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These lecture notes are aimed at someone who has read Chapter III of Macdonald’s

book [M2] and wants to know how it generalizes to finite root systems. Or at least, how the

parts most relevant to the Kostka-Foulkes story generalize. One should keep in mind that

Macdonald’s Chapter III is effectively about A∞ (or GL(∞)), whereas we will be talking

about finite-dimensional root systems and groups, and this finite-vs.-infinite discrepancy

(as well as the SL vs. GL issue) means that this won’t be an exact generalization.

Our plan is to discuss four definitions of (or contexts for) the Kostka-Foulkes polyno-

mials, and why they are equivalent.

1. Hall-Littlewood-Macdonald Polynomials

Before getting down to business, we need to introduce some basic notation.

Let Φ be a finite, reduced crystallographic root system embedded in a real Euclidean

space with inner product 〈·, ·〉. We let α∨ = 2α/〈α, α〉 denote the co-root corresponding

to a root α, and Φ+ a set of positive roots.

We let Λ denote any lattice that is compatible with Φ; i.e., it should contain Φ and

satisfy the condition that 〈λ, α∨〉 ∈ Z for all λ ∈ Λ and α ∈ Φ. Members of Λ are called

(integral) weights.

A weight λ is dominant if 〈λ, α∨〉 > 0 for all α ∈ Φ+; we let Λ+ denote the dominant

part of Λ. (Beware that the superscripts on Φ+ and Λ+ refer to two separate notions of

positivity that are dual to each other.)



The Weyl group W is generated by reflections through the hyperplanes orthogonal to

the roots. It permutes Λ and Φ. We partially order Λ via the rule

λ > µ ⇔ λ− µ ∈ NΦ+.

The (unique) dominant member of each W -orbit in Λ is a >-maximum within its orbit.

For example, in the standard coordinates for Φ = An−1, we can take Λ = Zn. Here, the

dominant vectors have decreasing coordinates—these would be partitions with at most n

parts if you allow negative parts, and the partial ordering is majorization (or dominance).

Now let Z[Λ] = Z{eλ : λ ∈ Λ} denote the group ring of Λ. This is isomorphic to a ring

of Laurent polynomials in n variables, where n = rk Λ. The W -action on Λ extends to a

W -action on Z[Λ], and we let J(·) denote the skew-symmetrizing operator; i.e.,

J(f) =
∑
w∈W

sgn(w)w.f (f ∈ Z[Λ]).

Letting ρ denote half the sum of the positive roots,

χ(λ) := J(eλ+ρ)/J(eρ) (λ ∈ Λ+)

is the Weyl character indexed by λ. It is the character of an irreducible g-module of highest

weight λ, where g is a semisimple Lie algebra with root system Φ. As a ratio of two skew-

symmetric objects, it is clear that χ(λ) is W -symmetric, and it is not hard to show that

the Weyl characters form a free Z-basis of Z[Λ]W . (In particular, every skew-symmetric

object is divisible by J(eρ).) Weyl characters are the generalizations of Schur functions to

arbitrary root systems, and it is easy to recognize the above definition as a generalization

of the bi-alternant formula.

Now we can introduce the generalization of Hall-Littlewood polynomials to all root

systems. These were first studied by Macdonald in connection with the theory of p-adic

groups (more about this later, but see [M1]). It would be fitting to call these “Macdonald

polynomials,” but everyone at this workshop would agree that this is not such a great idea.

As a compromise, we call them Hall-Littlewood-Macdonald (HLM) polynomials.

Definition. For each λ ∈ Λ+, let

P (λ; t) := J
(
eλ+ρ∏

α∈Φ:〈λ,α〉>0(1− te−α)
)/
J(eρ).

Notice that we silently enlarged the ground ring to Z[t].

Remark. As far as we know, the above definition is new. Certainly it looks different

from the definition you get by extrapolating from Macdonald’s Chapter III:

P (λ; t) = Wλ(t)−1 · J
(
eλ+ρ∏

α>0(1− te−α)
)/
J(eρ), (1)
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where Wλ denotes the W -stabilizer of λ, and

Wλ(t) :=
∑
w∈Wλ

t`(w)

is its Poincaré series. We prefer not to use (1) as the definition, since it does not as readily

reveal that P (λ; t) has coefficients in Z[t]. One would (incorrectly) expect to need Q(t).

Here are several basic properties of HLM polynomials.

(i) P (λ; t) is W -invariant and has Z[t]-coefficients.

Proof. This is obvious from the definition. �

(ii) P (λ; t) = χ(λ) + lower terms with respect to >.

Hence {P (λ; t) : λ ∈ Λ+} is a free Z[t]-basis of Z[t][Λ]W .

Proof. Recalling the definition of ρ, we have

J(eρ)P (λ; t) =
∑
w∈W

sgn(w)ewλ ·
∏

〈λ,α〉=0

ewα/2 ·
∏

〈λ,α〉>0

(ewα/2 − te−wα/2).

Each term ±tleµ+ρ in this expansion satisfies µ + ρ 6 wλ + ρ 6 λ + ρ for some w ∈ W ,

so if µ is dominant and χ(µ) occurs in the expansion of P (λ; t), we must have µ 6 λ. If

equality occurs, then wλ = λ (i.e., w ∈Wλ), and each time we select wα or −wα, we must

take a positive root. The latter implies that if 〈λ, α〉 = 0, then wα > 0, since the above

expansion doesn’t allow for choosing −wα in such cases. However, Wλ is the Weyl group

of the root system {α ∈ Φ : 〈λ, α〉 = 0}, and every nontrivial element of a Weyl group

must send one of its positive roots to a negative root, so only the w = 1 term contributes

to the coefficient of χ(λ) in P (λ; t), and it is easy to see that this contribution is 1. �

(iii) P (λ; 0) = χ(λ).

Proof. Another one straight from the definition. �

(iv) P (λ; 1) = m(λ) := |Wλ|−1
∑
w∈W ewλ.

The m(λ)’s are orbit sums that generalize the monomial symmetric functions.

Proof. The Weyl Denominator Formula J(eρ) = eρ
∏
α>0(1− e−α) implies

P (λ; 1) =
∑
w∈W

w
(
eλ

∏
〈λ,α〉=0

1

1− e−α
)

=
∑
x∈Wλ

x
(
eλ ·

∑
w∈Wλ

w
( ∏
〈λ,α〉=0

1

1− e−α
))
,

where Wλ denotes any set of coset representatives for W/Wλ. In particular, notice that

the inner sum is recognizable as the Wλ-version of P (0; t) at t = 1. But this particular

case is trivial: (ii) implies P (0; t) = χ(0) = 1, since there are no “lower terms” in this case.

Hence, the inner sum is 1 and P (λ; 1) =
∑
x∈Wλ exλ = m(λ). �

3



Definition. The Kostka-Foulkes polynomials for the root system Φ are the coefficients

Kλ,µ(t) ∈ Z[t] in the expansion

χ(λ) =
∑
µ∈Λ+

Kλ,µ(t)P (µ; t) (λ ∈ Λ+).

Note that (ii) implies that Kλ,µ(t) = 0 unless λ > µ.

Also, (iii) implies that Kλ,µ(1) is the coefficient of eµ in χ(λ); i.e., dimension of the

µ weight space of an irreducible g-module of highest weight λ. Thus it is nonnegative.

Alternatively, Garsia has pointed out that we can derive the Freudenthal formula for weight

multiplicity, and hence the positivity of Kλ,µ(1), directly from the definition of χ(λ).

Remark. Macdonald proved that the HLM polynomials encode “spherical functions”

for p-adic groups, and Chapter V of Macdonald’s book tells the GL(n) version of this story.

Roughly speaking, if G is a p-adic Chevalley group whose root system and weight lattice

are dual to Φ and Λ, and K is a maximal compact subgroup of G, then the Hecke algebra

H(G,K) of (K,K)-bi-invariant Q-valued functions on G under convolution is isomorphic

to Q[Λ]W . In particular, H(G,K) is commutative and (G,K) is a Gelfand pair.

Furthermore, the double cosets K\G/K are indexed by Λ+, and under the isomorphism,

the HLM polynomial P (λ; t) specialized to t = 1/p corresponds to a bi-invariant function

that vanishes everywhere except on the double coset indexed by λ.

This will come back in a big way in §4.

2. Kostka-Foulkes Polynomials and Root Partitions

Define a graded version of the Kostant partition function via the formal expansion

∏
α∈Φ+

1

1− teα
=

∑
γ∈NΦ+

P(γ; t)eγ .

Note that the coefficient of tl in P(γ; t) is the number of ways to partition γ into an

unordered sum of l positive roots.

The cone NΦ+ is simplicial, being generated by the simple roots, and it is not hard to

show that 〈α, ρ∨〉 = 1 for all simple roots α, where ρ∨ denotes half the sum of the positive

co-roots. Thus P(γ; t) (for γ ∈ NΦ+) is monic of degree 〈γ, ρ∨〉, the height of γ.

The main goal of this section is to prove the following formula for the Kostka-Foulkes

polynomials due originally to Kato [K]:

Kλ,µ(t) =
∑
w∈W

sgn(w)P(w(λ+ ρ)− (µ+ ρ); t). (2)

Since the height of w(λ+ ρ) is maximized at w = 1, it follows immediately that Kλ,µ(t) is

monic of degree 〈λ− µ, ρ∨〉.
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As an aside, we would like to mention an interesting research topic related to this

formula. Let Ψ be (potentially) any finite subset or multisubset of Λ, and define a graded

partition function PΨ via the expansion

∏
ν∈Ψ

1

1− teν
=
∑
γ∈Λ

PΨ(γ; t)eγ .

Note that in general, PΨ(γ; t) is a formal series in Z[[t]], not necessarily a polynomial.

From the general theory of counting lattice points in polytopes (e.g., see §4.6 of [EC1]),

it follows that PΨ(γ; t) is always a rational function of t with poles at roots of unity.

We now introduce

KΨ
λ,µ(t) :=

∑
w∈W

sgn(w)PΨ(w(λ+ ρ)− (µ+ ρ); t).

Bearing in mind (2), these are generalizations of the Kostka-Foulkes polynomials.

Problem. Identify reasonable sufficient conditions on Ψ such that KΨ
λ,µ(t) has non-

negative coefficients for all dominant λ, µ ∈ Λ.

A reasonable (but false) conjecture is that FΨ =
∑
ν∈Ψ e

ν should be the character of

a b-submodule of a g-module, where b denotes a Borel subalgebra of g. This is true for

A1 (i.e., KΨ
λ,µ(t) has nonnegative coefficients in such cases), but there are counterexamples

available in A2. In any case, we expect that there should be a nonnegativity theorem for

the multisets of weights Ψ that occur in some large class of b-submodules of g-modules.

R. Brylinski’s proof of (2) (see [B1]).

For each dominant µ ∈ Λ, let us define

Q(µ; t) := J
(
eµ+ρ∏

α>0(1− teα)−1
)/
J(eρ).

This should be interpreted as a W -invariant element of Z[Λ][[t]]; i.e., the ring of formal

series in t over the ground ring Z[Λ], not the (smaller) group ring of Λ over Z[[t]].

Beware that these Q(µ; t) are not direct generalizations of the Q-function one finds in

Chapter III of Macdonald’s book. Those Q-functions are Z[t]-multiples of P -functions,

whereas these objects are infinite series. Nevertheless, both flavors of Q-functions play a

similar role as duals of P -functions.

Here are several basic properties of the Q(µ; t)’s.

(v) Q(µ; t) = χ(µ) + higher terms with respect to >.

Proof. For each term tleλ+ρ in the expansion of eµ+ρ
∏

(1 − teα)−1, we have λ > µ.

Furthermore, equality occurs only if l = 0. �
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(vi) Q(µ; t) = Wµ(t)Θ(t)P (µ; t), where Θ(t) :=
∏
α∈Φ

1

1− teα
.

Proof. Since 1/Θ(t) =
∏

(1− teα) is W -symmetric, we have

Q(µ; t)J(eρ)/Θ(t) = J
(
eµ+ρ∏

α>0(1− te−α)
)
.

We would now be done if we had used (1) as the definition of P (λ; t); instead, our task is,

in effect, to prove (1). Expanding the right hand side as a double sum over Wµ and coset

representatives for W/Wµ, we see that

Q(µ; t)J(eρ)/Θ(t) =
∑
x∈Wµ

sgn(x)x
(
eµ

∑
w∈Wµ

sgn(w)
∏
α>0

(ewα/2 − te−wα/2)
)
. (3)

Now consider ∆(t) :=
∑
w∈W sgn(w)

∏
α>0(ewα/2 − te−wα/2). It is clear that γ 6 ρ for

every term ±tleγ in the expansion of ∆(t), and eρ is the lowest possible dominant term in

a skew-symmetric object, so ∆(t) must be a multiple of J(eρ). Furthermore, γ = ρ if and

only if each time we select wα or −wα, we choose the positive root. It is well-known that

`(w) = |{α > 0 : wα < 0}| and sgn(w) = (−1)`(w), so we conclude that∑
w∈W

sgn(w)
∏
α>0

(ewα/2 − te−wα/2) =
∑
w∈W

sgn(w)(−t)`(w)J(eρ) = W (t)J(eρ). (4)

One may recognize the inner sum in (3) as the Wµ-version of (4), except that (3) has extra

factors corresponding to the roots α ∈ Φ+ whose reflections are not in Wµ; i.e., 〈µ, α〉 > 0.

However, these extra roots are permuted by Wµ, so the extra factors may be pulled out of

the inner sum, yielding

Q(µ; t)J(eρ)/Θ(t) = Wµ(t)
∑
x∈Wµ

sgn(x)x
(
eµ

∏
〈µ,α〉>0

(eα/2 − te−α/2)Jµ(eρµ)
)

= Wµ(t)
∑
w∈W

sgn(w)w
(
eµ+ρ

∏
〈µ,α〉>0

(1− te−α)
)

= Wµ(t)P (µ; t),

where Jµ and ρµ denote the Wµ-versions of J and ρ. �

Let us introduce the standard symmetric pairing

(f, g) :=
1

|W |
[e0]

∑
w∈W

fg∗J(eρ)J(eρ)∗ (f, g ∈ Z[Λ]),

where ∗ is the ring involution defined by (eµ)∗ = e−µ. It is well-known and an easy exercise

to show that the Weyl characters χ(λ) are orthonormal with respect to this pairing.

Now extend (·, ·) linearly to a Q[[t]]-valued pairing on Z[Λ][[t]] in the obvious way.
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(vii) (P (λ; t), Q(µ; t)) = δλ,µ for all λ, µ ∈ Λ+.

Proof. Half of this is easy. From (ii) and (v), we know that P (λ; t) = χ(λ)+ lower terms

and Q(µ; t) = χ(µ) + higher terms, so (P (λ; t), Q(µ; t)) is 1 if λ = µ and 0 unless λ > µ.

However, Θ(t)∗ = Θ(t), so (vi) implies

(P (λ; t), Q(µ; t)) = Wµ(t) · (P (λ; t),Θ(t)P (µ; t)) = Wµ(t) · (Θ(t)P (λ; t), P (µ; t))

= Wµ(t)/Wλ(t) · (Q(λ; t), P (µ; t)),

so (P (λ; t), Q(µ; t)) must vanish when λ 6= µ by symmetry. �

As an immediate corollary, we obtain

(viii) Q(µ; t) =
∑
λ>µKλ,µ(t)χ(λ).

Finally, to prove Kato’s formula, note that (viii) implies that Kλ,µ(t) is the coefficient

of J(eλ+ρ) in J(eµ+ρ
∏

(1− teα)−1). Equivalently,

Kλ,µ(t) = [eλ+ρ]
∑
w∈W

sgn(w)w
(
eµ+ρ

∏
α>0

(1− teα)−1
)

=
∑
w∈W

sgn(w)w[e(λ+ρ)−w(µ+ρ)]
∏
α>0

(1− tewα)−1

=
∑
w∈W

sgn(w)P(w−1(λ+ ρ)− (µ+ ρ); t),

thus proving (2).

3. Generalized Exponents

If G is a (complex, reductive) Lie group with Lie algebra g, then it is a classical theo-

rem of Chevalley that the G-invariants in the symmetric algebra of the adjoint represen-

tation of G; i.e., S(g)G, is a polynomial ring with homogeneous generators. Moreover, the

Poincaré series of W and the degrees of the generators, say d1, . . . , dn, are related via

W (t) =

n∏
i=1

1− tdi
1− t

.

Thus, (1− t)−nW (t)−1 is the Hilbert series of S(g)G.

For example, if G = GL(n), then the adjoint representation of G is the conjugation

action of G on g = gl(n), and S(g)G is the ring of polynomials in n2 matrix entries that

are invariant under conjugation. As free generators, one may take the coefficients of the

characteristic polynomial of an n× n matrix.

Kostant proved that S(g) is free as a module over S(g)G. Since

1

(1− t)n
Θ(t) =

1

(1− t)n
∏
α∈Φ

1

1− teα
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is the graded character of S(g) (recall Θ(t) from (vi)), it follows via (vi) that

Q(0; t) = W (t)Θ(t)

is the graded character of S(g)/S(g)G+, where S(g)G+ denotes the ideal of S(g) generated

by invariants of positive degree. Thus via (viii) we obtain that Kλ,0(t) is the graded

multiplicity of the irreducible representation of G of highest weight λ in S(g)/S(g)G+. In

particular, Kλ,0(t) has nonnegative coefficients.

Kostant refers to Kλ,0(t) as the generating series for “generalized exponents,” since

Kα̃,0(t) = td1−1 + · · ·+ tdn−1

is the generating series for the usual exponents, where α̃ denotes the highest root.

There is an analogous but more complicated way to interpret Kλ,µ(t) for arbitrary

(dominant) µ as a Hilbert series arising from a filtration of weight spaces in the irreducible

G-representation of highest weight λ. For details, see [B2] and [JLZ].

4. Kazhdan-Lusztig Polynomials

A. The Big Affine Hecke Algebra.

Let Ŵ denote the extended affine Weyl group generated by W and T (Λ) = {tλ : λ ∈ Λ},
the latter acting as a group of (affine) translations on Span Λ. It is an annoying fact of

life that Ŵ need not be a Coxeter group; however, it does include the “unextended” affine

Weyl group Wa as a subgroup. The latter is generated by reflections through the affine

hyperplanes 〈 · ,α∨〉 = k (α ∈ Φ, k ∈ Z), and is a Coxeter group relative to the set Sa of

reflections through the walls of the fundamental alcove

A0 = {µ ∈ Span Λ : 0 6 〈µ, α∨〉 6 1 for all α ∈ Φ+}.

This alcove is a fundamental domain for the action of Wa, and Ŵ is the semidirect product

of Wa and Ω = {w ∈ Ŵ : wA0 = A0}.
The length function on Wa may be extended geometrically to Ŵ by defining `(w) to be

the number of reflecting hyperplanes that separate A0 and wA0. In particular, Ω is the

set of elements of length 0. This allows us to define a Bruhat ordering of Ŵ by taking the

transitive closure of the relations

w < sw whenever `(w) < `(sw)

for all w ∈ Ŵ and all (affine) reflections s ∈Wa.

Now let Ĥ denote the Iwahori-type Hecke algebra of Ŵ over the ground ring Z[t±1/2].

This algebra has a basis of the form {Tw : w ∈ Ŵ}, and may be defined by the relations

TxTy = Txy if `(x) + `(y) = `(xy),

(Ts + 1)(Ts − t) = 0 if s ∈ Sa.
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Note that these relations over-determine the algebra; one needs to prove that no depen-

dence relation among the Tw’s is a consequence of these relations.

B. The Satake Transform.

Enlarging the ground ring of Ĥ to Q(t1/2), define

φλ :=
1

Wλ(t)
·

∑
w∈WtλW

Tw (λ ∈ Λ).

In case λ = 0, this is a sum over W .

(ix) φ2
0 = φ0.

Proof. Show that Twφ0 = t`(w)φ0 for w ∈W (exercise). �

(x) φ0Ĥφ0 = {
∑
axTx : ax depends only on WxW}.

Proof. Since (ix) implies φ0Ĥφ0 = φ0Ĥ ∩ Ĥφ0, it suffices to prove the analogous one-

sided version; i.e., a description of the ideal φ0Ĥ. However, if y is the shortest element of

the coset Wy, then `(wy) = `(w) + `(y) for all w ∈ W , whence W (t)φ0Ty =
∑
w∈W Twy,

and if we replace y with wy, we get a multiple of this sum. Therefore,
∑
axTx ∈ φ0Ĥ if

and only if ax depends only on Wx. �

(xi) {φλ : λ ∈ Λ+} is a basis of the algebra φ0Ĥφ0.

Proof. Certainly (x) implies φλ ∈ φ0Ĥφ0. To see that we have a basis, note that Ŵ

is the semidirect product T (Λ) oW , so T (Λ) is a set of coset representatives for Ŵ/W .

Furthermore, the calculation wtλw
−1 = twλ (w ∈ W , λ ∈ Λ) implies that we obtain

double coset representatives for W\Ŵ/W by taking one translation from each W -orbit.

In particular, {tλ : λ ∈ Λ+} will suffice. Now use (x). �

Let − : Ĥ → Ĥ denote the ring involution defined by (t1/2)− = t−1/2 and T̄w = T−1
w−1 .

Although it is not immediately obvious, the ring φ0Ĥφ0 is stable under this involution,

and this turns out to be significant. (The proof will be given later.)

Fact. The Satake Transform is an isomorphism between two of the following rings:

(a) The Hecke algebra H(G,K) of K-bi-invariant functions on G, where G is a p-adic

Chevalley group with root system Φ∨ and maximal compact subgroup K.

(b) φ0Ĥφ0.

(c) Z(Ĥ); i.e., the center of Ĥ.

(d) Q(t1/2)[Λ]W .

We have cheated a bit here, since the ‘t’ in (a) is the scalar 1/p, not an indeterminate.

It is irritating that there is a multitude of opinions in the literature about which pairs

among these four rings the Satake Transform operates between, and the direction it flows.

9



If you are Satake, it is a map from (a) to (d) defined by an integral. If you are Lusztig

(see [L]), it is an easy map from (c) to (b): z 7→ φ0z = φ0zφ0 (but proving that it is

an isomorphism is not completely trivial). In any case, everyone seems to agree that the

Satake Transform is not a map between (a) and (b). An isomorphism between these two

rings is relatively straightforward (in fact, φλ corresponds to a function supported only on

the λ-th (K,K)-double coset in G). Also, the equivalence of (c) and (d) is a relatively easy

calculation due to Bernstein. This leaves us with potentially eight different maps ((a) or

(b) to or from (c) or (d)) that various authors might define as the “Satake Transform.”

I hope not to discover if all eight have advocates.

For us, the ring structure is immaterial. All we will need to know is that as a linear

map from φ0Ĥφ0 to Q(t1/2)[Λ]W , the Satake Transform has the following two features:

φλ 7→ t〈λ,ρ
∨〉P (λ; t−1) (λ ∈ Λ+), (5)

φ̄λ 7→ t−〈λ,ρ
∨〉P (λ; t) (λ ∈ Λ+). (6)

This is essentially the result of Macdonald we mentioned at the end of §1 (see also [K]).

C. The Kazhdan-Lusztig Basis of Ĥ.

The following is a slight variation on the original definition/theorem in [KL] (see [L]),

since Ŵ need not be a Coxeter group.

Definition/Theorem. For each w ∈ Ŵ , there is a unique C ′w ∈ Ĥ such that

(a) C̄ ′w = C ′w,

(b) t`(w)/2C ′w =
∑
x6w Px,w(t)Tw, where Px,w(t) ∈ Z[t],

(c) Pw,w(t) = 1, and degPx,w(t) 6 (`(w)− `(x)− 1)/2 for x < w.

The transition matrix between C ′w and Tw is triangular, so it is clear that the C ′w’s

form a basis of Ĥ, given that they exist. The coefficients Px,w(t) are the Kazhdan-Lusztig

polynomials for Ŵ ; their coefficients are known to be ranks of intersection homology groups

associated to affine-type flag varieties (and hence, nonnegative).

Our goal in this section is to prove that the Kostka-Foulkes polynomials are Kazhdan-

Lusztig polynomials. More precisely,

Kλ,µ(t) = t〈λ−µ,ρ
∨〉Pwµ,wλ(t−1) (λ, µ ∈ Λ+), (7)

where wλ denotes the longest element of WtλW . An equivalent formula was conjectured

(and proved for t = 1) by Lusztig in [L], and proved in full generality by Kato [K].

Note that w0 (i.e., wλ in the case λ = 0) is the longest element of W , as it should be.

Given what has already been established, the proof needs three more ingredients.

(xii) w 6 wλ if and only if w ∈WtµW for some µ ∈ Λ+ such that µ 6 λ.

Proof. It is not difficult to prove this from known properties of the Bruhat order and

the partial order of dominant weights; e.g., it is a corollary of Theorem 4.10 of [S]. �
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(xiii) t`(wλ)/2W (t)−1C ′wλ =
∑
µ6λ Pwµ,wλ(t)φµ.

Proof. A basic property of the Kazhdan-Lusztig polynomials (see (2.3g) of [KL]) is that

if w is the longest element in some left or right parabolic coset, then Px,w(t) depends as a

function of x only on the corresponding left or right coset of x. In our context, this means

that Px,wλ(t) depends only on WxW , and hence (xii) and part (b) of the definition of C ′wλ
yields the claimed expansion. �

Note that (xiii) shows that {C ′wλ : λ ∈ Λ+} is another basis of φ0Ĥφ0. Bearing in mind

part (a) of the definition of C ′w, this confirms our previous remark that φ0Ĥφ0 is stable

under the bar involution. In particular, note that in the case λ = 0, we obtain

φ0 = φ̄0 = t`(w0)/2W (t)−1C ′w0
,

since W (t) = t`(w0)W (1/t).

(xiv) `(wλ) = `(w0) + 〈λ, 2ρ∨〉.
Proof. Note that {wA0 : w ∈WtλW} is the set of alcoves with a point on their boundary

in the W -orbit of λ. By definition, wλA0 is the alcove in this set that has the most

hyperplanes separating it from A0. Given that λ is dominant, it follows that wλA0 must

have w0λ as a vertex, and every point µ in this alcove must satisfy 〈µ, α∨〉 < 〈w0λ, α
∨〉 6 0

for all α ∈ Φ+. Hence there are 1 + 〈λ, α∨〉 hyperplanes orthogonal to α > 0 that separate

wλA0 from A0, and `(wλ) =
∑
α>0(1 + 〈λ, α∨〉) = |Φ+|+ 〈λ, 2ρ∨〉. �

Proof of (7). Using (xiv) to rewrite (xiii), we have

t`(w0)/2

W (t)
C ′wλ =

∑
µ6λ

Pwµ,wλ(t)t−〈λ,ρ
∨〉φµ.

The left side is clearly bar-invariant, so∑
µ6λ

Pwµ,wλ(t)t−〈λ,ρ
∨〉φµ =

∑
µ6λ

Pwµ,wλ(t−1)t〈λ,ρ
∨〉φ̄µ.

Now apply the Satake Transform. More precisely, if we apply (5) and (6) to the two sides

of this identity, we obtain∑
µ6λ

Pwµ,wλ(t)t〈µ−λ,ρ
∨〉P (µ; t−1) =

∑
µ6λ

Pwµ,wλ(t−1)t〈λ−µ,ρ
∨〉P (µ; t). (8)

The degree bounds on Kazhdan-Lusztig polynomials (part (c) of the definition) imply

degPwµ,wλ(t) < (`(wλ)− `(wµ)− 1)/2 < 〈λ− µ, ρ∨〉 (if µ < λ),
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so t〈λ−µ,ρ
∨〉Pwµ,wλ(t−1) has only positive powers of t, unless λ = µ. Thus in (8), the right

side has only > 0 powers of t and the left side has only 6 0 powers, so both expressions

must equal their constant term; namely, P (λ; 0) = χ(λ) (see (iii)). Thus we obtain

χ(λ) =
∑
µ6λ

Pwµ,wλ(t−1)t〈λ−µ,ρ
∨〉P (µ; t),

and the result follows from the definition of Kλ,µ(t). �

A corollary of the above proof is that χ(λ) is the image of t`(w0)/2W (t)−1C ′wλ under the

Satake Transform.
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