Folding by Automorphisms

John R. Stembridge

August 20, 2008

Let Φ be a simply-laced root system with simple roots $\Delta = \{\alpha_i : i \in I\}$ embedded in the real vector space V with inner product $\langle \cdot, \cdot \rangle$. For convenience, we may assume that the roots have been normalized so that $\langle \alpha, \alpha \rangle = 2$ for all $\alpha \in \Phi$. As a second convenience, we may assume that V has been enlarged, if necessary, so that $\langle \cdot, \cdot \rangle$ is nondegenerate on V.

Now let σ be a diagram automorphism of (Φ, Δ) . Given our choice of normalization, this amounts to a permutation of I such that

$$\langle \alpha_{\sigma(i)}, \alpha_{\sigma(j)} \rangle = \langle \alpha_i, \alpha_j \rangle \quad (i, j \in I).$$

In particular, if we extend the map $\alpha_i \mapsto \alpha_{\sigma(i)}$ linearly, we may view σ as an isometry of Span Δ . We may extend σ further to an isometry defined on all of V by insisting that it acts trivially on the orthogonal complement of Δ (here we are using nondegeneracy).

Note that $\sigma s_i \sigma^{-1} = s_{\sigma(i)}$, so σ acts via conjugation as an automorphism $w \mapsto w^{\sigma}$ of the Coxeter group $W = W(\Phi, \Delta)$.

We now introduce the key extra condition:

simple roots in the same
$$\sigma$$
-orbit must be orthogonal. (1)

Equivalently, σ -orbits are independent (i.e., edge-free) sets in the Dynkin diagram.

Let $I^{\sigma} = \{B_1, \dots, B_l\}$ denote the set of σ -orbits on I; this is a partition of I into disjoint blocks of the form $\{\sigma^k(i) : k \in \mathbb{Z}\}$ for various $i \in I$. For each block B_i , we define

$$\beta_j = \sum_{i \in B_j} \alpha_i.$$

Note that each β_j has squared length $2b_j$, where $b_j := |B_j|$. Moreover,

$$\langle \beta_i, \beta_j^{\vee} \rangle = -N_{ij}/b_j,$$
 (2)

where N_{ij} denotes the number of edges in the Dynkin diagram between block B_i and block B_j (assuming $i \neq j$). Since σ acts transitively on each block, it follows each of the b_j nodes in B_j have the same the same number of neighbors in B_i . Thus for $i \neq j$,

$$-\langle \beta_i, \beta_j^{\vee} \rangle = \# \text{ of nodes in } B_i \text{ adjacent to any fixed member of } B_j.$$
 (3)

In particular, $\Delta^{\sigma} := \{\beta_1, \dots, \beta_l\}$ forms a set of simple roots for some crystallographic (but probably not simply-laced) root system Φ^{σ} in V.

The two main issues at this point are: (1) how to relate Φ and Φ^{σ} , and (2) the inverse problem; i.e., given a multiply-laced crystallographic root system, can we realize it as a "folding" $(\Phi^{\sigma}, \Delta^{\sigma})$ of a simply-laced root system (Φ, Δ) by some automorphism σ ?

CLAIM 1. If β is a sum of pairwise orthogonal roots in Φ comprising a single σ -orbit, then β is a root in Φ^{σ} . Conversely, all roots in Φ^{σ} have this form.

REMARK 2. The orthogonality constraint is necessary. For example, label the simple roots α_i of Aff(A_3) so that the 4-cycle $0 \to 1 \to 2 \to 3 \to 0$ is a diagram automorphism. Although this automorphism does not satisfy (1), the automorphism $0 \leftrightarrow 2, 1 \leftrightarrow 3$ does. Moreover, $s_0\alpha_1 = \alpha_0 + \alpha_1$ is clearly a root, and $\{\alpha_0 + \alpha_1, \alpha_2 + \alpha_3\}$ is its orbit. However, the two roots in this orbit have inner product -2 (not zero), and their sum has squared length 0, and hence cannot be a root of the folded root system (which in this case happens to be isomorphic to Aff(A_1)).

For each block B_j , let t_j denote the reflection corresponding to the simple root $\beta_j \in \Phi^{\sigma}$, and define

$$\bar{s}_j := \prod_{i \in B_j} s_i,$$

a product of commuting reflections in W. Note that \bar{s}_i is fixed under conjugation by σ .

CLAIM 3. The map $t_j \mapsto \bar{s}_j$ extends to an isomorphism from the Coxeter group $W(\Phi^{\sigma}, \Delta^{\sigma})$ to W^{σ} , the subgroup of W fixed by σ .

Proof. Consider the reflection actions of $W(\Phi^{\sigma}, \Delta^{\sigma})$ and W on V. A simple calculation shows that $\bar{s}_j(\alpha_i) - \alpha_i$ is the sum of all simple roots indexed by nodes in B_j that are adjacent to node i in the Dynkin diagram. It follows that

$$\bar{s}_j(\beta_i) = \beta_i + \sum_{k \in B_j} n_k \alpha_k,$$

where n_k is the number of nodes in B_i adjacent to node k. Recalling from (3) that n_k is the constant $-\langle \beta_i, \beta_j^{\vee} \rangle$ (independent of k), we obtain that $\bar{s}_j(\beta_i) = \beta_i - \langle \beta_i, \beta_j^{\vee} \rangle \beta_j$. In other words, the actions of \bar{s}_j and t_j on the span of Δ^{σ} are identical. Since the reflection representation of any Coxeter group is faithful, it follows that the map $t_j \mapsto \bar{s}_j$ extends to an injective group homomorphism $W(\Phi^{\sigma}, \Delta^{\sigma}) \to W$.

To complete the proof, we argue that every $w \in W$ fixed by σ is in the subgroup generated by $\{\bar{s}_j : 1 \leq j \leq l\}$. Proceeding by induction with respect to length, there is nothing to prove if $\ell(w) = 0$. Otherwise, there is a simple reflection s_i such that $\ell(ws_i) < \ell(w)$. Since σ is length-preserving and fixes w, it follows that the same is true for every simple reflection in the σ -orbit of s_i . Thus w is a longest coset representative

relative to the parabolic subgroup indexed by some block B_j . However, (1) implies that \bar{s}_j is the longest element of this parabolic subgroup, and hence $\ell(w\bar{s}_j) = \ell(w) - |B_j| < \ell(w)$. Applying the induction hypothesis to $w\bar{s}_j$ completes the proof. \square

Proof of Claim 1. By Claim 3, the actions of W^{σ} and $W(\Phi^{\sigma}, \Delta^{\sigma})$ on the span of Δ^{σ} are naturally isomorphic, so every root in Φ^{σ} has the form $w\beta_j$, where $w \in W^{\sigma}$, $\beta_j \in \Delta^{\sigma}$. Furthermore, it is clear (from the definition) that β_j is the sum of the roots in some pairwise orthogonal σ -orbit on Φ . However, every $w \in W^{\sigma}$ permutes the set of σ -orbits of roots in Φ , and since W^{σ} acts as a group of isometries, it also permutes those orbits whose members are pairwise orthogonal. Thus every root in Φ^{σ} has the claimed form.

Conversely, let $\{\gamma_1, \ldots, \gamma_k\} \subset \Phi$ be an orthogonal σ -orbit with sum $\gamma = \gamma_1 + \cdots + \gamma_k$. We seek to show that $\gamma \in \Phi^{\sigma}$. Without loss of generality, we may assume that the roots γ_i are positive (σ permutes the positive and negative roots separately) and proceed by induction with respect to the height of γ . Given that the roots are orthogonal, we have

$$\langle \gamma, \gamma \rangle = \sum_{i=1}^{k} \langle \gamma_i, \gamma_i \rangle = 2k > 0.$$
 (4)

Thus there is a simple root α_i such that $\langle \gamma, \alpha_i \rangle > 0$. Since σ fixes γ , it follows that the same is true for all simple roots in the σ -orbit of α_i , and thus $\langle \gamma, \beta_j \rangle > 0$ for some j. Note that the \bar{s}_j -image of $\{\gamma_1, \ldots, \gamma_k\}$ is another orthogonal σ -orbit, but the action of \bar{s}_j (or t_j) on γ subtracts a positive multiple of β_j , so it is an orbit of lower height. This completes the induction, aside from the possibility that this lower orbit consists only of negative roots. However, the only positive roots of Φ sent to negative roots by \bar{s}_j are the simple roots indexed by B_j . Hence this exceptional case occurs only when $\gamma = \beta_j$. \square

In proving that all roots in Φ^{σ} are orthogonal orbit-sums, the only use of orthogonality is in (4), where we needed it to guarantee that an orbit-sum γ had positive squared-length. Thus if $\langle \cdot, \cdot \rangle$ happens to be positive definite (i.e., if Φ is finite), then orthogonality is no longer a necessary assumption. In other words, we have

CLAIM 4. If Φ is finite, then Φ^{σ} consists of all sums of roots in individual σ -orbits. In particular, all such orbits consist of pairwise orthogonal roots.

We now turn to the inverse problem. Let $A = [a_{ij}]_{1 \leq i,j \leq l}$ be the Cartan matrix of a crystallographic root system of rank l. We seek to realize this root system as a folding $(\Phi^{\sigma}, \Delta^{\sigma})$ of some simply-laced root system (Φ, Δ) by an automorphism σ .

To begin, let β_1, \ldots, β_l denote the simple roots of the (as yet unknown) root system, and let b_1, \ldots, b_l denote scalars (also unknown) such that $\langle \beta_i, \beta_i \rangle = 2b_i$. Thus we have

$$\langle \beta_i, \beta_j^{\vee} \rangle = a_{ij} \quad (1 \leqslant i, j \leqslant l),$$

and hence $b_i/b_j = a_{ij}/a_{ji}$ (if $a_{ji} \neq 0$). It follows that the relative length of all roots in each irreducible component are determined by A. If we arbitrarily set $b_i = 1$ for one node i from each irreducible component and then rescale as necessary, we may assume that

- (A1) b_1, \ldots, b_l are positive integers, and
- (A2) $b_i \geqslant -a_{ij}$ for all $j \neq i$.

Now set $n = b_1 + \cdots + b_l$ and arbitrarily partition $I = \{1, \dots, n\}$ into blocks B_i of size b_i . Fix an arbitrary permutation σ of I whose orbits (i.e., cycles) are B_1, \dots, B_l . We claim that one may construct a simply-laced Dynkin diagram Γ on the vertex set [n] such that

- (A3) σ is an automorphism of Γ ,
- (A4) there are no edges internal to any block B_i , and
- (A5) the number of edges between B_i and B_j is $N_{ij} := -b_j a_{ij} = -b_i a_{ji}$ (for $i \neq j$).

To prove this claim, consider that the action of σ on $B_i \times B_j$ consists of $gcd(b_i, b_j)$ cycles of length $lcm(b_i, b_j)$. Since N_{ij} is evidently a multiple of both b_i and b_j , it is therefore a multiple of the cardinality of σ -orbits on $B_i \times B_j$. Furthermore, this multiple does not exceed the total number of orbits available, by (A2). Thus we may arbitrarily select $N_{ij}/lcm(b_i, b_j)$ σ -orbits from $B_i \times B_j$ as edges for the graph Γ .

Now let (Φ, Δ) be the simply-laced root system with Dynkin diagram Γ . If we fold this root system by σ , one sees by comparing (A5) and (2) that the folded root system will have Cartan matrix A. This proves

Claim 5. Every crystallographic root system may be realized as a folding $(\Phi^{\sigma}, \Delta^{\sigma})$ of a simply-laced root system (Φ, Δ) by some diagram automorphism σ .