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Abstract

We study Wronskians of Appell polynomials indexed by integer partitions. These families
of polynomials appear in rational solutions of certain Painlevé equations and in the study
of exceptional orthogonal polynomials. We determine their derivatives, their average and
variance with respect to Plancherel measure, and introduce several recurrence relations. In
addition, we prove an integrality conjecture for Wronskian Hermite polynomials previously
made by the first and last authors. Our proofs all exploit strong connections with the theory
of symmetric functions.
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1 Introduction

Let (An)∞n=0 be a sequence of Appell polynomials; i.e., a sequence of univariate polynomials
such that A0 = 1 and A′n = nAn−1 for n ≥ 1. In this paper, we study the Wronskians of such
polynomials; i.e., polynomials of the form

Wr[An1 , An2 , . . . , Anr ]

∆(n)
, (1.1)

where Wr denotes the Wronskian operator, n = (n1, n2, . . . , nr) is a vector of distinct non-
negative integers, and

∆(x1, x2, . . . , xr) = det[xj−1i ]1≤i,j≤r =
∏

1≤i<j≤r
(xj − xi)

is the Vandermonde determinant. The factor ∆(n) here acts as a normalizing constant so that
the resulting polynomials are monic [6, Lemma 2.1]. It is clear that (1.1) is invariant under
permutations of n, so there is no loss of generality in assuming that the parameters are strictly
increasing and positive. Thus for each integer partition λ = (λ1 ≥ λ2 ≥ · · · ≥ λr > 0), we define

Aλ :=
Wr[An1 , An2 , . . . , Anr ]

∆(n)
, where n = (λr, λr−1 + 1, . . . , λ1 + r − 1), (1.2)

and refer to these as Wronskian Appell polynomials. It is not hard to check that if 0 is
allowed as a part of λ, there is no effect on (1.2) if those parts are deleted.

Polynomials of this type (for specific partitions) come into play in the rational solutions of
the Painlevé equations: for Painlevé III [11, 20] and Painlevé V [9], the corresponding Appell
polynomials are of a modified Laguerre type, for Painlevé IV [10, 24, 25] they are of Hermite
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type, and for Painlevé VI [23] they are of modified Jacobi type. For Painlevé II, the rational
solutions are in terms of Yablonskii-Vorobiev polynomials, which can be expressed in terms of
a Wronskian of certain Appell polynomials [21]. For an overview of these rational solutions see
for example [8] or [31] and the references therein. Moreover, Wronskians of Hermite [13, 17],
Laguerre [5, 14] and Jacobi polynomials [4, 15] also occur in the study of exceptional orthogonal
polynomials.

In [6], the first and last authors studied Wronskians of Hermite polynomials, which are used
to define exceptional Hermite polynomials and solutions for the Painlevé IV equation. They
introduced a new recursive formula for computing these polynomials called the “generating
recurrence” and used it to show that the average of these polynomials is a monomial with
respect to Plancherel measure.

In this paper, we extend all of the results from [6] to the Wronskian polynomials determined
by any Appell sequence (An)∞n=0. To do this, we construct a homomorphism ϕA from the ring
of symmetric functions Λ to the polynomial ring R[x] that sends augmented Schur functions
to polynomials having the form of (1.2). All of our results on these polynomials may then
be deduced from results about symmetric functions. The first and last authors have proved
our main results (with the exception of Theorems 5.3 and 5.8) by a direct approach bypassing
the theory of symmetric functions, as they did for the Hermite case in [6]. The advantage of
the symmetric function approach is that it provides extra structure that would otherwise be
invisible at the level of univariate polynomials.

In [26], Sergeev and Veselov introduced “generalized” Schur polynomials and used them
to construct families of multivariate orthogonal polynomials. In recent work of Grandati [19],
one sees that in the confluent limit {xi → x}ni=1, the polynomials of Sergeev and Veselov
become Wronskians of univariate orthogonal polynomials, although not necessarily from an
Appell sequence.

The remainder of the article is organized as follows. In Section 2, we give a high-level
overview of our main results. In Section 3, we provide the necessary background on partitions,
symmetric functions and Appell polynomials. The homomorphism ϕA is introduced in Section 4,
while the main results for Wronskians of Appell polynomials are in the subsequent Sections 5
and 6. We close the article in Section 7 by explaining how to interpret our results in terms of
Appell sequences that appear in applications, such as Wronskians of Hermite polynomials.

2 Overview of the main results

The following results refer to Wronskian Appell polynomials Aλ as in (1.2).

• In Section 4, we define a ring homomorphism ϕA from symmetric functions to polynomi-
als and show that Wronskian Appell polynomials are the images of “augmented” Schur
functions (Theorem 4.1). We also discuss the images of other symmetric functions. All
subsequent results are proved by applying ϕA to symmetric function identities.

• The derivative of the Wronskian Appell polynomial Aλ can be expressed in terms of
the polynomials Aµ associated to those partitions µ that are covered by λ in Young’s
lattice (Theorem 5.1). This relation resembles the Appell property A′n = nAn−1 and
generalizes [6, Proposition 3.5] from the Hermite case to arbitrary Appell polynomials.

• We compute the average value (Theorem 5.2) and second moment (Theorem 5.3) of each
Wronskian Appell polynomial with respect to the Plancherel measure. The former gener-
alizes [6, Theorem 3.4].

• As a consequence of the Murnaghan-Nakayama Rule, we derive a collection of “top-down”
relations that express Aλ in terms of higher degree Wronskian Appell polynomials (The-
orem 6.2). This generalizes [6, Theorem 3.2].
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• The degree-increasing nature of the previous result makes it unsuitable for use in inductive
arguments. In Section 6, we prove a Schur function generalization of Newton’s identities
(Theorem 6.1) that we have not seen elsewhere in the literature. As a consequence,
we obtain a recurrence that expresses Aλ in terms of lower degree Wronskian Appell
polynomials (Theorem 6.3). This generalizes the fundamental result of [6, Theorem 3.1]
from which all other results in that paper are derived.

• Theorem 5.1 implies that the Wronskian Appell polynomials contain two distinguished
Appell sequences: one associated with the partitions (n) (i.e., the initial Appell sequence)
and another associated with the partitions (1n) = (1, 1, . . . , 1). We call the latter the dual
of the original Appell sequence. In Section 5.3 we study some of its properties.

• In Section 5.4, we introduce a condition on Appell sequences that is sufficient to force
the associated Wronskian Appell polynomials to have integer coefficients. This allows us
to deduce that Wronskian Hermite polynomials have integer coefficients (Corollary 7.1),
thereby confirming [6, Conjecture 3.7].

3 Preliminaries

In this section, we introduce some notation and terminology for working with integer partitions
and symmetric functions. There are many excellent resources for these topics, for example [3,
22, 28]. In Section 3.3, we review Appell sequences and Wronskian Appell polynomials.

3.1 Partitions and Young’s lattice

A non-negative integer sequence λ = (λ1 ≥ λ2 ≥ . . . ) is a partition if |λ| :=
∑∞

i=1 λi is finite.
If |λ| = m, then λ is said to be a partition of m (or of size m) and we write λ ` m. The length
of λ, denoted `(λ), is the largest index r such that λr > 0. We often write λ = (λ1, λ2, . . . , λr).
The unique partition of 0 is denoted ∅. The diagram of a partition is

Dλ = {(i, j) ∈ Z2 : 1 ≤ i ≤ `(λ), 1 ≤ j ≤ λi}.

The points (i, j) ∈ Dλ are often depicted as unit squares with matrix-style coordinates. We
partially order partitions component-wise, or equivalently, by inclusion of diagrams, so that

µ ≤ λ if Dµ ⊆ Dλ.

This partial ordering of partitions is known as Young’s lattice and denoted Y. It has a unique
minimal element ∅ and is graded by size.

Given a pair µ ≤ λ, the difference

Dλ/µ := Dλ \Dµ

is called a skew diagram of shape λ/µ. For example,

D(2,1) = , D(4,3,2) = and D(4,3,2)/(2,1) = .

The conjugate of λ, denoted λ′, is the partition whose diagram is {(i, j) : (j, i) ∈ Dλ}. For
example, (2, 1)′ = (2, 1) and (4, 3, 2)′ = (3, 3, 2, 1).

We write µ l λ or λ m µ to indicate that λ covers µ in Y; i.e., µ < λ and |λ| − |µ| = 1. A
standard Young tableau of shape λ/µ is a maximal saturated chain from µ to λ in Young’s
lattice; i.e., a sequence µ = ν(0) l ν(1) l · · ·l ν(m) = λ. We let Fλ/µ denote the number of such
tableaux. In case µ = ∅, we identify λ/µ with λ, so that Fλ = Fλ/∅.
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For any partition λ and (i, j) ∈ Dλ, the hook length at (i, j) is h(i, j) = λi− j+λ′j − i+ 1.
This counts the number of cells in Dλ that are directly below or directly to the right of (i, j),
including (i, j). These hook lengths occur in the classic hook formula for counting the standard
Young tableaux of shape λ; namely,

Fλ =
|λ|!
H(λ)

, where H(λ) :=
∏

(i,j)∈Dλ

h(i, j). (3.1)

See for example [28, Corollary 7.21.6].
To each partition λ of length r, we associate a degree vector nλ defined by

nλ := (n1, n2, . . . , nr) = (λr, λr−1 + 1, . . . , λ1 + r − 1). (3.2)

Note its prior appearance in (1.2). The hook product H(λ) has an alternative description in
terms of this degree vector; namely,

H(λ) =
n1!n2! · · · nr!

∆(nλ)
. (3.3)

See for example [28, Lemma 7.21.1].

3.2 Symmetric functions

Fix an infinite sequence of variables X = (x1, x2, . . . ). The ring of symmetric functions Λ
consists of all bounded-degree, integer-coefficient formal series in X that are invariant under
permutations of X. Some important examples of elements in this ring are

• the complete homogeneous symmetric functions (hm)∞m=1, defined by

hm =
∑

i1≤i2≤···≤im

xi1xi2 · · ·xim ,

• the elementary symmetric functions (em)∞m=1, defined by

em =
∑

i1<i2<···<im

xi1xi2 · · ·xim , and

• the power sum symmetric functions (pm)∞m=1, defined by

pm =
∞∑
i=1

xmi .

By convention, h0 = e0 = 1, whereas p0 is normally left undefined.
It is well-known that Λ is freely generated (as a commutative ring with unit element) by

(hm)∞m=1 as well as by (em)∞m=1. In other words, every member of Λ is uniquely expressible as
a polynomial in (hm)∞m=1 as well as in (em)∞m=1, and

Λ = Z[h1, h2, . . . ] = Z[e1, e2, . . . ].

For the power sums (pm)∞m=1, this is not quite true unless we replace Λ with a larger ring, the
Q-algebra ΛQ that allows rational (as opposed to integer) coefficients; thus,

ΛQ = Q[p1, p2, . . . ].

For further details, see [22, I.2].
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For partitions λ of length r, one defines

hλ = hλ1hλ2 · · ·hλr , eλ = eλ1eλ2 · · · eλr , pλ = pλ1pλ2 · · · pλr

and h∅ = e∅ = p∅ = 1, so that as λ varies over Y, hλ, eλ, and pλ vary over all of the monomials
one can form with the terms from each of their respective sequences. In this way one sees that
{hλ : λ ∈ Y}, {eλ : λ ∈ Y}, and {pλ : λ ∈ Y} each form bases for ΛQ as a vector space.

There are algebraic relations among these symmetric functions that are easily expressible as
generating function identities. For example, if we define

H(t) :=
∞∑
m=0

hmt
m, E(t) :=

∞∑
m=0

emt
m,

one sees from the definitions of hm and em that H(t) =
∞∏
i=1

(1− xit)−1 and E(t) =
∞∏
i=1

(1 + xit).

It follows that

logH(t) = − logE(−t) =
∞∑
i=1

− log(1− xit) =
∞∑
i=1

∞∑
m=1

xmi
tm

m
=
∞∑
m=1

pm
tm

m
,

and therefore

H(t) =
1

E(−t)
= exp

( ∞∑
m=1

pm
tm

m

)
. (3.4)

This shows that the ring automorphism ω : Λ → Λ defined by setting ω(hm) = em for m ≥ 1
has the property that ω(pm) = (−1)m−1pm and ω(em) = hm. In particular, it is an involution.

A family of symmetric functions of special importance is formed by the Schur functions
(sλ)λ∈Y. They have many equivalent definitions; the one that is most relevant for our purposes
is the (first) Jacobi-Trudi formula [22, I.3 (3.4)]

sλ = det[hλi−i+j ]1≤i,j≤`(λ), (3.5)

using the convention that h−m = 0 for integers m > 0. This determinant is evidently an integer
polynomial in the complete homogeneous symmetric functions (hm)∞m=1, so it is clear from this
definition that each Schur function belongs to Λ. It is also not hard to deduce from this definition
that the partitions of m may be ordered so that sλ = hλ + terms hµ involving “later” µ, so
{sλ : λ ∈ Y} is a Z-basis for Λ and a Q-basis for ΛQ.

An alternative formula for Schur functions is the dual Jacobi-Trudi identity [22, I.3 (3.5)],
which amounts to the fact that ω(sλ) = sλ′ . In other words, we have

sλ′ = det[eλi−i+j ]1≤i,j≤`(λ), (3.6)

with the similar convention that e−m = 0 for m > 0.

3.3 Appell sequences and Wronskian Appell polynomials

Appell introduced the following family of univariate polynomial sequences [2].

Definition 3.1. An Appell sequence is a sequence of polynomials (An)∞n=0 such that

(i) A0 = 1, and

(ii) A′n = nAn−1 for all n ≥ 1.
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An easy consequence of this definition is that each An is monic of degree n. Moreover, with
A1(x) = x+ z1 the change of variables x 7→ x− z1 produces a central Appell sequence (Ãn)∞n=0

with Ã1(x) = x. Some examples of Appell sequences are the monomials and the probabilists
Hermite polynomials. These and other Appell sequences of interest are discussed in Section 7.

For each Appell sequence (An)∞n=0 we set zn = An(0). One can easily see (by induction and
the Appell property) that

An(x) =
n∑
k=0

(
n

k

)
zkx

n−k (n ≥ 0). (3.7)

Furthermore, any Appell sequence has an exponential generating function of the form

A(x, t) :=

∞∑
k=0

Ak(x)
tk

k!
= exp(xt)fA(t), (3.8)

where fA is some formal power series [7, Section 9]. Substituting x = 0 in (3.8), we see that fA
is precisely the exponential generating function of the sequence (zn)∞n=0; i.e.,

fA(t) =

∞∑
k=0

zk
tk

k!
.

Note that fA(0) = z0 = A0(0) = 1, so one can view the values zn as the moments and fA(t)
as the moment generating function of some probability measure. Building on this analogy, the
logarithm of fA(t) centered at t = 0 is

log fA(t) =
∞∑
k=1

ck
tk

k!
, (3.9)

where the values ck are the cumulants of this probability measure. Here, zk and ck depend on
the specific Appell sequence (An)∞n=0 but we omit this relationship when the Appell sequence
is clear from the context. An explicit relation between the values zk and ck is given by

cn = zn −
n−1∑
i=1

(
n− 1

i

)
cn−izi (n ≥ 1).

For more examples and properties of Appell polynomials, we refer to [1] for a matrix approach
or [30] for a probabilistic approach.

As discussed in the introduction, we define the Wronskian Appell polynomial associated
to a partition λ of length r and a given Appell sequence (An)∞n=0 to be

Aλ =
Wr[An1 , An2 , . . . , Anr ]

∆(nλ)
,

where nλ = (n1, n2, . . . , nr) = (λr, λr−1 + 1, . . . , λ1 + r − 1) as in (3.2).
Since each polynomial An is monic of degree n, one can show that Aλ is monic of degree

|λ| (see [6, Lemma 2.1]). It is easy to see that A(n) = An for all n ≥ 1 and A∅ = A0 = 1, so
Wronskian Appell polynomials generalize the Appell sequence. One can check that Aλ remains
unchanged if a 0 is inserted into the partition λ.

4 Wronskian Appell polynomials and Schur functions

Fix an Appell sequence A = (An)∞n=0. The main results of this paper rely on a ring homomor-
phism ϕA from Λ to R[x] defined by

ϕA(hm) =
Am
m!

(m ≥ 1). (4.1)

This completely determines ϕA, since (hm)∞m=1 freely generates Λ.
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Theorem 4.1. If A = (An)∞n=0 is an Appell sequence and λ ∈ Y, then

ϕA(sλ) =
Aλ
H(λ)

=
FλAλ
|λ|!

. (4.2)

Proof. The second equality follows directly from (3.1). For the first equality, let `(λ) = r and
nλ = (n1, . . . , nr). By the Appell property and (4.1), we have

A(j)
n = n(n− 1) · · · (n− j + 1)An−j = n!ϕA(hn−j).

Recalling the convention that hm = 0 for m < 0, this is valid even for j > n. Therefore,

Aλ =
Wr[An1 , An2 , . . . , Anr ]

∆(nλ)
=

1

∆(nλ)
· det

[
ni!ϕA(hni−j+1)

]
1≤i,j≤r

=
n1! · · ·nr!

∆(nλ)
· det

[
ϕA(hλr+1−i+i−j)

]
1≤i,j≤r ,

since ni = λr+1−i + i− 1 by definition. Reversing rows and columns in this determinant yields

Aλ =
n1! · · ·nr!

∆(nλ)
· det [ϕA(hλi−i+j)]1≤i,j≤r =

n1! · · ·nr!
∆(nλ)

ϕA(sλ)

by (3.5). Use (3.3) to complete the proof.

The symmetric functions s̃λ = H(λ)sλ are referred to as augmented Schur functions
in [22, I.7, Ex. 17(a)]. Note that (4.2) directly implies ϕA(s̃λ) = Aλ.

Since s(1n) = en, which is the 1× 1 case of the second Jacobi-Trudi identity (3.6), we have
the following corollary.

Corollary 4.2. If A = (An)∞n=0 is an Appell sequence, then for n ≥ 0,

ϕA(en) =
A(1n)

n!
.

In Section 5.3, we study the polynomials (A(1n))
∞
n=0 and show they also form an Appell

sequence. We now consider the image of the power sum symmetric functions pn.

Proposition 4.3. If (An(x))∞n=0 is an Appell sequence and cn is given as in (3.9), then

ϕA(p1) = x+ c1 and ϕA(pn) =
cn

(n− 1)!
for n ≥ 2.

Proof. Applying φA to (3.4) yields

exp

( ∞∑
n=1

ϕA(pn)
tn

n

)
=
∞∑
n=0

ϕA(hn)tn =
∞∑
n=0

An(x)
tn

n!
= extfA(t),

the last equality being (3.8). Hence

∞∑
n=1

ϕA(pn)
tn

n
= xt+ log fA(t) = (x+ c1)t +

∞∑
n=2

cn
tn

n!
,

from which the result follows.

It is noteworthy that the value of ϕA(pn) is a constant for n ≥ 2 by the above proposition.
We now have the following table of images of the homomorphism ϕA.
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Λ
ϕA−−→ R[x]

sλ FλAλ/|λ|!

s̃λ Aλ

hn An/n!

en A(1n)/n!

p1 x+ c1

pn cn/(n− 1)! if n ≥ 2

5 Some consequences

5.1 The derivative and Appell nets

In [6], the first and last authors observed a generalization of the Appell property for Wronskian
Hermite polynomials. The following extends their result to all Wronskian Appell polynomials.

Theorem 5.1. If (An)∞n=0 is an Appell sequence, then the polynomials (Aλ)λ∈Y satisfy

FλA
′
λ = |λ|

∑
µlλ

FµAµ. (5.1)

Proof. Since (pλ)λ∈Y is a basis of ΛQ, we may regard each f ∈ ΛQ as a polynomial in finitely
many of the variables (pn)∞n=1. In this way, f has well-defined partial derivatives with respect
to these variables. In particular, we claim that

∂

∂x
ϕA(f) = ϕA

( ∂f
∂p1

)
. (5.2)

Since both sides are linear, it suffices to check this for monomials f = pα1
1 · · · pαmm . In that case,

Proposition 4.3 implies

∂

∂x
ϕA(f) = α1(x+ c1)

α1−1cα2
2 · · · c

αm
m = ϕA

( ∂f
∂p1

)
,

proving the claim.
On the other hand, formally differentiating (3.4) with respect to p1 yields

∂H(t)

∂p1
= tH(t),

and thus ∂hn/∂p1 = hn−1 for all n (with h−m = 0 for m > 0 as usual). It follows that by
differentiation of (3.5), one obtains

∂

∂p1
sλ =

`(λ)∑
k=1

det
[
hλi−δk,i−i+j

]
1≤i,j≤`(λ) ,

where δk,i denotes a Kronecker delta. If λk > λk+1, the kth determinant in this sum is sµ, where
µ is obtained from λ by decreasing λk by 1. Otherwise, if λk = λk+1, then the kth determinant
has two equal rows and therefore vanishes. Thus the nonzero terms in the sum are indexed
precisely by the partitions covered by λ in Young’s lattice, and we conclude that

∂

∂p1
sλ =

∑
µlλ

sµ.

The result now follows from (5.2) and Theorem 4.1.
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Motivated by the above result, define an Appell net to be a collection of univariate polyno-
mials (Aλ)λ∈Y with A∅ = 1 satisfying (5.1). Setting zλ = Aλ(0) and n = |λ|, a k-fold iteration
of (5.1) yields

FλA
(k)
λ = n(n− 1) · · · (n− k + 1)

∑
µ`n−k

Fλ/µFµAµ,

and therefore

FλAλ(x) =
∑
µ

(
|λ|
|µ|

)
Fλ/µFµzµx

|λ|−|µ|.

Conversely, it is not hard to check that every choice of constants (zλ)λ∈Y yields an Appell net
via the above formula. Moreover, a similar construction leads to Appell nets on any differential
poset as introduced by Stanley [27]. However, we will not pursue this further here.

5.2 Plancherel measure statistics

It is well known that the order of a finite group is the sum of the squares of the dimensions
of its irreducible representations. In the case of the symmetric group of degree n, this identity
takes the form

n! =
∑
λ`n

F 2
λ . (5.3)

The corresponding Plancherel measure may thus be viewed as a probability measure on
partitions of n with

P(X = λ) =
1

n!
F 2
λ .

In particular, for each Appell sequence (Am)∞m=0 and each n we may interpret the associated
Wronskian Appell polynomials {Aλ : λ ` n} as a random variable with respect to this measure.

In the following, we derive the expected value and variance of these random variables. The
first of these generalizes [6, Theorem 3.4] from the Hermite case to any Appell sequence.

Theorem 5.2. If (Am)∞m=0 is an Appell sequence, then E(Aλ : λ ` n) = An1 .

Proof. If we apply ϕA to the identity [28, Corollary 7.12.5]∑
λ`n

Fλsλ = hn1 ,

the result follows.

For the second moment, recall that an Appell sequence (Am)∞m=0 is central if A1(0) = 0.

Theorem 5.3. If A = (Am)∞m=0 is the Appell sequence determined by log fA(t) =
∞∑
k=1

ck
tk

k!
,

then

E
(
A2
λ(x) : λ ` n

)
=
∑
λ`n

1

n!
F 2
λA

2
λ(x) = Bn((x+ c1)

2),

where B = (Bn)∞n=0 is the central Appell sequence determined by log fB(t) =

∞∑
k=2

c2k
(k − 1)!

tk

k!
.

Proof. By Theorem 4.1, we have

∞∑
n=0

E
(
A2
λ(x) : λ ` n

) tn
n!

=
∞∑
n=0

∑
λ`n

F 2
λAλ(x)2

tn

(n!)2
= ϕA

(∑
λ

s2λt
|λ|
)
.
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On the other hand, by specializing the Cauchy identity [22, I.4 (4.3)], we have

∑
λ

s2λt
|λ| =

∞∏
i=1

∞∏
j=1

1

1− xixjt
= exp

( ∞∑
k=1

p2k
tk

k

)
,

the second equality following by the same reasoning we used to prove (3.4) (cf. [22, I.4 (4.1)]).
Applying Proposition 4.3, we obtain

∞∑
n=0

E
(
A2
λ(x) : λ ` n

) tn
n!

= exp

(
(x+ c1)

2t+

∞∑
k=2

c2k
(k − 1)!

tk

k!

)
= e(x+c1)

2tfB(t),

where B is the Appell sequence defined above. Since extfB(t) is the exponential generating
function for this sequence, we obtain the claimed result by extracting the coefficient of tn in the
above identity.

As a corollary, we have the following property of the variance.

Corollary 5.4. If A = (Am)∞m=0 is an Appell sequence, then for n ≥ 2,

Var (Aλ(x) : λ ` n) = E
(
A2
λ(x) : λ ` n

)
− E

(
Aλ(x) : λ ` n

)2
= O(x2n−4).

Proof. Combining Theorems 5.2 and 5.3, we have

Var(Aλ(x) : λ ` n) = Bn((x+ c1)
2)− (x+ c1)

2n.

On the other hand, since B is central, we have Bn(x) = xn + O(xn−2) for n ≥ 2 (recall (3.7)),
and the result follows.

Higher moments can be derived from [28, Ex 7.70], though a closed formula appears unlikely
except in special cases.

5.3 Dual Appell sequences

Recall from the discussion at the end of Section 3.2 that there is a ring involution ω of Λ such
that ω(hm) = em, ω(pm) = (−1)m−1pm, and ω(sλ) = sλ′ . This allows us to deduce that for any
Appell sequence A, there is a second Appell sequence A∗ hidden within the associated net of
Wronskian Appell polynomials generated by A.

Theorem 5.5. If A = (An)∞n=0 is an Appell sequence, then

(a) the sequence A∗ = (A∗n)∞n=0 defined by setting A∗n = A(1n) is also an Appell sequence,

(b) the Wronskian Appell polynomials for A and A∗ satisfy A∗λ = Aλ′ for all λ ∈ Y, and

(c) the exponential generating functions fA(t) and fA∗(t) are related by fA∗(t) = 1/fA(−t),
or equivalently,

log fA(t) =

∞∑
k=1

ck
tk

k!
implies log fA∗(t) =

∞∑
k=1

(−1)k−1ck
tk

k!
.

Proof. For every n ≥ 0, we have F(1n) = 1. Furthermore, the only partition that is covered by
(1n) in Young’s lattice is (1n−1). Theorem 5.1 therefore implies

(A∗n)′ = A′(1n) = nA(1n−1) = nA∗n−1 (n ≥ 1),
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proving (a). Now consider that Corollary 4.2 implies

(ϕA ◦ ω)(hn) = ϕA(en) =
A∗n
n!

= ϕA∗(hn).

Since (hn)∞n=0 generates Λ, it follows more generally that ϕA∗(g) = (ϕA ◦ ω)(g) for all g ∈ Λ.
Recalling that ω(sλ) = sλ′ for all λ ∈ Y, we obtain

FλA
∗
λ

|λ|!
= ϕA∗(sλ) = (ϕA ◦ ω)(sλ) = ϕA(sλ′) =

Fλ′Aλ′

|λ′|!
.

Since Fλ′ = Fλ and |λ′| = |λ|, this proves (b). Part (c) follows by applying ϕA to (3.4).

We call A∗ the Appell sequence dual to A.
If we specialize Theorem 5.5 to the setting of Hermite polynomials, we recover [12, Theo-

rem 1.2] and [16, Corollary 2]. Moreover, similar results are derived in other settings as well,
for example see [12, Theorem 6.1 and Theorem 8.1] or [4, Lemma 2.7] and [5, Lemma 5]. These
cited results relate a Wronskian corresponding to two partitions to the Wronskian corresponding
to the conjugated partitions. Similar identities with a combinatorial interpretation in terms of
Maya diagrams can be found in [16, 18].

Corollary 5.6. If (An)∞n=0 is an Appell sequence, then A∗∗n = An for all n ≥ 0.

Corollary 5.7. If (An)∞n=0 is an Appell sequence, the following statements are equivalent:

(a) For all integers n ≥ 0, An = A∗n, i.e. the Appell sequence is self-dual.

(b) For all λ ∈ Y, Aλ = Aλ′.

(c) For all even integers n > 0, cn = 0.

5.4 Integer coefficients

Previously, the first and last authors conjectured that Wronskian Hermite polynomials have
integer coefficients [6, Conjecture 3.7]. The following result provides a sufficient condition on
Appell polynomials so that the associated Wronskian Appell polynomials have integer coeffi-
cients; it confirms their conjecture as a special case (see the discussion in Section 7).

Theorem 5.8. Let (An)∞n=0 be an Appell sequence with ck as in (3.9). If ck/(k − 1)! ∈ Z for
all k ≥ 1, then Aλ ∈ Z[x] for all λ ∈ Y.

Proof. Fix λ ` n and recall from Theorem 4.1 that ϕA(H(λ)sλ) = Aλ. It is known that if the
Schur function sλ is rescaled by the factor H(λ), the result is a polynomial in power sums with
integer coefficients (see [22, I.7 Ex. 17(a)]). In other words, there exist integers dλµ such that

H(λ)sλ =
∑
µ`n

dλµpµ.

On the other hand, Proposition 4.3 and the stated hypothesis imply that ϕA(p1) = x+c1 ∈ Z[x]
and ϕA(pk) = ck/(k − 1)! ∈ Z for k > 1.

11



6 Rim hooks and recurrence relations

A rim hook of size k is a skew diagram λ/µ that is connected and does not contain any 2× 2
squares such that |λ| − |µ| = k. Its height, denoted ht(λ/µ), is one less than the number of
rows it occupies. We set

R+
k (µ) := {λ ∈ Y : λ/µ is a rim hook of size k},
R−k (λ) := {µ ∈ Y : λ/µ is a rim hook of size k}.

Note that a rim hook λ/µ of size 1 is simply a covering pair in Young’s lattice.
A rim hook with a fixed outer shape λ has at most one cell on each northwest-southeast

diagonal and thus is determined by the highest row and leftmost column it occupies. Conversely,
for each cell (i, j) ∈ Dλ, there is a rim hook λ/µ with highest row i and leftmost column j, and
its size is the hook length h(i, j). This bijection between the cells of Dλ and λ-bounded rim
hooks is illustrated below for λ = (5, 3, 2) where cells are marked with a bullet and rim hooks
are shaded gray.

•
•

•

•

•

•
•

•
• •

The rim hooks in the first row above all have height 0, while the first three in the second row
have height 1 and the last two have height 2.

The Murnaghan-Nakayama Rule [22, I.7 Ex. 5] uses rim hooks to provide a combinatorial
formula for multiplying a Schur function by a power sum; namely,

pksλ =
∑

γ∈R+
k (λ)

(−1)ht(γ/λ)sγ . (6.1)

The following identity may be viewed as providing a one-sided inverse to (6.1). We have not
seen it elsewhere in the literature on symmetric functions.

Theorem 6.1. For λ ` n, we have

nsλ =

n∑
k=1

∑
µ∈R−k (λ)

(−1)ht(λ/µ)pksµ. (6.2)

Note that the special case λ = (1n) of (6.2) yields Newton’s identities; namely,

nen =

n∑
k=1

(−1)k−1pken−k.

Proof. Let 〈· , ·〉 denote the standard inner product on ΛQ relative to which the Schur functions
(sν)ν∈Y are orthonormal. As in the proof of Theorem 5.1, we may regard each f ∈ ΛQ as a
polynomial in finitely many of the variables (pk)

∞
k=1 and apply differential operators with respect

to such variables. In these terms, it is known (see [22, I.5 Ex. 3(c)]) that the operator k∂/∂pk
is adjoint to multiplication by pk; i.e.,〈

k
∂f

∂pk
, g
〉

= 〈f , pkg〉 (f, g ∈ ΛQ).

Applying (6.1), we obtain

k
∂sλ
∂pk

=
∑
µ`n−k

〈
k
∂sλ
∂pk

, sµ

〉
sµ =

∑
µ`n−k

〈sλ , pksµ〉sµ =
∑

µ∈R−k (λ)

(−1)ht(λ/µ)sµ. (6.3)
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On the other hand, any p-monomial f = pm1
1 pm2

2 · · · is homogeneous of degree n =
∑
kmk,

from which it follows directly that

nf =
n∑
k=1

kpk
∂f

∂pk
,

and hence also for any f ∈ ΛQ that is homogeneous of degree n. Specializing to the case f = sλ
and applying (6.3) yields the claimed identity.

6.1 Top-down relations

The following result generalizes [6, Theorem 3.2].

Theorem 6.2. If (An)∞n=0 is an Appell sequence with cn as in (3.9), then for all λ ∈ Y,

(|λ|+ 1)(x+ c1)FλAλ =
∑
γmλ

FγAγ , (6.4)

kck

(
|λ|+ k

k

)
FλAλ =

∑
γ∈R+

k (λ)

(−1)ht(γ/λ)FγAγ (k ≥ 2). (6.5)

Proof. Apply ϕA to (6.1) and use Theorem 4.1 and Proposition 4.3 to simplify the result.

6.2 The generating recurrence relation

In previous work, the first and last authors proved identities for Wronskian Hermite polynomials
using a relation they referred to as the generating recurrence relation [6, Theorem 3.1]. The
following result extends it to all Appell sequences.

Theorem 6.3. If (An)∞n=0 is an Appell sequence with ck as in (3.9) and λ ` n ≥ 1, then

FλAλ = x
∑
µlλ

FµAµ +

n∑
k=1

ck

(
n− 1

k − 1

) ∑
ν∈R−k (λ)

(−1)ht(λ/ν)FνAν . (6.6)

Proof. Apply ϕA to (6.2) and use Theorem 4.1 and Proposition 4.3 to obtain

Fλ
(n− 1)!

Aλ = (x+ c1)
∑
µlλ

Fµ
(n− 1)!

Aµ +
n∑
k=2

ck
(k − 1)!

∑
ν∈R−k (λ)

(−1)ht(λ/ν)
Fν

(n− k)!
Aν .

The claimed result now follows after rearranging the terms.

7 Results for specific Appell sequences

As discussed in the introduction, one of the main motivations for studying Wronskian Appell
polynomials is their appearance in the rational solutions of Painlevé equations and in the study
of exceptional orthogonal polynomials. All of these appearances involve the use of specific
choices of Appell sequences and specific partitions. In this section we examine the consequences
of our results for several Appell sequences of interest, with an emphasis on the sequences relevant
for these applications.
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7.1 Wronskians of monomials

The simplest example of an Appell sequence is the monomial sequence M = (xn)∞n=0. The
exponential generating function of this sequence is fM (t) = 1, so log fM (t) = 0. Therefore
z0 = 1 and zk = ck = 0 for all k ≥ 1. By direct computation, it is not hard to check that

Mλ(x) = x|λ|,

for any partition λ. Therefore Theorem 5.2 reduces to (5.3). The recurrence relations (6.4)–(6.5)
and (6.6) also simplify to the well-known identities

(|λ|+ 1)Fλ =
∑
γmλ

Fγ , Fλ =
∑
µlλ

Fµ,

and the not so well-known ∑
γ∈R+

k (λ)

(−1)ht(γ/λ)Fγ = 0 (k ≥ 2).

By Corollary 5.7, the sequence (xn)∞n=0 is self-dual. The conditions of Theorem 5.8 are also
satisfied, although the integrality of the Wronskian monomials is trivial.

7.2 Yablonskii-Vorobiev polynomials (P-II) and Wronskians of Hermite poly-
nomials (P-IV)

The rational solutions of the Painlevé II and the Painlevé IV equation can be described in terms
of a Wronskian of the polynomials given by the generating series

P-II:

∞∑
k=0

pk(x)
tk

k!
= exp

(
xt− 4

3 t
3
)
, P-IV:

∞∑
k=0

Hek(x)
tk

k!
= exp

(
xt− 1

2 t
2
)
.

These Wronskians (for specific partitions) are called Yablonskii-Vorobiev polynomials (P-II) and
generalized Hermite polynomials and generalized Okamoto polynomials (P-IV), see [31, Section
6.1.1 and 6.1.3]. Both sequences have generating series of the form

∞∑
k=0

Ak(x)
tk

k!
= exp (xt+ αtr) , (7.1)

where α ∈ R and r is some positive integer. With α = 0 we recover the monomials, and with
r = 1 we obtain translated monomials An(x) = (x+α)n. If A = (An)∞n=0 is the Appell sequence
satisfying (7.1), then

fA(t) = exp(αtr), log fA(t) = αtr.

Therefore zk = 0 unless k is a multiple of r, in which case zk = k! · αk/r/(k/r)!, whereas ck = 0
for k 6= r and cr = r! · α. These polynomials obey the recurrence

An(x) = xAn−1(x) + rα
(n− 1)!

(n− r)!
An−r(x) (n ≥ r),

along with the initial conditions An(x) = xn for 0 ≤ n < r.
The corresponding dual Appell sequence has generating series fA∗(t) = exp((−1)r−1αtr)

(see Theorem 5.5(c)), so this class of polynomials is closed under taking duals. In particular if
α 6= 0, then A is self-dual if and only if r is odd. A simple calculation gives

A∗n(x) = ρnAn(ρ−1x),
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where ρ = − exp(πi/r). In turn this yields the relation

Aλ′(x) = ρ|λ|Aλ(ρ−1x). (7.2)

When considering the Hermite polynomials, r = 2 and α = −1/2, then (7.2) reduces to what is
already known; see for example [6, 13].

Theorem 5.8 implies Aλ has integer coefficients if rα is an integer. Again specializing to the
case of Hermite polynomials, this proves Conjecture 3.7 in [6].

Corollary 7.1. For any partition λ, we have Heλ ∈ Z[x].

The polynomials used for constructing the Yablonskii-Vorobiev polynomials have r = 3 and
α = −4/3, thus rα is again an integer, and the Wronskian polynomials again have integer
coefficients.

The generating recurrence relation (Theorem 6.3) specializes to

FλAλ = x
∑
µlλ

FµAµ + rα
(|λ| − 1)!

(|λ| − r)!
∑

ν∈R−r (λ)

(−1)ht(λ/ν)FνAν .

Setting α = −1/2 and r = 2, we recover the generating recurrence relation for the Hermite
polynomials [6].

For r, k > 1, the top-down relations (Theorem 6.2) specialize to

r · r! · α
(
|λ|+ r

r

)
FλAλ =

∑
γ∈R+

k (λ)

(−1)ht(γ/λ)FγAγ if k = r,

0 =
∑

γ∈R+
k (λ)

(−1)ht(γ/λ)FγAγ if k 6= r.

If r > 1, the average Wronskian polynomial (with respect to the Plancherel measure) equals
the monomial x|λ|. Theorem 5.3 allows us to compute the second moment.

Corollary 7.2. Fix r > 1 and α ∈ R. If A = (An)∞n=0 is as in (7.1) with parameters α and r,
and B = (Bn)∞n=0 is as in (7.1) with parameters rα2 and r, then

E
(
A2
λ(x) : λ ` n

)
=
∑
λ`n

F 2
λ

n!
A2
λ(x) = Bn(x2).

Proof. Given that r > 1, we have that A is a central Appell sequence with cr = r! ·α and ck = 0
for k 6= r. In particular, c2r/(r − 1)! = r · r! · α2. Now apply Theorem 5.3.

In the special case of Hermite polynomials, the Appell sequence B is the dual of A, so

∑
λ`n

F 2
λ

n!
He2λ(x) = He∗n(x2) = i−n Hen(ix2).

7.3 Wronskians of Laguerre polynomials (P-III and P-V)

The classical Laguerre polynomials (L
(α)
n )∞n=0 with parameter α ∈ R satisfy the differential

relation
(
L
(α)
n

)′
= −L(α+1)

n−1 and have constant terms L
(α)
n (0) =

(
α+n
n

)
(see [29]), so the modified

Laguerre polynomials

l(α)n (x) := n! · L(α−n)
n (−x) (n ≥ 0),
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form an Appell sequence with generating series fl(t) = (1 + t)α. The constant terms are
zk = α(α − 1) · · · (α − k + 1) for k ≥ 0, and ck = (−1)k−1(k − 1)!α for k ≥ 1. Wronskians of
(modified) Laguerre polynomials, corresponding to specific partitions, are used in the rational
solutions of the Painlevé III and Painlevé V equations, see [31, 6.1.2 and 6.1.4]. Laguerre
polynomials have integer coefficients when α is an integer, and this extends to Wronskians of
Laguerre polynomials by Theorem 5.8.

The dual Laguerre polynomials have generating function f∗l (t) = (1− t)−α and hence(
l(α)n

)∗
(x) = (−1)n · l(−α)n (−x).

Theorem 5.5 therefore implies

l
(α)
λ′ (x) = (−1)|λ| · l(−α)λ (−x).

By Theorem 5.2, the average over the Plancherel measure is (x+ α)n. The second moment
may be expressed in terms of the Appell sequence B = (Bn)∞n=0 determined by

log fB(t) =
∞∑
k=2

α2 t
k

k
= −α2(t+ log(1− t)).

It follows that
∞∑
n=0

Bn(x)
tn

n!
=

e(x−α
2)t

(1− t)α2 .

This coincides with centralizing the dual Laguerre Appell sequence with parameter α2; i.e.,

Bn(x) =
(
l(α

2)
n

)∗
(x− α2) = (−1)n · l(−α2)

n (−x+ α2),

and thus Theorem 5.3 implies

E
((
l
(α)
λ (x)

)2
: λ ` n

)
= Bn((x+ α)2) = (−1)n · l(−α2)

n

(
−x2 − 2αx

)
.

The generating recurrence relation (6.6) for λ ` n takes the form

Fλl
(α)
λ = x

∑
µlλ

Fµl
(α)
µ + α

n∑
k=1

(−1)k−1
(n− 1)!

(n− k)!

∑
ν∈R−k (λ)

(−1)ht(λ/ν)Fν l
(α)
ν .

We note that if λ is a partition whose Wronskian polynomial appears in the rational solution
of the Painlevé III or V equation, the polynomials on the right hand side of this generating
recurrence relation do not necessarily appear in such rational solutions as well. This is analogous
to the remarks made in [6] about Wronskian Hermite polynomials and their appearance in the
rational solutions of the Painlevé IV equation.

7.4 Wronskians of Jacobi polynomials (P-VI)

Rational solutions of the Painlevé VI equation are expressible in terms of Jacobi polynomials.
A classical formula for these polynomials with parameters α, β ∈ R is

P (α,β)
n (x) =

1

n!

n∑
k=0

(
n

k

)
(n+ α+ β + 1)k(α+ k + 1)n−k

(
x− 1

2

)k
(n ≥ 0),

where (a)k = a(a + 1) · · · (a + k − 1), see [29, Eq 4.21.2]. The Jacobi polynomials which come
into play in the rational solutions of P-VI involve parameters that shift with n; i.e.,

P (α−n,β−n)
n (x) =

1

n!

n∑
m=0

(
n

m

)
(α+ β − n+ 1)n−m(α−m+ 1)m

(
x− 1

2

)n−m
.
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When α+ β /∈ N, these polynomials have degree n and the rescalings

P̃ (α−n,β−n)
n :=

2nn!

(α+ β − n+ 1)n
P (α−n,β−n)
n

are monic; we call these modified Jacobi polynomials. Substituting x 7→ x+ 1 yields

A(α,β)
n (x) := P̃ (α−n,β−n)

n (x+ 1) =

n∑
m=0

(
n

m

)
(α−m+ 1)m

(α+ β −m+ 1)m
2mxn−m (n ≥ 0),

which by (3.7) is an Appell sequence with constant terms

zk = 2k
(α− k + 1)k

(α+ β − k + 1)k
= 2k

(−α)k
(−α− β)k

.

The exponential generating function is therefore a hypergeometric function; namely,

fA(α,β)(t) = 1F1(−α;−α− β; 2t).

Since the Appell property is preserved under translations, the modified Jacobi polynomials are
also an Appell sequence. The generating function is determined by the above formulas, but we
lack explicit formulas for the constants ck. Without such formulas, the specialization of our
main results to these polynomials cannot be made explicit.
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[16] Gómez-Ullate D., Grandati Y., Milson R., Durfee rectangles and pseudo-Wronskian equivalences for Hermite
polynomials, Studies in Applied Mathematics, 141 (2018), 596–625, arXiv:1612.05514.
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260 (1999), 462–467, arXiv:solv-int/9903015.

[21] Kajiwara K., Ohta Y., Determinant structure of the rational solutions for the Painlevé II equation, Journal
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