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In this appendix to [S], we provide some complementary remarks and observations that

didn’t make it into the paper. We follow the same terminology and notation. External

references to numbered equations etc. are pointers to [S].

A. Line reduction

Since Im is the trivial representation of Sm, one knows that g(α, β,m) = δα,β .

By taking V3 to be one-dimensional and γ = (m), we may deduce from (2.1) that

Sm(V1 ⊗ V2) ∼=
⊕

α

V1(α) ⊗ V2(α) (as gl(V1) ⊕ gl(V2)-modules),

where α ranges over partitions with ℓ(α) 6 min(dimV1,dim V2). In particular,

Sm(V1 ⊗ V2 ⊗ V3) ∼=
⊕

γ

(V1 ⊗ V2)(γ) ⊗ V3(γ) (A.1)

as gl(V1) ⊕ gl(V2) ⊕ gl(V3)-modules. This yields a well-known reformulation of (2.1).

Proposition A.1. If ℓ(α) 6 dim V1 and ℓ(β) 6 dim V2, then the Kronecker coefficient

g(αβγ) is the multiplicity of V1(α) ⊗ V2(β) in the gl(V1) ⊕ gl(V2)-module (V1 ⊗ V2)(γ).

If V is m-dimensional, then V (1m) is the one-dimensional gl(V )-module carried by the

trace map gl(V ) → C. It follows easily that V (nm) ∼= V (1m)⊗n and more generally

V (µ) ⊗ V (1m) ∼= V (µ + 1m) (A.2)

for all partitions µ with at most m parts.



Proposition A.2. Assume ℓ(α) 6 a and ℓ(β) 6 b.

(a) (Well known.) If g(αβγ) > 0, then ℓ(γ) 6 ab.

(b) (Vallejo [V1].) We have g(αβγ) = g(α + ba, β + ab, γ + 1ab).

(c) If ℓ(γ) = ab and g(αβγ) > 0, then α has at least b columns of length a and β has

at least a columns of length b.

Proof. Choose vector spaces V1 and V2 of dimensions a and b.

(a) All of the nonzero summands in (A.1) have ℓ(γ) 6 ab.

(b) We may assume ℓ(γ) 6 ab; otherwise (a) implies that both Kronecker coefficients

are zero. One can check that

(V1 ⊗ V2)(1
ab) ∼= V1(b

a) ⊗ V2(a
b), (A.3)

so the claimed formula follows by repeated application of (A.2).

(c) If ℓ(γ) = ab then γ = γ̂ + 1ab for some partition γ̂ with at most ab parts. It follows

that all summands V1(α) ⊗ V2(β) in the irreducible decomposition of (V1 ⊗ V2)(γ) are

obtained by tensoring the summands of (V1⊗)V2)(γ̂) by (V1 ⊗ V2)(1
ab). The claim now

follows via (A.2) and (A.3). �

Thus if the length of one partition in a triple αβγ matches the product of the lengths of

the other two, then the first column of that partition and appropriate numbers of columns

of the other two may be deleted without changing the Kronecker coefficient. By conjugation

invariance, similar reductions are also possible if (say) ℓ(γ) = α1β1 or γ1 = α1ℓ(β). We

call any such operation a line reduction.

B. Complementation

If ℓ(µ) 6 m = dimV , then the dual gl(V )-module V (µ)∗ is isomorphic to V (µ∗), where

µ∗ := (−µm, . . . ,−µ2,−µ1).

Of course µ∗ will generally not be a partition, but (A.2) implies

V (µ∗) ⊗ V (nm) ∼= V (nm + µ∗),

and ν = nm + µ∗ will be a partition as long as n > µ1. Indeed, ν is the partition one

obtains by removing the diagram of µ from an m× n rectangle and rotating the result by

180 degrees. We call ν the nm-complement of µ.

In the following result, the dual weights α∗, β∗, and γ∗ should be understood as asso-

ciated with vector spaces of dimensions a, b, and ab (respectively).

Proposition B.1. If ℓ(α) 6 a, ℓ(β) 6 b, and γ1 6 n, then

g(αβγ) = g((bn)a + α∗, (an)b + β∗, nab + γ∗).

Furthermore, α ⊆ (bn)a, β ⊆ (an)b, and γ ⊆ nab, or else g(αβγ) = 0.
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1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 1 0 1 0 1 0 1 0 1 0 1
3 0 1 1 2 1 3 2 4 3 5 4 7
4 0 1 1 5 4 16 21 67 118 307 630 1495
5 0 0 1 6 21 216 1890 18371 167596 1437657
6 0 0 1 13 158 9309 445442 20969042
7 0 0 0 14 1456 438744 125250433
8 0 0 1 18 9854 17957625
9 0 0 1 14 44852

Table C.1: The Kronecker coefficients G(m,n) = g(nm, nm, nm).

Proof. To see the necessity of the rectangle-fitting, note that if γ failed to fit in the

rectangle nab, then g(αβγ) = 0 by Proposition A.2. If (say) α failed to fit in the rectangle

(bn)a, then α′ would have length greater than bn, and hence g(αβγ) = g(βγ′α′) = 0 by

conjugation invariance and Proposition A.2.

Now choose vector spaces V1 and V2 of dimensions a and b. If we dualize Proposition A.1,

we see that g(αβγ) is the multiplicity of V1(α
∗) ⊗ V2(β

∗) in (V1 ⊗ V2)(γ
∗). If we take the

tensor product of the latter with (V1 ⊗ V2)(n
ab), one sees that the claimed formula is a

consequence of (A.3). �

C. On rectangles

Consider the Kronecker coefficients G(m,n) := g(nm, nm, nm) (see Table C.1).

Remark C.1. (a) The first row of the table is trivial.

(b) For a proof that the pattern in the second row persists, see Corollary D.2.

(c) We have computed G(3, n) (i.e., the quantities in the third row) for n 6 16, and

have found that the data is consistent with

∑

n>0

G(3, n) qn =
1

(1 − q2)(1 − q3)(1 − q4)
.

If true, then G(3, n) is asymptotic to n2/48, has a quasi-period of 12, and a partial fraction

analysis of the right hand side would imply

G(3, n) =

{

[n(n + 6)/48] if n is odd,

[(n + 4)(n + 8)/48] if n is even,

where [x] denotes the integer nearest to x.

(d) The conjugation invariance g(nm, nm, nm) = g(mn,mn, nm) and Proposition A.2

imply that G(m,n) can be nonzero only for m 6 n2.
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(e) Noting that the (n2)n-complement of an m×n rectangle is an (n2−m)×n rectangle,

the complementation formula in Proposition B.1 implies

G(m,n) = g(nn2−m, nn2−m, (n2 − m)n) = G(n2 − m,n). (C.1)

That is, the n-th column of the matrix [G(m,n)] is symmetric for 0 6 m 6 n2.

Table C.1 and the symmetry (C.1) suggest that the distribution of G(m,n) for fixed

(large) n is bell-shaped. In particular, it seems likely that the vanishing of G(2, n) and

G(n2 − n, n) for n odd are the only zeroes of G(m,n) in the feasible range 0 6 m 6 n2.

D. Kronecker coefficients and Gaussian coefficients

Let pk(m,n) denote the number of partitions of k whose Young diagrams fit inside an

m×n rectangle. It is well known that these quantities are the coefficients of the Gaussian

polynomials. More precisely, we have

[

m + n

m

]

=
(1 − qn+m) · · · (1 − qn+1)

(1 − qm) · · · (1 − q)
=

∑

k

pk(m,n)qk.

Also well-known is that pk(m,n) is unimodal with respect to k, and there are many proofs,

some quite elementary. The following result, noticed earlier by Vallejo [V2] and Pak and

Panova [PP], shows that nonnegativity of Kronecker coefficients also implies unimodality.

Proposition D.1. We have g(nm, nm, (mn − k, k)) = pk(m,n) − pk−1(m,n).

Proof. In the language of symmetric functions, we seek to evaluate 〈sρ ∗ s(mn−k,k), sρ〉,

where ρ denotes the rectangle partition nm. By the Jacobi-Trudi identity one knows that

s(mn−k,k) = hmn−khk − hmn−k+1hk−1,

so it suffices to show that 〈sρ ∗ hmn−khk, sρ〉 = pk(m,n).

By the combinatorial rule for sα ∗ hβ (see Exercise 7.84.a in [EC2]), one knows that

sρ ∗ hmn−khk is the sum of sαsρ/α, where α ranges over all partitions of size k contained

in ρ. Moreover, since ρ = nm is a rectangle, it follows that ρ/α is the 180 degree rotation

of the nm-complement of α. One knows that skew Schur functions are invariant under

rotations, so we have

sρ ∗ hmn−khk =
∑

|α|=k

sαsα̃, where α̃ := nm + α∗ = (n − αm, . . . , n − α2, n − α1).

Recalling the basic adjoint relationship 〈sµsν , sλ〉 = 〈sν , sλ/µ〉, we obtain

〈sρ ∗ hmn−khk, sρ〉 =
∑

|α|=k

〈sα̃, sρ/α〉 =
∑

|α|=k

〈sα̃, sα̃〉 = pk(m,n),

since the Schur functions are orthonormal. �
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As far as we are aware, there is no explicit positive combinatorial description known

for the quantities pk(m,n) − pk−1(m,n). However, one case where it is relatively easy to

inject the partitions of k − 1 into the partitions of k occurs when k 6 n. In this case, the

leftmost empty column of the diagram is inside the rectangle, and so adding a column of

length 1 is an injective map. The leftover partitions of k are those with no columns of

length 1, so in the case k = n we obtain

Corollary D.2. We have

∑

m>0

g(n · (1m, 1m, (m − 1, 1)))qn =
1

(1 − q2)(1 − q3) · · · (1 − qm)
,

and in the special case m = 2,

g(n2, n2, n2) =

{

1 if n even,

0 if n odd.

Considering the special case m = 4 of the above result, we see that the conjecture in

Remark C.1(c) would imply the peculiar identity g(n4, n4, (3n, n)) = g(n3, n3, n3).

Remark D.3. Recall that the irreducible sl2(C)-module of highest weight m is the

symmetric power Sm(C2). It is easy to show that pk(m,n) is the dimension of the subspace

of weight mn− 2k in the plethystic composition Sm(Sn(C2)), so a further consequence of

Proposition D.1 is that the Kronecker coefficient g(nm, nm, (mn− k, k)) is the multiplicity

of Smn−2k(C2) in Sm(Sn(C2)).
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