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Abstract. Kronecker coefficients are tensor product multiplicities for the irreducible repre-

sentations of the symmetric group. In this paper, we identify directions in the parameter space

for tensor products along which these multiplicities are monotone convergent, generalizing a

classical result of Murnaghan.
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1. Introduction

Let Iα denote the irreducible representation of Sm indexed by a partition α of m.

Given a triple of partitions of m, say α, β, γ, the associated Kronecker coefficient is

g(αβγ) = multiplicity of Iα in Iβ ⊗ Iγ = dim(Iα ⊗ Iβ ⊗ Iγ)Sm .

It is a major open problem to find a positive combinatorial formula for these multiplicities.

A well-known result of Murnaghan [Mu] asserts that if we grow the first (largest) parts

in a triple of partitions, the Kronecker coefficient stabilizes. That is, the multiplicity

g(α + n, β + n, γ + n)

is independent of n for n sufficiently large. One can also show that it is weakly increasing

as a function of n.

Stability results of this type have long been a topic of interest in representation theory.

For example, Schur-Weyl duality more or less explains the fact that tensor product multi-

plicities for gl(V ) depend only on the partitions associated to the highest weights involved,

and not on the dimension of V . For more recent work, see for example the categorical

approaches to stability phenomena in the symmetric groups and classical groups in the

papers by Church, Ellenberg and Farb [CEF] and Sam and Snowden [SS].

Our goal in this paper is to show that Murnaghan’s stability result can be vastly

generalized—there are many lines in “triple partition space” along which Kronecker coef-

ficients are monotone convergent. One thing we have not attempted to do here, although

it would be an interesting follow-up project, is to express the stable limits arising as some

natural representation-theoretic quantities. In this direction, it should be noted that for

Murnaghan’s stable limits, such interpretations are available. For example, Bowman, De

Visscher and Orellana have shown recently that Murnaghan’s limits are related to ten-

sor product multiplicities in the partition algebra [BDO], and there is also a plethystic

interpretation due to Brion (see Section 3.4 of [Br]).

In more detail, consider a Kronecker triple αβγ; i.e., a triple of partitions such that the

Kronecker coefficient g(αβγ) is positive. What we study in this paper are the conditions

under which αβγ is “stable” in the sense that for all triples λµν, the sequences

g(λ + nα, µ + nβ, ν + nγ) = g(λµν + n · αβγ)

converge as n → ∞. Such sequences are always monotone increasing (see Corollary 2.2),

so in fact convergence is equivalent to being bounded. Note also that in this context,

Murnaghan’s stability result amounts to the statement that the triple (1, 1, 1) is stable.

The methods we use to identify stable triples involve the analysis of integer points in

polyhedra. This should not be surprising, since integer points and polyhedra have become

commonplace in combinatorial representation theory. Guided by the intuition that it may
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be possible to describe Kronecker coefficients this way, we would expect that stretched

Kronecker coefficients g(n ·αβγ) should be Ehrhart quasi-polynomials. This motivates our

conjecture that a triple αβγ is stable if and only if g(n · αβγ) = 1 for n > 1. Indeed, this

conjecture would follow from a hypothetical polyhedral description of Kronecker coefficients

satisfying certain mild technical conditions. (See Section 4.)

Our main results are in Sections 6 and 7. We use polytopes whose integer points describe

tensor product multiplicities for permutation representations of Sm to deduce the existence

of stable Kronecker triples when these associated polytopes are 0-dimensional. (See The-

orems 6.1 and 7.4.) This in turn leads to some interesting questions about contingency

tables (the integer points of transportation polytopes), and some unexpected positivity

results for Kronecker coefficients. These results are preceded in Section 5 by a similar

but easier stability analysis for Kostka numbers (irreducible multiplicities for permutation

representations) that is used in the proof of Theorem 6.1. In Section 9, we discuss stability

in higher dimensions. To give a simple example that illustrates the phenomenon, it will

develop that the Kronecker coefficient

g(αβγ + m · (2, 11, 11) + n · (11, 2, 11))

is independent of m and n provided that both are sufficiently large.
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2. Monotonicity

For a partition α, let V (α) denote the irreducible gl(V )-module with highest weight α.

This makes sense as long as the dimension of V is at least the number of parts of α, and

may be identified with 0 otherwise.

Recall that V (m) = Sm(V ) is the degree m part of the symmetric algebra of V .

Kronecker coefficients also arise in the representation theory of gl(V ). For example, it

is a corollary of Exercise 7.78.f in [EC2] that for a partition triple αβγ of size m,

g(αβγ) = multiplicity of V1(α) ⊗ V2(β) ⊗ V3(γ) in Sm(V1 ⊗ V2 ⊗ V3) (2.1)

as a gl(V1) ⊕ gl(V2) ⊕ gl(V3)-module, provided of course that V1, V2, V3 have sufficiently

large dimensions compared to the number of parts in α, β, γ (respectively).

The following fundamental property of Kronecker coefficients has been noted previously

by Manivel (see the discussion on p. 157 of [Ma]).

Proposition 2.1. If g(αβγ) > 0, then g(λµν + αβγ) > g(λµν).

Proof. Let V = V1 ⊕ V2 ⊕ V3, and assume that the dimension of each space Vi is large.

Given the description in (2.1), it follows that g(αβγ) is the dimension of the space of
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maximal vectors of weight α⊕β⊕γ in Sm(V ). (A weight vector is “maximal” if it is killed

by the upper triangular subalgebra of gl(V1) ⊕ gl(V2) ⊕ gl(V3).)

In the polynomial ring formed by the full symmetric algebra of V , the maximal vectors

form a graded subring. In particular, if g(λµν) = r and g(αβγ) > 0, then there exist

linearly independent maximal vectors f1, . . . , fr ∈ Sn(V ) of weight λ ⊕ µ ⊕ ν, and a

(nonzero) maximal vector g ∈ Sm(V ) of weight α⊕β ⊕ γ, where m and n denote the sizes

of αβγ and λµν. It follows that f1g, . . . , frg ∈ Sm+n(V ) are linearly independent maximal

vectors of weight (λ + α) ⊕ (µ + β) ⊕ (ν + γ). �

An immediate corollary is the known fact that

G := {αβγ : g(αβγ) > 0}

is a semigroup. We will refer to G as the Kronecker semigroup.

Corollary 2.2. If g(αβγ) > 0, then g(λµν + n · αβγ) is a weakly increasing function

of n. In particular, it converges if and only if it is bounded.

Example 2.3. Since g(11, 11, 11) = 0, we have no a priori guarantee that adding

columns of length 2 to a triple of partitions will produce a monotone increasing sequence

of Kronecker coefficients. In fact (see Remark 8.5), we have

g(n2, n2, n2) =

{

1 if n is even,

0 if n is odd,

so both monotonicity and convergence may fail. On the other hand, after checking that

g(22, 22, 22) = 1, Corollary 2.2 implies that the sequence g(λµν + n · (11, 11, 11)) may be

split into a pair of monotone increasing subsequences for even and odd n. It also turns out

that these subsequences converge, as we shall see in Section 8.

3. Some non-convergence

The following is a peculiar elementary fact about polynomials.

Lemma 3.1. If f1 and f2 are linearly independent homogeneous polynomials of the

same degree, then they are algebraically independent.

Proof. Arguing by contradiction, we may suppose that there is a nontrivial dependence

relation of the form
∑

aif
i
1f

n−i
2 = 0 for some n > 2 and some scalars a0, . . . , an. Among

all such relations, choose one that minimizes n.

Without loss of generality, we may assume that f1 and f2 have no common factor,

otherwise any such common factor p may be cancelled from both f1 and f2 and the

dependence relation remains valid. Thus we may choose an irreducible factor p of f1 that

does not divide f2. Since every term in the dependence relation except fn
2 is divisible by p,

it follows that a0 = 0. Thus every nonzero summand in the dependence relation carries a

factor of f1. Since we could delete this factor from all of the terms, we have contradicted

the fact that we chose a dependence relation that minimized n. �
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Proposition 3.2. If g(αβγ) > 2, then g(n · αβγ) > n + 1 for n > 0.

Proof. Continuing the notation from the proof of Proposition 2.1, note that since

g(αβγ) > 2, we can find two linearly independent maximal vectors f1, f2 ∈ Sm(V ), where

m is the common size of α, β, γ. By Lemma 3.1, it follows that the maximal vectors

fn
1 , fn−1

1 f2, . . . , f
n
2 in Smn(V ) are linearly independent; i.e., g(n · αβγ) > n + 1. �

It happens that g(n · (42, 42, 42)) = n + 1, so this bound can be sharp.

In order to provide better lower bounds on the growth of “stretched” Kronecker co-

efficients g(n · αβγ) when g(αβγ) > 2, it would be interesting to generalize Lemma 3.1.

More precisely, given linearly independent polynomials f1, . . . , fr that are homogeneous of

degree m, we would like to determine the minimum dimension of

Span
{

f i1
1 · · · f ir

r : i1 + · · · + ir = n
}

, (3.1)

over all possible f1, . . . , fr. Letting δ(n,m, r) denote this minimum, the same reasoning as

above implies the following result.

Proposition 3.3. If αβγ is a partition triple of size m and g(αβγ) = r, then

g(n · αβγ) > δ(n,m, r).

Lemma 3.1 shows that δ(n,m, 2) = n + 1, and δ(n,m, 1) = 1 is trivial.

Remark 3.4. Deriving lower bounds for δ(n,m, r) when r > 3 seems difficult, but it

is possible to guess where to look for extreme cases. For example, assuming r 6 m + 1,

we could take f1, . . . , fr to be monomials of degree m in two variables. The space in (3.1)

would thus be a subspace of the monomials of degree mn in two variables; hence

δ(n,m, r) 6 mn + 1 for r 6 m + 1.

Similarly, if r 6
(

m+2
2

)

, we could take f1, . . . , fr to be monomials of degree m in three

variables, and so on. In the specific case r = 3, m > 2, we could take f1 = xm, f2 = xm−1y,

f3 = xm−2y2; this yields the upper bound δ(n,m, 3) 6 2n + 1 for m > 2.

Does δ(n,m, r) grow quadratically with n when r > m + 1?
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4. Stable triples

Given the preceding observations, it is natural to define the partition triple αβγ to be

stable (or bounded) if g(αβγ) > 0 and the sequence

{g(λµν + n · αβγ) : n > 0} (4.1)

is convergent (or equivalently, bounded) for all triples λµν such that g(λµν) > 0.

Note that there is no harm in requiring g(λµν) > 0; we could replace λµν with some

λµν + k · αβγ if necessary unless the sequence g(λµν + n · αβγ) is identically 0.

Plausibly, we could also investigate stable triples αβγ with g(αβγ) = 0. However,

we have previously noticed that the sequences (4.1) need not be monotone and need not

converge in such cases. Given that g(k · αβγ) > 0 for some k, it seems that the right

question to ask in that case is whether k · αβγ is a stable triple.

Problem 4.1. Characterize the stable triples in some practical way.

Proposition 3.2 shows that if αβγ is a stable triple, then g(αβγ) = 1.

Unfortunately, the converse fails. For example, g(23, 23, 23) = 1 but (23, 23, 23) is not

a stable triple, since g(43, 43, 43) = 2 and therefore g((4n)3, (4n)3, (4n)3) > n + 1 by

Proposition 3.2. Thus a stronger necessary condition is

Proposition 4.2. If the triple αβγ is stable, then g(n · αβγ) = 1 for n > 1.

Conjecture 4.3. Conversely, if g(n · αβγ) = 1 for n > 1, then αβγ is stable.

A proof of this conjecture might not resolve Problem 4.1, but at least it would reduce

the analysis to one sequence per triple. More optimistically, if a positive combinatorial

description of the Kronecker coefficients is found, it is quite plausible that g(αβγ) will

turn out to be expressible as the number of integer points in a polytope Pαβγ . (Certainly

this can be done for Littlewood-Richardson coefficients; see [BZ2] for possibly the first

such description.) Assuming the polytope scales linearly with αβγ (i.e., nPαβγ = Pn·αβγ),

one could interpret g(n ·αβγ) as the Ehrhart quasi-polynomial associated to Pαβγ ; having

g(n · αβγ) = 1 for all n amounts to Pαβγ being 0-dimensional and consisting of a single

integer point. This is of course a finite condition, testable via linear programming.

Continuing in this optimistic vein, the following result shows that if we demand slightly

more from our hypothetical polytope Pαβγ , being 0-dimensional would be equivalent to

stability and Conjecture 4.3 would be true.

Proposition 4.4. Fix rational matrices A and B of appropriate sizes, and for y ∈ Z
l

let f(y) denote the number of integer points in the rational polyhedron

P (y) = {x ∈ R
k : Ax 6 By}. (4.2)

Assuming P (y) is non-empty, the sequence {f(z + ny) : n > 0} is bounded for all z ∈ Z
l

if and only if P (y) is 0-dimensional.
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Proof. Assume P (y) has dimension d. Since f(ny) is the Ehrhart quasi-polynomial

associated to P (y), it necessarily grows at a rate asymptotically proportional to nd (or is

infinite for some values of n, if P (y) is unbounded). Thus the condition d = 0 is necessary.

For the converse, we may suppose that P (y) consists of a single rational vertex p. By

linear programming duality, one knows that for (say) the i-th coordinate, there must exist

a nonnegative linear combination of the inequalities defining P (y) that prove xi > pi

throughout the polytope. Similarly, there must be another such combination that proves

xi 6 pi. Since the defining inequalities vary linearly with y, it follows that if we take

those same combinations and apply them to the inequalities that define P (z +ny), we will

necessarily obtain inequalities that prove

npi + a 6 xi 6 npi + b for all x ∈ P (z + ny),

where a and b are scalars independent of n. Thus there is an upper bound on the possible

number of distinct integer values for each coordinate of each point in P (z + ny). �

By analyzing integer points and polyhedra indirectly related to Kronecker coefficients,

we will show that the above result can be used to identify many stable triples.

5. Stability of Kostka numbers

Recall that for partitions α and β of m, the Kostka number Kα,β is the dimension

of the β-weight subspace of V (α). It is also the multiplicity of Iα in the permutation

representation of Sm induced by the Young subgroup Sβ1 × Sβ2 × · · · .

It is well known that Kα,β may be described combinatorially as the number of semi-

standard tableaux of shape α and content β. These are the positive integer arrays

[Tij ]i>1,16j6αi

satisfying Ti,j 6 Ti,j+1 and Ti,j < Ti+1,j (i.e., weakly increasing rows and strictly increasing

columns) such that the number of entries equal to k is βk, for k > 1.

Recall that α > β in dominance order if α1 + · · ·+ αk > β1 + · · ·+ βk for 1 6 k < ℓ(α).

Proposition 5.1. Let α, β, and γ be partitions of m.

(a) (Well known.) If β 6 γ, then Kα,β > Kα,γ .

(b) (Well known.) We have Kα,β > 0 if and only if α > β.

(c) If α > β, then Kλ+α,µ+β > Kλ,µ for all λ, µ.

Proof. (a) See Example I.7.9 in [M].

(b) If there is a semistandard tableau of shape α and content β, then the β1 + · · · + βk

entries 6 k must fit into the α1 + · · · + αk positions in the first k rows; i.e., α > β.

Conversely, if α > β, then (a) implies Kα,β > Kα,α = 1.

(c) We have Kλ+α,µ+β > Kλ+α,µ+α > Kλ,µ, the first inequality being a consequence

of (a), and the second being a consequence of the fact that we can take a semistandard
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tableau of shape λ and content µ, shift the i-th row αi columns to the right, and assign i

to each of the vacated positions. The result will be a semistandard tableau of shape λ + α

and content µ + α. �

Thus the pairs (α, β) indexing positive Kostka numbers form a semigroup, and these

numbers are monotone increasing along any affine ray in a direction inside the semigroup.

By analogy with the Kronecker semigroup, we define (α, β) to be Kostka-stable if Kα,β > 0

and the sequences {Kλ+nα,µ+nβ : n > 0} are convergent (or equivalently, bounded) for all

pairs (λ, µ). Characterizing the Kostka-stable pairs will turn out to be more than just a

warm-up exercise—it will help us identify Kronecker-stable triples.

Proposition 5.2. The pair (α, β) is Kostka-stable if and only if Kα,β = 1.

As a first step towards proving the above result, it will be helpful to give a combinatorial

characterization of the pairs (α, β) such that Kα,β = 1. In fact this has been done previ-

ously for all semisimple Lie algebras by Berenstein and Zelevinsky [BZ1], so the following

description should be seen as a special case of their work.

Of course we know that if Kα,β = 1 then α > β. If it happens that one of the defining

inequalities for dominance is tight, say α1 + · · ·+αk = β1 + · · ·+βk, then all of the entries

6 k in a semistandard tableau of shape α and content β must fill the first k rows, and

the entries > k must fill the remaining rows. It follows that the subtableau formed by the

first k rows and the subtableau formed by all other rows may be specified independently

of each other, so we have

Kα,β = Kα(1),β(1) · Kα(2),β(2) , (5.1)

where α(1) = (α1, . . . , αk), α(2) = (αk+1, αk+2, . . . ), and β(1), β(2) are defined similarly.

In this situation we say that the pair (α, β) factors into (α(1), β(1)) and (α(2), β(2)). By

iteration, one may factor (α, β) further into a set of primitive pairs; i.e., pairs of partitions

related in dominance order such that all of the defining inequalities are strict.

The pair (α, β) = (m,m) is a somewhat degenerate case, but still primitive. Indeed,

there are only ℓ(α) − 1 defining inequalities for dominance, and hence none in this case.

We will say that the pair (α, β) has shape α and will count 0 as a part of α having

multiplicity ℓ(β) − ℓ(α). Given that α > β, this multiplicity is nonnegative.

Lemma 5.3 [BZ1]. We have Kα,β = 1 if and only if α > β and every primitive factor

of (α, β) has a shape with at most two distinct part sizes, one of which occurs only once.

Proof. By (5.1) and Proposition 5.1(b), we may assume (α, β) is primitive and α > β.

If it happens that α = β, then primitivity forces α = β = (m) for some m, and it is

clear that Kα,β = 1. Thus we assume henceforth that α strictly dominates β.

Suppose p > q > r > 0 are three distinct part sizes occurring in α. We may assume

further that q is the only part size in the range between p and r. Thus α has a run of

consecutive parts of the form (p, q, . . . , q, r). Letting α− denote the partition obtained
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from α by decreasing the last p by 1 and increasing the first r by 1, the primitivity of the

pair (α, β) implies

α > α−
> β,

from which we claim it follows that

Kα,β > Kα,α− = K(p,q,...,q,r),(p−1,q,...,q,r+1) > 2.

Indeed, the first inequality is a consequence of Proposition 5.1(a), the equality follows

from (5.1) and the fact that ((p, q, . . . , q, r), (p − 1, q, . . . , q, r + 1)) is the only nontrivial

primitive factor of the pair (α, α−), and the last inequality is best understood by examining

the following pair of semistandard tableaux of shape 3221 and content 2222:

1 1 4
2 2
3 3
4

1 1 3
2 2
3 4
4.

More general shapes of the form (p, q, . . . , q, r) can be handled similarly.

Now suppose that α has only two part sizes p > q > 0. If p − q = 1, then the only

partitions strictly dominated by α all have greater length. This means that 0 must be a

part of α; i.e., p = 1, q = 0, and α is minimal in dominance order—a contradiction.

If p and q both occur at least twice and p − q > 1, we will obtain a partition α− by

decreasing the last two p’s and increasing the first two q’s by 1 each. Furthermore, since

(α, β) is primitive and the largest parts of α are all p, the largest parts of β are at most

p − 1 and the sum α1 + · · · + αk will exceed the corresponding sum for β by at least k as

long as αk = p. Hence,

α > α−
> β,

and by reasoning similar to the previous case we obtain

Kα,β > Kα,α− = K(p,p,q,q),(p−1,p−1,q+1,q+1) > 2.

In particular, the last inequality can be understood by examining the following pair of

semistandard tableaux of shape 4422 and content 3333:

1 1 1 2
2 2 3 4
3 3
4 4

1 1 1 3
2 2 2 4
3 3
4 4.

The remaining possibilities are α = pql−1, pl−1q, or pl, where p > q > 0 and l = ℓ(β).

In the first case, the q columns of length l in a semistandard tableau of shape α and

content β may be filled in only one way—each of the entries 1, 2, . . . , l must appear once
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each. The remaining columns all have length 1 and the entries in those columns must

appear in sorted order; i.e., Kα,β = 1. In the second case, the columns of length less than l

all have length l− 1, and so must omit exactly one element each from the set {1, 2, . . . , l}.

The fact that the rows of a semistandard tableau must increase weakly forces these columns

to be sorted in lexicographic order and again Kα,β = 1.

In case α = pl, there are no partitions of length l strictly dominated by α. �

Since factoring (α, β) into primitive pairs commutes with rescaling, we obtain

Corollary 5.4. If Knα,nβ = 1 for some n > 1, then Knα,nβ = 1 for all n > 1.

Proof of Proposition 5.2. Semistandard tableaux are in bijection with Gelfand patterns.

More precisely, given a tableau T of shape α and content β, set l = ℓ(β) and let xij denote

the number of entries in row i of T that are 6 j. The triangular array xi,j : 1 6 i 6 j 6 l

uniquely determines T , and moreover, these arrays are characterized by the relations

xi,j+1 > xi,j > xi+1,j+1, xi,l = αi,
∑

i

xi,j = β1 + · · · + βj .

Thus one sees that there is a “Gelfand polytope” Pα,β whose integer points count the

semistandard tableaux of shape α and content β. Since this family of polytopes clearly

has the form of (4.2), Proposition 4.4 implies that (α, β) is stable if and only if α > β and

Pα,β is 0-dimensional, or equivalently, if and only if Pnα,nβ contains exactly one integer

point for all n > 1. By Corollary 5.4, this is equivalent to the condition Kα,β = 1. �

Remark 5.5. It would be interesting to give a direct proof of Proposition 5.2 that

bypasses the explicit description of the pairs (α, β) such that Kα,β = 1. For example, if one

could prove that the Gelfand polytope Pα,β always has integer vertices then Proposition 5.2

would be a direct corollary of Proposition 4.4. However, De Loera and McAllister have

shown that Pα,β does not always have integer vertices, and the smallest counterexamples

involve Gelfand patterns with at least 5 rows [DM]. In this light, Corollary 5.4 can be

seen as a proof of a much weaker statement; namely, that if the Gelfand polytope contains

only one integer point, then it must be 0-dimensional.

6. Transportation polytopes and stability

Given a triple of partitions αβγ of size m, let us define

h(αβγ) = multiplicity of Iγ in Mα ⊗ Mβ = dim(Mα ⊗ Mβ ⊗ Iγ)Sm .

where Mα and Mβ denote the permutation representations of Sm induced by Young sub-

groups of type α and β. Of course Mα ⊗ Mβ is also a permutation representation of Sm,

and it is not hard to show that its orbits are indexed by the set C(α, β) of “contingency

tables” of type (α, β); i.e., nonnegative integer matrices with row sum vector α and column

sum vector β. Moreover, the Sm-orbit indexed by a table T ∈ C(α, β) carries an action
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isomorphic to Mco(T ), where co(T ) (the content of T ) denotes the partition of m formed

by the entries of T . Thus we have

Mα ⊗ Mβ
∼=

⊕

T∈C(α,β)

Mco(T ).

This is equivalent to Exercise 7.84.b of [EC2] or Example I.7.23(3) of [M].

We remark that C(α, β) is the set of integer points of the transportation polytope

Q(α, β) =
{

[xij ] : xij > 0,
∑

j xij = αi,
∑

i xij = βj

}

.

Also, recalling that the Kostka number Kγ,α is the multiplicity of Iγ in Mα, we have

h(αβγ) =
∑

T∈C(α,β)

Kγ,co(T ). (6.1)

Combining this with the Gelfand pattern polytope discussed earlier, one may easily con-

struct a polytope whose integer points are counted by h(αβγ) (see Remark 7.3). However,

it will be easier to identify stable Kronecker triples by analyzing a family of smaller poly-

topes that factors out the dependence of (6.1) on Kostka numbers.

Considering that Kγ,co(T ) = 0 unless γ > co(T ), we define Q(α, β; γ) to be the polytope

consisting of all matrices X = [xij ] ∈ Q(α, β) whose “content” is dominated by γ. That

is, the sum of any set of k entries of X must be 6 γ1 + · · · + γk for all k > 1. The set

C(α, β; γ) of integer points in Q(α, β; γ) is thus the set of contingency tables in C(α, β)

whose contents are dominated by γ.

Theorem 6.1. We have h(n · αβγ) = 1 for all n > 1 if and only if the polytope

Q(α, β; γ) is 0-dimensional, consisting of a single integer table T such that Kγ,co(T ) = 1.

Furthermore, if either of these equivalent conditions hold, then

(a) there are unique partitions α+ > α and β+ > β such that g(α+β+γ) > 0,

(b) the triple α+β+γ is stable, and

(c) we have h(n · α+β+γ) = 1 for all n > 1.

If we know a priori that g(αβγ) > 0, then of course α+ = α and β+ = β. Hence,

Corollary 6.2. If g(αβγ) > 0 and h(n · αβγ) = 1 for all n > 1, then αβγ is stable.

It should be noted that part (c) of Theorem 6.1 shows that α+β+γ satisfies the same

hypotheses as αβγ, so the sets of triples that can be proved stable as a consequence of

either Theorem 6.1(b) or Corollary 6.2 are exactly the same.
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Proof of Theorem 6.1. If Q(α, β; γ) consists of a single vertex T ∈ C(α, β; γ) and

Kγ,co(T ) = 1, then nT is the unique vertex of the scaled polytope Q(nα, nβ;nγ). Hence

h(n · αβγ) = Knγ,co(nT ) = 1

by (6.1) and Corollary 5.4. Conversely, if h(αβγ) = 1 then there can be only one positive

summand in (6.1), and hence only one contingency table T ∈ C(α, β; γ), by Proposi-

tion 5.1(b). Moreover, this table T must satisfy Kγ,co(T ) = 1. If Q(α, β; γ) failed to be

0-dimensional, then some rescaling Q(nα, nβ;nγ) would have two or more integer points,

and hence h(n · αβγ) > 1 for some n. Thus, the two stated conditions are equivalent.

Given that the two equivalent conditions hold, consider that Iα+ and Iβ+ occur with

positive multiplicity in Mα and Mβ whenever α+ > α and β+ > β (Proposition 5.1(b)).

It follows that there can be only one such pair with g(α+β+γ) > 0, or else we contradict

the hypothesis that h(αβγ) = 1.

To prove (b), we seek to show that g(λµν + n · α+β+γ) is bounded for any triple λµν.

Now since Iλ+nα+ and Iµ+nβ+ are summands of Mλ+nα and Mµ+nβ , we have

g(λµν + n · α+β+γ) 6 h(λµν + n · αβγ) =
∑

T∈Cn

Kν+nγ,co(T ), (6.2)

where Cn = C(λ + nα, µ + nβ; ν + nγ). Since the polytope Q(α, β; γ) has the form

of (4.2) and is 0-dimensional by hypothesis, we may deduce from Proposition 4.4 that

the polytope Qn = Q(λ + nα, µ + nβ; ν + nγ) has a bounded number of integer points.

Moreover, from the proof one sees all of these integer points (i.e., members of Cn) have the

form T = nT0 +E, where T0 is the unique contingency table in C(α, β; γ) and E is limited

to a finite set of integer matrices. While it is possible that some of the matrices E have

negative entries, all members of Cn are nonnegative, so by making a change of variable

n → n + n0, with n0 large enough so that n0T0 + E is nonnegative, one may assume that

each matrix E is nonnegative. Thus in (6.2) there are only finitely many summands, each

of the form Kν+nγ,ε+co(nT0) for various partitions ε. Proposition 5.2 and the hypothesis

that Kγ,co(T0) = 1 imply that each of these summands is bounded.

For (c), note that Proposition 5.1(a) implies that Mnα+ may be embedded in Mnα as a

submodule. Similarly, Mnβ+ embeds in Mnβ , hence

1 = h(n · αβγ) > h(n · α+β+γ) > g(n · α+β+γ) = 1,

the last equality being a consequence of Proposition 4.2. �

Example 6.3. (a) All triples of the form (m,β, β) are stable. Indeed, if α = (m) then

Mnα is the trivial representation of Snm. Recalling that there is one copy of Iβ in Mβ , one

sees from the definition that h(nm, nβ, nβ) = 1 for all n > 1. Apply Theorem 6.1.
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(b) All triples of the form (α, α′, 1m), where α′ denotes the conjugate of α, are stable.

Indeed, recalling that tensoring by the sign representation corresponds to conjugation of

partitions, it is clear that g(α, α′, 1m) = 1. Moreover, since conjugation is order-reversing

with respect to dominance, it follows that Mα′ ⊗I1m contains one copy of Iα, and all other

irreducible summands are lower in dominance order. Hence h(α, α′, 1m) = 1, so there is

a unique contingency table in C(α, α′) with content dominated by 1m. This table is the

0, 1-matrix T such that

Tij = 1 if 1 6 j 6 αi, i > 1.

(In fact this is a restatement of the Gale-Ryser Theorem.) We further claim that the

polytope Q(α, α′; 1m) is 0-dimensional. If not, it would contain T + ε for some small

nonzero matrix ε with row and column sums equal to 0. For such a matrix, we must have

εij < 0 only if Tij = 1 and εij > 0 only if Tij = 0, otherwise, 1m would not dominate

the content of T + ε. Now consider the northeasternmost nonzero entry of ε; say it is in

position (i, j). If εij < 0, then any zeros of T in row i must also be zeros of ε, and ε would

have a negative row sum. If εij > 0, then any ones of T in column j must be zeros of ε

and ε would have a positive column sum. Either way, we have a contradiction, proving

the claim. The stability result now follows from Theorem 6.1.

We remark that recent work on Kronecker stability by Vallejo [V] (see Theorem 10.2)

and Pak and Panova [PP] (see Theorem 1.1) provide alternate proofs that the triple

(m, 1m, 1m) is stable. Vallejo’s result also provides a bound on the point at which the

stable limit is reached.

Theorem 6.4. Let T ∈ C(α, β) be a contingency table with content γ. If there are no

other tables in C(α, β) with content 6 γ, then T is a plane partition (i.e., it has weakly

decreasing rows and columns) and g(αβγ) = 1.

Proof. Suppose T has two adjacent entries in the same row or column that are not in

weakly decreasing order, say Ti,j < Ti+1,j . Since the sum of row i in T is at least as large as

row i+1, there must also be a pair of entries in the same two rows that are in strict order,

say Ti,k > Ti+1,k. If we decrease Ti+1,j and increase Ti,j by 1 each, the content partition

will either decrease in dominance order or (if Ti+1,j − Ti,j = 1) stay unchanged. Similar

remarks apply if we increase Ti+1,k and decrease Ti,k by 1. If we apply both operations,

we preserve all row and column sums and contradict the uniqueness of T . Thus T must

be a plane partition.

Since Kγ,γ = 1, it is clear from (6.1) that 1 = h(αβγ) > g(αβγ). Arguing by contra-

diction, we may suppose that g(αβγ) = 0. In that case, there must be a pair of partitions

α+ > α and β+ > β such that g(α+β+γ) > 0, and hence h(α+β+γ) > 0. Hence there

is a contingency table T ′ ∈ C(α+, β+) with content 6 γ. Furthermore, either α+ > α or

β+ > β (possibly both). Assuming the former, it must be possible to decrease (say) the

i-th part of α+ and increase the j-th part by 1 (for some i < j), obtaining a partition
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δ such that α+ > δ > α. Since this requires α+
i > α+

j , there must be a column k such

that T ′
ik > T ′

jk. If we decrease T ′
ik and increase T ′

jk by 1, the result is a contingency table

T ′′ ∈ C(δ, β+) with co(T ′′) 6 co(T ′) 6 γ. Continuing in this way will generate a sequence

of contingency tables T ′, T ′′, T ′′′, . . . with weakly decreasing contents that terminates when

it reaches T , the unique table in C(α, β) with content 6 γ. Since T has content γ, every

table in this sequence must have content γ. However, content preservation occurs only if

the pairs of entries being changed differ by 1. Each such step terminates with the changed

pair in increasing order, contradicting the fact that T must be a plane partition. �

Corollary 6.5. If αβγ is a triple that satisfies the hypotheses of Theorem 6.1, and

the unique contingency table in C(α, β; γ) has content γ, then αβγ is stable.

Example 6.6. If δ is a partition of length at most 4, with α = (δ1 + δ2, δ3 + δ4) and

β = (δ1 + δ3, δ2 + δ4), then αβδ is stable and g(αβδ) = 1. Indeed, the transportation

polytope Q(α, β) is 1-dimensional in this case, consisting of all 2 × 2 matrices of the form

X(t) =

[

δ1 + t δ2 − t
δ3 − t δ4 + t

]

, −δ4 6 t 6 δ3.

In order for δ to dominate the content of X(t), every entry, including δ1 + t and δ4 + t,

must be bounded above by δ1 (hence t 6 0) and below by δ4 (hence t > 0). Thus the

polytope Q(α, β; δ) is 0-dimensional and the claim follows from Corollary 6.5.

Although it is well-known that all transportation polytopes Q(α, β) have integer ver-

tices, this is not true for the polytopes Q(α, β; γ). Indeed, if we set δ = 14 in the above

example, one sees that co(X(t)) 6 211 precisely when −1/2 6 t 6 1/2. Thus even though

Q(22, 22; 211) contains only one integer point X(0), it is not a lattice polytope and is not

0-dimensional. Note also that X(0) has content 14 and h(22, 22, 211) = K211,14 = 3.

On the other hand, we have evidence in support of the following (cf. the analogous

discussion for Gelfand polytopes in Remark 5.5):

Conjecture 6.7. If h(αβγ) = 1 (or equivalently, there is a unique contingency table

T in C(α, β; γ) and this table satisfies Kγ,co(T ) = 1), then Q(α, β; γ) is a 0-dimensional

polytope. In particular, there are unique partitions α+ > α and β+ > β such that α+β+γ

is stable, and if the table T has content γ, then α+ = α and β+ = β.

Let us define a contingency table T ∈ C(α, β) to be dominance-extremal (or simply

extremal) if there are no other contingency tables in C(α, β) with content 6 co(T ).

Problem 6.8. Find a practical characterization of all extremal contingency tables.

A solution of this problem could lead to a resolution of Conjecture 6.7. For example, if

L := {(α, β, co(T )) : T is extremal in C(α, β)}
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turns out to be invariant under rescaling (i.e., αβγ ∈ L implies n · αβγ ∈ L), this would

imply Conjecture 6.7 whenever the unique contingency table in C(α, β; γ) has content γ.

In any case, if C(α, β; γ) contains only one table, it is necessarily extremal.

Theorem 6.4 shows that extremal contingency tables are necessarily plane partitions.

However, the converse is false in general. For example, consider the tables

4 2 2
4 1 0
1 1 0

4 3 1
3 1 1
2 0 0

3 2 2
3 1 0
1 1 0.

The first two are plane partitions and members of C(852, 942), but the content of the first

dominates the second, so it is not extremal. The third is a plane partition in C(742, 742),

but it is not symmetric. Thus it cannot be extremal, since its transpose is a table with the

same content. In fact the content of this table turns out to be minimal in dominance order

among all tables in C(742, 742), so this example shows that having dominance-minimal

content does not imply extremality.

Proposition 6.9. If T is a plane partition with two rows or two columns, then T is

extremal. Furthermore, if T has row sum vector α, column sum vector β, and content γ,

then αβγ is stable and g(αβγ) = 1.

Proof. Let T = [Tij ] be a 2 × n plane partition and ε a nonzero matrix such that (1)

T + ε has the same row and column sums as T , and (2) co(T + ε) 6 co(T ). The first

condition implies that ε has row and column sums equal to zero, and the second implies

that for every set of k entries of T whose sum matches the sum of the largest k entries

of T , the corresponding entries of ε must have a non-positive sum.

Let εi denote the (1, i)-entry of ε. The (2, i)-entry is −εi, and ε1 + · · · + εn = 0.

We claim that for every i 6 n, there is a j 6 i such that εj +εj+1 + · · ·+εi 6 0. Indeed,

consider the set of all entries of T that are greater than T1,i, together with the entry T1,i.

Since T is a plane partition, this involves both entries of columns 1 through j − 1 and the

set of first-row entries in columns j through i for some j 6 i, and no other entries. The

corresponding entries of ε sum to εj + · · ·+ εi, since the two-entry columns sum to 0. This

sum must be non-positive, so the claim follows.

Iterating this claim, we must also have εk + · · · + εj−1 6 0 for some k < j, and so on.

Adding these inequalities together, we conclude that ε1 + · · · + εi 6 0 for all i.

Now let i be the largest index such that εi 6= 0. Since ε1 + · · · + εi−1 6 0 (by the

previous claim) and ε1 + · · · + εi = 0, it must be the case that εi > 0. Consider the set of

entries of T that are > T2,i except for the entry T2,i itself. This involves all entries in the

first i− 1 columns, plus the (1, i) entry, and possibly some entries in columns to the right.

However the latter entries are zero in ε, so the corresponding sum in ε is εi. Hence εi 6 0

and we have a contradiction.
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The preceding argument proves that T is extremal and that the corresponding portion

of the transportation polytope with content dominated by co(T ) is 0-dimensional. The

remaining conclusions now follow from Theorems 6.1 and 6.4. �

We remark that the mere fact that the set of two-rowed plane partitions is closed under

rescaling shows that extremality implies 0-dimensionality in the above context.

The following result shows that if the polytope Q(α, β; γ) includes a contingency table

with content γ, and it is possible to stay in the polytope by moving infinitesimally in a

direction with 0,±1 coordinates, then there must be another integer point in the polytope

along this line.

Lemma 6.10. Let γ be a partition of length 6 l and ε a vector of length l with 0,±1

coordinates having sum 0. If co(γ − tε) 6 γ for some t > 0, then co(γ − ε) 6 γ.

Proof. By convexity considerations we may assume t < 1/2, so that γi − tεi > γj − tεj

whenever γi > γj . Moreover, we may permute the coordinates of ε if necessary so that if

γi = γj and i < j, then εi 6 εj . Thus γ − tε has weakly decreasing coordinates and the

condition co(γ − tε) 6 γ amounts to having ε1 + · · ·+ εi > 0 for all i. Therefore if we sum

the coordinates of ε in positions where γi > k, or γi = k and εi = −1, we obtain

(m+
k+1 − m−

k ) + (m+
k+2 − m−

k+1) + · · · > 0, (6.3)

where m±

k denotes the number of indices i where γi = k and εi = ±1.

On the other hand, given an integer vector δ of length l with the same sum as γ, let

σk(δ) =
∑

i

max(δi − k, 0) =
∑

j>k

(j − k)mj(δ),

where mk(δ) denotes the number of indices i where δi = k. If δ is a partition of m, then

m − σk(δ) is the sum of the k largest parts in the conjugate partition δ′. Recalling that

conjugation is order-reversing with respect to dominance, it follows that co(δ) 6 γ if and

only if σk(δ) 6 σk(γ) for all k > 0. Moreover, this holds whether or not δ is a partition,

since the quantities σk(·) are permutation invariant. Now consider that (6.3) implies

σk(γ) − σk(γ − ε) =
∑

j>k

(j − k)(mj(γ) − mj(γ − ε))

=
∑

j>k

(j − k)(m+
j + m−

j − m+
j+1 − m−

j−1) =
∑

j>k

(m+
j − m−

j−1) > 0.

Hence γ dominates the content of γ − ε. �
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Proposition 6.11. If T ∈ C(α, β) is a 3 × 3 contingency table with content γ, then

the following are equivalent:

(a) T is extremal,

(b) T is a plane partition and co(T ± E) 66 γ, where

E :=





0 −1 1
1 0 −1

−1 1 0



 .

(c) the polytope Q(α, β; γ) is 0-dimensional.

Moreover, when these equivalent conditions hold, αβγ is stable and g(αβγ) = 1.

Proof. The fact that (c) implies (a) is immediate. We also know that extremality of T

forces T to be a plane partition (Theorem 6.4), and it is clear that if either co(T + E) 6 γ

or co(T −E) 6 γ then T cannot be extremal. Thus (a) implies (b) and it remains to prove

that (b) implies (c). (The final assertions are then consequences of Theorems 6.1 and 6.4.)

Henceforth we may assume that T is a plane partition.

Any point in the polytope Q(α, β; γ) may be represented in the form T + ε, where ε is

a 3 × 3 real matrix with zero row and column sums such that co(T + ε) 6 γ. Assuming

temporarily that T has distinct entries, the constraint co(T + ε) 6 γ implies

ε1 + · · · + εi 6 0 (1 6 i < 9),

where εi denotes the entry of ε in the same position as the i-th largest entry of T .

There are 42 ways to arrange the 9 entries of T , corresponding to the 42 standard

Young tableaux of shape 333. We have checked by machine computation that the above

constraints on ε in 36 of these cases, together with the row and column sum constraints,

can only be satisfied when ε = 0. The exceptional cases correspond to the tableaux

1 2 6
3 5 7
4 8 9

1 2 6
3 4 7
5 8 9

1 2 5
3 6 7
4 8 9

and their transposes. In each of these cases, it is straightforward to show that ε must be

a scalar multiple of the matrix E.

If we now relax the hypothesis that the entries of T are distinct, there can only be more

constraints on ε beyond those arising from a single Young tableau. We conclude that

Q(α, β; γ) = {T + tE : t ∈ [a, b]}

for some closed interval [a, b] containing 0. Thus if Q(α, β; γ) has positive dimension, there

must be some nonzero t such that co(T + tE) 6 γ. However, all entries of E are 0,±1, so

this forces co(T + E) 6 γ or co(T − E) 6 γ by Lemma 6.10. Hence (b) implies (c). �
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7. More polytopes and more stability

Given a triple of partitions αβγ of size m, let us define

f(αβγ) = multiplicity of Iγ in Mα ⊗ Iβ = dim(Mα ⊗ Iβ ⊗ Iγ)Sm .

Our goal in this section is to show that known combinatorial formulas for these multiplici-

ties are expressible as counts of integer points in certain explicit polytopes. This will allow

us to identify more stable triples by techniques similar to those of the previous section.

Noting that Iβ is a submodule of Mβ , we have g(αβγ) 6 f(αβγ) 6 h(αβγ). Thus any

triple that can be proved stable by establishing bounds on h-multiplicities also has bounded

f -multiplicities. The catch is that the polytopes associated to f -multiplicities have more

complicated descriptions and it is harder to identify when they are 0-dimensional.

Let <L denote a lexicographic total order of (Z>0)2, so that (i, j) <L (i′, j′) if i < i′

or i = i′ and j < j′. We say that a Young tableau T with entries chosen from (Z>0)2 is

semistandard if its rows are weakly increasing and columns strictly increasing with respect

to this order. The bi-content of T is the pair (α, β) consisting of the row-sum vector α and

column-sum vector β of the matrix whose (i, j)-entry records the number of occurrences

of (i, j) in the tableau T . The reading word of T is an ordering of the entries so that each

(i, j) in row k precedes every (i′, j′) in row k′ if i < i′, or i = i′ and k < k′, or i = i′,

k = k′, and j > j′. We say that the reading word satisfies the Yamanouchi condition if

N(j, l) > N(j + 1, l) for all j and l, where N(j, l) denotes the number of terms of the form

(∗, j) among the first l entries of the word.

The following result is well-known, although not typically expressed in this form.

Proposition 7.1. The multiplicity f(αβγ) is the number of semistandard tableaux of

shape γ and bi-content (α, β) whose reading word satisfies the Yamanouchi condition.

Proof. If we assign the weight xj to each entry (i, j), one sees that the generating

function for all semistandard (Z>0)2-tableaux of shape γ and bi-content (α, ∗) is a sum of

products skew Schur functions; namely,

∑

sµ(1)sµ(2)/µ(1) · · · sγ/µ(a−1) , (7.1)

where the sum ranges over nested sequences of partitions µ(1) ⊂ µ(2) ⊂ · · · ⊂ µ(a) = γ

such that µ(i) has size α1 + · · ·+αi and a is the length of α. By the Littlewood-Richardson

Rule, it follows that the coefficient of the Schur function sβ in (7.1) is the number of such

tableaux with bi-content (α, β) whose reading word satisfies the Yamanouchi condition.

By Exercise 7.84.a in [EC2], it follows that this is f(αβγ). �
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Lemma 7.2. If α, β, and γ have respective lengths a, b, c, then f(αβγ) is the number

of integer points in the polytope defined by the constraints

x(i, j, k) > 0 (1 6 i 6 a, 1 6 j 6 b, 1 6 k 6 c),
∑

j,k

x(i, j, k) = αi,
∑

i,k

x(i, j, k) = βj ,
∑

i,j

x(i, j, k) = γk, (7.2)

∑

(i′,j′)<L(i,j)

x(i′, j′, k) >
∑

(i′,j′)6L(i,j)

x(i′, j′, k + 1), (7.3)

∑

(i′,k′)<L(i,k)

x(i′, j, k′) >
∑

(i′,k′)6L(i,k)

x(i′, j + 1, k′). (7.4)

It should be emphasized that in (7.3) and (7.4), the indices i, j, k parameterize the

inequalities; the indices i′, j′, k′ are summation variables.

Note that interchanging β and γ is a permutation of the coordinates of this polytope.

Proof. Given a (Z>0)2-tableau T , let x(i, j, k) be the number of times (i, j) appears in

row k. Given that T has weakly increasing rows, it is clear that the coordinates x(i, j, k)

uniquely determine T . Moreover, the line sum constraints in (7.2) characterize those

tableaux with bi-content (α, β) and shape γ. By Proposition 7.1, what remains is to show

that (7.3) characterizes those tableaux that are semistandard (i.e., column increasing),

and (7.4) characterizes those whose reading word satisfies the Yamanouchi condition.

If there is a column violation, then there is an entry (i, j) in row k + 1 that is 6L the

entry above it in row k. Thus there are strictly more entries in row k +1 that are 6L (i, j)

than there are entries in row k that are <L (i, j) and (7.3) is violated. Conversely, if (7.3)

is violated, then the rightmost occurrence of an entry 6L (i, j) in row k + 1 is below an

element in row k that is >L (i, j) and T is not column-strict.

In the reading word of T , the x(i, j, k) entries (i, j) in row k occur immediately after

the x(i, j + 1, k) entries (i, j + 1). It follows that if there is a violation of the Yamanouchi

condition, then there must be one in which the count of (∗, j)’s is less than the count of

(∗, j +1)’s in the subword ending with all of the occurrences of (i, j +1) in row k, for some

i, j and k. This is exactly the condition forbidden by (7.4). �

Remark 7.3. If we drop the Yamanouchi condition in Proposition 7.1, we obtain a

description of the monomial expansion of (7.1). Bearing in mind the duality between

monomials and the permutation modules Mβ , it follows that h(αβγ) is the number of

semistandard tableaux of shape γ and bi-content (α, β), or equivalently, the number of

integer points in the polytope obtained by omitting the constraints in (7.4) from the

description in Lemma 7.2. In this context, Conjecture 6.7 amounts to the assertion that

this polytope is 0-dimensional whenever it has only one integer point (cf. Remark 5.5).
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Theorem 7.4. If f(n · αβγ) = 1 for all n > 1 (or equivalently, if the polytope defined

in Lemma 7.2 is 0-dimensional and consists of a single integer vertex), then

(a) there is a unique partition α+ > α such that g(α+βγ) > 0,

(b) the triple α+βγ is stable, and

(c) we have f(n · α+βγ) = 1 for all n > 1.

Note that f(n · αβγ) > g(n · αβγ) > 1 if g(αβγ) > 0, hence

Corollary 7.5. If g(αβγ) > 0 and f(n · αβγ) 6 1 for all n > 1, then αβγ is stable.

Proof of Theorem 7.4. Given that the stated condition holds, there must be exactly one

irreducible summand Iα+ of Mα such that g(α+βγ) > 0 (and g(α+βγ) = 1 in that case)

or we contradict the fact that f(αβγ) = 1. Since all such summands satisfy α+ > α, we

obtain (a). For (b), note that Iλ+nα+ is a summand of Mλ+nα, hence

g(λµν + n · α+βγ) 6 f(λµν + n · αβγ)

for all triples λµν. However, the polytope described in Lemma 7.2 fits the form of (4.2), so

Proposition 4.4 and our hypothesis that f(n·αβγ) = 1 for all n implies that f(λµν+n·αβγ)

is bounded for all triples λµν and thus α+βγ is stable. Finally, recall by Proposition 5.1(a)

that Mnα+ embeds in Mnα, hence

1 = f(n · αβγ) > f(n · α+βγ) > g(n · α+βγ) = 1

by Proposition 4.2. Thus (c) holds. �

Proposition 7.6. If γ is a partition of m obtained by moving one cell in the diagram

of β to (a) the first row or (b) the first column, then the triple ((m − 1, 1), β, γ) is stable.

Proof. It is well-known that g((m − 1, 1), β, γ) = 1 in this case (e.g., see Exercise 7.81

in [EC2]), so it suffices by Corollary 7.5 to show that f((nm− n, n), nβ, nγ) 6 1. In view

of Proposition 7.1, we thus seek to show that there is at most one semistandard tableau T

of shape nγ and bi-content ((nm−n, n), nβ) whose reading word satisfies the Yamanouchi

condition. A general feature of such tableaux is that all of the entries of the form (1, k)

must appear in the leftmost columns of row k, and thus the remaining n entries of the

form (2, ∗) are forced to appear along the outer boundary of T .

In case (a), the first row of γ is strictly longer than that of β, so the (2, ∗)-entries must

necessarily appear at the right end of the first row. Otherwise, there would have to be

more than nβ1 occurrences of (1, 1) in the first row of T , a contradiction. Thus the forced

occurrences of (1, k) leave available for placement only n copies of (2, i), assuming i is the

row number where γ is shorter than β. As we have noted, these entries must appear at

the end of the first row, so there is at most one such T .

Similarly in case (b), we claim that the n entries of the form (2, ∗) must be evenly

distributed at the bottom of the first n columns of T . Otherwise, the first column of T
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would have to be filled with the entries (1, k) for 1 6 k 6 ℓ(γ). Since γ has a longer first

column than β, this contradicts the fact that T has bi-content ((nm−n, n), β). Accounting

for the forced placement of the entries of the form (1, k), this means that the entries at the

bottom of the first n columns of T must all be (2, i), where i is the row where γ is shorter

than β. Thus again, T is uniquely determined. �

We remark that Theorem 6.1 often cannot be used to directly prove the stability of the

Kronecker triples identified in the above proposition. Examples of this include (31, 22, 211),

(41, 32, 311), (41, 311, 221), and (41, 221, 2111).

8. The stability of (22, 22, 22)

The main goal of this section is to prove that the triple (22, 22, 22) is stable. This

particular triple is noteworthy since it is the only triple of size 6 5 whose stability is not

a direct consequence of either Theorems 6.1 or 7.4.

The following result reduces the stability of this triple to a question about Kronecker

coefficients involving two-rowed partitions. It also provides a very simple alternative proof

of the stability of any triple of the form (α, α,m).

Proposition 8.1. Given a triple αβγ, the sequences g(λµν + n ·αβγ) are bounded as

a function of n for all triples λµν if they are bounded for all triples such that ℓ(λ) 6 ℓ(α),

ℓ(µ) 6 ℓ(β), and ν is a multiple of γ.

Proof. Given an Sm-module M , let IndrM and ResrM denote the induction and restric-

tion of M to Sm+r and Sm−r, respectively. By Young’s Rule, one knows that Ind1Iγ and

Res1Iγ are the direct sums of all irreducible Sm+1-modules (resp., Sm−1-modules) Iδ such

that δ is obtained by increasing (resp., decreasing) the length of one row of γ by one in all

possible ways. Thus if ν is a partition of r, the induced module IndrInγ will necessarily

contain at least one copy of Iν+nγ (and typically many such copies). If αβγ is a triple of

size m, we therefore have

g(λµν + n · αβγ) 6 dim (Iλ+nα ⊗ Iµ+nβ ⊗ IndrInγ)
Snm+r

= dim (ResrIλ+nα ⊗ ResrIµ+nβ ⊗ Inγ)
Snm

by Frobenius Reciprocity.

The summands in the restriction of Iλ+nα involve sequences of r decrements of the parts

of λ + nα. It follows that there is a fixed multiset of integer vectors θ (independent of n

but depending on λ and α), each summing to 0 and of length 6 max(ℓ(α), ℓ(λ)), such that

Iθ+nα is a summand of the restriction if and only if θ + nα is a partition (and hence this

summand occurs for all n sufficiently large). In the same way, one may write ResrIµ+nβ

as a similar fixed sum of terms Iφ+nβ for n sufficiently large. Thus it suffices to separately

bound the Kronecker coefficients

g(θ + nα, φ + nβ, nγ)
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for each θ and φ arising. If the minimum n such that θ + nα and φ + nβ are partitions

occurs at n = n0, then we have in effect replaced λµν with (θ + n0α, φ + n0β, n0γ).

Beyond the fact that we have replaced ν with a multiple of γ, the key point of this

reduction is that while the sizes of λ and µ may have grown, the extent that their lengths

exceed the lengths of α and β have not. Thus by symmetry considerations, if we now

repeat the argument, but with the roles of µ + nβ and ν + nγ switched, we will lose the

feature that ν is a multiple of γ, but its length will remain bounded by ℓ(γ). Applying

this switch a second time, we can assume all of the lengths of λ, µ and ν are bounded by

the lengths of α, β and γ, and in addition, assume either that λ is a multiple of α, or µ a

multiple of β, or ν a multiple of γ. �

Lemma 8.2. If λ = (n, n) and α is a partition of length 6 4 and size 2n, then the

Kostka number Kλ,α is nonzero only if α1 6 n. In that case, we have

Kλ,α = 1 + min(α4, n − α1).

Proof. It is well-known that Kλ,α is invariant under permutations of the parts of α,

so Kλ,α is the number of semistandard tableaux of shape λ and content (α1, α3, α4, α2).

In any such tableaux, all entries equal to 1 necessarily occur in the first row (hence the

condition α1 6 n) and all entries equal to 4 necessarily occur in the rightmost columns of

the second row. Moreover, every column has either a 1 or a 4 (or both). Otherwise, we

would have n > α1 + α2 > α3 + α4, contradicting the fact that α is a partition of 2n. The

remaining entries in the two rows thus have no common columns.

Such tableaux are uniquely determined by (say) how many 2’s occur in row 1. If there

are i such 2’s, then n − i − α1 entries in row 1 are 3’s, α3 − i entries in row 2 are 2’s, and

α1 + α4 − n + i entries in row 2 are 3’s. Given that these amounts are nonnegative; i.e.,

max(0, n − α1 − α4) 6 i 6 min(α3, n − α1),

then such a tableau exists. The number of choices for i is therefore

1 + min(α3, n − α1, α4, α1 + α3 + α4 − n).

Noting that α1 + α3 + α4 − n = n − α2, this agrees with the claimed formula. �

In the following, ⌊x⌋ denotes the greatest integer 6 x.

Lemma 8.3. If n > 1, k > 0, µ = (n + 2k + 1, n − 1) and ν = (n + k, n + k), then

(a) h(ννν) = ⌊(n + k + 2)2/4⌋,

(b) h(µνν) = ⌊(n + 1)2/4⌋, and

(c) if n > k − 1, then h(µµν) = ⌊(n − k)2/4⌋.
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Proof. In order to use (6.1) to evaluate these multiplicities, we need to identify the

contingency tables of types (ν, ν), (µ, ν), and (µ, µ) (respectively), and evaluate the corre-

sponding Kostka numbers. It is not hard to see that the relevant tables are
[

n + k − i i
i n + k − i

]

,

[

n + k − i k + i + 1
i n − i − 1

]

,

[

n + 2k − i + 1 i
i n − i − 1

]

,

where (respectively) 0 6 i 6 n + k, 0 6 i 6 n − 1, and 0 6 i 6 n − 1. In the last case,

we should further restrict i to the range k + 1 6 i 6 n − 1; otherwise, the largest entry

of the table will exceed ν1 = n + k and the corresponding Kostka number will be 0. In

particular, there will be no relevant tables in this last case unless n > k + 2. However,

since the claimed formula in (c) evaluates to 0 when n − k ∈ {0,±1}, there is no harm in

assuming n > k + 2 henceforth for this case.

Using Lemma 8.2 to evaluate the Kostka numbers arising in these cases, we see that

Kν,(n+k−i,n+k−i,i,i) = 1 + min(i, n + k − i) = min(i + 1, n + k + 1 − i),

Kν,(n+k−i,k+i+1,n−i−1,i) = 1 + min(i, n − 1 − i) = min(i + 1, n − i),

Kν,(n+2k−i+1,n−i−1,i,i) = 1 + min(i − k − 1, n − 1 − i) = min(i′ + 1, n − k − 1 − i′),

where i′ = i − k − 1. (Note also that 0 6 i′ 6 n − k − 2.) Thus (6.1) implies

h(µνν) =
n−1
∑

i=0

min(i + 1, n − i) = ⌊(n + 1)2/4⌋,

proving (b). The analogous sums for h(ννν) and h(µµν) are termwise the same as one

would obtain after replacing n with n + k + 1 or n − k − 1 in the above sum. �

Proposition 8.4. The triple (22, 22, 22) is stable.

Proof. After confirming that g(22, 22, 22) > 0, it suffices to show that the sequences

g(λµν + n · (11, 11, 11)) are bounded for all triples λµν. By Proposition 8.1, this follows if

we can show that g((n+2k−a, n+a), (n+2k−b, n+b), (n+k, n+k)) is a bounded function

of n for integers k > a, b > 0. Now set µ = (n + 2k + 1, n − 1) and ν = (n + k, n + k). By

comparing irreducible multiplicities, it is easy to check that

Mν
∼= I(n+k,n+k) ⊕ I(n+k+1,n+k−1) ⊕ · · · ⊕ I(n+2k,n) ⊕ Mµ.

Thus for n > k − 1, Lemma 8.3 implies
∑

a,b

g((n + 2k − a,n + a), (n + 2k − b, n + b), ν) = h(ννν) − 2h(µνν) + h(µµν)

=
1

4
(n + k + 2)2 −

1

2
(n + 1)2 +

1

4
(n − k)2 + ε =

1

2
(k + 1)2 + ε,

where ε is an error term that depends only on the parities of n and k. A careful accounting

for this error term shows that in fact ε = (−1)n/2 if k is even and ε = 0 if k is odd. In

any case, it is clear that the above sum is bounded for fixed k. �
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Remark 8.5. (a) In the special case k = 0, the above calculation shows that

g(n2, n2, n2) =
1

2
+ ε =

1

2
(1 + (−1)n).

(b) There are known combinatorial formulas for g(λµν) when (say) λ and µ have at

most two rows, but they are rather complicated. See pp. 124–128 of [BMS] for the first

such formula that is manifestly positive. On the other hand, the inequality

g((n + 2k − a, n + a), (n + 2k − b, n + b), (n + k, n + k)) 6 ⌊(k − a + 2)/2⌋

is an easy consequence of a (positive) formula due to Brown, van Willigenburg and Zabrocki

(see Corollary 3.2 of [BvZ]), so this provides a more expedient proof of Proposition 8.4

that bypasses the need for Lemmas 8.2 and 8.3.

9. Reducibility and multivariate stability

A triple αβγ in the Kronecker semigroup G (or more generally in any additive semigroup)

is said to be reducible if it has a nontrivial representation of the form

αβγ = λµν + ρθτ, λµν, ρθτ ∈ G.

Otherwise, it is irreducible.

Note that if a reducible triple is stable, then each of its summands must also be stable.

Indeed, by monotonicity we have

g(ρθτ + n · (αβγ + λµν)) > g(ρθτ + n · αβγ),

so if the sequence on the left is bounded, the same is true for the sequence on the right. An

even stronger consequence of stability for reducible triples is that they imply boundedness

and convergence of Kronecker coefficients in higher dimensional affine cones, not just along

affine rays. For example, monotonicity implies

g(ρθτ + a · (αβγ + λµν)) 6 g(ρθτ + m · αβγ + n · λµν) 6 g(ρθτ + b · (αβγ + λµν))

for a 6 m,n 6 b, so we have the following.

Proposition 9.1. If αβγ, λµν ∈ G and αβγ + λµν is stable, then the quantity

g(ρθτ + m · αβγ + n · λµν)

is independent of m and n provided that both are sufficiently large.

For example, this applies to the stable triple (31, 31, 22) = (2, 11, 11) + (11, 2, 11).
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Example 9.2. A more extreme instance of multivariate stability may be constructed

from the triples (k, 1k, 1k) for k > 1. These triples are stable (Example 6.3(a)) and it is

easy to see that they are irreducible. Furthermore, arbitrary sums of these triples have

the form (m,α, α) for partitions α. Since these sums are again stable (Example 6.3(a)), it

follows for example that

g(λµν + n1 · (1, 1, 1) + n2(2, 11, 11) + n3(3, 13, 13) + n4(4, 14, 14))

is independent of n1, n2, n3, n4 provided that all ni are sufficiently large.

In Table 9.3 we list the (unordered) Kronecker triples of size 6 5, with the stable and

unstable cases segregated. The reducible triples are annotated with an ’r’, and the stable

triples are annotated with an indication of the source of a proof of stability: ‘a’ through ‘e’

refer to Examples 6.3(a) and 6.3(b), and Propositions 6.9, 7.6, and 8.4, respectively. For

most unstable αβγ in this table, the least n such that g(n ·αβγ) > 1 is n = 2. In all other

cases of size 6 5, this occurs at n = 1 and the annotation ‘1’ is provided.
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stable triples

(1, 1, 1) a

(2, 2, 2) a,r (2, 11, 11) a

(3, 3, 3) a,r (3, 13, 13) a

(3, 21, 21) a,r (21, 21, 13) b

(4, 4, 4) a,r (31, 31, 211) c,r

(4, 31, 31) a,r (31, 22, 211) d

(4, 22, 22) a,r (31, 211, 14) b

(4, 211, 211) a,r (22, 22, 22) e

(4, 14, 14) a (22, 22, 14) b

(31, 31, 22) d,r

(5, 5, 5) a,r (41, 32, 311) d,r

(5, 41, 41) a,r (41, 32, 221) c,r

(5, 32, 32) a,r (41, 311, 221) d,r

(5, 311, 311) a,r (41, 311, 213) c,r

(5, 221, 221) a,r (41, 221, 213) d

(5, 213, 213) a,r (41, 213, 15) b

(5, 15, 15) a (32, 32, 213) c,r

(41, 41, 32) d,r (32, 221, 15) b

(41, 41, 311) c,r (311, 311, 15) b

unstable triples

(21, 21, 21)

(31, 31, 31) r (22, 211, 211)

(31, 211, 211) (211, 211, 211)

(41, 41, 41) r (32, 221, 221)

(41, 32, 32) r (32, 221, 213)

(41, 311, 311) r (32, 213, 213)

(41, 221, 221) (311, 311, 311) r

(41, 213, 213) (311, 311, 221) 1

(32, 32, 32) r (311, 311, 213)

(32, 32, 311) r (311, 221, 221)

(32, 32, 221) (311, 221, 213)

(32, 311, 311) 1,r (311, 213, 213)

(32, 311, 221) (221, 221, 221)

(32, 311, 213) (221, 221, 213)

Table 9.3: Stability and reducibility of Kronecker triples of size 6 5.
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