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1. Main results

The Perron-Frobenius Theorem is a collection of facts about the eigenvalues and eigen-

vectors of real nonnegative matrices. In these notes we provide complete proofs of the main

results; the one non-trivial thing we take for granted is the existence of Jordan Canonical

Form over the complex field.

We make no claims that anything stated here is new or original.

For a square complex matrix A, let ρ(A) denote its spectral radius; i.e., the maximum

of |λ| as λ varies over the eigenvalues of A. If ρ(A) = |λ|, we say that λ is extremal.

Lemma 1. Assume ρ = ρ(A) > 0, and let r denote the size of the largest Jordan block

associated to an extremal eigenvalue of A.

(a) The rate of growth of the entries of An is limited; namely,

(An)i,j = O(nr−1ρn) as n→∞, for all i, j.

(b) If λ is the only extremal eigenvalue of A, then for all vectors v, the limit

L(v) := lim
n→∞

Anv

nr−1λn

converges, and the range of L is a nonzero subspace of the λ-eigenspace of A.

Proof. Both claims are stable under changes of basis, so we may assume that A is in

Jordan Canonical Form. In addition, if the claims hold for A1 and A2, then they hold for

their direct sum. Thus we may assume that A consists of a single r× r Jordan block; i.e.,

A = λ+ E, where E =

 0 1 0
0 0 1
0 0 0

 (if r = 3, say).



Since Er = 0, one sees that

An = (λ+ E)n = λn +

(
n

1

)
λn−1E + · · ·+

(
n

r − 1

)
λn−r+1Er−1,

and now (a) follows easily. For (b), we have

lim
n→∞

An

nr−1λn
=

1

(r − 1)!λr−1
Er−1,

and the range of this operator is the coordinate space Ce1, the λ-eigenspace of A. �

Theorem 2. If all sufficiently high powers of A are real and positive, then the extremal

eigenvalues of A are real and positive (i.e., if λ is extremal, then λ = ρ(A) > 0).

For a stronger version of this result, see Theorem 5 below.

We note that the above hypothesis does not require A to be nonnegative. For example,

if A =
[
−1 1

1 2

]
, then An is positive for n = 2 and n > 4. (See also Corollary 10.)

Proof. (Shamelessly adapted from Wikipedia.) Let ρ = ρ(A). We cannot have ρ = 0,

otherwise A would be nilpotent and all sufficiently high powers of A would be 0.

Replacing A with A/ρ, we may assume ρ = 1.

Now let λ be an extremal eigenvalue of A. If λ 6= 1, then we can choose m so that

Am is positive and λm has negative real part. If a is the smallest diagonal entry of Am,

then B = Am − a/2 is positive and has an eigenvalue µ = λm − a/2 such that |µ| > 1.

However, B 6 Am entry-wise, so the matrix entries of Bn are bounded by the matrix

entries of Amn. Since ρ(A) = 1, the latter are of polynomial growth by Lemma 1. On the

other hand, there is an eigenvector v for B such that Bnv = µnv has exponential growth,

a contradiction. �

Lemma 3. If A is (real and) nonnegative, then A has a nonnegative eigenvector with

eigenvalue ρ(A).

Proof. We know that ρ(A) is an eigenvalue of A if A is positive (Theorem 2), so the

same is true for nonnegative A by continuity.

For the eigenvectors, we may replace A with 1 + A. Indeed, this has no effect on the

eigenspaces, but shifts the spectrum so that ρ = ρ(A) is the unique extremal eigenvalue,

and is positive. By Lemma 1(b), it follows that there is an integer r > 1 so that

v 7→ L(v) = lim
n→∞

Anv

nr−1ρn

is a nonzero linear map into the ρ-eigenspace of A. Thus there must be a coordinate

vector ei such that L(ei) is a ρ-eigenvector (i.e., nonzero), and it is nonnegative, since A

is nonnegative. �
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Recall that a directed graph is strongly connected if there is a directed path between

every pair of vertices, or equivalently, there is a closed (directed) path that passes through

every vertex. In particular, a graph with one vertex and no edges is strongly connected.

The support graph of a square matrix A = [aij ] is a directed graph in which there is an

edge from i to j if aij 6= 0. We will say that A is strongly connected if this associated graph

is strongly connected. It is not hard to show that this is equivalent to the non-existence

of a simultaneous permutation of the rows and columns of A having the block triangular

form
[
A11 A12

0 A22

]
, where A11 and A22 are square submatrices.

Note that the 1× 1 matrix [ 0 ] is strongly connected; it is the only strongly connected

matrix with spectral radius 0.

Theorem 4. If A is nonnegative and strongly connected, then

(a) A has a positive eigenvector v with eigenvalue ρ(A),

(b) the ρ(A)-eigenspace is one-dimensional,

(c) v is the unique nonnegative eigenvector of A (up to scalar multiples), and

(d) ρ(A) is a simple root of the characteristic polynomial of A.

Proof. We may replace A by A+ 1 so that by Lemma 3, ρ = ρ(A) is the only extremal

eigenvalue of A, and ρ > 0.

(a) Let v be a nonnegative eigenvector of A with eigenvalue ρ, as provided by Lemma 3.

If the first a coordinates of v are positive and the remaining b coordinates of v are zero,

then the condition Av = ρv forces the southwest b× a submatrix of A to be 0, and thus A

could not be strongly connected. Hence v must be positive.

(b) Now suppose that u is another eigenvector in the ρ-eigenspace. Replace u with −u
if necessary so that at least one coordinate of u is positive. It follows that if c is the largest

scalar such that v − cu is nonnegative, then v − cu has at least one zero coordinate, and

hence cannot be an eigenvector, by the argument in the previous paragraph. Since v − cu
belongs to the ρ-eigenspace, the only other possibility is that v = cu.

(c) Let wT be a positive left eigenvector1 for A with eigenvalue ρ. (Apply (a) to AT .) If

u is a nonnegative right eigenvector with eigenvalue λ, we can evaluate wTAv in two ways,

obtaining ρwTu = wTAu = λwTu. However, wTu is necessarily positive, so λ = ρ and u

is a multiple of v by (b).

(d) Let r be the multiplicity of ρ as a root of the characteristic polynomial of A. Since

the ρ-eigenspace is one-dimensional, it must be the case that A has only one Jordan block

associated to ρ, and it has order r. Thus by Lemma 1(b), some matrix entries of An grow

at the asymptotic rate of nr−1ρn, so the same must be true for the coordinates of Anu

for any positive vector u. However, for the positive eigenvector v we have Anv = ρnv, a

contradiction unless r = 1. �

1It would also be sensible to call wT a right eigenvector, since wT 7→ wTA is a right action for A. This

is one of those situations where standard terminology is in conflict, or at least dyslexic.

3



The following result strengthens Theorem 2.

Theorem 5. If all sufficiently high powers of A are real and positive, then all of the

conclusions of Theorem 4 hold, and we have

An =
1

wT v
ρnvwT + o(ρn) as n→∞,

where wT and v denote left and right eigenvectors for A with eigenvalue ρ = ρ(A).

Proof. Choose m so that Am is positive. We know that ρ is the only extremal eigenvalue

of A (Theorem 2), and any extremal eigenvalue/vector for A is also extremal for Am, so

Theorem 4 (applied to Am) implies that ρ has multiplicity 1 as an eigenvalue of A, and the

corresponding eigenvector is positive (if suitably normalized). Similarly, there is no other

nonnegative eigenvector for A since the same is true for Am.

To prove the asymptotic formula, note that both sides are invariant under changes of

basis and choices of eigenvectors, so we may assume that A is in Jordan Canonical Form.

Since ρ has multiplicity 1, there is a 1 × 1 Jordan block with eigenvalue ρ, and all other

blocks have eigenvalues µ with |µ| < ρ. Powers of these blocks therefore grow at rates

asymptotically slower than ρn (Lemma 1), so if the blocks are ordered so that eT1 and e1
are left and right ρ-eigenvectors, then An = diag(ρn, 0, . . . , 0)+o(ρn) = ρne1e

T
1 +o(ρn). �

If A is merely nonnegative and strongly connected, then it may happen that every power

of A has entries that vanish, and there may be extremal eigenvalues in addition to ρ(A).

In fact, these two (related) misfeatures are the subject of the next section.

2. Periodicity

Define a directed graph to be m-cyclic if the vertices may be partitioned into disjoint

(nonempty) blocks Vk (0 6 k < m) so that every edge is directed from a vertex in Vk to a

vertex in Vk+1 (subscripts taken mod m). In the case m = 2, this is the same as the graph

being bipartite, but being m-cyclic and m-partite are not the same for m > 2.

Similarly we will say that a (square) matrix A is m-cyclic if the support graph of A is

m-cyclic. Illustrating this in the case m = 3, this amounts to saying that there is a suitable

simultaneous permutation of the rows and columns of A that has the block form 0 A12 0
0 0 A23

A31 0 0

 .
Note that the diagonal blocks of zeroes must be square.

Lemma 6. If µ1, . . . , µn are the nonzero eigenvalues (with multiplicity) of the product

A12A23 · · ·Am1 of the blocks of an m-cyclic matrix A, then A has exactly mn nonzero

eigenvalues (counted by multiplicity), and they are precisely the m-th roots of µ1, . . . , µn.
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Proof. Let B = A12A23 · · ·Am1. We are given that det(1− tB) = (1−µ1t) · · · (1−µnt).

Taking the determinant of the identity 1 −tA12 0
0 1 −tA23

−tA31 0 1

 ·
 1 0 0
t2A23A31 1 0
tA31 0 1

 =

 1− t3A12A23A31 −tA12 0
0 1 −tA23

0 0 1


reveals that (in the case m = 3)

det(1− tA) = det(1− t3B) = (1− µ1t
3) · · · (1− µnt

3),

and the argument for general m is essentially the same. �

By symmetry, the matrix factors appearing in B = A12A23 · · ·Am1 can be permuted

cyclically without affecting the result, yielding the following amusement.

Corollary 7. If A1, . . . , Am are rectangular matrices, then the nonzero eigenvalues of

A1 · · ·Am (with multiplicity) are unchanged by cyclic permutations of the factors, given

that all m permuted products are defined (and therefore are square).

Define the periodicity of a square matrix A to be the greatest common divisor of the

lengths of all closed directed paths in its support graph. Note that the periodicity of the

1× 1 matrix [ 0 ] is ∞; for all other strongly connected matrices it is an integer p > 1.

Theorem 8. Let ω be a primitive p-th root of unity. If A is nonnegative and strongly

connected with periodicity p <∞, then

(a) A is p-cyclic,

(b) the eigenvalues of A (with multiplicity) are stable under multiplication by ω,

(c) the extremal eigenvalues of A are ωkρ (0 6 k < p), and

(d) each extremal eigenvalue is a simple root of the characteristic polynomial of A.

Proof. (a) Suppose that there are directed paths of lengths k and l from vertex 1 to

vertex i in the support graph of A. There must also be a directed path, say of length h,

that returns from vertex i to vertex 1. Thus there are closed paths of lengths k + h and

l + h, so both lengths must be divisible by p and k = l mod p. In other words, all paths

from vertex 1 to vertex i have the same length mod p.

We may therefore partition the vertices of the support graph into p blocks so that block

k consists of all vertices reachable from vertex 1 by a directed path of length k mod p

(0 6 k < p). If there were an edge directed from block k to block l, then there would be

a directed path of length k + 1 mod p from vertex 1 to a vertex in block l, so this could

happen only if l = k + 1 mod p. Thus A is p-cyclic.

Having proved that A is p-cyclic, (b) follows immediately from Lemma 6.

It also follows that Ap is block-diagonal, say Ap = diag(A0, . . . , Ap−1).
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Given a set of positive integers with greatest common divisor p, one knows by a theorem

of Schur2 that every sufficiently large multiple of p is a nonnegative integer combination of

those integers. Thus by extending a single closed path that passes through every vertex,

one can find such paths having a length equal to any sufficiently large multiple of p. Since

there must be a directed path of length divisible by p between any two vertices in the same

block, it follows that there must also be directed paths whose lengths are any sufficiently

large multiple of p. That is, all sufficiently high powers of A0, . . . , Ap−1 are positive.

By Theorem 2, we may deduce that each of A0, . . . , Ap−1 has a unique extremal eigen-

value, and (Theorem 4) the extremal eigenvalue of block Ai has multiplicity 1. On the

other hand, each extremal eigenvalue λ of A contributes an extremal eigenvalue λp to Ap,

so by pigeon-holing, there can be at most p such eigenvalues (with multiplicity) since at

most one occurs in each block Ai. By part (b) and a second application of Theorem 4,

we know that A has at least p extremal eigenvalues; namely, ωiρ for 0 6 i < p. Therefore

these must be all of the extremal eigenvalues (proving (c)), and they each must occur with

multiplicity 1 (proving (d)). �

By decomposing the support graph into strongly connected components, any nonnega-

tive matrix is permutation-equivalent to a block-triangular matrix whose diagonal blocks

are strongly connected. Therefore,

Corollary 9. Every extremal eigenvalue of a nonnegative real matrix is an m-th root

of a real number for some m.

In the proof of Theorem 8, we saw that if A has periodicity p, then the diagonal blocks

of all sufficiently high powers of Ap are positive.

Corollary 10. All sufficiently high powers of a nonnegative matrix A are positive if

and only if A is strongly connected and has periodicity 1.

A further consequence of Theorem 8 is that we can detect the periodicity of a nonneg-

ative strongly connected matrix from its spectrum.

Corollary 11. A nonnegative strongly connected matrix A has periodicity p <∞ if

and only if it has p distinct (nonzero) extremal eigenvalues.

3. Monotonicity

Recall if A is not strongly connected, then A can be permuted into the block triangular

form
[
A11 A12

0 A22

]
. In particular, the eigenvalues of A are those of A11 and A22, so we may

perturb the entries of A12 arbitrarily without affecting the spectral radius of A.

2OK, I lied when I said that the only non-trivial thing we would take for granted would be Jordan
Canonical Form. Still, you could argue that Schur’s theorem is actually pretty well-known and easy. In

any case, there is a nice elementary proof that can be found in Section 3.15 of [W].
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On the other hand, the following result shows that if we increase or decrease any single

entry of a nonnegative strongly connected matrix (but keep the matrix nonnegative), then

the spectral radius necessarily changes, and in the same direction as the perturbation.

Theorem 12. If |B| 6 A entry-wise, then ρ(B) 6 ρ(A). Moreover, if equality occurs

and A is strongly connected, then |B| = A.

Proof. We have |Bn| 6 |B|n 6 An, so the entries of Bn are asymptotically dominated

by those of An. In particular, if ρ(A) = 0, then A is nilpotent, and therefore B must be

as well. Otherwise, we may assume ρ = ρ(A) > 0, in which case the entries of Bn are

O(nr−1ρn) for some r > 1 by Lemma 1(a). If λ is an extremal eigenvalue of B and v is an

associated eigenvector, then some coordinates of Bnv = λnv must grow at the asymptotic

rate of ρ(B)n, so this is possible only if ρ(B) 6 ρ.

In the case of equality, we may assume B is nonnegative (i.e., B = |B|). Given that A

is strongly connected, Theorem 4 implies that A has a positive left eigenvector wT with

eigenvalue ρ, and Lemma 3 implies that B has a nonnegative right eigenvector v with

eigenvalue ρ. It follows that

wT(A−B)v = (wTA)v − wT(Av) = ρwTv − ρwTv = 0.

However, A > B and wT is positive. So if v is positive, this forces A = B and we are done.

Permuting coordinates if necessary, the remaining possibility is that the first a coor-

dinates of v are positive, and the remaining b coordinates are 0. In that case, as noted

previously in the proof of Theorem 4, the condition Bv = ρv forces the southwest b × a
submatrix of B to vanish. Furthermore, the corresponding submatrix of A cannot be zero,

otherwise A would not be strongly connected. Therefore, one or more of the first a columns

of wT (A−B) is positive, and hence wT (A−B)v > 0, a contradiction. �
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