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Let Φ be a simply-laced root system with simple roots ∆ = {αi : i ∈ I} embedded in

the real vector space V with inner product 〈·,·〉. For convenience, we may assume that the

roots have been normalized so that 〈α, α〉 = 2 for all α ∈ Φ. As a second convenience, we

may assume that V has been enlarged, if necessary, so that 〈·,·〉 is nondegenerate on V .

Now let σ be a diagram automorphism of (Φ,∆). Given our choice of normalization,

this amounts to a permutation of I such that

〈ασ(i), ασ(j)〉 = 〈αi, αj〉 (i, j ∈ I).

In particular, if we extend the map αi 7→ ασ(i) linearly, we may view σ as an isometry of

Span ∆. We may extend σ further to an isometry defined on all of V by insisting that it

acts trivially on the orthogonal complement of ∆ (here we are using nondegeneracy).

Note that σsiσ
−1 = sσ(i), so σ acts via conjugation as an automorphism w 7→ wσ of

the Coxeter group W = W (Φ,∆).

We now introduce the key extra condition:

simple roots in the same σ-orbit must be orthogonal. (1)

Equivalently, σ-orbits are independent (i.e., edge-free) sets in the Dynkin diagram.

Let Iσ = {B1, . . . , Bl} denote the set of σ-orbits on I; this is a partition of I into disjoint

blocks of the form {σk(i) : k ∈ Z} for various i ∈ I. For each block Bj , we define

βj =
∑
i∈Bj

αi.

Note that each βj has squared length 2bj , where bj := |Bj |. Moreover,

〈βi, β∨j 〉 = −Nij/bj , (2)

where Nij denotes the number of edges in the Dynkin diagram between block Bi and block

Bj (assuming i 6= j). Since σ acts transitively on each block, it follows each of the bj nodes

in Bj have the same the same number of neighbors in Bi. Thus for i 6= j,

−〈βi, β∨j 〉 = # of nodes in Bi adjacent to any fixed member of Bj . (3)



In particular, ∆σ := {β1, . . . , βl} forms a set of simple roots for some crystallographic (but

probably not simply-laced) root system Φσ in V .

The two main issues at this point are: (1) how to relate Φ and Φσ, and (2) the inverse

problem; i.e., given a multiply-laced crystallographic root system, can we realize it as a

“folding” (Φσ,∆σ) of a simply-laced root system (Φ,∆) by some automorphism σ?

Claim 1. If β is a sum of pairwise orthogonal roots in Φ comprising a single σ-orbit,

then β is a root in Φσ. Conversely, all roots in Φσ have this form.

Remark 2. The orthogonality constraint is necessary. For example, label the simple

roots αi of Aff(A3) so that the 4-cycle 0 → 1 → 2 → 3 → 0 is a diagram automorphism.

Although this automorphism does not satisfy (1), the automorphism 0 ↔ 2, 1 ↔ 3 does.

Moreover, s0α1 = α0 + α1 is clearly a root, and {α0 + α1, α2 + α3} is its orbit. However,

the two roots in this orbit have inner product −2 (not zero), and their sum has squared

length 0, and hence cannot be a root of the folded root system (which in this case happens

to be isomorphic to Aff(A1)).

For each block Bj , let tj denote the reflection corresponding to the simple root βj ∈ Φσ,

and define

s̄j :=
∏
i∈Bj

si,

a product of commuting reflections in W . Note that s̄j is fixed under conjugation by σ.

Claim 3. The map tj 7→ s̄j extends to an isomorphism from the Coxeter group

W (Φσ,∆σ) to Wσ, the subgroup of W fixed by σ.

Proof. Consider the reflection actions of W (Φσ,∆σ) and W on V . A simple calculation

shows that s̄j(αi) − αi is the sum of all simple roots indexed by nodes in Bj that are

adjacent to node i in the Dynkin diagram. It follows that

s̄j(βi) = βi +
∑
k∈Bj

nkαk,

where nk is the number of nodes in Bi adjacent to node k. Recalling from (3) that nk
is the constant −〈βi, β∨j 〉 (independent of k), we obtain that s̄j(βi) = βi − 〈βi, β∨j 〉βj . In

other words, the actions of s̄j and tj on the span of ∆σ are identical. Since the reflection

representation of any Coxeter group is faithful, it follows that the map tj 7→ s̄j extends to

an injective group homomorphism W (Φσ,∆σ)→W .

To complete the proof, we argue that every w ∈ W fixed by σ is in the subgroup

generated by {s̄j : 1 6 j 6 l}. Proceeding by induction with respect to length, there

is nothing to prove if `(w) = 0. Otherwise, there is a simple reflection si such that

`(wsi) < `(w). Since σ is length-preserving and fixes w, it follows that the same is true

for every simple reflection in the σ-orbit of si. Thus w is a longest coset representative

2



relative to the parabolic subgroup indexed by some block Bj . However, (1) implies that s̄j
is the longest element of this parabolic subgroup, and hence `(ws̄j) = `(w)− |Bj | < `(w).

Applying the induction hypothesis to ws̄j completes the proof. �

Proof of Claim 1. By Claim 3, the actions of Wσ and W (Φσ,∆σ) on the span of ∆σ

are naturally isomorphic, so every root in Φσ has the form wβj , where w ∈Wσ, βj ∈ ∆σ.

Furthermore, it is clear (from the definition) that βj is the sum of the roots in some

pairwise orthogonal σ-orbit on Φ. However, every w ∈Wσ permutes the set of σ-orbits of

roots in Φ, and since Wσ acts as a group of isometries, it also permutes those orbits whose

members are pairwise orthogonal. Thus every root in Φσ has the claimed form.

Conversely, let {γ1, . . . , γk} ⊂ Φ be an orthogonal σ-orbit with sum γ = γ1 + · · · + γk.

We seek to show that γ ∈ Φσ. Without loss of generality, we may assume that the roots

γi are positive (σ permutes the positive and negative roots separately) and proceed by

induction with respect to the height of γ. Given that the roots are orthogonal, we have

〈γ, γ〉 =

k∑
i=1

〈γi, γi〉 = 2k > 0. (4)

Thus there is a simple root αi such that 〈γ, αi〉 > 0. Since σ fixes γ, it follows that the

same is true for all simple roots in the σ-orbit of αi, and thus 〈γ, βj〉 > 0 for some j. Note

that the s̄j-image of {γ1, . . . , γk} is another orthogonal σ-orbit, but the action of s̄j (or tj)

on γ subtracts a positive multiple of βj , so it is an orbit of lower height. This completes the

induction, aside from the possibility that this lower orbit consists only of negative roots.

However, the only positive roots of Φ sent to negative roots by s̄j are the simple roots

indexed by Bj . Hence this exceptional case occurs only when γ = βj . �

In proving that all roots in Φσ are orthogonal orbit-sums, the only use of orthogonality

is in (4), where we needed it to guarantee that an orbit-sum γ had positive squared-length.

Thus if 〈·,·〉 happens to be positive definite (i.e., if Φ is finite), then orthogonality is no

longer a necessary assumption. In other words, we have

Claim 4. If Φ is finite, then Φσ consists of all sums of roots in individual σ-orbits. In

particular, all such orbits consist of pairwise orthogonal roots.

We now turn to the inverse problem. Let A = [aij ]16i,j6l be the Cartan matrix of a

crystallographic root system of rank l. We seek to realize this root system as a folding

(Φσ,∆σ) of some simply-laced root system (Φ,∆) by an automorphism σ.

To begin, let β1, . . . , βl denote the simple roots of the (as yet unknown) root system,

and let b1, . . . , bl denote scalars (also unknown) such that 〈βi, βi〉 = 2bi. Thus we have

〈βi, β∨j 〉 = aij (1 6 i, j 6 l),
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and hence bi/bj = aij/aji (if aji 6= 0). It follows that the relative length of all roots in

each irreducible component are determined by A. If we arbitrarily set bi = 1 for one node

i from each irreducible component and then rescale as necessary, we may assume that

(A1) b1, . . . , bl are positive integers, and

(A2) bi > −aij for all j 6= i.

Now set n = b1 + · · ·+ bl and arbitrarily partition I = {1, . . . , n} into blocks Bi of size bi.

Fix an arbitrary permutation σ of I whose orbits (i.e., cycles) are B1, . . . , Bl. We claim

that one may construct a simply-laced Dynkin diagram Γ on the vertex set [n] such that

(A3) σ is an automorphism of Γ,

(A4) there are no edges internal to any block Bi, and

(A5) the number of edges between Bi and Bj is Nij := −bjaij = −biaji (for i 6= j).

To prove this claim, consider that the action of σ on Bi ×Bj consists of gcd(bi, bj) cycles

of length lcm(bi, bj). Since Nij is evidently a multiple of both bi and bj , it is therefore

a multiple of the cardinality of σ-orbits on Bi × Bj . Furthermore, this multiple does

not exceed the total number of orbits available, by (A2). Thus we may arbitrarily select

Nij/ lcm(bi, bj) σ-orbits from Bi ×Bj as edges for the graph Γ.

Now let (Φ,∆) be the simply-laced root system with Dynkin diagram Γ. If we fold this

root system by σ, one sees by comparing (A5) and (2) that the folded root system will

have Cartan matrix A. This proves

Claim 5. Every crystallographic root system may be realized as a folding (Φσ,∆σ) of

a simply-laced root system (Φ,∆) by some diagram automorphism σ.
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