there is a chopped
real that no member of M matches.

Proof. The set of reals y that match a given chopped real (z,{I, : n € w})
is
Match(z, {I,, :n € w}) = ﬂ U y:z1l, =yl I},
k n>k

the intersection of countably many dense open sets. So Match(z,II) is
comeager, and the “if” part of the theorem follows.

To prove “only if,” suppose M is meager, and fix a countable sequence of
nowhere dense sets F, that cover M. Note that, for the standard (product)
topology on “2, to say that a set F' is nowhere dense means that for every
finite sequence s € <“2 there is an extension ¢t € <“2 such that no y € F
extends ¢. Note also that the union of finitely many nowhere dense sets is
nowhere dense, so we can and do arrange that F,, C Fj,41 for all n. Then
we can complete the proof by constructing a chopped real (z,{I, : n € w})
such that, for each n, no real in F, agrees with z on I,,. This suffices because
then any y that matches (z,{I, : n € w}) will be outside infinitely many
F,,, hence outside them all by monotonicity, and hence outside M.

To define I,, and z | I,, suppose the earlier I}, (k < n) are already defined
and are contiguous intervals. So we know the point m where I,, should
start. I, will be the union of 2™ contiguous subintervals J; (i < 2™)
defined as follows. List all the functions m — 2 as u; (i < 2™). By
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induction on 4, choose J; and x [ J; so that no element of Fj, is an extension
of u;UJ,<;(z [ J;). These choices are possible because F, is nowhere dense.
Finally, let I, = U;.om Ji; having already defined each z[J;, we have
determined z [ I,.

If y agrees with z on I, then y extends u; U J;;(z [ J;) for some 4,
namely the 4 such that u; = y [ m. Therefore, y ¢ F,,, as required. -

The theorem shows that the sets Match(z, II) form a base for the filter
of comeager sets and so their complements form a base for the ideal B. We
may therefore confine attention to these complements when discussing the
cardinal characteristics of B and the associated relations. In this connection,
it is useful to have the following combinatorial formulation of the inclusion
relation between these sets; we leave the straightforward proof to the reader.

5.3 Proposition Match(z,II) C Match(z',TI') if and only if for all but
finitely many intervals I € TI there exists an interval J € TI' such that
JCITandz'|J=x[J.

We shall say that (z,II) engulfs (2',1I') when the equivalent conditions
in the proposition hold.
Thus, we have morphisms in both directions between Cof(B) and

Cof'(B) = (CR, CR, is engulfed by),
as well as morphisms in both directions between Cov(B) and
Cov'(B) = (¥2,CR,does not match).

Notice that if (z,II) engulfs (z',II') then II dominates II'. Combining
this with the characterization of ? and b in Theorem 2.10 and the charac-
terization of add(B) and cof(B) in Example 4.4, we obtain the following
inequalities.

5.4 Corollary add(B) < b and v < cof(B).

Another relation between the characteristics from Section 2 and the char-
acteristics of Baire category follows from Theorem 2.8.

5.5 Proposition b < non(B) and cov(B) <.

Proof. In “w, any set of the form {f : f < g} is clearly nowhere dense
(because every finite sequence in <“w has an extension in <“w with some
values greater than the corresponding values of g). The proof of Theo-
rem 2.8 shows, therefore, that all compact sets in “w are nowhere dense
and therefore K, C B. That immediately implies cov(K,) > cov(B) and
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non(K,) < non(B). (Indeed, whenever Z C J are ideals, we have a mor-
phism Cov(Z) — Cov(J) given by the identity map on challenges and the
inclusion map on responses.) Now Theorem 2.8 completes the proof. =

All ZFC-provable inequalities among b, 0, and the four characteristics of
B are obtainable by transitivity from the preceding corollary and proposition
and the general facts that add < cov < cof and add < non < cof for any
nontrivial ideal. There are, however, two additional relations due to Miller
[79] and Truss [109], each involving three of these cardinals.

5.6 Theorem 1. There is a morphism from (Cov'(B))*;®' to Cof'(B).
2. cof(B) = max{non(B),?}.
3. add(B) = min{cov(B), b}.

Proof. Recall that ®' = (IP,IP,is dominated by) where IP is the set of
interval partitions, that ||D'|| = 0, and that ||®'"|| = b. Thus, if we prove
part 1 of the theorem, then the < half of part 2 and the > half of part 3 will
follow by Theorems 4.9 and 4.11. The other halves of parts 2 and 3 were
already established, so we need only prove part 1.

A morphism ¢ as claimed in part 1 would consist of a function ¢_ from
the set C'R of chopped reals to CR x “?) TP and a function ¢, from “2x IP
to CR, satisfying an implication to be exhibited after we simplify notation
a bit. As a map into a product, ¢_ consists of two maps, a : CR — CR
and B : CR — ("2 IP. We shall take a and ¢ to be identity maps. (Recall
that CR = “2 x IP, so this makes sense.) It remains to define 8 so as
to satisfy the required implication, which now reads: For all x € CR, all
yev2, andall Il € IP,

[y matches = and IT dominates 3(z)(y)] = [(y,II) engulfs z].

It does not matter how we define 8(z)(y) when y does not match z. If y
does match z, i.e., if there are infinitely many intervals I in the partition
component of the chopped real  on which x and y agree, then we define
B(z)(y) to be some interval partition each of whose intervals includes at
least one such I. 4

5.7 Remark It is easy to specify the § in the last part of the proof more
explicitly so that S(z)(y) is a Borel function of z and y; since the other
components of ¢ are trivial, we can say that part 1 of the theorem is wit-
nessed by a Borel morphism. It is shown in [22] that one cannot get a Borel
morphism in part 1 if one replaces the sequential product there with the
categorical product, or the conjunction, or the sequential product in the
other order.
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Before turning from category to measure, we give an elegant, combina-
torial description of cov(B), due to Bartoszynski [4].

5.8 Definition Call two functions z,y € “w infinitely equal if 3%°n (z(n) =
y(n)) and eventually different otherwise, i.e., if V°n (z(n) # y(n)).

5.9 Theorem 1. cov(B) = ||(Yw,“w, eventually different)|.
2. non(B) = ||(“w, “w, infinitely equal)||.

Proof. We prove only part 1 as part 2 is dual to it. The < direction is
clear once one observes that, for any ¢ € “w, the set of y € “w eventually
different from z is meager. (In fact, sending z to this set defines half of
a morphism from the relation on the right of part 1 to Cov(B) (when the
reals are taken to be “w); the other half of the morphism is the identity
map.)

To prove the > direction of part 1, we show how to match, with a single
real y, all the chopped reals in a family {(z4,11,) : @ < k}, where

k < ||(Yw,“w, eventually different)||.

Note that the norm here is trivially < 0 (there’s a morphism from ®
consisting of the identity map in both directions). So by Theorem 2.10
there is an interval partition © not dominated by any II,.

Temporarily fix an arbitrary @ < k. Non-domination means that II,
has infinitely many intervals that include no interval of © and are therefore
covered by two adjacent intervals of ©. Call a pair of adjacent intervals of
© good if they cover an interval of II,; so there are infinitely many good
pairs.

Define a function f, on w as follows. f,(n) is obtained by taking 2n + 1
disjoint good pairs, taking the union of the two intervals in each pair to
obtain 2n + 1 intervals Jy, ..., Jon, and then forming the set of restrictions
of z,, to these intervals:

fa(n) = {:L.Ot rJO:"'ama rJ2n}

Note that, although the values of f, are not natural numbers, they can be
coded as natural numbers.

Now un-fix a. By our hypothesis on &, find a function g infinitely equal
to each f,. Without harming this property of g, we can arrange that, for
each n, g(n) is a set of 2n + 1 functions, each mapping an interval of w to
2. Furthermore, we can arrange that these 2n + 1 intervals are disjoint and
each of them is the union of two adjacent intervals of ©. (Any n for which
g(n) is not of this form could not contribute to the agreement between g
and any f,, so we are free to modify g(n) arbitrarily.)
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We define a function y : w — 2 by recursion, where at each stage we
specify the restriction of y to a certain pair of adjacent intervals in ©. After
stages 0 through n — 1 are completed, y is defined on only 2n intervals of
0, so at least one of the 2n + 1 members of g(n), say z(n), has its domain J
disjoint from where y is already defined. Extend y to agree with z(n) on J.
This completes the recursion; if there are places where y never gets defined,
define it arbitrarily there.

To complete the proof, we show that y matches every (x4, II,). Consider
any « and any one of the infinitely many n for which g(n) = f,(n). At stage
n of the construction of y, we ensured that y extends some z(n) € g(n) =
fa(n). But the construction of f,(n) ensures that z(n) is the restriction of
T, to an interval (the union of a good pair of intervals from ©) that includes
an interval of II,. Thus y agrees with z, on that interval of II,. Since this
happens for infinitely many n, y matches (x4, ). -

5.10 Remark The preceding proof exhibits a morphism from Cov'(B) to
D"(Yw,“w, eventually different). Ignoring the coding needed to make f,
and g functions into w, we can say that the “challenge” half of the mor-
phism is the construction of y from © and g and the “response” half of
the morphism sends any (z,II) (where we omit the « subscripts needed in
the proof but not here) to the pair consisting of II and the function that
maps any © not dominating II to the f as in the proof (and maps ©’s that
dominate II arbitrarily).

It is an open problem whether one can omit the “®3” part, i.e., whether
there is a Borel morphism from Cov'(B) to (“w,“w, eventually different).
An essentially equivalent question is whether any forcing that adds a real
(in “w) infinitely equal to all ground model reals (called a “half-Cohen”
real) must add a Cohen real. The proof above shows that if one first adds
an unbounded real and then a half-Cohen real over the resulting model, the
final model contains a Cohen real over the ground model.

We now turn to Lebesgue measure (and equivalent measures on “2, “w,
etc.) and its connections with Baire category. The first such connection
was given by Rothberger [89].

5.11 Theorem cov(B) < non(L) and cov(L) < non(B).

Proof. Let I be the interval partition whose n'" interval I,, has n+1 elements
for all n. Define a binary relation R on “2 by letting xRy mean that
z [ I, = y | I, for infinitely many n, i.e., that y matches the chopped real
(z,1I). Notice that R is symmetric and, for every z, the set R, = {y : zRy}
is a comeager set of measure zero. (“Comeager” was proved in Theorem 5.2.
The calculation for “measure zero” consists of noticing that, once z is fixed,
the y’s that agree with it on I,, form a set of measure 2~ ("1 5o the y’s
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that agree with z on at least one I,, beyond I} form a set of measure at
most 2%, and so the y’s that do this for all k form a set of measure zero.)

Thus, letting R = (¥2,“2, R), we have morphisms ¢ : R = Cov(£)
and 9 : R+ — Cov(B), where ¢, and v, send z to R, and “2 — R,
respectively and where both ¢_ and 1_ are the identity on “2. Composing
each of these morphisms with the dual of the other, we get morphisms
Cov(B)t — Cov(£) and Cov(L)!t — Cov(B). Since cov = ||Cov|| and
non = ||Cov™|| for both ideals, the theorem follows. -|

5.12 Remark The relation R in the preceding proof could be replaced by
any relation of the form “z @y € M” where @ is addition modulo 2 and M
is any comeager set of measure zero. For example, M could be the set of 0-1
sequences in which the density of 1’s in initial segments does not approach
1/2.

In this form, the proof generalizes to any pair of translation-invariant
(with respect to @) ideals that concentrate on disjoint sets.

The rest of our discussion of measure characteristics is based on a combi-
natorial characterization, due to Bartoszyniski [3], of add(L£). To formulate
it, we need the following terminology.

5.13 Definition A slalom is a function S assigning to each n € w a set
S(n) C w of cardinality n. We say that a real z € “w goes through slalom
S if V°n (z(n) € S(n)).

5.14 Theorem add(L£) is the smallest cardinality of any family F C “w
such that there is no single slalom through which all the members of F go.

For the proof, we refer to Bartoszyriski’s original paper [3], his chapter in
this handbook, his book with Judah [5, Theorem 2.3.9], or Fremlin’s article
[46].

5.15 Remark The theorem would remain true if we modified the definition
of “slalom” by requiring S(n) to have cardinality f(n) instead of m; here
f can be any function w — w that grows without bound. We refer to this
modified notion of slalom as an f-slalom (or f(n)-slalom). Suppose, for
example, that k is a cardinal such that every s functions in “w go through
a single f-slalom. To show that any s functions z, go through a single
slalom in the original sense, partition w into intervals such that the nth
interval starts at or after f(n). Let y,(n) be (or code) the restriction of
T4 to the nth interval. From an f-slalom through which all the y, go, one
eagsily gets a slalom in the orginal sense through which all the z, go.
Despite this observation, it is not true that one could simply omit the
cardinality bound (n or f(n)) in the definition of slalom and merely require
each S(n) to be finite. Indeed, with this weakening, the cardinal described
in the theorem would be simply b, which can be strictly larger than add(£).
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As indicated for example in Oxtoby’s book [82], there are a great many
similarities between Baire category and Lebesgue measure. The following
inequality, due to Bartoszynski [3] and independently but a bit later to
Raisonnier and Stern [88], was an early indication that the symmetry is
not so extensive as one might have thought. (The first indication of this
was Shelah’s proof [97] that ZF (without choice) plus “all sets of reals have
the Baire property” is consistent if ZF is, whereas the consistency of ZF
plus “all sets of reals are Lebesgue measurable” requires the consistency
of an inaccessible cardinal.) The theme of measure-category asymmetry is
developed much further in the book [5].

5.16 Theorem add(£) < add(B).

Proof. In view of Theorem 5.6, it suffices to prove that add(£) < b and
add(£) < cov(B). The former is immediate, in view of Theorem 5.14, for
a family of reals going through a single slalom is obviously bounded. (It
should be mentioned that the inequality add(£) < b was originally proved
by Miller [80] before Theorem 5.14 was known.) For the second inequality,
we use Theorem 5.9.

If k < add(L£) and if we are given k functions z, € “w, we must find
a single function y infinitely equal to them all. Fix an interval partition IT
whose n'? interval I,, has cardinality > n. To each z, associate the function
z!, € “w where z/,(n) codes (in some standard way) z, [I,. Let S be a
slalom through which all the z!, go. We may assume that all n elements of
S(n) code functions I, — w, for any other elements can be replaced with
such codes without harming the fact that all 2/, go through S. For each n,
choose a function y, : I,, & w that agrees at least once with each of the n
members of S(n); this is trivial to arrange, since |I,,| > n. Then the union
of all the y, is the desired y. Indeed, every x, agrees with y at least once
in each I,, except for finitely many. .

5.17 Remark The preceding proof, though short, has a defect from the
point of view of morphisms between relations. Because it relies on theo-
rems 5.6 and 5.9, it involves sequential compositions. In fact, it provides
a Borel morphism from Cof(L); Cof(L); Cof(L) to Cof(B). The presence
of these sequential compositions is an artifact of the proof. Bartoszyriski’s
chapter in this handbook contains a different proof, giving a Borel morphism
from Cof (L) to Cof(B).

Since the proof gave a morphism, we also have the dual result.

5.18 Corollary cof(B) < cof(L).
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Our discussion of the four standard characteristics (add, cov, non, and
cof) of measure and category, along with b and 9, is now complete, in the
following strong sense. If one assigns to each of these ten characteristics
one of the values N; and Ns, and if the assignment is consistent with the
equations and inequalities proved above, then that assignment is realized
in some model of ZFC. We shall comment on a few of these models in
Section 11 below, but we refer to [6] or [5, Chapter 7] for all the details.

The inequalities between these ten cardinal characteristics are summa-
rized in the following picture, known as Cichon’s diagram, in which one
goes from larger to smaller cardinals by moving down or to the left along
the arrows. (A 45° counterclockwise rotation would produce a Hasse dia-
gram in the customary orientation. We’ve drawn the arrows in the direction
of the morphisms between the corresponding relations, hence from larger to
smaller characteristics.)

cov(L) <— mnon(B) +— cof(B) +— cof(L)
| l

b — 0

| l

add(£) +— add(B) +— cov(B) <«— mnon(L)

To conclude this section, we point out an elementary connection between
the covering and uniformity numbers studied here and the splitting and
refining numbers from Section 3.

5.19 Theorem s < non(B),non(L) and t > cov(B), cov(L).

Proof. For any infinite A C w, the sets X C w that fail to split A form a
meager, measure-zero set Uy. Then the function A — U4 and the identity

function on P(w) constitute a morphism from R to Cov(B) and also to
Cov(L). —|

6. Sparse Sets of Integers

This section is primarily about two characteristics, t and b, related to the
idea of thinning out infinite subsets of w, i.e., replacing them by subsets,
usually so as to achieve some useful property like homogeneity for some
partition. t is concerned with the (transfinite) thinning process itself; b
focuses on what can be achieved by iterated thinning. We shall also briefly
consider two characteristics, p and g, whose definitions resemble those of
t and b, though their most significant properties are treated only in later
sections.
We begin with the definition and simplest properties of t.
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6.1 Definition A pseudointersection of a family F of sets is an infinite set
that is C* every member of F.

6.2 Definition A tower is an ordinal-indexed sequence (T, : a < A) such
that:

1. Each T, is an infinite subset of w.
2. Ty C* T, whenever a < f < A.
3. {T, : a < A} has no pseudointersection.

The tower number t is the smallest A that is the length of a tower.

6.3 Remark Hechler [54] has constructed a model where many regular
cardinals occur as the lengths of towers.

Some authors define “tower” using only the first two clauses in the defini-
tion above, i.e., an almost decreasing sequence in [w]¥; what we call a tower,
they would call an inextendible tower. Also, some authors take towers to be
almost increasing sequences of co-infinite subsets of w rather than almost
decreasing sequences of infinite sets.

We shall not always be as careful as we were in clause 3 of the definition
about the distinction between a sequence like (T, : @ < A) and the set
{Ty : @ < A} of its terms.

6.4 Proposition t is a reqular uncountable cardinal.

Proof. Regularity is clear since any cofinal subsequence of a tower is a tower.
To show that there can be no tower (T}, : n € w) of length w, note that
we could form an infinite set X by taking any element of Tg, any different
element of Ty N Ty, any different element of Ty N T N T3, etc., since all
these sets are infinite. This X would be a pseudointersection, violating
requirement 3 in the definition of tower. -

Before continuing with further properties of t, we introduce b, its basic
properties, and its connection with t.

6.5 Definition A family D C [w]¥ is open if it is closed under almost
subsets. It is dense if every X € [w]” has a subset in D. The distribu-
tivity number h is the smallest number of dense open families with empty
intersection.

6.6 Remark The open sets as defined here constitute a topology on [w]“,
which we call the lower topology. Density as defined here agrees with topo-
logical density in the lower topology as long as D is closed under finite mod-
ifications (for example if it is open). Analogous definitions can be made for
any pre-ordered set in place of ([w]¥, C*).
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The name “distributivity number” comes from viewing ([w]“, C) as a no-
tion of forcing and asking how distributive the associated complete Boolean
algebra is. Standard techniques from forcing theory show that the answer
is given by h. More precisely, Boolean meets of fewer than h terms dis-
tribute over arbitrary (finite or infinite) joins, but meets of h terms need
not distribute even over binary joins. Equivalently, in a forcing extension by
([w]¥, ©), b has new subsets but smaller ordinals do not (not even new func-
tions into the ordinals). We shall see later (6.20) that this forcing extension
collapses ¢ to h if h < c.

6.7 Proposition The intersection of any fewer than b dense open families
is dense open. b is a reqular cardinal.

Proof. The second sentence follows immediately from the first. (It also
follows from the remark about distributivity.) To show that the intersection
of fewer than h dense open families D, is dense open, note first that it is
obviously open. As for density, let X be any infinite subset of w and consider
the families D), = {Y € Do : Y C X}. These are fewer than h dense open
families of subsets of X, so they have a common member Y. Thatis, Y C X
and Y € N, Da- —|

The definition of t is essentially about the process of thinning out infinite
subsets of w by repeatedly passing to (almost) subsets. If one attempts to
iterate such a thinning process transfinitely, the definition of t ensures that
one will not get stuck at limit stages of cofinality < t.

The definition of ) addresses the same idea from the point of view of what
such thinning can achieve. A dense open family is one that one can get into,
from an arbitrary infinite subset of w, by passing to a subset (and subsequent
passages to further (almost) subsets will not undo this achievement). The
next proposition is just the result of comparing these intuitions that stand
behind t and §.

6.8 Proposition t <h.

Proof. Suppose k < t, and let x dense open families D, (a < k) be given; we
must find a set in their intersection. Define an almost decreasing sequence
{Ty : a < k) by the following recursion. Top = w. Ty41 is any subset of T,
that is in D,; this exists because D, is dense. If A < k is a limit ordinal,
then T) is any pseudointersection of {T, : @ < A}; this exists because k < t
80 {Ty : @ < A} cannot be a tower, yet the previous steps ensured that it
satisfies the first two requirements for a tower. Since T, C* T,41 for all
a < k, we have, thanks to openness, that T}; is in all the families D,. -

It is consistent with ZFC to have t < h. In fact, Dordal [40] built a model
where fh = Ny = ¢ but there are no towers of length wo.
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Upper bounds for h, and therefore also for t, can be obtained by con-
sidering specific examples of dense open families. One family of examples
consists of {X € [w]¥ : X is not split by Y} for arbitrary Y. Another con-
sists of {X € [w]¥ : V®°z € XVy € X (if z < y then f(z) < y)} for arbitrary
f : w = w. Using these, one easily obtains the following proposition, but
we give another proof to suggest another class of examples.

6.9 Theorem h < b,s.

Proof. By Theorem 3.5 it suffices to show b < par,. So let k¥ < b partitions
fa of [w]? be given; we must find an infinite set almost homogeneous for
them all. For each a, let D, be the family of all infinite subsets of w that are
almost homogeneous for f,. Then D, is dense open, thanks to Ramsey’s
theorem. So there is a set H common to all the D,,. -

6.10 Remark The same proof shows that one can get simultaneous almost
homogeneity for fewer than h partitions of more complicated sorts, provided
one has the analog of Ramsey’s theorem to ensure density. Thus, for exam-
ple, Silver’s partition theorem for analytic sets [101] implies that any < b
partitions of [w]“ into an analytic and a coanalytic piece have a common
infinite almost homogeneous set.

By Proposition 6.8, the upper bounds on h apply also to t, but for t we
can improve b to add(B). In order to prove this, we need the following
lemma, in which Q denotes the set of rational numbers and “dense” has its
usual topological (or order-theoretic) meaning for subsets of Q. Both the
lemma and the subsequent theorem are from [92] (stated for special cases
but the proofs work in general); they were rediscovered in [85].

6.11 Lemma Suppose A < t and (T, : a < A) is an almost decreasing
sequence of dense subsets of Q. Then there exists a dense X C Q that is
almost included in every T,.

Proof. In each interval I with rational endpoints, consider the almost de-
creasing sequence (T, NI : @ < A) of infinite subsets of I. As it is too short
to be a tower, there is an infinite Y7 C I almost included in all the T,. (The
union of all the Y7 is dense, but it need not be C* T, so we must work
a bit harder to get X.) Enumerate each Y; as an w-sequence (yr ). For
each «a let fo(I) € w be an upper bound for the finitely many n such that
Yr,n ¢ To. Since A < t < b (and the set of intervals I is countable), let g be
a function to w from the set of rational intervals such that ¢ dominates all
the f,’s. Then
X = Hyrn:n>g(I)}

I
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is dense in Q (because it contains almost all of each Y7) and is almost
included in each T, (for X — T, consists of finitely many elements from
each of the finitely many Y7 where g(I) < fo(I)). 8

6.12 Theorem t < add(B).

Proof. We must show that if kK < t then the intersection of any k dense
open subsets G, (@ < k) of R is comeager. We begin by defining an almost
decreasing sequence (T, : a < k) of dense subsets of Q. Start with Tp = Q.
At limit stages, apply the lemma. At successor stages, set To+1 = To N Gy;
this is dense because it is the intersection of two dense sets one of which is
open. Note that T, being C* each Ty,+1 (a < k) is also C* each G,,.

For t € T, and a < K, define fo(t) € w to be some n such that (t—1,t+
%) C G, if t € Gy, and 0 otherwise. Since T is countable and k < t < b,
there is a g : Ty, = w dominating all the f,’s.

For each finite F' C T}, let

1 1
Ur= |J (t——=.t+——)
wer—r 9

Then Uy is dense, because it almost includes T}, and it is obviously open;
since there are only countably many F’s, (| Ur is comeager, and it remains
only to prove that this intersection is included in the intersection of the G, ’s.
In fact, each G includes one of the Up’s; given a just take F' to contain
the finitely many ¢ € T, — G, and the finitely many ¢t where g(t) < fo(t). -

6.13 Remark By a countable support iteration of Mathias forcing over a
model of CH, one obtains a model where h = X but cov(B) and therefore
add(B) are only X; (as no Cohen reals are produced). Thus, the preceding
theorem cannot be improved by putting b in place of t.

The next theorem can be viewed as another upper bound on t.
6.14 Theorem If Ny < k < t then 2" =c.

Proof. We need only check that 2% < ¢, and we do this by building a
complete binary tree of k 4+ 1 levels, whose nodes are distinct subsets of w.
More precisely, we associate to every sequence 5 € <*2 an infinite subset Ty
of w in such a way that:

1. If 5 is an initial segment of @, then Ty C* T;,.

2. If neither of n and @ is an initial segment of the other, then T}, N T} is
finite.
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The construction is by recursion on the length of 7, starting with Ty = w. At
successor stages, we define T; ~ (o) and T~ (1) to be any two disjoint, infinite
subsets of T;. Finally, for 6 of limit length A, we observe that (Tpq : & < A)
is an almost decreasing sequence but cannot be a tower because A < k < t.
So there is an infinite X almost included in all these Tp; any such X can
serve as Ty.

It is immediate that the construction has the desired properties. In par-
ticular, the 2% sets T3, for all i of length x, are infinite and almost disjoint
and therefore certainly distinct. !

6.15 Corollary t < cof(c).

Proof. If k < t then, by Theorem 6.14 and Konig’s theorem, cof(c) =
cof(2%) > k. -

Returning to consider h in more detail, we first give an alternative way
to view dense open families of subsets of w.

6.16 Definition An almost disjoint family is a family of infinite sets, every
two of which have finite intersection. A mazimal almost disjoint (MAD)
family is an infinite almost disjoint family of subsets of w, maximal with
respect to inclusion.

6.17 Remark Note that MAD families are required to be infinite; in the
absence of this requirement, any partition of w into finitely many infinite
sets would count as MAD. Note also that, if A is MAD and X is any infinite
subset of w, then X N A is infinite for at least one A € A.

6.18 Proposition If A is a MAD family, then Al= {X € [w]¥ : 3A €
A(X C* A)} is dense open. Every dense open family includes one of this
form.

Proof. The first statement is proved by routine checking of definitions. For
the second, let D be dense open, and let A9 be an infinite, almost disjoint
subfamily of D; for example, take some X € D and partition it into infinitely
many infinite pieces. By Zorn’s Lemma, let A O Ao be an almost disjoint
family included in D and maximal among such families. We claim that A
is maximal among all almost disjoint families, not just those included in D.
Once we establish this claim, we will have A MAD and A]C D as required.

To establish maximality, consider any X € [w]“. As D is dense, it contains
a subset Y of X. As A is maximal among almost disjoint subfamilies of D,
it contains a set A that has infinite intersection with Y and therefore also
with X. 4
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6.19 Corollary b is the minimum number of MAD families such that, for
each X € [w]*, one of these families contains at least two sets whose inter-
sections with X are infinite.

Proof. X has infinite intersection with at least two sets from a MAD family
A if and only if X ¢ A]. With this observation, the corollary follows
immediately from the proposition and the definition of b. =

The following theorem of Balcar, Pelant, and Simon [1] was the original
motivation for the introduction of h. A tree of the sort described by this
theorem is called a base matriz tree (for [w]¥). The theorem would become
false if h were replaced by any smaller cardinal. The symbol h was chosen
to refer to the “height” of the base matrix tree.

6.20 Theorem There is a family T C [w]¥ with the following properties.

1. Ordered by reverse almost inclusion, T 1is a tree of height by with root
w.

2. Each level of T, except for the root, is a MAD family.
3. Every X € [w]* has a subset in T .

Proof. Let D, for a < h be dense open families with no common member.
We define the levels 7, of the desired tree inductively as follows. At level
0, put w. At a limit level A < b, use Proposition 6.7 to obtain a dense open
family included in all 7] for a < A. By Proposition 6.18, shrink this to a
dense open family of the form A}, and let that A be 7.

At an odd-numbered successor stage, say 2a + 1, choose 72441 as a MAD
family included in both 734) and D,. This can be done by Propositions 6.7
and 6.18.

At an even-numbered successor stage, say 2a + 2, proceed as follows.
Call a set X € [w]“ active at this stage if it has infinite intersection with ¢
members of T441. Assign to each active X some 9(X) € Taq41 that has
infinite intersection with X, and do this in such a way that 1 is one-to-
one. This is easily done by arranging all the active X’s in a well-ordered
sequence, of length < ¢, and defining v by recursion along this ordering. At
each stage of the recursion, there are ¢ elements of 73441 that have infinite
intersection with the current X and fewer than ¢ of them have already been
assigned as earlier values of 1, so there are plenty of candidates left to serve
as Y¥(X). Once ¢ has been defined, partition each Y € T3441 into two
infinite pieces Y’ and Y, subject to the requirement that if ¥ = ¢(X) for
some (unique) X then Y’ C X. Then let 72442 consist of these sets Y/ and
Y'"forallY € Toqt1-

This completes the construction of 7. The first two parts of the theorem
are clear, and the third will be clear once we show that every X € [w]¥ is
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active at some stage 2a + 2. To this end, we consider a fixed X and we
build a binary subtree of T, of height w, as follows. Its root is the root w of
T. After its n*® level has been constructed, consisting of 2" nodes Z of T,
all at the same level of T, say level a,,, and all having infinite intersection
with X, we produce the next level as follows. For each node Z of level
n in our subtree, Z N X is an infinite set and cannot be in all the dense
open families D, as these were chosen to have no common member. Since
Tac+1 € D¢, ZNX must meet at least two sets in 73 for all sufficiently large
B. Choose a (3 that is sufficiently large in this sense for all 2" Z’s; call it
O t1, and let the successors of each Z at this level be two nodes that meet
Z N X infinitely. Note that these are necessarily C* Z (for otherwise they
would be almost disjoint from Z), so we are getting a subtree of 7. After
the subtree has been constructed, use the fact that h is uncountable and
regular to see that the supremum, say <, of the a,,’s is still < b, so there
are a v** and a (7 + 1)t level of 7.

For each path p through our subtree, the nodes along that path, inter-
sected with X, form an almost-decreasing w-sequence, so there is an infinite
X' C X almost included in all of them (as t > w). That X' has infinite
intersection with some node Y in level v + 1 of 7, because the level is a
MAD family. This Y has infinite intersection with each of the nodes Z
along the path p, so Y is almost included in each of these Z’s (because T is
a tree). Since distinct nodes at the same level are almost disjoint, distinct
paths p must lead to distinct nodes Y. So we have ¢ nodes Y at level v+ 1,
all meeting X infinitely. Since 7 is a limit ordinal, v = 2y and X is active
at stage 2y + 2. 4

6.21 Remark Clause 3 of the theorem implies that forcing with ([w]¥,C*
) is equivalent to forcing with (7,C*). It is not difficult to modify the
construction of the base matrix tree so that each node has ¢ immediate
successors. Then this forcing clearly adjoins a function from § onto ¢. Since
b is not collapsed and no reals are added (because of the distributivity), we
find that b is the cardinality of the continuum in the forcing extension by
(], C*).

We introduce a cardinal p, a slight modification of t, that is often use-
ful because of its connection with forcing; see Theorem 7.12 below. Notice
that it makes sense to ask about pseudointersections of families more gen-
eral than towers. An obvious necessary condition for a family to have a
pseudointersection is the strong finite intersection property defined below;
p measures the extent to which this necessary condition is also sufficient.

6.22 Definition A family F of infinite sets has the strong finite intersec-
tion property (SFIP) if every finite subfamily has infinite intersection. The
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pseudointersection number p is the smallest cardinality of any F C [w]¥
with SFIP but with no pseudointersection.

Since a tower is a family with SFIP and no pseudointersection, we im-
mediately get half of the following proposition. The other half, that p is
uncountable, is proved exactly as for t (and is improved in Proposition 6.24
below).

6.23 Proposition 8; <p <t.

It is not known whether p can be strictly smaller than t, but the next
theorem shows that, for this to happen, p would have to be at least Ny and
(therefore) t at least N3. To prove the theorem, we need a proposition that
will be useful again later (in the proof of Theorems 8.13 and 9.25) and is
of some interest in its own right as it can serve as a characterization of 0
(the ? in the hypothesis is easily seen to be optimal). The theorem and a
version of the proposition are in [91]; a form of the proposition closer to the
present one is in [65].

6.24 Proposition Suppose (C,, : n € w) is a decreasing (or almost decreas-
ing) sequence of infinite subsets of w, and suppose A is a family of fewer
than 0 subsets of w such that each set in A has infinite intersection with
each C,. Then {Cy : n € w} has a pseudointersection B that has infinite
intersection with every set in A.

Proof. We may assume (C), : n € w) is decreasing, for if it is only almost
decreasing then we can replace each C,, with [, ., Ci without affecting the
other hypotheses or the conclusion, as each new (', differs only finitely from
the old.

For any h € “w, let By = |J,¢,,(Cn N h(n)). Each C, includes all but
the first n terms of this union, so By, is a pseudointersection of the C,’s. It
remains to choose h so that AN By, is infinite for all A € A.

For each such A, let fa(n) denote the nth element of the infinite set
AN Cyp. Observe that, if h(n) > fa(n) for some A and n, then AN By, has
cardinality at least n, for it contains the first n elements of AN C,,. So By,
can serve as the B in the proposition provided VA € A3%n (h(n) > fa(n)).
But there are fewer than 0 functions f4, so there is an h not dominated by
any of them. -

6.25 Theorem Ifp = N; then t = N;.

Proof. Since t < h < b <0, the result is immediate if 9 = N1. So we assume
for the rest of the proof that o > Nj.

By hypothesis we have a family 4 = {A, : @ < Xy} with SFIP but with
no pseudointersection, and we may assume that it is closed under finite
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intersections. We build a tower (T, : @ < ¥;) of length ¥y by recursion,
ensuring at each stage that T, has infinite intersection with each A € A
and that To41 C A,. We start with Ty = w, and at countable limit stages A
we continue the tower by applying the proposition (with (C, : n € w) being
a cofinal subsequence of (T, : a < A)). At successor stages we set Tqy1 =
T.NA,. It is easy to verify that this defines an almost decreasing sequence
with the claimed properties. It is a tower, because any pseudointersection
of the T,’s would also be a pseudointersection of the A,’s. -

We close this section by discussing the groupwise density number g, a
close relative of . More information about it, including the motivation for
its definition, is in Section 8.

6.26 Definition A family G C [w]¥ is groupwise dense if it is open in the
lower topology (i-e., closed under almost subsets) and, for every interval
partition II, some union of (infinitely many) intervals of II belongs to G.
The groupwise density number g is the smallest number of groupwise dense
families with empty intersection.

It is conventional, though perhaps unnatural, to include closure under
almost subsets in the definition of “groupwise dense” even though it is not
in the definition of “dense.” The first part of the following proposition gives
a convenient synonym for “groupwise dense,” namely “nonmeager open”
where non-meager refers to the usual topology of [w]“ (as a subspace of
Pw =2 “2) whereas “open” refers to the lower topology.

6.27 Proposition 1. A family G C [w]¥ is groupwise dense if and only
if it is closed under almost subsets and nonmeager in the standard
topology.

2. The intersection of any fewer than g groupwise dense families is group-
wise dense.

3. g 1is regular.
4-h<g<o.

Proof. Identify [w]“ with a cocountable subset of “2 via characteristic func-
tions. Let G C [w]“ be closed under almost subsets. By Theorem 5.2, it is
nonmeager if and only if it contains enough reals to match each chopped real
(z,II). Thanks to closure under subsets, it suffices to match those chopped
reals whose first component z is the identically 1 function. But matching
these chopped reals is precisely what the definition of groupwise density
requires.

For part 2, suppose G, are fewer than g groupwise dense families. Their
intersection G is clearly closed under almost subsets, so consider an arbitrary
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interval partition II = {I, : n € w}. We must find an infinite set X C w
such that UnE x In € G. That is, we must find an X common to the families
Ho = {X € [w]” : Upex In € Ga}. Since there are fewer than g of these
families, it suffices to prove that each of them is groupwise dense. This is
a routine verification; to see that H, contains a union of intervals from a
partition ©, use that G, contains a union of intervals from the partition
{UnesIn:J € 6}.

The regularity of g follows immediately from part 2.

Every groupwise dense family G is dense. Indeed, given any infinite
X C w, we can form an interval partition in which each interval contains a
member of X. Then G contains a union of such intervals and therefore, be-
ing closed under subsets, contains an infinite subset of X. This observation
immediately gives b < g.

Finally, to show that g < 0, let D be a dominating family of size 0, and
associate to each f € D the set

gy ={X € [w]*:3"n (X N[n, f(n)) = 0)}.

Then Gy is groupwise dense; given any interval partition II, we can form an
element of Gy by taking infinitely many intervals from II, separated by gaps
so long that each gap includes [n, f(n)) for some n. But there can be no X
common to all the Gy, for if there were then the function sending eachn € w
to the next larger member of X would not be dominated by any f € D. So
we have 0 groupwise dense families with empty intersection. -

6.28 Remark This proposition shows that, in the lattice of subsets of [w]*
closed downward with respect to C*, the non-meager sets form a filter,
indeed a < g-complete filter. This may be somewhat surprising, since in
the lattice (Boolean algebra) of all subsets of [w]*, two non-meager sets can
be disjoint; in fact there are ¢ pairwise disjoint non-meager sets.

6.29 Remark The characteristics studied in this section, as well as s and ¢
from Section 3 above and a from Section 8 below, have interesting analogs in
structures other than [w]“. One example is the system of dense subsets of Q,
ordered by C*. Little is known about these characteristics, but Lemma 6.11
says that the tower number in this situation is no smaller than the ordinary
tower number.

Another example is the set of partitions of w into infinitely many pieces,
ordered by “coarser than modulo finite.” Several characteristics of this sort
have been studied by Krawczyk (unpublished).

7. Forcing Axioms

Forcing axioms are combinatorial statements designed to express what is
achieved by certain sorts of iterated forcing constructions. They serve to



7. Forcing Axioms 43

hide such constructions in a “black box”; instead of showing that a state-
ment of interest can be forced by such a construction, one derives it from
the combinatorial principle. The oldest and still the most frequently used of
these principles is Martin’s axiom, introduced in [73]. To state it, we need
some terminology from forcing theory.

7.1 Definition Let (P, <) be a nonempty partially ordered set. Two el-
ements p,q € P are compatible if they have a common lower bound and
incompatible otherwise. An antichain is a set of pairwise incompatible ele-
ments. P satisfies the countable chain condition (ccc) or countable antichain
condition if all its antichains are countable. More generally, P satisfies the
< k~chain condition if all its antichains have cardinalities < k.

A subset D C P is dense if every element of P is > an element of D. If
D is a family of dense subsets of P, then G C P is D-generic if it is closed
upward and directed downward (every two members have a common lower
bound) and intersects every D € D.

7.2 Definition Martin’s aziom (MA) is the statement that, if D is a family
of fewer than ¢ dense subsets of a partial order P with ccc, then there is a
D-generic filter G C P. More generally, if k is a cardinal and K is a class
of nonempty partial orders, then we write MA, (K) for the statement that
every family D of k dense subsets in a member P of K admits a D-generic
G C P. MA_,(K) is defined analogously. One omits the subscript when it
is “< ¢” and one omits the class K when it is the class of ccc posets.

Thus, MA is MA.(ccc). Some authors write MA, to mean what we
have called MA ...

MA describes the model obtained by a finite support forcing iteration,
of length some uncountable k = k<%, in which all ccc posets (of the ex-
tension) of size < k are used as forcing conditions during the iteration.
This iteration, which is itself a ccc forcing, produces a model of MA and
¢ = k. Thus, MA is consistent with the continuum being arbitrarily large.
Although only small (smaller than x) posets were used during the iteration,
a reflection argument (essentially the Lowenheim-Skolem theorem; see the
second preliminary simplification in the proof of Theorem 7.12 below) shows
that all ccc posets, not only the small ones, acquire generic sets with respect
to small families of dense subsets. For details about this, see [105] or [67,
Section VIIL.6].

For orientation, we mention that:

e MA,, (all posets) is provable in ZFC, and therefore CH implies MA.

e MAy, (all posets) is refutable. Take P to be <“¥; ordered by reverse
inclusion, take D, = {p € P : a € ran(p)}, and observe that a generic
G would give a map |JG of w onto ;.
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e MA_ (Cohen) is refutable, where “Cohen” refers to the single poset <“2
ordered by reverse inclusion. For each f : w — 2,1let Dy = {p:p Z f}
and observe that a generic G would give a function G : w — 2
different from every f.

The last two of these observations indicate why MA refers only to ccc posets
and only to < ¢ dense sets.

The effect of MA on cardinal characteristics of the continuum is to make
them large, as the next two theorems and their corollaries show. These
results are from [73].

7.3 Theorem MA implies add(L) = c.

Proof. Suppose k < ¢ and we are given & sets N, C R (a < k) of measure
zero. We must show, assuming MA, that their union has measure 0. Tt
suffices to find, for each positive ¢, a set of measure < ¢ that includes all
the N, as subsets.

Given g, let P be the set of open subsets of R having measure < g, and
order P by reverse inclusion. In order to apply MA to this P, we first verify
the ccc. Let uncountably many elements p of P be given. Inside each of these
open sets, find a finite union ¢(p) of open intervals with rational endpoints,
large enough so that u(p — ¢(p)) < € — p(p). Notice that this implies
u(p — a(p)) < 3(e — u(g(p)))- There are only countably many possibilities
for ¢(p), so two (in fact uncountably many) of the ¢(p) must be the same g.
But then the union of the two corresponding p’s has measure < € (because it
consists of ¢ plus the two remainders p— ¢, and each remainder has measure
less than half of £ — u(g)), so it is in P and is a common lower bound for
those two p’s. Thus, an uncountable family of p’s cannot be an antichain.

For each of the given N,’s, let D, = {p € P : N, C p}, and notice that
this is a dense subset of P (because a set of measure zero is included in
open sets of arbitrarily small measure). Since k < ¢, MA provides a generic
G meeting all the D,. Then |G includes all the N,. Furthermore, as a
directed union of open sets of measure < ¢, this [ JG has measure <e. -

7.4 Corollary MA implies that all the cardinals in Cichon’s diagram are
equal to ¢ and that t = c.

7.5 Remark The partial ordering used in the proof of the theorem is called
the amoeba order. To understand the name, visualize the open sets in three
dimensional space instead of R, and visualize the proof of density of D, as
extruding a tentacle! from a given open set to engulf N,.

The proof of ccc for the amoeba actually establishes the stronger property
of being o-linked in the sense of the following definition.

11t has been pointed out to me that an amoeba has pseudopodia, not tentacles. But
it seems easier to visualize tentacles.
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7.6 Definition In a partial order, a subset S is called linked if every two
of its elements are compatible. It is n-linked if every n of its members have
a common lower bound. It is centered if every finitely many of its members
have a common lower bound. o-linked means the union of countably many
linked subsets. o-n-linked and o-centered are defined analogously.

Clearly, o-centered implies o-linked, which in turn implies ccc. As n
increases, o-n-linked becomes stronger but still remains weaker than o-
centered.

In the proof of Theorem 7.3, we essentially showed that the amoeba is
o-linked, as witnessed by the countably many sets {p : ¢(p) = ¢}, where ¢q
ranges over finite unions of rational intervals and where ¢(p) is defined for
all p as it was defined in the proof above for p in the supposed antichain.
A similar argument shows that the amoeba is o-n-linked for all n. But it is
not o-centered.

Instead of working directly with sets of measure zero, one can prove
the preceding theorem by using Theorem 5.14, which described add(£) in
terms of slaloms. Given fewer than ¢ functions w — w, one needs a slalom
through which all of them go. This is obtainable by applying MA to a poset
P consisting of pieces of slaloms. Specifically, a member p of P is a function
on w assigning to each n a finite set of natural numbers, such that, for some
k, |[p(n)| is n for n < k and k for n > k. The ordering is componentwise
reverse inclusion, and the relevant dense sets are {p: Vn > k (f(n) € p(n))},
where k witnesses that p € P and where f is one of the given functions that
should go through our slalom. This forcing is called localization forcing in
[5, Section 3.1].

7.7 Theorem MA implies p = c.

Proof. Suppose F C [w]” has the strong finite intersection property and
|F| < ¢. To find a pseudointersection X for F, we apply MA to the following
poset P. A member of P is a pair (s, F') where s is a finite subset of w and
F is a finite subset of F. (The “meaning” of (s, F) is that the desired X
should include s and should, except for s, be included in each A € F.) The
ordering puts (s', F') < (s, F) if

s is an initial segment of s', F' D F, and VA€ F(s'—sCA).

Any two pairs with the same first component are compatible, as one can
just take the union of the second components. (In fact, any finitely many
pairs with the same first component have a common lower bound. So this
ordering is o-centered.) For each A € F, theset Dy = {(s,F) € P: A€ F}
is dense. So is D,, = {(s,F) € P : |s| > n} because of the SFIP of 7. MA
provides a generic G meeting all these dense sets. Let X = U(s, F)eG S This
is infinite because G meets each D,,. To see that it is almost included in
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each A € F, use that G and D4 have a common member (sg, Fp). That
means A € Fp, and we shall show that X —sg C A. Any member k of X —sg
is in s — sg for some (s, F) in G, and, as G is directed downward, it contains
some (s', F') < both (s, F') and (sg, Fp). Then k € s —s9 C s’ — 59 C A, as
required. -

7.8 Remark The forcing used in the preceding proof is called Mathias
forcing with respect to F. One can equivalently view it as consisting of
pairs (s, A) where A is the intersection of finitely many sets from F; in this
form, the ordering (s', A") < (s, A) is defined by

s is an initial segment of s', A’ C A, and s —sCA.

Mathias forcing (without respect to any F) means the similarly defined
poset where the second components A can be arbitrary infinite subsets of
w. In contrast to Mathias forcing with respect to an F with SFIP, this
Mathias forcing does not satisfy the ccc. It can be viewed as a two-step
forcing iteration, where the first step is forcing with ([w]“, C*), which adjoins
a generic ultrafilter &/ on w, and the second step is Mathias forcing with
respect to U.

7.9 Corollary MA impliesp=t=h=g=s=rc.

Thus, all the characteristics we have discussed are equal to ¢ if MA holds.
The proofs actually show a bit more, if we introduce new characteristics
related directly to MA.

7.10 Definition For any class K of posets, m(K) is the smallest  for which
MA,(K) is false. If K is the class of ccc posets, we omit mention of it and
write simply m.

Thus MA is the statement m = ¢. Clearly,
m < m(o-linked) < m(o-3-linked) < --- < m(o-centered) < m(Cohen).

See [68] for a model where m < m(o-linked); similar techniques can be used
to get strict inequalities between other such variants of m.

The proofs of the last two theorems and our remarks about the o-linked
and o-centered properties of the posets in the proofs establish the following
inequalities.

7.11 Corollary m(o-linked) < add(L) and m(o-centered) < p.

Of course, one could be even more specific about the posets used; for
example the proof above shows that m(amoeba) < add(L£). In fact, equality
holds here; see [5, Theorem 3.4.17].

The second half of the last corollary can also be improved to an equality,
Bell’s theorem [12].



7. Forcing Axioms 47

7.12 Theorem m(o-centered) = p.

Proof. In view of Corollary 7.11, it suffices to consider an arbitrary o-
centered poset P, say the union of centered parts C,, and to find a D-
generic G for a prescribed family D of fewer than p dense subsets of P. It
is convenient to begin with several simplifications of the problem.

First, we may assume that each D € D is closed downward, because
closing the dense sets will not affect D-genericity.

Second, we may assume that |P| < p. Indeed, suppose the theorem were
proved in this case, and suppose we are given the situation above with |P| >
p. By the Lowenheim-Skolem theorem, the structure (P, <, Cp, D)pew,peD
has an elementary substructure P’ of cardinality < p. Then P’ is o-centered
and D' = {P'ND : D € D} is a family of < p dense subsets, so there is
a D'-generic G C P'. The upward closure of G’ in P is then D-generic, as
required.

Third, instead of producing a generic G, it suffices to produce a linked
L meeting every D € D. Indeed, suppose we could always do this. Then,
given P and D as above, we enlarge D by adjoining the sets

D, , = {r € P:r is incompatible with p or with ¢, or r < p, ¢},

which are easily seen to be dense. If L is linked and meets all the sets in
D and all the D, 4, then the upward closure G of L is D-generic. The only
thing to check is that it is directed downward. To find a common lower
bound for any p,q € G, we may, by lowering both, assume that p and ¢ are
in L. Let r € LN Dp 4. Then r cannot be incompatible with p or with q as
L is linked; so r < p, q, as required.

Fourth, we may assume that, for each n € w, there is some D,, € D
disjoint from C,,. Otherwise, C,, could serve as the required L.

Fifth, we may assume that D is closed under finite intersections. Closing
it in this way does no harm, because the cardinality |D| will not be increased
(unless it was finite — a trivial case) and the intersection of any finitely
many dense, downward-closed sets is again dense and downward closed.

After all these simplifications, we begin the real work of the proof. For
each p € P and each D € D, let A(p, D) be the set of those n € w such that
some member of C,, N D is < p.

I claim that, for each k € w, the family F, = {A(p,D) :p€ C, and D €
D} has the strong finite intersection property. By our fourth simplification,
it suffices to show that each finite subfamily F? of Fj, has nonempty in-
tersection, for we could always include in F sets of the form A(p, D,,) for
any finitely many of the D,, and so keep any finitely many n’s out of the
intersection. By our fifth simplification, we may assume that the sets in Fp
are A(p;, D) for various p; € C}, but just one D € D, for different D’s could
be replaced with their intersection. As C}, is centered, the p;’s have a lower
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bound p, and below that we can find a member ¢ of the dense set D. If
q € Cy, then n € N Fp. This completes the verification of the claim.

Since |Fi| < |P|-|D| < p by our second simplification, F;, has a pseudo-
intersection Ag.

Next, we define several labelings of the w-branching tree <“w of height
w, a primary labeling by natural numbers and, for each D € D, a secondary
labeling by members of P. In the primary labeling, the label of the root
is (arbitrarily chosen as) 0, and if a node has label k then the labels of its
immediate successors are the numbers in Ay, (once each). The secondary la-
beling associated to a particular D € D is defined as follows. The secondary
label of the root is an arbitrary element of Cy. If a node has been given
secondary label p and if an immediate successor of it has primary label n,
then the secondary label of that successor is to be an element of C,, N D
that is < pin P, provided such an element exists, i.e., provided n € A(p, D)
— in this case we call that successor node “good” for D. If no such element
exists, then the secondary label of that successor node is chosen arbitrarily
from C,, and the node is called “bad” for D. Notice that, whether a node
is good or bad, its secondary label is always in C,, where n is its primary
label.

Because Ay, is a pseudointersection for Fy, all but finitely many of the
immediate successors of any node are good for any particular D € D. For
each node s and each D € D, let fp(s) be a number so large that all the
nodes s~ {m) for m > fp(s) are good for D. Since |D| < p < b (and since
the tree has only countably many nodes), there is g : <“w — w that is >*
all the fD-

Using g, we define a path X through the tree <“w by starting at the
root and, after reaching a node s, proceeding to s~ (g(s)). Our choice of g
ensures that, for each D € D, all but finitely many nodes along the path
X are good for D. Choose, for each D, a node sp on X such that it and
all later nodes on X are good for D, and let pp be its secondary label
associated to D. Thus pp € D. This guarantees that L = {pp : D € D}
meets every D € D.

To complete the proof, we verify that L is linked. Consider any two
elements pp,ppr € L. If sp = spr then both of pp, ppr are in the same C,,
where n is the primary label of sp, so they are compatible because C,, is
centered. Suppose therefore that sp occurs before spr along the path X.
By choice of sp, all the nodes along the path X from sp to sp are good
for D, so the secondary labeling associated to D puts at the node spr a
label g that is < pp. But, being in the same C,, ¢ and pp' are compatible.
Therefore so are pp and pp:. -

There is a similar (but easier) result about countable partial orders.

7.13 Theorem m(Cohen) = m(countable) = cov(B).
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Proof. Since Cohen forcing is a countable poset, MA, (countable) implies
MA ,(Cohen). We shall complete the proof by showing that MA . (Cohen)
implies k < cov(B) and that this in turn implies MA . (countable).

Assume MA ,(Cohen) and let x nowhere dense subsets X, of “2 be given.
We must show that the X, do not cover “2. For each «, let D, be the set
of those s € <¥“2 that have no extensions in X,. Because X, is nowhere
dense (in the topological sense), D, is dense (in the partial order sense). So
MA (Cohen) gives us a generic G C “2 meeting every D,. Then JG € “2
is in none of the X,.

Finally, assume k < cov(B), and let k dense subsets D, of a countable
poset P be given. Let T : “ P — “P be the transformation that turns any
sequence z € “P into a (weakly) decreasing sequence T'(z) in a greedy way;
that is, T'(z)(0) = z(0), and T'(z)(n + 1) = z(n + 1) if this is < T(z)(n) in
P, and otherwise T'(z)(n + 1) = T'(z)(n). We similarly define T on finite
sequences instead of infinite ones.

The sets U, = {z € “P : In(T(x)(n) € Dy)} are dense open subsets of
wP. To verify density, consider any nonempty s € <“P, let p be the last
term of T'(s), and let ¢ < p be in D,. Then every extension of s™{(g) is in
U,.

As k < cov(B), there is an z in the intersection of all the U,. Then
the range of the decreasing sequence T'(x) meets every D, and the upward
closure of this range is therefore the desired generic set. 4

As an application of Bell’s theorem 7.12, we give an analog of Proposi-
tion 6.24, weakening the hypothesis of countability (of the list of C’s) and
strengthening the hypothesis of cardinality < 0 (for .4) by replacing both
with the hypothesis of cardinality < p.

7.14 Theorem Suppose C and A are families of < p subsets of w, and
suppose every intersection of finitely many sets from C and one set from A
is infinite. Then C has a pseudointersection B that has infinite intersection
with each set in A.

Proof. Let P be Mathias forcing with respect to C, as defined in the proof
of Theorem 7.7 and the remark following it. As shown there, this is o-
centered, and for each C' € C the set Do = {(s,F) € P: C € F} is dense.
Furthermore, for each A € A and each n € w, the set Dy, = {(s,F) € P:
|sN A| > n} is dense because each intersection of finitely many sets from C
and one set from A4 is infinite.

As both |C| and |A| are < p = m(o-centered), P has a generic subset
G meeting all these D¢ and Dy . As in the proof of Theorem 7.7, we
define B = |J, p)eq s and we find that this is a pseudointersection of C.
Furthermore, it has infinite intersection with each A € A because G meets
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each Dy p. .

As a consequence, we obtain that p, like its relatives t, b, and g, is regular,
but the proof is trickier than for the relatives. This proof is taken from [47,
Section 21], where it is attributed to Szymaniski.

7.15 Theorem p is regular.

Proof. Suppose p were singular with cofinality A < p. Let A be a family of
p subsets of w having the strong finite intersection property but having no
pseudointersection. Express A as the union of an increasing A-sequence of
subfamilies A4,, each of cardinality < p. To simplify later considerations,
we assume without loss of generality that 4 and all the A, are closed under
finite intersections.

In this situation, we have the following improvement of Theorem 7.14. If
C is any family of fewer than p sets such that every intersection of finitely
many sets from C and one set from A is infinite, then C has a pseudo-
intersection B whose intersection with each set from A is infinite. (The
improvement is that A has size p rather than strictly smaller size.) To
prove this, note first that each C U A, has the SFIP and has size < p, so it
has a pseudointersection Z,. Then apply Theorem 7.14 with {Z, : @ < A}
in the role of A.

We intend to build an almost decreasing \ 4+ 1-sequence {(Cy : @ < )
such that each C, for a < A is a pseudointersection of A4,. If we can do
this then, because the C, are almost decreasing and the .4, are increasing
and cover A, Cy will be a pseudointersection of A, a contradiction.

We define the Cy by recursion. To make the recursion work, we carry
along the additional requirement that each C, must have infinite intersec-
tion with every member of A.

Suppose a < X and Cp is already defined for all § < a in such a way
that our requirements are satisfied. We need to define C, so that it is C*
each previous Cp, it is C* each member of A,, and it has infinite inter-
section with every member of A. Such a set is produced by applying the
improvement above of Theorem 7.14 with C = {Cp : 8 < a} U A,, provided
the hypothesis of that improvement is satisfied. So we need only check
that every intersection X of finitely many Cg’s (8 < ) and finitely many
members of A4, and one member of A is infinite. Since the Cg’s are almost
decreasing, since A, C A, and since A is closed under finite intersection,
such an X almost includes Cg N A for some 8 < o and some A € A. The
induction hypothesis guarantees that Cs N A and therefore X are infinite.
_|

7.16 Remark This section has dealt almost exclusively with forcing ax-
ioms for the class of ccc posets and subclasses, because these are the forcing
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axioms most relevant to cardinal characteristics. To avoid giving a com-
pletely unbalanced picture, however, we should at least mention that nu-
merous other forcing axioms have been considered. The most popular of
these is the proper forcing axiom PFA, which is MAy, (proper). Proper
forcing was defined by Shelah [96, Chapter III], who showed that it permits
countable-support iterations without collapsing N;; see Abraham’s chapter
in this handbook. PFA summarizes the result of a countable-support it-
eration of all small proper posets. Unlike the construction of a model for
MA, where the improvement from small ccc posets to all ccc posets was
handled by a Lowenheim-Skolem argument, the construction of a model for
PFA uses a supercompact cardinal in the ground model to get the necessary
reflection property for the corresponding improvement from small to all.

8. Almost Disjoint and Independent Families

This section is devoted to families of subsets of w with various special prop-
erties, and particularly to those families that are maximal with respect to
these properties.

Recall from Section 6 that an almost disjoint family is a family of infinite
sets whose pairwise intersections are finite, and that the phrase “maximal
almost disjoint (MAD) family” refers to an infinite family of subsets of w
maximal with respect to almost disjointness.

Although a set of size x clearly cannot support a family of more than k
disjoint sets, the situation for almost disjoint sets is quite different.

8.1 Proposition On any countably infinite set, there is a family of ¢ almost
disjoint subsets.

Proof. Tt clearly does not matter which countably infinite set we consider.
Choosing the binary tree <“2 as the ambient set, we can use its ¢ branches
as the almost disjoint family. 4

8.2 Remark There are at least two other similar and equally easy proofs
of this proposition. One uses the set of rationals as the ambient set and
assigns to every real r a sequence of rationals converging to r; sequences
with different limits are clearly almost disjoint. Another uses w x w as the
ambient set and assigns to each positive real r the set {(n, |rn]) : n € w}.

The proposition and Zorn’s lemma imply the existence of a MAD family
of cardinality ¢, but there may also be smaller MAD families. For example,
it is shown in [67, Theorem VIIIL.2.3] that if one adds any number of Cohen
reals to a model of CH, then the resulting model has a MAD family of size
Ny; see also Section 11. Hechler [54] gives a model with MAD families of
many different cardinalities.
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8.3 Definition The almost disjointness number a is the smallest cardinal-
ity of any MAD family.

8.4 Proposition b < a.

Proof. Let A be a MAD family of size a, let C,, (n € w) be any countably
many members of it, and let A’ be the rest of A. By making finite changes
to each C),, we can arrange that these sets are really disjoint, not just almost
disjoint, and that they partition w. By a suitable bijection, identify w with
w X w in such a way that C,, is the column {n} x w. Each A € A’ has
only finitely many elements per column, so we can define fa4 : w = w to
be the function whose graph is the upper boundary of A. If there were a
function g : w — w that is >* all the f4, then its graph would be almost
disjoint from all A € A’ and all C,,, contrary to maximality of A. So the
fa’s constitute an unbounded family of size a. 4

Shelah [98] showed that b < a is consistent. He also showed there that, if
we define ay like a except that we use w X w as the ambient set and require
the MAD family to consist of graphs of partial functions, then a < a, is
consistent. Brendle has pointed out the following alternative proof of the
consistency of a < as. By part 2 of Theorem 5.9, we have non(B) < a,.
We shall see in Section 11 that the random real model (obtained by forcing
with a large measure algebra over a model of GCH) has non(B) = ¢ > ¥
and a = N;. Therefore it has a < a,.

Little else is known about connections between a and other cardinal char-
acteristics, but Shelah has shown in [99] that a > 0 is consistent.

8.5 Remark Proposition 8.1 can be used to evaluate the “dual” of f. Un-
like the definitions of t and p, that of h fits the “norm of relation” format
discussed in Section 4. Indeed, h = ||([w]¥, DO, ¢)|| where DO is the family
of dense open subsets of [w]“. (There is an important difference between
this relation and those associated to cardinal characteristics in Sections 4
and 5. The elements of DO cannot be coded by reals, nor does DO pos-
sess a nice base whose elements can be coded by reals.) It is natural to
ask about the norm of the dual relation, i.e., the minimum size of a family
X C [w]” such that every dense open family D intersects X. It follows from
Proposition 8.1 that this cardinal is ¢. In fact, the same also holds for the
dual of g, by nearly the same proof.

8.6 Theorem The minimum number of sets in [w]* meeting every dense
open family, or even every groupwise dense family, is c.

Proof. Suppose X C [w]“ has cardinality < ¢; we shall find a groupwise dense
(hence dense open) D C [w]¥ disjoint from X. Let D ={Y € [w]* : VX €
X (X ¢€* Y)}. This D is clearly disjoint from X and closed under almost
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subsets, so we need only check that, for any interval partition {I, : n € w},
the union of some infinitely many of its intervals is in D. Let A be a family
of ¢ almost disjoint subsets of w, and for each A € A let A" = |J,c 4 In-
Then the A’ are also almost disjoint, so no two of them can almost include
the same X € X. Since there are more A”’s than X’s, some A’ must not
almost include any X, i.e., some A’ must be in D. A

8.7 Corollary cof(c) > g.

Proof. Let [w]* = U ,<cof(c) Xas Where each [X,| < ¢. By the theorem, there
are groupwise dense families D, each disjoint from the corresponding X,,.
No set can belong to all the D,, for it would then belong to no X,. So we
have cof(c) groupwise dense families with empty intersection. =

Notice that this corollary subsumes Corollary 6.15. The intermediate
result that cof(c) > h was proved in [1]. Among the familiar cardinal char-
acteristics of the continuum, g is the largest one known (to me) to be a
lower bound for cof(c). In particular, it is consistent that b > cof(c) and it
is consistent that s > cof(c). For the former, start with a model satisfying
MA and ¢ = N, and GCH at all larger cardinals, and adjoin Ny, random re-
als. Then ¢ = Xy, and b, unaffected by the random reals, is Ny > cof(c). For
the latter, start with a model of ¢ = Ny, , and do an Ny-stage, finite-support
iteration of Mathias forcing with respect to (arbitrarily chosen) ultrafilters.
The finite-support iteration automatically adds Cohen reals at limit stages
of cofinality w and choosing one of them at each stage provides a splitting
family of size Ny. There is no smaller splitting family, because any N; reals
lie in an intermediate extension and fail to split the subsequently added
Mathias reals.

8.8 Definition A family 7 of subsets of w is independent if the intersection
of any finitely many members of Z and the complements of any finitely many
other members of 7 is infinite.

The “infinite” at the end of the definition could be equivalently replaced
with “nonempty” if we assumed that 7 is infinite.

8.9 Proposition There is an independent family of cardinality c.

Proof. Let C be the set of finite subsets of Q. Since C' is countably infinite,
it suffices to find ¢ independent subsets of C'. For each real r, let

E.={F € C:|FnN(—oo,r)|is even}.

To see that these sets E, are independent, let any finitely many distinct
reals r1,...,Tk, S1,...,8; be given. We must find an F € C that belongs
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to all the E,; and none of the E;;. But this is easy; F' consists of 0 or 1
rationals from each of the (k + [ + 1) intervals into which the 7’s and s’s
partition R, the choice of 0 or 1 being made so as to get the right parities.

_|

8.10 Remark The preceding proposition is due to Fichtenholz and Kan-
torovich [45]. It was generalized by Hausdorff [53] who showed that any
infinite cardinal x has 2* independent subsets.

Hausdorff’s construction (for kK = Ng) uses the countable set C' of pairs
(a, B) where a ranges over finite subsets of w and B ranges over subsets of
P(a). To each X C w associate the subset {(a,B) € C:an X € B} of C.
It is easy to verify that all these subsets are independent.

The corresponding generalization of Proposition 8.1 fails. Baumgartner
[8, Theorem 5.6] showed that X; need not have 2% uncountable subsets
with pairwise countable intersections.

The proposition and Zorn’s lemma, provide a maximal independent family
of size ¢, but there may be smaller maximal independent families.

8.11 Definition The independence number i is the smallest cardinality of
any maximal independent family of subsets of w.

No upper bounds (except for the trivial ¢) are known for i, but there are
two lower bounds.

8.12 Proposition t <1

Proof. Let 7 be a maximal independent family, and let R consist of all the
sets obtainable by intersecting finitely many sets from 7 and the comple-
ments of finitely many others. The definition of independence ensures that
R C [w]¥, and R must be unsplittable because if X were to split all its
members then Z U {X} would be independent, contrary to the maximality
of Z. So |R| > ¢, from which it follows that |Z| > ¢. -

The following more difficult estimate of i is due to Shelah [110, Appendix
by Shelah]. The proof we give, a simplification of Shelah’s, is from [20]; the
simplification was found independently by Bill Weiss.

8.13 Theorem ? <.

Proof. Suppose 7 is an independent family of cardinality < 0; we shall show
that it is not maximal. Throughout the proof, we let X and )Y stand for
finite, disjoint subfamilies of Z; thus, the independence of Z means that
(X — UV is always infinite, and our goal is to find Z such that each
N X —JY meets both Z and w — Z in an infinite set.
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Select any countably many sets D, € Z, and let Z' be the rest of 7.
Write DO for D,, and write D} for w — D,,. For each z : w — 2, apply
Proposition 6.24 with

Co= ) Di®

k<n

and
A= {ﬂ X — Uy : X, Y finite disjoint subfamilies of Z7'}.

Independence of 7 gives the hypotheses of the proposition. So we get B, C w
with:

L. By € ken D:(k) for all n.
2. B, has infinite intersection with each X - JY € A.

It follows from (1) that the B,’s for distinct z are almost disjoint.

Fix two disjoint, countable, dense (in the usual topology) subsets () and
Q' of “2. Removing finitely many elements from B, for each z € Q U @',
we can arrange that these countably many B,’s are really disjoint, not just
almost disjoint. Set

Z=|JB. and Z'= | B..
TEQR zeQ’

So Z and Z' are disjoint. We shall show that Z has infinite intersection
with every (X — J Y; the same argument applies to Z'; so w — Z will also
have infinite intersection with every (1 X — |JJ, and so the proof will be
complete.

Let finite, disjoint X,Y C 7 be given, and let X' and )’ be their inter-
sections with Z'. Fix n so large that, if Dy is in X or ) then k < n. Using
the density of @, fix x € @) such that if Dy is in X or ) then z(k) is 0 or 1,
respectively. Thus,

Nx-Uy = Ox-U»mn N ¥

k:DpeXUY

> (O -Umn N o

k<n
>* (Nx'-UJY)nB..

The last intersection here is infinite, by property (2) of B,. It is included in
Z because z € ). So we have an infinite set almost included in ZN (X —
JY), and the proof is complete. =
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9. Filters and Ultrafilters

This section is devoted to filters and ultrafilters on w. We begin by sum-
marizing the terminology we use. Note that we require all filters to contain
the cofinite sets, so all our ultrafilters are non-trivial.

9.1 Definition A filter (on w) is a family F C Pw that contains all cofinite
sets but not the empty set, is closed under supersets, and is closed under
finite intersections. An wltrafilter (on w) is a filter with the additional
property that, for any X C w, either X or its complement belongs to F. A
base for a filter F is a subfamily of F containing subsets of all the sets in

F.

We occasionally stretch the meaning of “base” of F to apply to a family
B such that for every F' € F there is B € B with B C* F (rather than
B C F). This stretching will make no essential difference but will simplify
a few statements.

We shall need the following well-known consequences of the definition. A
subset X of Pw is included in a filter if and only if it has the strong finite
intersection property, and then the smallest filter including X consists of
the almost supersets of intersections of finite subfamilies of X'. We say that
X generates this filter.

An ultrafilter is the same thing as a maximal filter; thus by Zorn’s lemma
every family with SFIP is included in an ultrafilter. Since an ultrafilter
contains a set X C w if and only if it does not contain w — X, it follows that
a family Y C Pw is disjoint from some ultrafilter if and only if no finitely
many members of ) almost cover w.

9.2 Definition Let F be a subset of Pw (usually a filter, but the definition
makes sense in general) and let f : w — w. Then f(F) is defined to be
{XCw: fYX)eF}.

If F is a filter or an ultrafilter, then so is f(F) provided it contains all
cofinite sets. This proviso is automatically satisfied if f is finite-to-one,
which will usually be the case in what follows.

9.3 Definition A filter F is feeble if, for some finite-to-one f : w — w,
f(F) consists of only the cofinite sets.

The cofinite sets constitute the smallest filter, so feeble filters should also
be thought of as small. They are at the opposite extreme from ultrafilters.

9.4 Proposition The following are equivalent for any filter F on w.
1. F is feeble.
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2. There is a partition of w into finite sets such that every set in F
intersects all but finitely many pieces of the partition.

3. There is an interval partition as in 2 above.
4. {w—X:X € F} is not groupwise dense.
5. F is meager (in the usual topology on Pw = “2).

Proof. The equivalence of statements 1 and 2 is immediate if one views the
pieces of a partition (as in 2) as the sets on which a finite-to-one function
(as in 1) is constant. If a partition II is as in 2, then we can find an interval
partition O, each of whose intervals includes at least one piece of II; then
O works in 3. The equivalence of 3 and 4 is just the definition of groupwise
density. Finally, the equivalence of 4 and 5 follows from Proposition 6.27
because complementation (X — w — X) is a homeomorphism from Pw to
itself and thus preserves meagerness. -

We next consider how many sets are needed to generate a large filter,
where “large” can have a strong interpretation — ultrafilter — or a weak
one — non-feeble filter. The former gives a new cardinal characteristic, while
the latter gives a new view of an old characteristic. Notice that any infinite
generating set for a filter yields a base of the same cardinality just by closing
under finite intersections. So we can equivalently ask about cardinalities of
bases.

We begin with a result similar to Propositions 8.1 and 8.9, namely that
ultrafilter bases can be large. Of course, any ultrafilter is a base for itself
and has cardinality c; the following proposition, due to Pospisil [87], shows
that for some ultrafilters there are no smaller bases.

9.5 Proposition There is an ultrafilter on w every base of which has car-
dinality c.

Proof. Let T be an independent family of size ¢, by Proposition 8.9, and let
X consist of

e all sets in 7 and

e the complements of all sets of the form (|C with C an infinite subset
of 7.

The independence of 7 easily implies that X has the SFIP, so there is an
ultrafilter Y O X. Suppose, toward a contradiction, that ¢/ had a base Y
of cardinality < ¢. As each set in Z has a subset in ) and |Z| > |)|, there
must be infinitely many sets in 7 all including the same Y € ). Then the
intersection of these infinitely many sets from 7 is in ¢/ (because it includes
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Y), but its complement is in X and thus also in &/. This contradiction
completes the proof. 4

Nevertheless, it is consistent that some ultrafilters have bases of cardi-
nality smaller than c.

9.6 Definition u, sometimes called the wltrafilter number, is the minimum
cardinality of any ultrafilter base.

Kunen [67, Chapter 8, Ex. A10] built a finite-support iterated forcing
model where ¢ = Ny, but u = N;. Baumgartner and Laver [11] showed that
an Np-step, countable-support iteration of Sacks forcing (over a model of
GCH) produces a model where certain ultrafilters in the ground model (the
selective ones) generate ultrafilters in the extension. Thus, their model has
u = Ny while ¢ = N».

An ultrafilter base is an unsplittable family, for if X were to split it then
neither X nor w — X could be in the ultrafilter it generates. Thus, we
immediately have the following inequality.

9.7 Proposition v < u.

In most known models, v = u, but Goldstern and Shelah [51] showed that
the inequality can be strict. A stronger connection between v and ultrafilters
is given by the following result of Balcar and Simon [2].

9.8 Definition A pseudobase or m-base for a filter F on w is a family
X C [w]“ such that every set in F has a subset in X.

This differs from the notion of base only in that X need not be a subfamily
of F.

9.9 Proposition t is the minimum cardinality of any ultrafilter pseudo-
base.

Proof. A family X C [w]“ is an ultrafilter pseudobase if and only if there is
an ultrafilter disjoint from

Y ={Y Cw:Y has no subset in X'}.

As mentioned above, this is equivalent to saying that w is not almost covered
by finitely many sets from ). Equivalently, whenever w is partitioned into
finitely many pieces, one of the pieces must have an almost subset in X.
This means that X must be unsplittable, 3-unsplittable (in the sense of
Example 4.13), ..., n-unsplittable for all finite n. On the one hand, mere
unsplittability requires X to have cardinality at least r. On the other hand
we can, as in Example 4.13, produce an n-unsplittable family of size t for
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each n and then take the union of these families to obtain an X as above of
size t. 4

We now consider what is needed to generate a non-feeble filter. The first
part of the following theorem is essentially due to Solomon [102]; the second
part is an unpublished result of Petr Simon.

9.10 Theorem Fwvery filter on w generated by fewer than b sets is feeble,
but there is a non-feeble filter generated by b sets.

Proof. Consider first a filter generated by fewer than b sets, and associate
to each of these generators A an interval partition II4 chosen so that each
interval in the partition contains an element of A. By Theorem 2.10, there
is a single interval partition dominating all these II4’s. Tt clearly satisfies
statement 3 in Proposition 9.4, so our filter is feeble.

To produce a non-feeble filter generated by b sets, we distinguish two
cases, according to whether b = 0.

If b = 9, invoke Theorem 2.10 to get a b-indexed family of interval par-
titions II, (a < b) dominating all interval partitions. We build the desired
filter and a generating family X for it by a recursion of length b, starting
with the family of cofinite sets, and adding at most one new set to X at each
stage. At stage a, see whether the filter F,, generated by the sets already
put into X’ contains a set disjoint from infinitely many intervals of II,. If so,
do nothing at stage a. If not, put into X the union of the even-numbered
intervals of II,, and note that the SFIP of X is preserved. In either case,
our final filter will contain a set missing infinitely many intervals of II,.
After all b steps have been completed, we have a filter that is not feeble
because any interval partition as in statement 3 of Proposition 9.4 could
not be dominated by any II,.

There remains the case that b < 0. Let B be an unbounded family of
size b in “w; without loss of generality, assume it is closed under forming
the pointwise maximum of two functions and assume each function g € B is
non-decreasing. Since |B| < 9, let f € “w be non-decreasing and dominated
by no member of B. Thus, the sets

Xg={new:gln)<fn)} (9€B)

are infinite. The family {X, : g € B} is closed under finite intersections
(because B is closed under maxima), so it is a base for a filter F. To complete
the proof, we suppose that F is feeble and we deduce a contradiction.
Suppose therefore that {I, : n € w} is an interval partition such that
each set in F meets all but finitely many I,,’s. Define f': w — w by letting
f'(k) be the value of f at the right endpoint of the next I,, after the one
containing k. Consider an arbitrary g € B and a k so large that X, being
in F, meets the next interval I,, after the one containing k. Calling that
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interval [a,b] and letting ¢ be in its intersection with X, we have, since f
and g are non-decreasing,

9(k) < g(c) < f(c) < f(b) = f'(K).

Thus, g <* f'; since g was an arbitrary element of B, we have a contradiction
to the fact that B is unbounded. -

9.11 Remark The first part of the preceding proof actually shows that a
filter with a pseudobase of size < b must be feeble.

It is easy to see that every filter F is the intersection of some ultrafilters,
in fact of at most ¢ ultrafilters. Indeed, for each A € Pw — F, the family
F U {w — A} has the SFIP and is therefore included in an ultrafilter U4.
The intersection of these U4’s is F.

The next two propositions contain information about how many ultra-
filters must be intersected in order to get filters that are small in one or
another sense. The first one, due to Plewik [86], is another application of
Proposition 8.1.

9.12 Proposition The intersection of fewer than ¢ ultrafilters is not feeble.

Proof. Suppose the feeble filter F is the intersection of ultrafilters U,. Let f
be a finite-to-one function such that f(F) consists only of the cofinite sets.
Let A be a family of ¢ almost disjoint subsets of w. For each A € A, we
have w — A ¢ f(F) (as A is infinite), so w — f~1(A) = f~1(w — A) ¢ F,
so w— f1(A) ¢ U, for at least one a, and so f~1(A4) € U,. But the sets
f71(A) are almost disjoint because f is finite-to-one. So no two can be in
the same U,. Therefore there must be at least as many U,’s as there are
A’s, namely c. 4

9.13 Proposition There are 0 ultrafilters whose intersection is not sent to
an ultrafilter by any finite-to-one function.

Proof. By Theorem 2.10, choose a family of 9 interval partitions dominating
all interval partitions, and associate to each Il = {I,, : n € w} in this family
two ultrafilters U and Vi such that one contains Ag = |J,, Isn and the
other contains By = |J,, Isn+4- We shall show that the d ultrafilters Un
and Vy are as required.

Suppose, to the contrary, that their intersection F is mapped to an ul-
trafilter by a finite-to-one map f. Let © be an interval partition such that
each of the finite fibers f~1({n}) is included in the union of two adjacent
intervals of ©. (Simply build © inductively so that the right end of each
interval is greater than all elements of all fibers whose left ends were in the
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previous interval.) Let IT be an interval partition in our originally chosen
family that dominates ©. Then each interval of ©, except for finitely many,
is included in the union of two consecutive intervals of II. It follows that
each fiber of f, except for finitely many, is covered by four consecutive in-
tervals of II and therefore cannot meet both Ay and Br. So f(An) and
f(Br) are almost disjoint and f(F), being an ultrafilter, must contain the
complement of one of them, say w — f(Ap). But then this complement
would be in f(Ur), which is absurd as Ay € Up. -

We shall next present some consequences of the inequality u < g. This
inequality was introduced in [23] (where g was first defined) as a “black box”
summary of the crucial properties of the models, due to Shelah [24, 25], in
which every two ultrafilters have a common finite-to-one image. Since then,
numerous additional consequences and reformulations of u < g have been
found, and we present some of them here.

9.14 Definition For any family F C [w]“, we write ~F for its complement
and F~ for the family of complements of its members.

~F=w“=F and F~={w-X:X€F}
We write F for the dual family ~F~ = {X € [w]* :w — X ¢ F}.

If F is closed under supersets then F consists of just those X € [w]“ that

intersect every member of F. If F is a filter then F C F, with equality
holding exactly when F is an ultrafilter.

9.15 Lemma Suppose that X,) C [w]¥, that |X| < g, and that Y~ is
groupwise dense. Then there is a finite-to-one f : w — w such that

VX e XY e Y (f(Y)C f(X)).
Proof. For each X € X define
Gx ={Z €[w]”:3Y € YVa,be Z(if [a,b) NY # () then [a,b) N X # 0)}.

We verify that Gx is groupwise dense. Gx is clearly closed under subsets,
and it is closed under finite modifications because ) is. Now suppose II
is any interval partition. Coarsening it, we may assume that each of its
intervals contains an element of X. As Y~ is groupwise dense, it contains
a union of infinitely many intervals of II. Call that union Z, and call its
complement, which is in ), Y. We show that Z € Gx, witnessed by Y.
Suppose a < b are in Z and there is an element of Y in [a,b). That means
that a whole interval of II must lie between a and b, and that interval
contains a member of X. This completes the proof that Gx is groupwise
dense.
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Since there are fewer than g X’s in X, there is a Z common to all the
Gx’s. Fix such a Z and define f : w — w by letting f(n) be the number of
elements of Z that are < n. Thus f is finite-to-one, being constant on the
intervals [a,b) where a < b are consecutive in Z. For each X € X, the fact
that Z € Gx implies that there is Y € Y with f(Y) C f(X), as required. -

9.16 Theorem Assume u < g. For any filter F on w either F is feeble or
there is a finite-to-one f such that f(F) is an ultrafilter.

Proof. Apply the lemma with X being an ultrafilter base of cardinality < g
and Y being F. If F is not feeble, then Y~ is groupwise dense by Propo-
sition 9.4, so the lemma provides a finite-to-one f such that f(X) € f(F)
for all X € X and therefore for all X in the ultrafilter i/ generated by X.
Thus, the ultrafilter f(Uf) is included in the filter f(F). Since ultrafilters are
maximal filters, the inclusion cannot be proper, and f(F) is an ultrafilter.
_|

9.17 Remark The conclusion of this theorem is called the principle of filter
dichotomy. Tt is not known whether it implies u < g.

The hypothesis of the theorem can be replaced by the apparently weaker
t < g. Indeed, if X is not an ultrafilter base but merely unsplittable, the
proof above provides a finite-to-one f such that f(F) is also unsplittable.
But an unsplittable filter is an ultrafilter.

The improvement is, however, illusory, for Mildenberger has shown that
the inequalities u < g and v < g are equivalent. In fact, she proved v >

min{u, g}.

9.18 Corollary Assume u < g (or just filter dichotomy). For every two
ultrafilters U and V on w, there is a finite-to-one function f with f(U) =

).

Proof. Apply filter dichotomy to the filter &/ NV. It is not feeble, and any f
that maps it to an ultrafilter must map both &/ and V to the same ultrafilter.
_|

9.19 Remark The conclusion of this corollary is called the principle of
near coherence of filters (NCF). The name refers to the easily equivalent
formulation: For any two filters F and G on w, there is a finite-to-one
function f such that f(F) and f(G) are coherent in the sense that their
union generates a filter.

NCF implies u < 9, but it is not known whether it implies u < g or even
filter dichotomy.
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Corollary 9.18 can be improved to handle not just two ultrafilters but any
number < ¢, by essentially the same proof, using Proposition 9.12 to ensure
that the intersection filter is not feeble. NCF alone implies the improvement
to < 0 ultrafilters. It is also equivalent to the statement that every ultrafilter
has a finite-to-one image that is generated by < 0 sets. See [15] for these
results and more information on NCF.

9.20 Corollary Ifu < g (or just filter dichotomy) then b =u and 0 = .

Proof. Without any hypothesis, we have b <t < u and ? < ¢. If we assume
filter dichotomy then Proposition 9.13 provides a feeble filter that is the
intersection of 0 ultrafilters, and then Proposition 9.12 says that 0 > ¢.
Theorem 9.10 gives a non-feeble filter generated by b sets. By filter
dichotomy, some image of this filter, which is also generated by b sets (the
images of the previous generators), is an ultrafilter. So u < b. .

9.21 Remark The conclusion 0 = ¢ can be strengthened to g = ¢ under
the hypothesis u < g; see [19].

The following result of Laflamme [69] extends the preceding dichotomy
to a trichotomy for all upward-closed families. Its conclusion is in fact
equivalent to u < g but we omit the proof of this; see [19].

9.22 Theorem Assume u < g. For any family Y C [w]¥ that is closed
under almost supersets, there is a finite-to-one f : w — w such that one of
the following holds:

o f(Y) contains only cofinite sets.
. FO) = [l
o f(Y) is an ultrafilter.

Proof. Let Y be as in the theorem and let X be an ultrafilter base of car-
dinality < g. If Y~ is not groupwise dense, then we have (by definition
of groupwise dense) the first alternative in the theorem, and if ~) is not
groupwise dense, then we have the second alternative. So we assume that
both Y~ and ~Y = Y~ are groupwise dense. The former lets us apply
Lemma 9.15 to obtain a finite-to-one g such that each ¢g(X) with X € X
includes some ¢g(Y) with Y € Y. If U is the ultrafilter with base X, then
we have that g(i{) C g(¥). Since finite-to-one images preserve groupwise
density and commute with complementation, we also have that g())~ is
groupwise dense, so we can apply the lemma with the base {g(X) : X € X'}
of g() in the role of X and with g@i) in the role of ). We obtain a
finite-to-one h such that hg(U4) C hg(Y) = (hg()))" Since dualization (7)
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reverses inclusions and fixes ultrafilters, we get hg(d) D hg(Y). The reverse
inequality follows from g(U/) C g(). So the finite-to-one map hg sends Y
to an ultrafilter. 4

We conclude this section with a brief discussion of some special sorts
of ultrafilters. The theory of these ultrafilters is quite extensive, but we
shall consider only those aspects that directly involve some of the cardinal
characteristics defined earlier.

9.23 Definition An ultrafilter U on w is selective if every function f : w —
w becomes either one-to-one or constant when restricted to some set in U.
It is a P-point if every function f : w — w becomes either finite-to-one or
constant when restricted to some set in . It is a @Q-point if every finite-to-
one function f : w — w becomes one-to-one when restricted to some set in
Uu.

9.24 Remark Clearly, an ultrafilter is selective if and only if it is both a
P-point and a Q-point.

The name “selective” refers to the fact that, when w is partitioned into
pieces that are not in &/ then some set in I/ selects one element per piece. Se-
lective ultrafilters are also called Ramsey ultrafilters, because Kunen showed
(see [28]) that, if U is selective and f : [w]* — 2, then some set in U is ho-
mogeneous for f. Thus, any pseudobase for a selective ultrafilter must have
cardinality at least hom = max{t,,0}. Selective ultrafilters are also called
RK-minimal, for they are minimal in the Rudin-Keisler ordering defined by
putting f(U) < U for all ultrafilters & and all mappings f.

An ultrafilter U is a P-point if and only if every decreasing (or almost-
decreasing) w-sequence of sets from U has a pseudo-intersection in &. To
prove the equivalence of this with the definition above, just arrange that
f(n) is constant exactly on the differences of consecutive sets in the de-
creasing sequence. (One can assume without loss of generality that the
sequence begins with w and that its intersection is empty.) There is a
general topological concept of P-point (see for example [94, 49]), namely
a point (in a topological space) such that every countable intersection of
open neighborhoods of it includes another open neighborhood of it. When
applied to the topological space Sw — w, the Stone-Cech remainder of the
discrete space w, whose points are naturally identified with (non-trivial) ul-
trafilters on w, this topological notion becomes the concept defined above.
The “P” in “P-point” refers to prime ideals (in rings of functions); see [49,
Exercises 4] and 4L].

The “Q” in “Q-point” was chosen because it’s next to “P” in the alphabet.
Q-points are also called rare ultrafilters.
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There are ultrafilters that are neither P-points nor Q-points. Indeed, if
U is any ultrafilter on w then

V={XCuw?:{a:{b:{a,b) € X} eU} €U}

is an ultrafilter on w?. Tt is not a P-point because the first projection
w? — w is neither finite-to-one nor constant on any set in V. It is not a
Q-point because the second projection is finite-to-one on a set in V, namely
{{a,b) : a < b}, but not one-to-one on any set in V.

The existence of P-points, Q-points, and selective ultrafilters is more
problematic. W. Rudin [94] showed that CH implies the existence of P-
points, and other existence results followed, with the hypothesis weakened
to MA or even to p = ¢ once these axioms had been formulated; see for
example [28], [13], [14], [74], and [93].

But some hypotheses beyond ZFC are needed for such existence results.
Kunen [66] showed that adding R, random reals to a model of GCH produces
a model with no selective ultrafilters. Miller [78] showed that an Na-step,
countable support iteration of Laver forcing over a model of GCH produces
a model with no Q-points. And Shelah [96, Section VI.4], [112] produced a
model with no P-points by iterating a product of Grigorieff forcings.

We shall be concerned here with conditions for the existence of these
special ultrafilters. It turns out that cardinal characteristics can be used
to give necessary and sufficient conditions for the extendibility, to special
ultrafilters, of all filters with sufficiently small bases. Thus, they provide
sufficient, though not necessary, conditions for the mere existence of special
ultrafilters. The first result of this sort is due to Ketonen [65], who showed
that ¢ = 0 implies the existence of P-points, by a proof that essentially gives
the following result.

9.25 Theorem 1. If ¢ = 0 then every filter generated by fewer than ¢
sets is included in some P-point.

2. There is a filter generated by 0 sets that is not included in any P-point.

3. Every ultrafilter generated by fewer than 0 sets is a P-point.

Proof. For part 1, assume ¢ =, let F be a filter generated by fewer than ¢
sets, and let (S* : @ < ¢) be an enumeration of all decreasing w-sequences of
infinite subsets of w, S* = (S§ D S D ...). We shall define an increasing
sequence {F° : a < c¢), starting with F° = F, taking unions at limit stages,
and at successor stages adding one new generator to the filter in such a
way that either the new generator is a pseudointersection of S or it is the
complement of some S7. Of course, we must make sure that the newly added
generator a stage o + 1 has infinite intersection with every set in F*, so
that 7ot will be a filter. But this is not difficult. If, for some n, S& ¢ F*,
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then w — S& can be added. If, on the other hand, Sg € F* for all n, then,
because F“ is generated by fewer than 0 sets, Proposition 6.24 provides a
pseudointersection of S that has infinite intersection with every generator
of F¢ and hence with every set in F*. That pseudointersection can serve as
the new generator for 721, Thus, the construction of the sequence of filters
can be carried out, and it clearly ensures that any ultrafilter extending F°¢
is a P-point.

For part 2, consider the filter on w? generated by the sets {(a,b) : a > n}
for n € w and the sets {{a,b) : b > f(a)} for f in a dominating family
D C “w of cardinality 0. An ultrafilter extending this filter cannot be a
P-point, for any set on which the first projection w? — w is constant or
finite-to-one is disjoint from a set in the filter and is therefore not in the
ultrafilter.

For part 3, let U be an ultrafilter generated by fewer than 0 sets and let
S = (S,) be a decreasing sequence of sets from /. As in the proof of part 1,
Proposition 6.24 provides a pseudointersection of S that meets every gener-
ator of Y. But as U is an ultrafilter, it follows that this pseudointersection
isin U. 4

Canjar [36] proved the following analogous result for selective ultrafilters.
It was also found independently by Bartoszynski and Judah; see [5, Section
4.5.B].

9.26 Theorem 1. If ¢ = cov(B) then every filter generated by fewer
than ¢ sets is included in some selective ultrafilter.

2. There is a filter generated by cov(B) sets that is not included in any
selective ultrafilter.

Proof. For part 1, we proceed as in the corresponding proof for P-points,
using an enumeration (f* : a < ¢) of “w in place of the enumeration of
decreasing sequences S*. At stage a we have a filter F* with a basis X
of fewer than cov(B) sets and we wish to form F**! by adding one new
generator, a set on which f¢ is one-to-one or constant. If some set of the
form (f*)~1({n}) (on which f is constant) has infinite intersection with
every set in F¢, then it can serve as the new generator. So from now
on we assume that this is not the case. We intend to find a “selector”
9 € [Lher(f*) ' ({n}), where R = ran(f), such that for each generator
X € X of F* we have 3°n (g(n) € X). Once we have such a g, its range can
clearly serve as the new generator for F2+!. To obtain g, notice first that
the space [],,cp(f*)~*({n}) from which we want to choose it is a product
of countable (possibly finite) discrete sets, so it is not covered by fewer than
cov(B) meager sets. But for each X € X, those g that fail to have infinitely
many values in X form a meager set. So, since |X| < cov(B), the desired g
exists.
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Part 2 is immediate from part 2 of the preceding theorem if cov(B) = 0,
so we may assume for the rest of the proof that cov(B) < v (recall Propo-
sition 5.5). By Theorem 5.2, fix a family of cov(B) chopped reals (z4,11,)
such that no single real matches them all. Assume without loss of general-
ity that every finitely many of these chopped reals are engulfed by another
chopped real from the chosen family, i.e., the family is directed upward with
respect to the engulfing relation. Since we are assuming cov(B) < 0, there
is an interval partition © = {J, : n € w} not dominated by any of the
IT,. This implies that each II, has infinitely many intervals I}, that do not
include any interval of ©; such an Iy is covered by J, U Jp4+1 for some n.

Let Z be the set of functions z whose domains are unions of two consec-
utive intervals of ® and whose values are 0’s and 1’s. For z € Z, let p(z) be
the n such that dom(z) = J, U Jyq1. Thus, p: Z — w is finite-to-one. Let
F be the filter on Z generated by the sets {z € Z : p(z) >n} for all n € w
and the sets

Ay ={2€Z:3I€ell,(I Cdom(z) and z I =z, [I)}

for all a. We must check that these sets have the SFIP, so consider any
finitely many of them. We may assume only one of them is of the form
{z € Z : p(2) > n}; if there are more, keep only the one with the largest n as
it’s a subset of the others. Thanks to our assumption that any finitely many
(zq,11,) are engulfed by another, we may also assume that only one A, is
involved, for if (zg,Ilg) engulfs certain (24,II4)’s, then the corresponding
Ap is almost included in the corresponding A,’s. So our task is simply to
check that each A4, contains 2’s with arbitrarily large p(z). But this follows
immediately from the fact that infinitely many intervals of I, are included
in sets of the form J, U J,41.

So F is a filter generated by cov(B) sets. Let U be any ultrafilter ex-
tending F. p is a finite-to-one function, so it is certainly not constant on
any set in U. Suppose it were one-to-one on some set X € U. One of
Xo ={z € X : p(z) even} and X; = {z € X : p(z) odd} is in U; say it’s
X;. Then the union g of all the members of X; is a partial function from w
to 2 such that each II, contains infinitely many intervals on which g agrees
with z, (because X; meets all sets in F). Any extension of g to a total
function w — 2 therefore matches all the (z,,II,), contrary to our choice
of these chopped reals. So p is not one-to-one on any set in U. -

By analogy with part 3 of Theorem 9.25, one might expect Theorem 9.26
to assert that every ultrafilter generated by fewer then cov(B) sets is se-
lective. Though true, that assertion is vacuous, since Theorem 5.19 and
Proposition 9.7 give cov(B) <t <u.

Canjar [36] also obtained an analogous result for Q-points.
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9.27 Theorem 1. If cov(B) = 0 then every filter generated by fewer
than 0 sets can be extended to a Q-point.

2. If cov(B) < 0 then there is a filter generated by cov(B) sets that is
not included in any Q-point.

The proof of Theorem 9.26 also establishes Part 2 of the present theorem,
and Part 1 is established similarly to Parts 1 of Theorems 9.25 and 9.26.

10. Evasion and Prediction

The terminology of prediction and evasion and the evasion number ¢ were
introduced in [21] on the basis of motivation from algebra. Since then,
several variants have been studied, particularly in [30, 34], but we begin
with the original version.

10.1 Definition A predictor is a pair 7 = (D, {(n, : n € D)) where D €
[w]“ and where each 7, : "w — w. This predictor = predicts a function
z € “Yw if, for all but finitely many n € D, m,(z [n) = z(n). Otherwise, z
evades w. The evasion number ¢ is the smallest cardinality of any family
& C “w such that no single predictor predicts all members of £.

We may identify a predictor (D, {(m, : n € D)) with |J
function from <¥“w to w.

The idea behind the definition is that the values z(n) of an unknown
Z € “w are being revealed one at a time (in order) and we are trying
to guess some of these values just before they are revealed. A predictor
(D, {7y : n € D)) is a strategy for predicting z(n), for each n € D, after we
have seen z [n, and it predicts z if it is successful in the sense that almost
all of its predictions about x are correct.

Clearly, it would make no difference if we defined predictors with 7, :
"C — C and used them to predict functions in “ C' for any countably infinite
set C.

What was directly relevant to the algebraic subject of [21] was not ¢ but a
variant, the linear evasion number ¢;, whose definition is similar except that
the components of a predictor are linear functions 7, : Z"™ — Q and the
functions being predicted are in “Z. Thus a remnant of algebra (linearity)
was mixed with the combinatorics. Fortunately, it is proved in [34] that ¢; =
min{e, b}, so the algebra can be eliminated in favor of pure combinatorics.

Several additional variants were defined in [30] by restricting the possible
values of the functions being predicted, as follows.

neD Tn,> a partial

10.2 Definition Let f:w — w—{0,1}. Let e be the smallest cardinality
of any family £ C [],,c, f(n) such that no single predictor predicts all
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members of £. When f is the constant function with value n > 2, we write
¢, instead of ¢f. The unbounded evasion number eypq is the minimum of ¢y
over all functions f as above.

Clearly, ey > ¢, whenever f < g, and e,pq > ¢. The following theorem
from [30] summarizes relationships between these variants and the original
¢ (as well as b and s).

10.3 Theorem 1. ¢, = ey for alln > 2.
2. ea > 5.
¢ > min{eypq,b}.

It is consistent that e < eypq-

SRS

It is consistent that e pq < €3.

Proof. We only sketch the proofs, referring to [30] for details.

For part 1, the idea is to predict a function z : w — n (where n > 3)
by predicting the two functions k — z(k) mod 2 and k — |z(k)/2], whose
ranges are smaller than n. More precisely, after predicting the former on
some D, one predicts (on some D’ C D) the restriction of the latter to D.

For part 2, we show that a family £ C “2 that is not splitting (when
viewed in Pw) can be predicted. If X is an infinite set on which each z € £ is
almost constant, then let = be the predictor, with domain D = X —{min X'},
predicting that z will take, at any point of D, the same value that it took
at the last previous member of X. This guess is right almost always, for
every x € £.

For part 3, the idea is that any fewer than min{e,pq,b} functions can
be predicted by first dominating them with some f (as there are < b of
them) and then regarding them as functions in [],,, f(n), where they can
be predicted (as there are fewer than eypq < ey of them). Some care is
needed as each function is below f only almost everywhere.

Part 4 is proved by an iterated forcing argument, where each step is a o-
centered forcing adding a predictor that predicts all ground-model elements
of [,,c,, f(n) for some f. A condition consists of a finite part of the desired
predictor plus a promise to predict correctly all later values of finitely many
functions. A finite-support iteration of this clearly makes eu,q large in the
extension. We omit the hard part of the proof, namely showing that e does
not become large.

For part 5, iterate Mathias forcing with countable supports for Ny steps
over a model of GCH. The resulting model has h = ¢ = Na, so both b and
s are No. By part 2, we have ¢a = Np. On the other hand, the forcing
adds no Cohen reals, so cov(B) = N;. We shall see below (Table 2 and its
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explanation) that ¢ < cov(B). So by part 3 we have min{eybq, b} < Ny.
Since b = Ny, we must have eypg = N1. 5

Returning from the discussion of these variants to the original ¢, we have
the following results.

10.4 Theorem [. add(L£),p < ¢ < non(B),cov(B).
2. It is consistent that ¢ < add(B).

3. It is consistent that b < e.

In part 1, the inequality involving cov(B) is an unpublished result of M.

Kada. The rest of part 1 is from [21]. Parts 2 and 3 are from [30] and [34]
respectively.
Proof. The upper bound of cov(B) will follow from Tables 2 and 3 and their
justification below. The upper bound of non(B) follows from the observa-
tion that any predictor can predict only a meager set of functions. (The
set of functions predicted by any 7 also has measure zero in the standard
measure, described in the introduction, on “w. So non(L) is also an upper
bound, but this is a weaker bound than cov(B) by Theorem 5.11.)

To prove the lower bound of p, we use Theorem 7.12. We assume
MA (o-centered) and show that any family H of x functions can be pre-
dicted by some predictor (D, 7). Let P be the set of triples (d, p, F') where
d is a finite subset of w, p is a finite partial function into w whose domain
consists of sequences from "w for n € d, and F is a finite subset of .
(The “meaning” of (d,p, F) is that d is an initial segment of D, p is a finite
part of 7, and the functions in F' will be predicted correctly at all points of
D — d.) Partially order P by putting (d',p’, F') < (d,p, F') if d is an initial
segment of d', p C p’, F C F', and whenever n € d' —d and z € F then
p'(z | n) is defined and equal to x(n). Any finitely many elements with the
same first and second components have a lower bound, obtained by taking
the union of the third components. So MA ,(o-centered) provides G C P
generic with respect to the dense sets {(d,p,F) € P:x € F} forallz € H,
{(d,p,F) € P:s € dom(p) or n ¢ d,n < maxd} for all n € w, s € "w, and
{(d,p, F) € P :|d| > n} for all n € w. (For proving the density of the last
of these, the idea is that, starting with any (d,p, F'), we can enlarge d by
choosing m so large that all the x [m for € F are distinct and then ad-
joining m to d and enlarging p as required by the definition of <. The choice
of m ensures that the required enlargements of p do not conflict.) Then by
letting D and 7 be the unions of the first components and second compo-
nents, respectively, of the triples in G, we obtain a predictor predicting all
the functions in #.

To prove the lower bound of add(L), suppose we are given a family H
of fewer than add(£) functions z : w — w. Let {I,, : n € w} be the interval



10. Evasion and Prediction 71

partition where |I,| = n + 1. To each z € H associate the function defined
by z'(n) = z [ I,. By Theorem 5.14, we can assign to each n a set S(n)
consisting of n functions I,, = w in such a way that Vz € HV*®n (z'(n) €
S(n)). Any n functions produce at most n — 1 branching points, i.e., points
k where two of the functions first differ. So there is some i, € I, that is
not a branching point for any of the n functions in S(n). So we can define
a predictor with D = {i,, : n € w} by setting 7(s) = z(i,,) if s has length
in and z € S(n) and s agrees with z on I, Ni,. (Extend p arbitrarily to
those s whose length is in D but which admit no such z.) This 7 predicts
all z € H because the associated z' have almost all their values in S(n).

This completes (modulo Tables 2 and 3) the proof of part 1. For parts 2
and 3, we only indicate the forcings used, referring to [30, 34] for the hard
parts of the proofs.

Part 2 is proved by a finite-support iteration of Hechler forcing. Since this
adds Cohen reals and dominating reals, both cov(B) and b and therefore
also their minimum add(B) are large in the extension. The hard part of
the proof is to show that ¢ remains small.

Part 3 is proved by a finite-support iteration where each step adds a
predictor that predicts all ground model reals. As in the proof of p < e
above, a condition consists of a finite part of the desired predictor together
with finitely many functions that are to be predicted correctly at all later
points. This forcing clearly makes e large; the hard part is to prove that b
remains small. -

10.5 Remark Laflamme has improved the inequality p < ¢ in Theorem 10.4
to t <e. In [70, Prop. 2.3] he shows that t < eypq, and he mentions that
t < e follows via part 3 of Theorem 10.3.

We turn next to some additional variations on the theme of prediction
and evasion. These variations turn out to be closely connected to cardinals
studied in previous sections. We consider three sorts of variations, singly
and in combination.

First, the predictor could guess less information than the exact value of
the z(n) being predicted. Thus, we consider predictors (D, (7, : n € D))
where each 7, : "w — Pw, and we consider that x € “w is predicted by
such a 7 if V°°n (z(n) € m,(z [n)). To avoid trivialities, the sets that occur
as values of m, must be small in some sense. (The predictor whose values
are all equal to w predicts every z.) We shall consider the following six
possibilities for the values of 7.

e Singletons. (This is the case considered above.)

e Sets of cardinality k for some fixed k € w.
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e Sets of cardinality f(n), where f is a function w — w that tends to
infinity.

e Finite sets.
e Co-infinite sets.
e Proper subsets of w.

Thus, we shall refer to “single-valued” predictors, “k-valued” predictors,
etc. Each type of predictor gives rise to an evasion number, namely the
minimum number of functions not all predicted by a single predictor of that
type.

Clearly, as the predictor’s guesses become less specific (as we go down
the list above), prediction becomes easier, evasion harder, and the evasion
number larger.

Notice also that we could replace “finite sets” as values for 7 with “initial
segments of w” without affecting the evasion number, for given any predic-
tor 7 of one sort we can trivially produce a predictor 7’ of the other sort
predicting all the functions predicted by w. For the same reason, we can
replace “proper subsets of w” with “co-singletons.”

The next variation concerns which values of z a predictor must guess
correctly in order to predict z; it was also considered by Kada [62]. The
definitions above permit the predictor to specify an infinite set D and guess
z(n) only for n € D; it predicts z if almost all of these guesses are correct.
We can make the definition more restrictive by requiring D = w. This
variation will be called global prediction, and the original version will, when
we want to emphasize the difference, be called local prediction.

Alternatively, we can make the definition less restrictive by saying that
7 predicts z if infinitely many (rather than almost all) of the guesses are
right. We refer to this as infinite prediction. Notice that in this situation
one might as well take D = w, because extending a predictor to a larger
D can only increase the collection of functions it predicts. Thus, for both
global and infinite prediction, we usually regard a predictor as either a
sequence (T, )ncw O as the union of such a sequence, 7 : <“w — w.

Clearly, as we move from global to local to infinite prediction, prediction
becomes easier, evasion harder, and the evasion number larger.

The final variation that we consider here is to make 7, (s) independent of
s. In other words, the predictor is not allowed to see x [ n but only knows n
when guessing z(n). Thus, the predictor is essentially just a function 7 on
w or D, taking “small” values in one of the senses above. We refer to such
predictors as non-adaptive while predictors of the original sort are adaptive.
Clearly, adaptive prediction is easier than non-adaptive prediction, evasion
harder, and the evasion number larger.

The six choices for “small,” the three choices global or local or infinite,
and the two choices non-adaptive or adaptive give 36 evasion numbers, one
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of which (singleton, local, adaptive) is e. Many of the others coincide with
cardinals discussed earlier, and for the rest there are bounds in terms of such
cardinals. This information is summarized in the following tables. The first
column of each table lists the six species of smallness, with G representing

a typical guess for z(n).

Our remarks above imply that the entries in each table increase (weakly)
from top to bottom and from left to right; also, as we go from one table
to the next (global to local to infinite), the entries in any single position
increase (weakly). We shall usually refer to these facts as “monotonicity”
without going into any more detail.

Non-adaptive Adaptive
|Gl =1 2 Ny
|G| =k E+1 m(o-k-linked) <? < add(L)
|G| = f(n) add(L) add(£)
G finite b b
w — @G infinite non(B) non(B)
GCuw non(B) non(B)

Table 1: Evasion Numbers for Global Prediction

Non-adaptive Adaptive
Gl =1 2 e
|G| =k E+1 ¢ <? < cov(B),non(B)
|G| = f(n) min{e, b} ¢ <? < cov(B),non(B)
G finite b ¢e,b <? <0,non(B)
w — @G infinite non(B) non(B)
GCuw non(B) non(B)

Table 2: Evasion Numbers for Local Prediction

Non-adaptive | Adaptive
|Gl =1 cov(B) cov(B)
|G| =k cov(B) cov(B)

|G| = f(n) cov(B) cov(B)
G finite 0 0
w — G infinite 4 4
GCw ¢ 4

Table 3: Evasion Numbers for Infinite Prediction

The question marks in four of the entries indicate that I do not know
the values of these evasion numbers but only the indicated bounds and the
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result of Mildenberger (unpublished) that the following three cardinals are
equal:

® ¢,

e the smaller of e, and the question mark in the “|G| = k” line of
Table 2,

o the smaller of eypq and the question mark in the “|G| finite” line of
Table 2.

One could regard these entries with question marks as defining four more
cardinal characteristics. On the other hand, one might regard the entry e
in Table 2 as a euphemism for a question mark with the bounds given in
Theorem 10.4. The difference between e and the question marks is that the
former has been studied enough to indicate that it differs from the previ-
ously studied characteristics, while the question marks might well reduce to
something simpler.

In the following paragraphs, we give reasons for the table entries, leaving
some details to the reader.

For both global and local prediction, k+ 1 distinct constant
functions evade any non-adaptive predictor of k-element sets. And any k
functions clearly can be predicted.

add(L£)| Inthenon-adaptive column of Table 1, the occurrence of add (L)

expresses Theorem 5.14 and the remark following it. The occurrence in the
adaptive column comes from the fact that an adaptive f(n)-valued predic-
tor 7 gives rise to a non-adaptive f’(n)-valued predictor 7' (for a larger f’)
such that all functions globally predicted by 7« are also globally predicted
by 7'. Given m, associate to each s € <“w and each natural number n the
set 7s(n) of all possible values of z(n) for functions z € “w that start with
s and are correctly predicted by 7 thereafter. (That is, z(k) is s(k) for
k < length(s) and 7(z | k) for all larger k.) Also fix an enumeration of <“w
in an w-sequence. Let 7'(n) be the union of the sets 75(n) as s ranges over
the first n elements of <“w. It is easy to find an appropriate f' depending
only on f and to verify that 7' globally predicts everything that 7 does.

We may take a finite-valued predictor’s guesses to be initial segments
of w, i.e., natural numbers, a guess being correct if it is greater than the
actual value of the function being guessed. In this light, the occurrence of b
in the non-adaptive column of Table 1 expresses just the definition of b. The
occurrence in the adaptive column is justified by an argument analogous to
that in the discussion of add (L) above.

As for the occurrence in Table 2, consider any unbounded family £ of b
non-decreasing functions. We shall see that they evade local prediction by
any non-adaptive, finite-valued predictor (w, D). As above, we assume the
values of 7 are natural numbers. Define 7’ : w — w by letting 7'(n) be the
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value of 7 at the next member of D after n. By our choice of £, it contains a
member z not dominated by 7’. Since z is non-decreasing, if (w, D) locally
predicted it then for all sufficiently large n € w we would have, letting k be
the next element of D after n,

z(n) < z(k) < w(k) = 7' (n).

This contradicts the choice of z, so = evades (m, D).

non(B)| Let us consider first the bottom row in Tables 1 and 2, where

the guesses are proper subsets of w. Without loss of generality, we may
assume that the guesses are complements of singletons. We’ll write 7 (n) for
the number absent from 7(n) (and similarly for 7 (s) in the adaptive case).
Part 2 of Theorem 5.9 says that the bottom entry in the non-adaptive
column of Table 1 is non(B). By monotonicity, the other entries in the
bottom row of Tables 1 and 2 are no smaller. They are no larger because
any predictor predicts globally or locally only a meager subset of “w.

To justify the next-to-bottom row in Tables 1 and 2, where the guesses
are co-infinite, it suffices, thanks to monotonicity, to show that a family
F of fewer than non(B) functions cannot evade global prediction by non-
adaptive co-infinite predictors. Fix a map p : w — w such that every p~*{n}
is infinite. The fewer than non(B) functions po f for f € F are globally
predicted by a predictor w of proper subsets of w (by Theorem 5.9); so the
functions in F are predicted by p~! o, whose values are co-infinite.
Clearly, all evasion numbers are < ¢, since any predictor, even an adap-
tive predictor of co-singletons, can be completely evaded by some function.
On the other hand, to evade infinite prediction even by non-adaptive pre-
dictors 7 of co-singletons requires ¢ functions, because one needs functions
eventually equal to any prescribed f : w — w (giving the values omitted
by the predictor). To obtain the same result with “co-infinite” in place of
“co-singleton,” use the same “compose with p” trick as in the discussion of
non(B) above.

As in the discussion of b above, we may assume that predictors give
natural numbers, intended as upper bounds for the values to be guessed.
Then the 9 in the non-adaptive column of Table 3 is justified by the defini-
tion of 9. To see that 0 functions suffice to evade even adaptive prediction,
take a family of 0 adaptive predictors that dominate all the adaptive pre-
dictors, and choose for each of these predictors some function evading it.

cov(B)| Of the six occurrences of cov(B) in Table 3, the top one in the
non-adaptive column expresses Part 1 of Theorem 5.9. To justify the rest,
it suffices by monotonicity to check that cov(B) functions suffice to evade
infinite prediction by adaptive predictors whose guesses at n have cardinality
f(n). We do this first for non-adaptive predictors, by a modification of the
argument for Theorem 5.9, and then we show how to extend the result to
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the adaptive case. We may assume cov(B) < 0, for otherwise the desired
information follows by monotonicity from the 0’s in the next row of Table 3.

Fix cov(B) chopped reals (z4,II,) with no single y € “2 matching them
all (by Theorem 5.2). Since cov(B) < 9, fix an interval partition © not
dominated by any of the IT,,. As in the proof of Theorem 5.9, this means that
every I, contains infinitely many intervals each covered by two consecutive
intervals of ©.

Define g(n) =2- 3", ,, f(k) — 1. For each o and each n, we define a set
da(n) as follows. Find g(n) disjoint pairs of consecutive @-intervals, each
pair covering a Il,-interval; let the unions of these pairs be Jo, ..., Jyn)-1-
Then let go(n) = {za [ Jo,...,%a [ Jyn)—1}. So each gq(n) is a set of g(n)
functions into 2, each having as domain the union of two consecutive ©-
intervals, and such that the domains of different members of g,(n) are
disjoint.

By coding their values as natural numbers, we can regard the g, as
functions w — w. We claim that these cov(B) functions evade infinite
prediction by any non-adaptive, f(n)-valued predictor, i.e., any f-slalom.

Suppose this failed. So there is a function S assigning to each n € w a
set S(n) of f(n) elements such that for each a we have 3°°n (g, (n) € S(n)).
Without loss of generality, each element s of S(n) is a set of g(n) functions
into 2, each having as domain the union of two consecutive ©-intervals, and
such that the domains of different members of s are disjoint. Now define
y € “2 by the following recursion, defining y on 2 - f(n) O-intervals at step
n.

Suppose steps 0 through n — 1 have been completed, so y is already
defined on 2- 37, f(k) O-intervals. From each s € S(n), remove those
partial functions whose domains overlap the set where y is already defined.
That removes at most 2- ), . f(k), so at least 2- f(n) — 1 are left, since
s had cardinality g(n). Go through the f(n) sets so obtained (one from
each s € S(n)) in some order, picking one function from each, making sure
that the domain of each chosen function is disjoint from the domains of the
previously chosen functions. Since each of the domains is the union of two
consecutive O-intervals, each domain can overlap at most two others. Thus,
there are at least 2- f(n) — 1 options for the first choice, at least 2- f(n) — 3
for the second, and so on down to at least 1 option for the f(n)t" choice. So
all the choices can be made. Then extend y to agree with each of the chosen
functions on its domain. This completes step n of the recursion. After all
steps are completed, if y is not defined on all of w, extend it arbitrarily.

For each a, there are infinitely many n with g4(n) € S(n), so g4(n) is
one of the s’s considered at step n in the definition of y. So some element z
of g4 (n) becomes part of y. But that z is z, [ J for some J that includes an
interval of II,. So y matches each (z,,I1,), contrary to our choice of these
chopped reals. This contradiction shows that the (coded) g, are evasive as
claimed.
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It remains to extend the result to adaptive predictors whose guesses have
size f(n). Such a predictor is a function 7 : <Yw — [w]<¥ (with n(s) €
[w]/(™ if s € "w). Identifying the domain <“w with w via some bijective
coding, we can view every such 7 as a non-adaptive predictor whose guesses
have size f'(n) for a certain f' (that depends on f and the coding). Applying
the preceding argument to these non-adaptive predictors, and then reversing
the coding process, we get a family £ of cov(B) functions <¥w — w such
that, for every adaptive predictor 7 as above,

Jz € EV™®s € ““w (2(s) ¢ 7(s).)

Use each z € £ to recursively define a 2’ : w — w by 2'(n) = z(2' [n). Then
the family &' = {7’ : z € £} evades infinite prediction by any 7 as above.
Indeed, with 7 and z as above, we have, for all but finitely many n, that

E The entry ¢ in Table 2 is just the definition of ¢. In view of what
we just proved about cov(B), we get ¢ < cov(B) by monotonicity. This
completes the proof of Theorem 10.4 above.

Any countably many functions h; : w — w are globally predicted by
the adaptive predictor defined by requiring w(s) = h;(n) if s has length n
and i is the first index with h; [n = s. Such a 7 predicts each h; accurately
at all n beyond the points where h; first differs from the earlier h;’s.

On the other hand, any adaptive predictor whose values are singletons
can globally predict only countably many functions. Indeed, a function h
globally predicted by such a 7 is completely determined by the finite part
of h consisting of the values not correctly guessed by 7.

‘ m(o-k-linked) <? < add(L) ‘ Monotonicity gives the upper bound of add(£).

To establish the lower bound, we assume MA  (o-k-linked) and we prove that
any family H of k functions w — w can be globally predicted by an adaptive
predictor 7 with k-element guesses, i.e., m : <“w — [w]*. Let P be the set of
pairs (p, F) where p is a finite partial map from <“w to [w]* and F is a finite
subset of # with the following “branching restriction”: For any two func-
tions in F, if s is their longest common initial segment, then s € dom(p).
(The “meaning” of (p,F') is that p is part of the desired predictor and
that each function in F' will be guessed correctly except possibly at those
places where p is defined.) Partially order P by putting (p', F') < (p, F) if
p Cp, F CF' and, whenever f € F and f[n € dom(p') — dom(p) then
f(n) €p'(fIn).

This partial ordering is o-k-linked because any k elements (p, F;) with the
same first component have a common lower bound, constructed as follows.
First form (p,|J, F;). If this is not the desired lower bound, it is because
the branching restriction is violated. So there are some s ¢ dom(p) that are
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the largest common initial segments of some f € F; and g € F;. Theni # j
because each of the (p, F;) satisfied the branching restriction. So any such
s, say of length n, is an initial segment of at most £ members of |J, F;. But
then we can extend p by defining p(s) to be a k-set containing the values
at n of those < k members of J, F;. Doing this for each such s, we get the
desired lower bound.

Applying MA (o-k-linked), we get a set G C P generic with respect to
the dense sets {(p,F) € P : s € dom(p)} for all s € <“w and {(p,F) €
P: feF}forall f e #H. (The former is dense thanks to the branching
restriction. To verify the density of the latter, given any (p, F) and any
f €H—F, first form (p, FU{f}). If the branching restriction is violated,
extend p so as to be defined at the new branching locations. Here we need
that £ > 2.) Let m be the union of all the first components of the pairs
(p, F) € G. It is routine to check (as in the proof of Theorem 7.7) that
this 7 is an adaptive predictor with k-set guesses, globally predicting every
function from .

‘ ¢ <? < cov(B),non(B) ‘ Monotonicity implies all three inequalities.

‘ ¢,b <? <0,non(B) ‘ Again, monotonicity implies all four inequalities.

This is [34, Lemma 2.5]. Monotonicity gives the upper bound
b. The proof that ¢ is also an upper bound is essentially the same as the
proof of add(L£) < e in Theorem 10.4. The only difference is that here we
are dealing with “partial slaloms,” i.e., functions S defined on some infinite
D C w and satisfying |S(n)| = f(n) for all n € D. Instead of predicting at
all iy, as in the earlier argument, we now predict at i,, for n € D.

To prove that min{e, b} is also a lower bound, let H be a family of fewer
than min{e, b} functions; we must find a partial slalom (in the sense defined
above) such that each h € H satisfies V*°n € D (h(n) € S(n)). Since there
are fewer than b functions in 7, we can find a single, strictly increasing
g : w — w that dominates them all. Let {I, : n € w} be an interval
partition such that, if a is the left endpoint of any I,,, then there is some
in € I, with f(i,) > g(a)*. To each h € H associate the function defined
by h'(n) = h|I,. Since the number of such b’ is < ¢, there is an adaptive
predictor of singletons (D', ') that locally predicts all the h'; that is,

Vh € HVY*n € D' (W (n) =='(h'n)).

Do the following for each n € D’. Let a be the left endpoint of I,,, and
recall that our interval partition was chosen so that g(a)®* < f(i,) for some
in € I,. Consider all functions s from a into g(a); there are exactly g(a)?,
and thus no more than f(i,), of them. Each gives an s’ by s'(m) = s [ I,
for m < n. Then 7'(s') is some function I,, — w; evaluate it at ,. Doing
this for each s gives no more than f(i,) numbers; let S(i,) be the set of
these numbers.
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Doing this for all n € D’, we get a partial slalom defined on D = {i, :
n € D'}. For each h € H, if 7' predicted h'(n) correctly (where n € D),
then h(in) € S(in). So we have the desired partial slalom.

10.6 Remark The variants of evasion discussed at the beginning of this
section (e, and eupq) can be combined with some of the variants in Tables 1
to 3. Finite and co-infinite predictors no longer make sense. When, as in the
case of eg, the functions to be predicted are bounded by a fixed g, we need
to pay attention to the function f in the |G| = f(n) lines of the tables; it is
no longer the case that any function tending to infinity is equivalent to any
other. Also, in this situation, the co-singleton case becomes a special case
of |G| = f(n) with f(n) = g(n) — 1. Thus, we would have three-line tables
for these variants. We omit any further discussion of these, since little is
known about them beyond carrying over some of the arguments presented
above.

Another variation, lying between global and local, was introduced by
Kamo [64]. Say that a function 7 : <“w — w constantly predicts  : w — w
if there is n € w such that, with finitely many exceptions, any interval
[m, m + n) of length n contains some k such that z(k) = w(x [ k). This
concept has been studied further by Kamo, Kada, and Brendle; see for
example [32] and the references there.

Finally, all the evasion cardinals considered in this section have duals of
the form: the smallest number of predictors needed to predict all functions.
These too have been little studied, but there is one remarkable result con-
cerning the number of f-slaloms needed to globally predict all members of
I, 9(n). Goldstern and Shelah [52] showed that this cardinal can vary with
f and g and in fact that in some models of set theory uncountably many
cardinals are of this form (infinitely many with recursive f and g).

11. Forcing

In this final section, we describe the effect of various forcing constructions
on cardinal characteristics. We shall discuss only the most commonly used
forcing notions and their most natural iterations; for a far more extensive
discussion, see [5, Chapters 3, 6, and 7].

Most of the forcing notions we consider are designed to add a real with
some prescribed properties, and the properties are often closely connected
with some Borel relation A = (A_, A, A) (where we use the notation of
Section 4). Specifically, we say that a real z in a forcing extension solves
A (over the ground model) if z € A, and (a,z) € Aforalla € A in
the ground model. Here A denotes the relation in the extension having the
same Borel code as A has in the ground model, and similarly for /Lr etc.,
but we shall often omit the tilde since no confusion will result.
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If there is a morphism ¢ : A — B whose ¢ component is Borel, so that
@+ makes sense, and if z solves A then @, (z) solves B. Indeed, given any
b € B_ in the ground model, let a = ¢_(b) € A_. The statement

Yu € Ay (aAu = bBypy(u))

is true in V' and absolute when expressed in terms of the Borel codes of A,
A, B, and @, . Thus it is true in any forcing extension that

Vu € A, (aAu = bB@, (u)).

Since a is in the ground model, we have aAz and therefore bB@, (z) as
claimed.

Notice that we do not need A_, B_ or ¢_ to be Borel in the preceding
discussion.

It is easy to check that if x solves A and y solves B then (z,y) solves
the conjunction A AB and the product A x B. For sequential composition,
the situation is more complicated, because even if A and B are Borel, the
set of challenges in A; B is of higher type, so this relation cannot be Borel.
However, if we have a morphism ¢ : A; B — C then under suitable Borelness
hypotheses we can conclude, by a proof very similar to that above, that if
VCV' CcV" ifx € V' solves A over V, and if y € V" solves B over V'
then @4 (z,y) solves C over V. Most of the “suitable Borelness hypotheses”
are the ones obviously needed for the statement to make sense: A, A, B,
B, B_, and ¢4 must be Borel. (B_, unlike A , must be Borel so that
solving B over V', not over V, makes sense.) But one additional Borelness
hypothesis is needed for the proof. If we regard ¢_ : C_ — A_ x 4+B_ as
a pair of functions a : C_ = A_ and §: C_ — 4+B_, and if we regard j
as f': C_ x Ay — B_ (where 8'(c,a) = f(c)(a)), then we need that ' is
Borel. We leave the details to the reader.

Most of the iterations we consider will be either finite-support iterations
of ccc forcing notions or countable-support iterations of proper forcing no-
tions. For general information about iterations, see Abraham’s chapter in
this handbook or [61, 9, 96]. All the proper forcing notions considered below
satisfy Baumgartner’s Axiom A [9], which is stronger and usually easier to
check than properness. We usually write V for the ground model and V,,
for the model obtained after a stages of an iteration.

11.1. Finite-Support Iteration and Martin’s Axiom

A finite-support iteration of ccc forcing is equivalent to a single ccc forcing
[105] and therefore preserves cardinals. Also, if the length X of the iteration
has uncountable cofinality, then every real in the final extension V), is already
in an intermediate extension V,, a < A. If, cofinally often in such an
iteration, one adjoins a real solving A+ over the previous model, then in Vy
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the norm ||A|| will be at least cof()\). Indeed, given any fewer than cof(\)
members of Ay in Vy, we can find an @ < X such that all these reals are
in V,; increasing « if necessary, we can, by hypothesis, arrange that V41
contains a real x € A_ solving AL over V,. But that means in particular
that = is A-related to none of our given fewer than cof()\) reals.

The preceding remarks indicate a way to make a characteristic ||A[| large,
namely iterate a ccc forcing that solves AL, with finite support, for A stages,
where A is regular and large.

Applying this method with all ccc forcings of size < A (in all the inter-
mediate models) suitably interleaved, one obtains a model of MA and ¢ = A
provided GCH held in the ground model. If one uses only o-centered posets
in the iteration, then one obtains a model of MA (o-centered), i.e., p = ¢ (see
Theorem 7.12), but MA fails and in fact cov(L) = Xy (see [5, Section 6.5D].
Similar constructions give models satisfying various fragments of MA while
violating others; see Appendix B1 of [47] and the references there.

To prove independence results in the theory of cardinal characteristics,
one needs techniques for making one characteristic large while keeping an-
other small. As indicated above, it is not difficult to make a chosen char-
acteristic large, but it is usually difficult to prove that another character-
istic remains small. In fact, some characteristics cannot be kept small in
a non-trivial finite-support iteration. The reason is that such an iteration
always introduces Cohen reals at all limit stages of cofinality w. Cohen reals
solve various Borel relations (see below), notably Cov(B)*, and therefore
finite support iterations cannot help making certain characteristics, notably
cov(B), large.

11.2. Countable-Support Proper Iteration

A countable-support iteration of proper forcing is equivalent to a single
proper forcing [96, Theorem 3.2] and therefore preserves N;. For our pur-
poses, it will be important to also preserve larger cardinals, and this is usu-
ally ensured by an appeal to [96, Theorem 4.1], which gives the < Ny-chain
condition provided (1) CH holds in the ground model, (2) the forcing notion
used to produce V,41 from V,, has cardinality at most ¢ in V,,, and (3) the
length of the iteration is at most ws. The first two of these provisos will be
satisfied automatically in the situations we are interested in, but the third
is a real impediment. This limitation on the length of the iteration prevents
us from making the continuum arbitrarily large with countable-support iter-
ations; only ¢ = Ny can be achieved. It is shown in [11] that iterating Sacks
forcing (which is proper) with countable support for wy + 1 steps collapses
Ny. Also, it is pointed out in [50, Remark 0.3] that a countable-support
w1-stage iteration of any non-trivial forcings will collapse ¢ to Nj.

Our inability to produce larger values of ¢ with the kind of detailed con-
trol available for countable-support iterations has prevented the solution of
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several problems. For example, although we have models with no P-points
and models with no Q-points (both obtained by countable-support proper
iterations), we do not know how to achieve both simultaneously. By Theo-
rems 9.25 and 9.27, such a model would need to have cov(B) < ? < ¢ and
therefore ¢ > N3. Similarly, we have no model for p < t; by Theorem 6.25,
such a model would need to have Ry < p < t and therefore ¢ > N3. (Brendle
has pointed out, however, that there is no a priori reason why a model of
p < t could not be produced by finite support iteration. This contrasts with
the situation for producing a model with neither P-points nor Q-points; here
finite support iteration has no chance because the Cohen reals it introduces
make cov(B) large, and then Theorem 9.26 produces a selective ultrafilter.)

The “N3 barrier” is widely regarded as merely a technical problem. It
has, however, resisted our efforts long enough to suggest that perhaps our
inability to produce certain models is caused not by our technical deficiencies
but by the non-existence of the models.

In the rest of this section, countable-support iterations will always be
of the sort discussed above; that is, GCH will hold in the ground model,
each step will be a proper forcing notion of cardinality at most ¢, and the
length of the iteration will be wy. Thus, all cardinals are preserved. Fur-
thermore, every real in the final model V,,, is already in some intermediate
model V,,, a < ws. Thus, as with finite-support iterations, we can increase
a characteristic ||A|| (but only up to Ns) by cofinally often adding reals
that solve AL. To prove independence results, we want to simultaneously
keep some other characteristic small, and for this purpose there are a large
number of powerful preservation theorems; see [96, 50, 44]. For example, in
a countable-support proper iteration, if each V, N“w is a dominating family
in Vy41 then V N “w is dominating in V). In other words, if V441 never
contains a real solving ®* over V,,, then d remains X; in the final model.

11.1 Remark Zapletal [114] has shown that, under a strong large cardinal
assumption (a proper class of measurable Woodin cardinals), many cardinal
characteristics ) admit an optimal notion of forcing P, to make them large.
Optimality means that, if ¢ is any tame characterstic and r < p can be
forced by some set forcing notion, then it is forced by B,. The notion of
tameness used here is somewhat more general than being the norm of a
projective relation in that it permits some additional restrictions on the set
Y C A, in Definition 4.1 of norms. All norms of Borel relations are tame,
and so are, for example, p, t, and u, but not, for example, g.

Zapletal gives the following specific examples (among others) of optimal
forcings for certain characteristics. See the following subsections for de-
scriptions of these forcings. Cohen forcing is optimal for cov(B). Random
forcing is optimal for cov(L). Sacks forcing is optimal for ¢. Laver forcing
is optimal for b. Mathias forcing is optimal for h. Miller forcing is optimal
for 0.
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11.3. Cohen Reals

The Cohen forcing poset, <“2 ordered by reverse inclusion, adjoins a real
¢ : w — 2 (namely the union of the conditions in the generic set) that
matches every chopped real (z,II) from the ground model. Indeed, for each
(z,1I) and each n € w, the forcing conditions that agree with x on at least
one interval of II beyond n form a dense set in the ground model, so by
genericity one of them must be included in ¢. Thus, a Cohen real solves
Cov(B)*. (In fact, this characterizes Cohen reals.)

The usual way to iterate Cohen forcing is with finite support. Since the
forcing poset is absolute, finite-support iteration and finite-support prod-
uct are equivalent. The resulting model (when the ground model satisfies
GCH) is usually called “the Cohen model” independently of the number A
of factors; for more precision, one says “the A Cohen real model.” This is
the model used by Cohen [39] for his proof of the independence of GCH.
Because of the ccc, every real in the Cohen model is already in the inter-
mediate model generated by (the restriction of the generic filter to) some
countable sub-product. Such a countable product (indeed, any countable
atomless forcing notion) is equivalent to the single forcing <¥2. Thus any
real in the Cohen model is in a submodel generated by a single Cohen real.

Since a Cohen real solves Cov(B)*, the A Cohen real model (for any
uncountable regular ) has cov(B) = A = ¢. It follows that all cardinals
in the right half of Cichoi’s diagram equal A in this model. Furthermore,
since

cov(B) <t <u,i,

all these cardinals also equal ¢ in the Cohen model. (One can also see
directly that a Cohen real splits all ground model reals, so t = \.)

On the other hand, non(B) = N; in the Cohen model, the set of ground
model reals being non-meager. To prove this, we must show that every
chopped real (z,II) in the extension is matched by some ground model real.
By our remarks above, we may assume that (x,II) is in the forcing extension
by a single Cohen real. In the ground model, we construct a real y such
that for no condition p € <“2 and natural number n can p force “y does
not agree with z on any interval of II beyond n.” Such a y is easily built
by a recursion of length w in which each step defines y(k) for finitely many
k and takes care of one pair (p,n). Taking care of (p,n) means to proceed
as follows. Extend p to a condition ¢ deciding a particular value for the
restriction of z to the first interval I € II whose left endpoint is greater
than n and greater than all points already in the domain of y. Then extend
y to agree with that restriction of z. Thus, g forces that y and z agree
on an interval of II beyond n, so p cannot force the contrary. (Note that
this proof shows more than claimed. Not only the set of all ground model
reals but any non-meager set in the ground model remains non-meager in a
Cohen extension.)
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In fact, non(B) = ¥; holds in any model obtained by adjoining at least
N; Cohen reals to any ground model whatsoever. The reason is that N4
Cohen reals constitute a non-meager set.

From non(B) = Ny, it immediately follows that all cardinals in the left
half of Cichoit’s diagram are ;. Furthermore, we have

non(B)>b>h>t>p>m, non(B)>s, and non(B) >e,

so all these cardinals are also N; in the Cohen model.

Kunen showed [67, Theorem VIII.2.3] that @ = N; in the Cohen model.
The idea is to construct, by transfinite induction in the ground model (where
CH is available) a MAD family that remains MAD when one adds a Cohen
real to the universe. It therefore remains MAD in any Cohen extension, since
a failure to remain MAD would be witnessed by a single real. We omit the
construction, since a similar one is given in the discussion of random reals
below.

Finally, we cite from [18] the result that g = N; in the Cohen model (or
indeed in any model obtained by adjoining at least Ny Cohen reals to any
model at all).

11.4. Random Reals

The notion of forcing to add one random real is the Boolean algebra of
Borel sets modulo sets of Lebesgue measure zero (in any of [0,1], R, “2,
“w; they are all equivalent). (Here and in general, when one refers to a
Boolean algebra as a notion of forcing, one means the algebra minus its
zero element.) Random forcing was introduced by Solovay [103, 104]. A
generic G determines a real r, called “random,” such that, if B is any Borel
set in the ground model, then r € B if and only if [B] € G. (For basic
intervals B, this is the definition of r; for other B it is a theorem.) Thus, r
solves Cov(£)*. This property characterizes random reals.

Although random forcing can be iterated with finite support or with
countable support (being ccc and therefore proper), the most common way
to add many random reals uses a large measure algebra, namely the algebra
of Borel subsets modulo measure zero sets in /2 for large I. The measure
here is the product measure induced by the uniform measure on 2. This
forcing adds a random function f : I — 2 whose restrictions to countable
subsets of I in V' amount to random reals. One often starts with a ground
model satisfying GCH, takes I = A x w, and regards the forcing as adding
the A random reals ro : w = 2 : n — f(a,n). Any real in this A random
reals model is in the submodel generated by countably many of the r,, and
this submodel is equivalent to one obtained by adjoining a single random
real to the ground model.

Because a random real solves Cov (L)1, the A random reals model has
(for uncountable regular A) cov(£) = A = ¢. Therefore, all the cardinals in
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the top row of Cichon’s diagram equal ¢ in this model, and so do t, u, and
i.

On the other hand, ? and non(£) are both ¥;, as in the ground model.
More generally, if uncountably many random reals are added (with the
usual measure algebra forcing) to any ground model, then in the extension
0 will have the same value as in the ground model while non(£) will be
N;. The former follows from the fact that all reals in a random extension
are majorized by ground model reals. The latter follows from the fact that
any N; of the added random reals form a set of positive outer measure. (A
measure-zero Borel set, or rather its code, depends on only countably many
of the added random reals; all the rest of the added random reals, being
random over an intermediate model containing the code, must be outside
that Borel set.)

It follows that all the cardinals in the middle and bottom rows of Cichoii’s
diagram are Ni, and therefore so are s, ¢, g, b, t, p, and m.

Finally, we show, adapting Kunen’s proof for the Cohen model, that
a = N; in the random model. Since every real in the random model is in
a submodel that can be generated by a single random real, it suffices to
construct a family A in the ground model that is MAD and remains so
when one random real is adjoined to the universe. We proceed as follows
in the ground model. Because the forcing notion to adjoin one random
real has cardinality ¢ and satisfies the ccc, there are only ¢ = N; essentially
different names for subsets of w; enumerate them as {(z, : @ < wi). We
construct A by a recursion of length Ny, starting with a partition of w into
Ng infinite pieces, and adding one set a, to A at each step. This set will
be chosen so as to be almost disjoint from the previous ag’s and to have
infinite intersection with the denotation (with respect to every generic set)
of z, (unless some earlier ag already does or z, is finite). That will ensure
that A = {a, : @ < w;} remains MAD in the random extension. Let [B]
be the Boolean truth value of “x, is not almost included in the union of
finitely many dg with 8 < &.” We shall make sure that the truth value of
“Tq N Gq is infinite” is at least [B]. Equivalently, since we are dealing with
a measure algebra, we shall make sure that for every n the Boolean truth
value of “z, N dy has a member > n” intersected with [B] has measure at
least p[B] — L. And of course we must ensure that a, is almost disjoint
from the earlier ag’s. We define a,, as follows.

Let the earlier ag’s be enumerated in an w-sequence as al,. We shall
construct a, by a recursion of length w, adding finitely many elements at
each stage, and ensuring at stage n that the measure requirement at the end
of the last paragraph is satisfied for n. To ensure almost disjointness, we
shall not add any elements of a}, after stage k. We now describe stage n. Let
v = Uj<,, @}, whose elements are no longer to be added to a,. With truth
value at least [B], £, — v is infinite. So [B] is the Boolean sum of (countably
many) pairwise incompatible conditions [B;] each forcing a specific value for
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the first element z of 2, — v that is > n. Since the measures of all the [B;]
add up to the measure of [B], finitely many of them come to within % of
that total. Put the corresponding finitely many z’s into ay. This completes
the construction of a,; we omit the routine verification that it does what

was required.

11.5. Sacks Reals

The Sacks forcing notion, introduced in [95] and also called perfect set
forcing, consists of perfect subtrees of <¥2, i.e., nonempty subtrees that
have branching beyond each node; the partial ordering is inclusion. This
is a proper forcing that adjoins a real s, namely the unique common path
through all the trees in a generic set G.

The forcing extension V[s| enjoys the Sacks property: For every function
fiw— VinV]s], thereis a function g : w — V in V such that for all n € w
we have f(n) € g(n) and |g(n)| < 2". (Although 2" emerges naturally from
the proof, we could, as in Remark 5.15, replace 2" by any function tending
to 00.) To prove this, suppose we are given a name f for f and a condition
p. Working in V', we prune the tree p in w steps to produce a perfect subtree
q forcing that a certain g is as required; by genericity, this will suffice. Begin
by choosing pg < p deciding a specific value for f(0). This value will be the
unique element of g(0). The first branching node a of py will be the first
branching node of the final g; i.e., neither a nor its immediate successors
a™{0) and a™ (1) will be pruned away later. Regard pg as the union of two
perfect subtrees, one consisting of the nodes comparable with a™(0) and the
other of the nodes comparable with a™(1). In each of these, find a perfect
subtree deciding f(1) (possibly different decisions for the two subtrees).
Reuniting these two subtrees, we get a perfect subtree p; of pg, where a is
still a branching node, and such that p; forces f(1) to have one of just two
specific values. Those values will be the elements of g(1). All later steps
will preserve the two second-level branching nodes of p;. Regard p; as the
union of four perfect subtrees, one through each of the immediate successors
of those nodes. Shrink each of the four to decide a (possibly different) value
for £(2); and reunite them to get p,. Continuing in this way, we finally
obtain a tree ¢ = (), Pn that is perfect because we retain more and more
branching as the construction progresses. g is an extension of p forcing each
f(n) to have one of 2™ specific values known in V', so the desired g exists in
V.

This sort of construction, repeatedly pruning a tree but retaining more
and more branching, is referred to as fusion. It can also be used to prove
that adjoining a Sacks real produces a minimal extension in the sense that
if x € V[s] =V is a set of ordinals then V[z] = V[s].

The usual way to iterate Sacks forcing is with countable support for N,
steps, starting with a model of GCH. The resulting model is often called
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the Sacks model. Properness of Sacks forcing implies that cardinals are
preserved. Furthermore, the Sacks model has the Sacks property, because
this property is preserved by countable-support proper iterations; see [5,
Section 6.3.F], [96, Sections VI.1-2], or [50]. It follows, by the dual of
Theorem 5.14, that cof (£) = ¥; in the Sacks model. Therefore, all cardinals
in Cichori’s diagram as well as 0, ¢, b, g, 5, b, t, p, and m are equal to Xy in
this model. Baumgartner and Laver [11] showed that selective ultrafilters in
the ground model, which exist since GCH holds there, generate ultrafilters
in the Sacks model. (In fact, the same is true of P-points.) Therefore the
Sacks model has u = ¢t = Nj.

Spinas has shown (private communication) that the Sacks model satisfies
a = N;. In outline, his argument is as follows. By general properties of
Souslin proper forcing (see [59], [50, Section 7], and [100]), it suffices to
find, in the ground model, a MAD family .4 that remains MAD in the
extension obtained by iterating Sacks forcing for w; steps with countable
support. List in an wi-sequence all pairs (7, p) where p is a condition in this
iteration and 7 is a name forced by p to denote an infinite subset of w. We
define the desired A = {4, : @ < w1} by induction in the ground model,
ensuring at step a that for the o*® pair (7, p) some extension of p either forces
(a) “rN A, is infinite” or forces (b) “r is almost included in Ag, U---UAg,”
for some finitely many fi,..., 8, < a. Either way, p cannot force 4 U {7}
to be almost disjoint with 7 ¢ A, so the maximality is preserved. To define
A,, assume the previous Ag’s are already defined; modifying them finitely
and re-numbering them (see the proof of Proposition 8.4), we can pretend
that the w we are working in is w x w and that these earlier Ag’s are the
columns {n} x w. We can also assume that p forces 7 to meet infinitely
many of these columns, as otherwise we already have alternative (b) above.
We shall take A, to be {(a,b) : b < f(a)} for a suitably large f : w = w.
Then clearly A, is almost disjoint from the previous Ag’s (the columns).
To obtain alternative (a) and thus complete the proof, we need only choose
f large enough. Specifically, use the name 7 to produce a name D for the
set of n such that the n'® column meets 7 and a name g for a function
D — w such that p forces “D is infinite and, for each d € D, 7 contains an
element (d,b) with b < g(d).” Then, thanks to the Sacks property, p also
forces “some ground model function f :w — w majorizes g.” Choosing an
extension of p that decides what f is, we obtain alternative (a), and the
proof is complete.

Finally, Eisworth and Shelah (unpublished) have shown that i = ¥ in
the Sacks model.

For many cardinal characteristics, a recent result of Shelah gives a uni-
form reason why they are Ny in the Sacks model. Shelah has shown that a
countable-support proper iteration of forcings that individually add no re-
als can, at limit stages of cofinality w, introduce Sacks reals. But there are
numerous iteration theorems (see [96, 50, 44]) saying that certain properties
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of a ground model will be unchanged by a countable-support proper forc-
ing iteration provided they are unchanged by the individual steps. These
properties, then, are not changed by adding Sacks reals.

Another explanation for the smallness of many cardinal characteristics
in the Sacks model is the fact that countable support iteration of Sacks
forcing is the optimal forcing for increasing ¢, in the sense of Zapletal [114];
see Remark 11.1. Thus, all tame cardinal characteristics that can be forced
to remains small when cis increased by some set forcing in fact remain small
in the Sacks model, provided there is a proper class of measurable Woodin
cardinals.

11.6. Hechler Reals

Introduced by Hechler [56] for his proof of Theorem 2.5, Hechler forcing,
also called dominating forcing, is the set of pairs (s, f) where s € <“w
and f € “w. (The “meaning” of (s, f) is that the generic real in “w has
s as an initial segment and thereafter majorizes f.) The ordering puts
(s', f") < (s, f) if s is an initial segment of s', f < f', and s'(n) > f(n) for
all n € dom(s') — dom(s). This forcing satisfies ccc; in fact it is o-centered,
since any finitely many conditions with the same first component have a
lower bound. A Hechler-generic set G determines a function g : w — w,
namely the union of the first components of the members of G. Such a
g is called a Hechler real. Genericity implies that it dominates all ground
model functions w — w, i.e., g solves ®. (“Dominating real” is sometimes
used as a synonym for “Hechler real” and sometimes to mean any real that
dominates all ground model reals.) Replacing each of the values of g by its
parity, we obtain a Cohen real, g mod 2.

By “the Hechler model” we mean the result of a finite support iteration
of Hechler forcing over a model of GCH, where the number of steps is
some regular uncountable cardinal A. One can also consider countable-
support iterations (for up to ws stages, as usual) but we shall not do so here.
Hechler’s original use of Hechler forcing [56] amounted to a combination of
finite-support iteration and product constructions.

Since a Hechler real solves ® and its parity solves Cov(B)*, the Hechler
model satisfies cov(B) = b = A = ¢. By Theorem 5.6, it satisfies add(B) =
¢. Thus, in this model, the cardinals in the second through fourth columns
of Cichori’s diagram equal ¢. Those in the first column, on the other hand,
equal Ny since this forcing adds no random reals [5, second model in 7.6.9].
Since b is large, so are t, u, a, and i. Baumgartner and Dordal showed in
[10] that s in the Hechler model is Xy, and therefore so are b, t, p, and m.
Brendle [30, Theorem 10.4] showed that ¢ = ®; in the Hechler model.

The value of g in the Hechler model should be X;. Brendle has shown
(private communication) that it is 8y if Hechler forcing is iterated for only
wy steps. Shelah has sketched a proof that it is N; in general, but so far as
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I know this proof has yet to be written down carefully and checked (private
communication from Eisworth).

Pawlikowski [83] showed that, although add(B) is large in the Hechler
model, adjoining a single Hechler real to the ground model does not produce
any real solving Cof(B). Such a real appears, however, when two Hechler
reals are added iteratively. This last fact follows from part 1 of Theorem 5.6,
which says that Cof(B) admits a morphism from a sequential composition
of two relations each of which is solved when a single Hechler real is adjoined.

11.7. Laver Reals

Conditions in Laver forcing are trees p C <Yw in which there is a node
s, called the stem, such that all nodes are comparable with s and every
node beyond s has infinitely many immediate successors. (So, starting at
the root of p, one finds no branching until one reaches s and then infinite
branching everywhere thereafter.) The ordering is inclusion. A generic set
G determines a function g : w — w called a Laver real, namely the union
of the stems of all the conditions in G, or equivalently the unique common
path through all members of G. Laver forcing is proper. Genericity implies
that a Laver real dominates all ground model functions w — w.

The Laver model is obtained by an ws-stage countable-support itera-
tion of Laver forcing over a model of GCH. (Historically, Laver forcing and
countable-support iteration were introduced together in [71]. For the pur-
pose of that paper, producing a model of the Borel conjecture, one needs to
dominate all ground model reals, but one must not introduce Cohen reals,
so neither Hechler forcing nor a finite support iteration can be used.) Since
a Laver real solves ®©, the Laver model has b = Ny = ¢. It follows that the
cardinals in all but the left column and bottom row of Cichon’s diagram are
N5, and so are t, i, u, and a.

Like Hechler forcing, Laver forcing even when iterated does not produce
random reals, but unlike Hechler forcing it does not produce Cohen reals
either. In fact, the set of ground model reals does not have measure zero
in the extension. See [5, Section 7.3.D] for proofs of these facts. It follows
that cov(£) and non(L) are both ®; in the Laver model, and therefore so
are add (L), add(B), cov(B), ¢, s, b, t, p, and m.

Finally, Brendle has pointed out that the proof of g = ¢ for the Miller
model [25, 18] applies also to the Laver model. The same argument was
used for a slightly different purpose in [44, Lemma 4.3.5].

11.8. Mathias Reals

Mathias forcing was described in Remark 7.8. It consists of pairs (s, A) with
s € [w]<¥ and A € [w]“ (“meaning” that the generic subset of w has s as
an initial segment and otherwise is included in A). The ordering, defined
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in Remark 7.8, is based on this meaning. A generic filter G determines an
infinite subset X of w called a Mathias real, namely the union of the first
components of all the members of G. Mathias forcing was used in [73] and
was studied in detail in [75].

The essential property of a Mathias real X is that, if D C [w]¥ is any
dense open family in the ground model, then X is included in some member
of D. To prove this, consider an arbitrary condition (s, A) and use the
density of D to extend it to (s, A’) with A’ € D. Then (s, A’) forces the
generic real X to be almost included in A’ and therefore included in some
member of D since dense open families are closed under finite modifications.

By the Mathias model, we mean the result of an w»-stage countable-
support iteration of Mathias forcing over a model of GCH. The preceding
paragraph together with a reflection argument implies that h = N = ¢ in
this model. Specifically, given any N; dense open families D¢, we can find
a common member as follows. Using the < Nas-chain condition, we obtain
an o < wy (in fact an w;-closed unbounded set of such a’s) such that each
D¢ NV, is a member of V,, and is a dense open set in the sense of V. Then
the Mathias real X adjoined in going from V, to V41 has, by the preceding
paragraph, supersets in each D; NV, and therefore belongs to each D;.

Because h is large, so are b, g, s, t, 0, a, u, i, and non and cof of both
category and measure.

On the other hand, both cov(B) and cov(L) are only 8; because neither
Cohen nor random reals are added. See [5, Section 7.4.A] for the proof. It
follows that add(£), add(B), e, t, p, and m are also N;.

11.9. Miller Reals

The Miller forcing notion, introduced in [81], consists of superperfect trees
(also called rational perfect trees), i.e., subtrees of <“w in which beyond
every node there is one with infinitely many immediate successors. The
order is inclusion. As with other such tree forcings, this is proper, and a
generic set G determines a real g : w — w, namely the union of the stems
of the members of G or equivalently the unique path through all members
of G. It is sometimes convenient to replace the Miller forcing notion with
the isomorphic one in which the nodes of the trees are strictly increasing
finite sequences from w. Then the generic g is an increasing map w — w,
the enumeration of an infinite X C w. Either g or X can be called a Miller
real or a superperfect real.

The Miller model is the result of an w»-stage countable-support iteration
of Miller forcing over a model of GCH. It is shown in [25, 18] that a Miller
real X has supersets in all groupwise dense families from the ground model.
This and a reflection argument show, just as in the discussion of Mathias
forcing above, that g = Ny = ¢ in the Miller model. It follows that 0, i,
cof(B), and cof (L) are also N,.
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On the other hand, it is shown in [5, 7.3.E] that both non(£) and non(B)
are N; in the Miller model. Therefore so are s, ¢, b, b, t, p, m, and all the
cardinals in Cichon’s diagram except 0 and the two cofinalities.

It is also shown in [25] that every P-point in the ground model generates
an ultrafilter in the Miller model. Therefore this model satisfies u = t = Nj.

Finally, the proof that a = N; in the Sacks model can, as Spinas pointed
out, be transferred to the Miller model with only a minor modification. At
the end of the proof, instead of using the Sacks property (which fails in the
Miller model), one uses the fact that the ground model is an unbounded
family in “w to show that p forces the function g in the extension to be ma-
jorized on an infinite subset of D by an f from the ground model. Another
proof that a = ®; in the Miller model is given in [43, Prop. 8.24]. Eisworth
pointed out (private communication) that the same argument applies to the
Sacks model.

11.10. Summary of Iterated Forcing Results

Table 4 summarizes the preceding results concerning the values of cardinal
characteristics in the iterated forcing models described above. Remember
that in the countable-support models, i.e., in the Sacks, Laver, Mathias,
and Miller columns of the table, ¢ is just N,.

Figure 1 is a Hasse diagram of the main cardinal characteristics discussed
in this chapter, except for the characteristics of the measure and category
ideals. A line joining two characteristics in the figure means that the lower
one is provably < the upper one.

11.11. Other Forcing Iterations

The preceding sections cover only a few of the many kinds of iterated forc-
ing, over models of GCH, that have been used in the theory of cardinal
characteristics. There are other kinds of reals that one can adjoin, for ex-
ample infinitely equal reals, Prikry-Silver reals, Matet reals, Grigorieff reals.
Except for Matet reals, which are defined in the last section of [18], these
and many others can be found in [5] or [61]. Most of these forcing notions do
not satisfy the ccc, so they are iterated with countable support and therefore
one enlarges ¢ only to Na.

Two models constructed in [24, Sections 2 and 6] involve iterating a forc-
ing that looks less natural than those discussed in the preceding sections or
mentioned in the preceding paragraph, but we list their cardinal character-
istics here because they are somewhat unusual, e.g., u < s. Both models
have u = N; and therefore all of t, ¢, b, b, t, p, m, and the covering numbers
and additivities for both category and measure are N;. On the other hand,
they have s = ¢ = Ny and therefore all of 0, i, and the uniformities and
cofinalities of both measure and category are Xa. (See [24, Theorem 5.2 and
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MA | Cohen | Random | Sacks | Hechler | Laver | Mathias | Miller
a [ Ny Ny Ny c [ [ Ny
b C Nl Nl Nl [ C C Nl
0 ¢ ¢ Ny Ny ¢ ¢ 4 4
4 C Nl Nl Nl Nl Nl Nl Nl
g C Nl Nl Nl Nl C C C
[’) C Nl Nl Nl Nl Nl C Nl
i c c c Ny c c c c
m C Nl Nl Nl Nl Nl Nl Nl
p C Nl Nl Nl Nl Nl Nl Nl
t ¢ ¢ c Ny c ¢ ¢ Ny
S C Nl Nl Nl Nl Nl C Nl
t C Nl Nl Nl Nl Nl Nl Nl
u c c c Ny c c c Ny
add(,C) c Nl Nl Nl Nl Nl Nl Nl
COV(,C) C Nl [ Nl Nl Nl Nl Nl
non(L)| ¢ c N Ny c N c Ny
cof(L) | ¢ ¢ ¢ Ny ¢ c 4 4
add(B) C Nl Nl Nl C Nl Nl Nl
COV(B) [ o Nl Nl C Nl Nl Nl
non(B)| ¢ Ny c Ny c c c Ny
cof(B) | ¢ ¢ ¢ Ny ¢ ¢ 4 4

Table 4: Cardinal Characteristics in Iterated Forcing Models
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=3

Figure 1: Hasse Diagram of Combinatorial Characteristics
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the end of Section 6].) The first of the two models, the one designed to
satisfy NCF, has g = No, as was shown in [23, Theorem 2]. This model also
has a = Ry by the same Souslin-forcing argument used above for Sacks and
Miller reals. The second model, the one with simple Py, -points and simple
Py,-points, does not satisfy NCF and therefore must have g = 8;. I do not
know the value of a in this second model.

A frequently useful sort of iterated forcing is one where two or more
different forcings are used alternately. Numerous examples of this can be
found in [5, Chapter 7]. Dow’s paper [42] describes, among other things,
the models obtained by alternating Laver and Mathias forcings; it turns out
to make a difference which forcing one uses at limit ordinals.

Dordal [40] uses a mixed-support iteration of Mathias forcings. Viewing
Mathias forcing as a two-step iteration, where one first adjoins an ultrafilter
generically and then does Mathias forcing with respect to this ultrafilter (see
Remark 7.8), he defines an iteration in which the adjunctions of ultrafilters
are done with countable support while the interleaved Mathias forcings with
respect to these ultrafilters are done with finite support.

All the preceding forcing iterations began with a ground model satisfying
GCH. Thus, all cardinal characteristics are N; in the ground model, and
the iterations are designed to raise some characteristics while leaving others
small. An alternative approach is to begin with a model where ¢ and some
other characteristics are already large (e.g., a model of MA) and to do an
iteration, usually of small length, to lower some characteristics while leaving
others large. We briefly describe two examples; many more can be found in
[5, Chapter 7].

Start with a model of MA + —CH (so all the characteristics we have
discussed are large) and adjoin 8; random reals. Since the “w of a random
extension is dominated by that of the ground model, we obtain a model
where b has the same large value that it had in the ground model of MA.
On the other hand, s is only ¥; in the extension, and in fact so is non(£),
since the N; random reals form a set of positive outer measure and thus
a splitting family. This proof for the consistency of b > s, due to Balcar
and Simon, is easier than either of the ones obtainable from Table 4 (the
Hechler and Laver models).

Another application of forcing over a model with large continuum is the
construction in [26] of a model where u < 9. This model, which predates
the ones in [24, 25] that establish the stronger u < g, has the advantage
that u < 0 can be any prescribed uncountable regular cardinals. It begins
with a Cohen model, where 0 has the desired value, and extends it by a
finite-support iteration of Mathias forcings with respect to carefully chosen
ultrafilters. The length of the iteration is the prescribed u. The easier part
of “carefully chosen” is that each ultrafilter contains the previously adjoined
Mathias reals, so that the sequence of Mathias reals is almost decreasing
and generates an ultrafilter in the final model. Thus u will be small. The
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hard part of “carefully chosen,” which we omit here, is to keep 0 large.

11.12. Adding One Real

In this subsection, we briefly summarize some results about the effect on
cardinal characteristics of adjoining one real to a model of ZFC. Here the
ground model will not satisfy CH, for the single-real forcings we consider
would preserve CH and leave all characteristics at X;. We consider situations
where some characteristics are large in the ground model and we ask how
adding a single real affects them. Most of what is known about this concerns
the cardinals from Cichoni’s diagram. The results summarized here are from
[29, 33, 7, 38, 83].

Adding a Cohen real to any model of ZFC makes add (L) = cov(L) = ¥
and non(L) = cof(L) = c. The values of add(B), non(B), and b in the
extension are the add(B) of the ground model, and dually the values of
cof(B), cov(B), and ¥ in the extension are the cof (B) of the ground model.

Adding a random real produces a value for cov (L) that is at least max{cov(L), b}
of the ground model, and may be strictly larger. Dually, the extension’s
non(L) is at most min{non(£), 0} and may be strictly smaller. Except for
cov(L) and non(L), the cardinals in Cichori’s diagram remain unchanged.

Adding one Hechler real makes all cardinals in the left half of Cichonl’s
diagram N; and all those in the right half ¢. It also makes a = N;.

Adding one Laver or Mathias real makes the 9 of the extension N;. These
forcings also collapse ¢ to h. Since h < 9, it follows that a two-step iteration
of these forcings produces a model of CH.
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