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1. Introduction

A W -graph for a Coxeter group W is a combinatorial structure that encodes a module

for the group algebra of W , or more generally, a module for the associated Iwahori-Hecke

algebra. Of special interest are the W -graphs that encode the action of the Hecke algebra

on its Kazhdan-Lusztig basis, as well as the action on individual W -cells; i.e. subquotients

spanned by the strongly connected components of the W -graph.

As part of a project to understand the essential combinatorial features of the Kazhdan-

Lusztig W -graph, we isolated in [S] a few of the basic properties of this graph, and used

these properties to define the class of “admissible” W -graphs. (Precise definitions are in

Section 4 below.) The main idea has been that insight into the structure of admissible

W -graphs should lead to insight into the Kazhdan-Lusztig W -graph.

Our main objective in this paper is to prove that for finite W , there are only finitely

many admissible W -cells, answering one of the basic questions that we raised earlier in [S].

As we shall demonstrate, the crucial feature of admissibility that leads to this conclusion

is the fact that admissible W -graphs have nonnegative integer edge weights. A related

surprise is that the finiteness is ultimately a consequence of a more fundamental theorem

about nonnegative integer matrices.

To outline the contents of the paper, we begin by introducing “polynomial cells” in

Section 2. These are matrices with strongly connected support that satisfy a given poly-

nomial identity. The key result (Theorem 2.1) is that for a given polynomial, there are

only finitely many such cells over the nonnegative integers. We also give two upper bounds

(Theorems 2.3 and 2.5) on the size of a cell. The first of these applies in all cases, whereas

the second applies only when the dominant eigenvalue is a rational integer. We also point

out that this latter bound is sometimes sharp. For example, there are cubic polynomials

for which the bound is attained whenever directed strongly regular graphs with certain

parameter sets exist (Proposition 2.8).

In Section 3, we generalize to the case of cells for finite-dimensional associative algebras;

the polynomial cells of Section 2 correspond to cells for an algebra with a single generator.

As in the polynomial case, we prove that a given algebra has only finitely many cells (up to

isomorphism) over the nonnegative integers (Theorem 3.1). In the final section, we apply

Theorem 3.1 to the group algebra of a finite Coxeter group W , yielding our main result:

a proof that there are only finitely many admissible W -cells, or more generally, W -cells

with nonnegative integer edge weights (Theorem 4.1).

A remaining problem of interest is that of constructing all admissible W -cells, or even

the simpler problem of finding an effective algorithm for generating polynomial cells.

2. Polynomial cells

Recall that a directed graph is strongly connected if there is a (directed) path from any

vertex to any other vertex; or equivalently, there is a closed path that passes through every

vertex. In particular, a graph with one vertex and no edges is strongly connected.
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Given an n × n matrix A = [aij ], let G(A) denote its support graph; i.e., the directed

graph with vertex set {1, . . . , n} and edges i← j for each pair (i, j) such that aij 6= 0.

Abusing notation, we say that A is strongly connected if G(A) is strongly connected.

Given a nonzero polynomial p(t) ∈ Z[t], we define a square matrix A to be a p(t)-cell

if p(A) = 0 and A is strongly connected. Note that if p(A) = 0 but A is not strongly

connected, then there is a simultaneous permutation of the rows and columns of A that

has a block triangular form in which each diagonal block is a p(t)-cell.

Theorem 2.1. For each nonzero polynomial p(t) ∈ Z[t], there are only finitely many

p(t)-cells over the nonnegative integers.

Proof. First we argue that there is an upper bound on the size n of a nonnegative integer

p(t)-cell A. Assuming p has degree r (say), the relation p(A) = 0 implies that Ar is in the

linear span of {I, A, . . . , Ar−1}, and more generally by iteration,

As ∈ Span{I, A, . . . , Ar−1} (s > 0).

Since A is strongly connected and nonnegative, this implies that there is a directed path

of length less than r between any two vertices. Equivalently, the integer matrix

B := I +A+ · · ·+Ar−1

is positive. Letting J denote the n× n matrix of 1’s, we have B > J (entry-wise), and

Bm
> Jm = nm−1J. (2.1)

Thus all entries of Bm grow exponentially as m→∞.

On the other hand, the eigenvalues of A must be roots of p(t), so the eigenvalues of B

are of the form 1 + λ + · · · + λr−1, where λ ranges over the (finite) list of roots of p(t).

Thus the absolute value of the largest eigenvalue of B is at most

ρ := max
{

|1 + λ+ · · ·+ λr−1| : p(λ) = 0
}

, (2.2)

and this bound depends only on p(t). Passing to the Jordan Canonical Form of B, one

sees that the entries of Bm may grow asymptotically no faster than O(mk−1ρm), where k

is the size of the largest Jordan block associated to an eigenvalue with absolute value ρ.

Comparing this with (2.1), we obtain that n 6 ρ; i.e., the size of A is bounded.

To complete the proof, we need only to show that the entries of A are also bounded. For

this, recall that there is a directed path in G(A) of length < r between any two vertices.

Thus either aij = 0 or there is a closed path of length 6 r passing through the edge i← j,

and the product of the matrix entries along this closed path is at least aij . Since the trace

of Ak enumerates weighted sums of closed paths of length k, we obtain

aij 6 max
{

trAk : 1 6 k 6 r
}

6 ρ ·max
{

|λ|k : p(λ) = 0, 1 6 k 6 r
}

, (2.3)

and thus the entries of A are bounded. �
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Remark 2.2. (a) Since the eigenvalues of integer matrices are algebraic integers, there

is no loss of generality in requiring the polynomial p(t) to be monic.

(b) By the Perron-Frobenius Theorem [M], one knows that a strongly connected non-

negative matrix has a dominant real nonnegative eigenvalue, and all extremal eigenvalues

are simple roots of the characteristic polynomial. Thus we may further require that the

largest roots of p(t) in absolute value are all simple, and that one of them is real and

nonnegative. Letting α denote this dominant real root, it follows that the bound on the

size of A obtained in (2.2) is

ρ = 1 + α+ · · ·+ αr−1.

Furthermore, aside from the degenerate case α = 0 (in which case p(t) = t and the only

p(t)-cell is a 1× 1 zero matrix), the dominant root of a monic, integer polynomial cannot

be inside the unit disk, so α > 1 and the upper bound in (2.3) simplifies to aij 6 ραr.

(c) Another simplifying consequence of the Perron-Frobenius Theorem that we omitted

from the above proof is that the Jordan blocks associated to the extremal eigenvalues of

B are necessarily one-dimensional.

The following result provides a tighter bound on the size of A.

Theorem 2.3. If p(t) = tr+cr−1t
r−1+ · · ·+cst

s is an integer polynomial whose largest

real root is α > 0, then every nonnegative integer p(t)-cell has size at most
∑

i∈N αi, where

N = {i : s 6 i < r, ci 6 0}.

Proof. Let A be a nonnegative integer p(t)-cell. Excluding the trivial case A = [ 0 ], we

claim that the entries of the matrix BN :=
∑

i∈N Ai are positive. To see this, note first

that the relation p(A) = 0 implies that Ar and all higher powers of A are in the linear

span of {As, . . . , Ar−1}. Since A is assumed to be strongly connected, it follows that

B := As +As+1 + · · ·+Ar−1

is positive. Thus to prove the claim, it suffices to show that the support graph of each

matrix Ai such that ci > 0 is a subgraph of the support graph of BN . For this, rewrite the

dependence relation p(A) = 0 in the form p+(A) = p−(A) so that p+(t) and p−(t) have

the terms of p(t) with positive and negative coefficients, respectively. The latter terms

have degrees that belong to N , so the support graph of p−(A) is a subgraph of the support

graph of BN . However, the relation p+(A) = p−(A) shows that the support graph of each

power Ai with ci > 0 is also contained in the support graph of p−(A), proving the claim.

Now we proceed as in the proof of Theorem 2.1. Since BN is positive and integral,

the entries of Bm
N are at least nm−1, where n denotes the size of A. On the other hand,

the dominant eigenvalue of A is at most α, so the dominant eigenvalue of BN is at most

β :=
∑

i∈N αi. The controlling factor in the asymptotic growth rate of the entries of Bm
N

is therefore at most O(βm), so we must have n 6 β. �
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Example 2.4. The largest real root of

p(t) = (t− 3)(t3 − t) = t4 − 3t3 − t2 + 3t

occurs at t = 3, so Theorem 2.3 implies that the size of the largest nonnegative integer

p(t)-cell is at most 32 + 33 = 36. This is a slight improvement over the bound one obtains

from Remark 2.2(b); see Example 2.7 for further improvement.

It is natural to refine the classification of nonnegative integer p(t)-cells according to their

dominant real eigenvalue. If this eigenvalue is to be α (necessarily a root of p(t)), then by

the Perron-Frobenius Theorem, one should discard from p(t) all irreducible factors over

Q[t] that involve roots that are greater than α in absolute value, as well as any duplicate

factors involving roots that equal α in absolute value.

In this direction, the following result provides an upper bound that is in some cases

better than the one in Theorem 2.3, and in some cases it is sharp. However, it requires α

to be a rational integer. We do not know if there is a similar bound when α is irrational.

Theorem 2.5. Let p(t) ∈ Z[t] be a monic polynomial whose largest real root is α,

and assume without loss of generality that α is a simple root. If α is an integer and A

is a nonnegative integer p(t)-cell whose dominant eigenvalue is α, then there is a pair of

positive integer column vectors v, w such that

q(A) = vwT and q(α) = wT v,

where q(t) = p(t)/(t− α). Moreover, the size of A is at most q(α), and equality occurs if

only if q(A) = J and A is α-regular (i.e., every row and column of A has sum α).

Proof. Let A be an n×n nonnegative integer p(t)-cell with dominant eigenvalue α, and

v1, . . . , vn a basis for Cn such that the matrix of A with respect to this basis is in Jordan

Canonical Form. By the Perron-Frobenius Theorem, we know that α is a simple root of

the characteristic polynomial of A, so we may arrange the basis so that v1 is the unique

eigenvector of A with eigenvalue α. All other basis vectors are annihilated by operators

(A− βI)k for various divisors (t− β)k of p(t) with β 6= α.

Thus we have q(A)v1 = q(α)v1 and q(A)vi = 0 for i > 1. We know that q(t) has integer

coefficients (recall that α is assumed to be an integer) and q(α) 6= 0 by hypothesis, hence

q(A) is an integer matrix of rank 1 whose range is spanned by v1. If we normalize v1 so

that its coordinates are relatively prime integers, then there must be a (unique) integer

column vector w1 such that

q(A) = v1w
T
1 . (2.4)

Similarly analyzing the right action of A on row vectors, one sees that wT
1 must be a left

eigenvector for A with eigenvalue α. Recognizing that q(α) is the only nonzero eigenvalue

of q(A), we obtain

q(α) = tr q(A) = wT
1 v1. (2.5)
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By the Perron-Frobenius Theorem, we may replace (v1, w1) with (−v1,−w1) if necessary

so that all coordinates of v1 are positive. If the coordinates of the dominant left eigenvector

wT
1 were not all positive, then again by the Perron-Frobenius Theorem, they would have

to be all negative, and hence q(α) < 0. However,

q(α) = lim
t→α

p(t)/(t− α) = p′(α)

and p(t) is positive for sufficiently large t (since p(t) is monic), so having q(α) = p′(α) < 0

would force the existence of a real root of p(t) larger than α, a contradiction.

For the bound on the size of A, note that the dot product of w1 and v1 is a sum of n

positive integers, hence (2.5) implies n 6 q(α). If equality occurs, then w1 and v1 must be

vectors of 1’s, and (2.4) implies q(A) = J . Since wT
1 and v1 are left and right eigenvectors

with eigenvalue α, they force A to be α-regular. Conversely, if q(A) = J , then v1 and w1

must be vectors of 1’s and wT
1 v1 is the size of A. �

Remark 2.6. (a) As a partial converse to Theorem 2.5, suppose p(t), q(t), and α are

as above, and A is a nonnegative integer matrix such that q(A) = vwT and q(α) = wT v

for some pair of positive integer vectors v, w. Since q(A) is positive, some combination of

powers of A has full support; thus A is strongly connected. It follows that A has a unique

eigenvector with positive coordinates (up to normalization), by the Perron-Frobenius The-

orem. In fact, this eigenvector must be v, since it must also be the unique positive eigen-

vector of the positive matrix q(A) = vwT . Letting β denote the (dominant, necessarily

nonnegative integer) eigenvalue of A associated with v, we see that

(A− βI)q(A) = (A− βI)vwT = 0,

so A is a (t− β)q(t)-cell, but not necessarily a p(t)-cell unless β = α. Since

q(β)v = q(A)v = vwT v = q(α)v,

we see that q(β) = q(α). Therefore, a sufficient condition to force A to be a p(t)-cell would

be that the only nonnegative integer solution of q(t) = q(α) is t = α.

(b) For example, consider p(t) = (t− 4)(t− 3)(t− 2), and let A = v = [ 1 ] and w = [ 2 ].

Here we have α = 4 and q(t) = (t− 3)(t− 2). Moreover, A is a nonnegative integer matrix

such that q(A) = [ 2 ] = vwT and q(α) = 2 = wT v. However, the dominant eigenvalue of

A is not α, and A is not a p(t)-cell.

Example 2.7. For the polynomial p(t) = (t− 3)(t3− t) in Example 2.4, we have α = 3

and q(t) = t3 − t, so Theorem 2.5 implies that for every nonnegative integer p(t)-cell A

with dominant eigenvalue 3, there is a pair of positive integer vectors v, w such that

A3 −A = vwT and wT v = q(3) = 24. (2.6)
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Figure 1. A (t− 3)(t3 − t)-cell.

In particular, all such cells are of size 6 24. Conversely, it is easy to see that t = 3 is

the only real solution of q(t) = 24, so by the reasoning in Remark 2.6, every nonnegative

integer matrix A satisfying (2.6) for some pair v, w is necessarily a p(t)-cell with dominant

eigenvalue 3. Note also that the only p(t)-cells with a dominant eigenvalue less than 3 are

also q(t)-cells; the bound in Theorem 2.3 shows that they are of size at most 2.

The largest p(t)-cell we have constructed is a 0, 1-matrix of size 8 whose support graph

is displayed in Figure 1. Here, non-loop edges with no orientation represent pairs of edges

in both directions.

As introduced by Duval [D], a directed strongly regular graph (DSRG) with parameters

(k, λ, µ, ν) is a simple k-regular graph such that the number of directed paths of length 2

from i to j is either ν (if i = j), λ (if there is an edge i→ j) or µ (otherwise). Equivalently,

these are the support graphs of the 0, 1-matrices A with diagonal 0 that satisfy

A2 = νI + λA+ µ(J − I −A), AJ = JA = kJ. (2.7)

The more familiar class of (undirected) strongly regular graphs consists of those DSRGs

such that A is symmetric. These necessarily have k = ν. Conversely, a DSRG with k = ν

must have a symmetric adjacency matrix.

The following result shows that in some cases, the bound in Theorem 2.5 is sharp.

Proposition 2.8. Let p(t) = (t − k)q(t) and q(t) = t2 + (1 − λ)t + (1 − ν). If there

exists a DSRG with parameters (k, λ, 1, ν) (i.e., µ = 1), then it is a p(t)-cell of size q(k).

Moreover, this is the maximum possible size among all nonnegative integer p(t)-cells.

Proof. Let A be (the adjacency matrix of) a DSRG with parameters (k, λ, 1, ν).

By rearranging (2.7) and setting µ = 1, we obtain

q(A) = A2 + (1− λ)A+ (1− ν)I = J,

so A is strongly connected. The k-regularity also implies (A− kI)q(A) = (A− kI)J = 0,

so A is a p(t)-cell. Furthermore,

J2 = q(A)J = q(k)J,
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so q(k) is the size of A. In particular, q(k) 6= 0, so k is a simple root of p(t) and Theorem 2.5

implies that q(k) is the maximum possible size of any nonnegative integer p(t)-cell with

dominant eigenvalue k. If a nonnegative integer p(t)-cell has a dominant eigenvalue less

than k, then it must be a q(t)-cell. Since q(t) is quadratic, Theorem 2.3 implies that the

size of such a cell must be 6 1 + α where α < k is the largest root of q(t). Since k is the

number of 1’s in each row of A, we have k + 1 6 q(k), so all nonnegative integer p(t)-cells

are of size at most q(k). �

Examples of DSRG parameter sets with µ = 1 include the symmetric cases (2, 0, 1, 2)

(a 5-cycle), (3, 0, 1, 3) (the Petersen graph), and (7, 0, 1, 7) (the Hoffman-Singleton graph).

For further examples, including nonsymmetric cases (i.e., k > ν), see [D] and the tables

maintained by A. E. Brouwer [B].

3. Algebraic cells

Let A be a finite-dimensional associative algebra over a field k of characteristic 0.

In the following, we will work in the category of A-Modules-With-Basis. The objects

of this category are pairs (M,B) consisting of a finite-dimensional left A-module M and a

k-basis B ⊂M . A morphism (M,B)→ (M ′, B′) is an A-module homomorphism M →M ′

that restricts to a map B → B′.

Naturally associated to any module-with-basis (M,B) is a directed graph G(M,B) with

vertex set B and an edge b′ ← b for each pair b, b′ ∈ B such that the coefficient of b′ in

ab is nonzero for some element a ∈ A. In these terms, a subobject (M ′, B′) of (M,B)

in the A-Modules-With-Basis category consists of a k-subspace M ′ of M spanned by an

outward-closed subset B′ ⊂ B (i.e., b ∈ B′, b′ ← b implies b′ ∈ B′). Note that (M,B) is

irreducible in this category precisely if the graph G(M,B) is strongly connected; however,

in such cases M need not be irreducible in the category of A-modules. We will refer to

the irreducible modules-with-basis as A-cells.

Now fix a finite generating set S = {a1, . . . , al} for A.

For each module-with-basis (M,B), define GS(M,B) to be the subgraph of G(M,B)

in which there is an edge b′ ← b only if the coefficient of b′ in aib is nonzero for some

generator ai. It is easy to see that if b′ ← b in G(M,B) then there is a directed path from

b to b′ in GS(M,B), so these graphs have the same strongly connected components, and

(M,B) is an A-cell if and only if GS(M,B) is strongly connected.

As an example, note that the p(t)-cells discussed in the previous section are the A-cells

for the algebra A = Q[t]/(p(t)).

We will say that a module-with-basis (M,B) is nonnegative (respectively, integral) with

respect to S if the matrix entries representing the action of S on (M,B) (i.e., the coefficients

of b′ in aib for all i and all b, b′ ∈ B) are nonnegative (respectively, integral).

Theorem 3.1. For any finite-dimensional k-algebra A with generating set S, there are

only finitely many A-cells that are nonnegative and integral with respect to S.
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Proof. Let a = a1 + · · ·+ al ∈ A. Since A is finite-dimensional, the powers of a must be

linearly dependent, so there is a nonzero polynomial p(t) ∈ k[t] such that p(a) = 0.

Now consider an A-cell (M,B) that is nonnegative and integral with respect to S, and

let A denote the nonnegative integer matrix representing the action of a on (M,B). The

nonnegativity implies that the support graph of A is precisely GS(M,B), so A is strongly

connected and is therefore a p(t)-cell.

Although p(t) need not have integer coefficients, the minimal polynomial of A necessarily

does, and is a divisor of p(t). Thus without loss of generality, we could replace p(t)

with the least common multiple of all monic integer polynomials that divide p(t) in k[t].

Applying Theorem 2.1, we conclude that there are only finitely many possible matrices A

representing the action of a in a nonnegative integer A-cell. Moreover, A itself is the sum

of l nonnegative integer matrices representing the actions of each generator ai, and these

matrices completely determine the module-with-basis up to isomorphism. Since there are

finitely many ways to decompose A into such a sum, the result follows. �

4. Consequences for W -graphs

Let W be a finite Coxeter group with simple reflections S = {s1, . . . , sl}, and H(W,S)

the associated Iwahori-Hecke algebra over the rational function field Q(q1/2).

One knows that H = H(W,S) may be presented as the algebra generated by a set of

elements T = {T1, . . . , Tl} satisfying the quadratic relations

(Ti − q)(Ti + 1) = 0

and the braid relations

(TiTj)
m/2 = (TjTi)

m/2 if m is even,

Ti(TjTi)
(m−1)/2 = Tj(TiTj)

(m−1)/2 if m is odd,

for all distinct i, j, where m = mij denotes the order of sisj in W .

Following Kazhdan and Lusztig [KL], an H-module-with-basis (M,B) is a W -graph if

there is a matrix A = [a(u, v)]u,v∈B of scalars and a subset τ(u) ⊆ {1, 2, . . . , l} for each

u ∈ B such that the action of H on M has the form

Ti(v) =

{

−v if i ∈ τ(v),

qv + q1/2
∑

u: i∈τ(u) a(u, v)u if i /∈ τ(v).
(4.1)

for all v ∈ B and all generators Ti. More precisely, one should regard the combinatorial

datum (A, τ) as the W -graph, and (M,B) as the H-module-with-basis encoded by it.

It is easy to show that any operator Ti having the form of (4.1) automatically satisfies

the quadratic relation (Ti − q)(Ti + 1) = 0, so verifying that the pair (A, τ) is a W -graph

amounts to checking that these operators satisfy the braid relations.
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The motivation for studying W -graphs, as shown by Kazhdan and Lusztig, is that the

left action of the generators Ti on the Kazhdan-Lusztig basis {Cw : w ∈W} of H has the

form of a W -graph. Indeed, letting ℓ(·) denote the length function on W , the associated

matrix A turns out to be [µ(u, v) + µ(v, u)]u,v∈W , where µ(u, v) denotes the coefficient of

q(ℓ(v)−ℓ(u)−1)/2 in the Kazhdan-Lusztig polynomial Pu,v(q), and τ(u) = {i : ℓ(siu) < ℓ(u)}

(i.e., the left descent set of u).

We prefer the convention that all W -graphs (A, τ) must be reduced in the sense that

τ(u) ⊆ τ(v) ⇒ a(u, v) = 0.

Although the Kazhdan-Lusztig W -graph (for example) is not reduced, this causes no loss

of generality. Indeed, whenever τ(u) ⊆ τ(v), one sees from (4.1) that Ti(v) does not depend

on a(u, v), so redefining a(u, v) = 0 in this situation has no effect on the module.

In this way, reduced W -graphs (A, τ) are as sparse as possible, and it is not hard to see

that the support graph of A coincides with the loop-deleted part of the graph GT (M,B)

if and only if (A, τ) is reduced. We define (A, τ) to be a W -cell if (A, τ) is reduced and A

is strongly connected. Thus H-cells are the modules-with-basis arising from W -cells.

As part of a project to understand the essential combinatorial features of the Kazhdan-

Lusztig W -graph, we introduced in [S] the notion of an admissible W -graph. (The matrices

we used in [S] are transposed from those in (4.1), but this has no substantial effect on what

constitutes a W -graph, or admissibility.) These are the W -graphs (A, τ) such that

(i) A has nonnegative integer entries,

(ii) the support graph of A is bipartite, and

(iii) a(u, v) = a(v, u) unless τ(u) ⊆ τ(v) or τ(v) ⊆ τ(u).

Given that the Kazhdan-Lusztig polynomials Pu,v(q) for finite W are known to have non-

negative integer coefficients, it is not hard to see that the Kazhdan-Lusztig W -graph and

all of its cells are admissible.

The following result resolves Question 2.5 in [S].

Theorem 4.1. For a finite Coxeter group W , there are only finitely many W -cells over

the nonnegative integers. In particular, there are only finitely many admissible W -cells.

Proof. Let (A, τ) be a W -cell and assume A has nonnegative integer entries. Although

the action of Ti in (4.1) is neither nonnegative nor integral in that case, if we set q = 1

and add the identity operator, we obtain operators Ei such that

Ei(v) =

{

0 if i ∈ τ(v),

2v +
∑

u: i∈τ(u) a(u, v)u if i /∈ τ(v).
(4.2)

Moreover, setting q = 1 in the defining relations for H yields relations that define the

group algebra QW . Thus the operators {E1, . . . , El} satisfy every relation satisfied by the
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elements X = {1+s1, . . . , 1+sl} in QW . In this way, (4.2) defines a cell for the subalgebra

A of QW generated by X, and it is nonnegative and integral with respect to X.

By Theorem 3.1, we know that there are only finitely many such A-cells. Conversely,

an A-cell might not arise from a W -cell (A, τ) as in (4.2), but if it does, we claim that one

may recover A and τ . Indeed, we must have τ(v) = {i : Ei(v) = 0}. Now having recovered

all τ values, a(u, v) must either be the coefficient of u in Ei(v) for an index i ∈ τ(u) \ τ(v),

or if there is no such index, zero. (The latter follows since A must be reduced.) �

As a final remark, we mention that it would be interesting to have an effective algorithm

for constructing the nonnegative integer p(t)-cells for any given p(t) ∈ Z[t]. Although it is

unlikely that any such algorithm would be practical for a direct construction of admissible

W -cells along the lines of the above proof, it turns out that there are potential indirect

applications for such an algorithm toward W -cell construction. For example, in the case of

the Weyl group F4, there is a family of admissible F4-cells (including all of the Kazhdan-

Lusztig cells belonging to the largest two-sided cell) each of which has a pair of canonically

associated nonnegative integer p(t)-cells for the polynomial p(t) = (t− 3)(t3− t) discussed

in Examples 2.4 and 2.7. The largest p(t)-cell that arises in this way is the one of order 8

displayed in Figure 1.
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