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Introduction

The worksheets in this document were created to help University
of Michigan students transition into mathematics courses that are
more writing intensive.1 The required math background is minimal.

1 “One doesn’t really understand what
mathematics is until at least halfway
through college when one takes abstract
math courses and learns about proofs.”

–Karen Uhlenbeck ’64In terms of content, students need to have seen high school algebra,
high school geometry, and college-level calculus (at the level of Math
115). Experience has shown that the most important quality a student
needs to succeed is intellectual curiosity.2

2 Thus, while it is good to be motivated
to learn how to read and write
mathematics for reasons like, for
example, the well paying job that an
actuarial, computer science, or statistics
degree may bring you, we have found
that in the absence of a desire to learn
for the sake of learning, students
with these other motivations tend to
be unhappy while completing these
worksheets.

Throughout, an effort has been made to focus on the fundamentals
of mathematical writing, rather than the mathematics itself. Thus,
plenty of hints have been given. However, this doesn’t mean that
these worksheets will be a walk in the park—most people find
mathematical writing to be extremely challenging.3

3 See, for example, how the authors of
the works listed in Some Suggestions
for Further Reading on page 67 describe
why their books were written.

In the remainder of this introduction, we discuss (a) two mathematical
results students should know before starting these worksheets and (b)
how these worksheets are intended to be used.

Two results students need to know

The first result students need to know is that the integer
zero is even. The set of integers is {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}. By
definition, an integer is even provided that it can be written as 2k
for some integer k. So, for example, 42 is even because 42 = 2 · 21.
An integer is odd provided that it can be written as one more than
an even integer; that is, as 2ℓ + 1 for some integer ℓ. Thus, −67 =

2 · (−34) + 1 is odd. Since zero can be written as 2 · 0, zero is even.

In many other languages, the words for
even and odd are much more natural:
pair and impair in French; par and impar
in Spanish; gerade and ungerade in
German; pari and dispari in Italian; . . .

The second result students need to know is that the positive
square root4 of 2, often written

√
2, is not a rational number. A 4 We say ⋆ is a square root of $ provided

that ⋆2 = $.rational number is any number that can be written as a ratio a/b of
two integers with b not zero. You may have learned that a rational never divide by zero.

number is a number whose decimal expansion terminates or repeats—
this is equivalent5 to saying it can be written as a ratio c/d of 5 You will establish this equivalency in

Exercise 18.10 on page 46.
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integers with d ̸= 0. The fact that
√

2 is not rational needs to be
demonstrated,6 and there are at least nineteen known distinct proofs. 6 “In the course of my law-reading

I constantly came upon the word
demonstrate. I thought, at first, that
I understood its meaning, but soon
became satisfied that I did not. I
said to myself, ‘What do I do when I
demonstrate more than when I reason
or prove? How does demonstration
differ from any other proof?’ I
consulted Webster’s Dictionary. That
told of ‘certain proof,’ ‘proof beyond
the possibility of doubt;’ but I could
form no idea what sort of proof that
was. I thought a great many things
were proved beyond a possibility of
doubt, without recourse to any such
extraordinary process of reasoning
as I understood ‘demonstration’ to
be. I consulted all the dictionaries
and books of reference I could find,
but with no better results. You might
as well have defined blue to a blind
man. At last I said, ‘LINCOLN, you
can never make a lawyer if you do
not understand what demonstrate
means;’ and I left my situation in
Springfield, went home to my father’s
house, and staid there till I could give
any propositions in the six books of
Euclid at sight. I then found out what
‘demonstrate’ means, and went back to
my law studies.” – Abraham Lincoln,
quoted in Mr. Lincoln’s Early Life; HOW
HE EDUCATED HIMSELF, The New
York Times, September 4, 1864.

Here is a proof that is very similar to the one that may be found in
later versions of Euclid’s Elements (Proposition 117 of Book X):

Suppose for the sake of contradiction that
√

2 is rational. Then there
exist integers a and b with b ̸= 0 such that

√
2 = a/b. After cancelling

out factors of two, we may assume that at most one of a and b is even.

Since
√

2 = a/b, we have 2b2 = a2. This means a2 is even. Since the
square of an odd number is odd, it must be the case that a is even.
Thus a = 2k for some natural number k. Consequently 2b2 = 4k2, so
b2 = 2k2, and hence b2 is even. Since the square of an odd number is
odd, it must be the case that b is even.

Since a and b are even, but at most one of a and b is even, we have
arrived at a contradiction. Hence, our original assumption that

√
2 is

rational must be false. Thus,
√

2 is not rational.

How these worksheets are intended to be used.

Around 2009 we noticed that more and more students
were arriving at U(M) without having seen basic set theory and
predicate logic. The handouts Joy of Sets and Mathematical Hygiene,
both of which appear in the Resources part of this document, were
developed to help bridge this knowledge gap. Of course, if you
were not exposed to these concepts in K-12, then you will not have
practiced and internalized them. Thus, in 2015 we started developing
worksheets to better help students get up to speed on these topics.

In 2019 students from Math 175, 185, 217, and 295 were invited to
work on drafts of the worksheets. The students worked in groups of
four to six under the guidance of experienced students of mathematics.
This scheme worked very well, and many improvements were made:
a great many hints were added, model proofs were added to most
worksheets, and exercises that distracted more than aided were
removed. In 2020 the handouts More Joy of Sets and Complex Numbers,
were created in response to student suggestions. Feedback is most
welcome! Please send your suggestions to math-updir@umich.edu.

The current form of these worksheets assumes that you will
be working collaboratively7 with others under the guidance of an 7 Both (i) explaining your own

reasoning to others and (ii) listening
to the explanations of your peers
provide mechanisms for you to share
ideas, clarify differences, construct new
understandings, and learn new problem
solving skills. Studies consistently
show that collaborative work results
in improved persistence, increased
retention, enhanced teamwork skills,
better communication skills, higher
future individual achievement, greater
knowledge acquisition, . . . Of course,
the key word here is collaborative; you
need to both listen and contribute.

experienced student of mathematics. The pacing has been designed
so that, on average, one worksheet can be completed per hour. While
the first five worksheets should be done in order, after that there is
some freedom to choose, with guidance from an experienced hand,
an appropriate path through the worksheets.
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Set Theory

Set Theory lies at the heart of all things mathematical, so we will
take some time to review the fundamentals.8 In this worksheet 8 See, for example, The Joy of Sets on

page 49.you will work with some of the basic concepts: Cartesian products,
intersections, unions, subsets, complements, and set-builder notation.9 9 Set-builder notation is also called

comprehension notation.You should know roughly what these terms mean. You should also
be familiar with some basic sets that crop up often:

warning. Some people include 0 in the
set of natural numbers; we do not.

When you are struggling to internalize
a new mathematical idea, know that
your struggle is natural and take
some comfort from history. For
example, while the use of zero as a
placeholder can be traced back at least
five thousand years to the Sumerians
of ancient Mesopotamia, its first
documented use as a number had to
wait until the work of Brahmagupta
in 628 AD. Similarly, while negative
numbers were introduced around 200
BC in China and appear in Indian
mathematics beginning around 600
AD, many mathematicians, especially
in Europe, rejected the existence of
negative numbers until well into the
nineteenth century!

N = the set of natural numbers = “counting numbers” = {1, 2, . . .}.

Z = the set of integers = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

Q = the set of rational numbers (fractions) = {c/d | c ∈ Z, d ∈ N} .

R = the set of real numbers. Often represented via the number line.

C = the set of complex numbers = {a + bi | a, b ∈ R and i2 = −1}.

Exercises

1.1 Let’s practice set-builder notation. Write out in plain English what
the following sets are. For example, {x ∈ R | x2 > 3} is “the set of
real numbers whose square is bigger than 3.”

(a) {n ∈ Z | n2 > 5}.

(b) {n ∈ Z | n = 2k + 1 for some k ∈ Z}
(c) {(x, y) | x, y ∈ S}, where S is a set.10 10 The set {(s, s′) | s, s′ ∈ S} is the

Cartesian product of S with itself; it is
often referred to as S × S, or S2. This
idea can be extended to S3 where the
elements look like (s1, s2, s3), and so
on for Sn. Common examples are
R2 (the plane) and R3 (normal three-
dimensional space). See page 59 for
more on Cartesian products.

(d) {(x, y) ∈ R2 | x2 = y}.

1.2 Fix a, b ∈ R with a < b. Write the interval [a, b) in set-builder
notation. (Why require a < b?)

a b

1.3 Suppose J = {⋆,%} and K = {a, b, c}. Express J × K in set-builder
notation. List the elements of J × K.
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1.4 Write [0, 1] \ Q with set-builder notation. Then write it as the Set differences, e.g. [0, 1] \ Q, are
discussed in Definition 6 on page 52.intersection of [0, 1] and another set.

When is one set a subset of another? For two sets A and B, we
say A is a subset of B, abbreviated A ⊂ B or A ⊆ B, provided that
every element of A is an element of B. This is equivalent to saying
x ∈ A implies x ∈ B.

1.5 Suppose Ξ = {67, {67}}. Which of the following statements are In Exercise 1.5 the number 67 is to be
treated as an object, not as a set.true? Explain your answers.

• 67 ∈ Ξ.

• {67} ∈ Ξ.

• 67 ⊂ Ξ.

• {67} ⊂ Ξ.

A proof that A ⊆ B often has the following structure: choose an
element a of A; show that a meets the requirements for belonging to
B; conclude that A ⊆ B. So, for example, a proof that Z is a subset of
Q might go like this: “Choose n ∈ Z. Note that n = n/1 ∈ Q. Thus
Z ⊆ Q.”

1.6 Suppose L, M, N, and O are sets with M ⊂ N. Show11 that if

11 Many students find that the
remaining exercises on this worksheet
are challenging. Don’t panic; you can
do this. Follow the proof templates to
the left and below, use the many hints
provided in the margin, and write in
complete sentences.

L ⊂ M, then L ⊂ N. If O ⊂ N, then is it true that O ⊂ M?

1.7 Let C = {n ∈ Z | n is a multiple of 18}, let E denote the set of
even integers, and let D = {ℓ ∈ Z | ℓ is a multiple of 9}. Show that

To show P ⊂ K, follow these steps:
(a) Let p ∈ P be arbitrary.
(b) Use the properties of P to say

something about p.
(c) Use what you learned in (b) to

show p satisfies the properties
of K.

(d) Conclude p ∈ K, but because p
was arbitrary in P, P ⊂ K.

C ⊂ D ∩ E.

When are two sets equal? Two sets X and Y are equal provided
that every element of X is an element of Y and vice-versa. Thus,
X = Y if and only if X ⊆ Y and Y ⊆ X. When using this technique

When people say “P if and only if Q”
they mean “P is true exactly when Q is
true”. This is equivalent to saying “P
implies Q and Q implies P”. The latter
interpretation is often the more useful.in a proof, label the sections that show X ⊆ Y and Y ⊆ X clearly!

1.8 Suppose X is a set and I, J ⊂ X. Show that J \ I = J ∩ I∁. Set complements, e.g. I∁, are discussed
in Definition 7 on page 52.

1.9 Let F = {5k − 7 | k ∈ Z} and let G = {5ℓ+ 13 | ℓ ∈ Z}. Show that
F = G.

1.10 Let H = {a(1, 2) + b(3, 5) | a, b ∈ R}. Show R2 = H. Hint: given the pair (x, y) ∈ R2, let
a = −5x + 3y and b = 2x − y.

1.11 Let B = {(x, y) ∈ R2 | x2 + y2 < 1} and let C = {(x, y) ∈ R2 |
x2 + y2 = 1}. Determine what C ∪ B is and prove it.

Do not be afraid to name things. For
example, in Exercise 1.11 you may want
to let D denote the unit disk centered at
the origin in R2. This makes it easier to
see that your job is to show D = B ∪ C.

“There is no math without courage.”
–BR, 2017

1.12 (Review.) True or False: zero is an even number. Justify your
answer.



Functions (part one)

The concept of function is one of the more important ideas that
you will encounter in all your study of math. Suppose S and T are
sets. A function f : S → T (read as “ f is a function from S to T”) is
a rule that assigns a unique element f (s) ∈ T to each element s ∈ S.
Essentially, a function f is a guide that tells you what object f (s) ∈ T
is paired with a given s ∈ S.

A function f : S → T can assign only one f (s) ∈ T to each s ∈ S,
and it must assign an object f (s) ∈ T to every s ∈ S. That first
requirement on a function is the equivalent of the vertical line test
that you may have learned about in high school.

1

1

x

y

In red is a graph of pairs (x, y)
satisfying

2(x + ln(2))2 + π2(y − 23/57)2 = 2π2.

The rule that assigns ẏ ∈ R to ẋ ∈ R

provided that (ẋ, ẏ) is on the red graph
fails to define a function from R to R.For a function g : S → T, we call S the source, or domain, of the

function, and T the target, or codomain, of the function g.
For more on functions see More Joy of
Sets on page 57.

Exercises

2.1 Explain why the rule discussed below the red ellipse pictured in
the margin fails to define a function from R to R.

A discussion of the relationship
between graphs and functions begins at
the bottom of page 59.

2.2 Suppose S and T are sets. Determine the number of possible
distinct functions from S to T when (a) |S| = |T| = 1; (b) |S| = 2
and |T| = 3; and (c) |S| = n and |T| = m where n, m ∈ N.

We can also build functions using piece-wise notation. For
example, consider the function f : R → R given by

f (x) =





x + 1 if x ≥ 0;

0 if x < 0.

What this tells us is that f (x) = x + 1 if x ≥ 0, and f (x) = 0 if x < 0.

Make sure you understand why this is
actually a function; ask an experienced
student of mathematics if you have any
doubts.

2.3 Sketch a graph of f : R → R given by

Notice how it’s like cutting and pasting
two graphs together, where you change
from one function to another at x = 0.

f (x) =





x + 1 if x ≥ 0;

−x2 − 2 if x < 0.
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2.4 Which of the following proposed functions actually defines a
function? If it is not a function, explain why it isn’t.

(a) f : R → R given by f (x) =





x2 + 1 if x ≥ 0;

x − 1 if x ≤ 0.

(b) f : R → R given by f (x) =





x2 + x − 4 if x ≥ 1;

x − 3 if x ≤ 1.

(c) f : R → R given by f (x) =





0 if x ∈ Q;

1 if x ∈ R \ Q.
An element of R \ Q is called an
irrational number.

(d) f : N → Q given by f (x) =
√

x.

2.5 Let A be a set, and suppose you are given two functions f : A → R

and g : A → R. Provide brief justifications for your answers.

(a) Does sending a ∈ A to ( f g)(a) = f (a)g(a) define a function?
What is the domain? What is the codomain?

(b) What if we send a ∈ A to ( f + g)(a) = f (a) + g(a)?

(c) Does sending a ∈ A to ( f /g)(a) = f (a)/g(a) define a function?

Composing functions is another way to produce new functions
from old ones. Suppose A, B, and C are sets and f : B → C and
g : A → B are two functions. Then we can define the composition of

What this does is send an element
a ∈ A to an element g(a) ∈ B, and then
it sends g(a) to an element f (g(a)) ∈ C,
so the function goes from A to B and
then from B to C.

two functions, f ◦ g : A → C, by ( f ◦ g)(a) = f (g(a)) for a ∈ A.

2.6 Rewrite the composition f ◦ g : R → R of f : R → R and g : R → R

as a polynomial or a simple piece-wise function. For example, if g(x) = x + 1 and
f (x) = x2, then ( f ◦ g)(x) = x2 + 2x + 1.

(a) g(x) = 2x + 3 and f (x) = x2 + 5x + 1.

(b) g(x) = 3 and f (x) = x + 5.

(c) g(x) = x2 and f (x) =
√
|x|.

The absolute value function | | : R → R

is defined by

|x| =
{

x if x ≥ 0;
−x if x < 0.

for x ∈ R.
(d) g(x) =




−1 if x ∈ Q;

1 if x ∈ R \ Q.
and f (x) = x2.

2.7 Let X = R \ {0, 1}. The following functions have X as both their
domain and codomain: IdX(x) = x, f1(y) = 1/(1 − y), f2(z) =

1 − 1/z, g1(u) = 1/u, g2(v) = 1 − v, and g3(w) = w/(w − 1).

For a set S the identity function on S,
denoted IdS : S → S, is defined by
IdS(s) = s for all s ∈ S.

(a) Show12 that g1 ◦ g1 = g2 ◦ g2 = g3 ◦ g3 = IdX
12 Two functions f : S → T and
f̃ : S̃ → T̃ are said to be equal provided
that: (a) S = S̃; (b) T = T̃; and
(c) f (s) = f̃ (s) for all s ∈ S.

(b) Show that f1 ◦ f2 = f2 ◦ f1 = IdX .

(c) Show13 that g1 ◦ g2 = f1, g2 ◦ g1 = f2, and f1 ̸= f2.
13 Since f1 ̸= f2, this shows that function
composition is not commutative. In
Exercise 4.10 on page 16 you will show
that function composition is associative.

2.8 (Review.) Write [0, ∞), the set of nonnegative real numbers, in
set-builder notation. Show that [0, ∞) = R \ (−∞, 0).

0



Existential Quantifiers

The existential quantifier “there exists” is the first of our two
major quantifiers. “There exists” (or alternatively, “there is”) is often
abbreviated as ∃. This is a useful abbreviation for scratch work, but
you should write out the actual words and avoid using the symbol ∃
in proofs in any formal writing. This quantifier is called existential
because it declares the existence of a particular object.

Because the symbol ∃ is often followed
by a predicate clause, in practice the
string of symbols “∃x” translates into
English as "there exists x such that”.

A proof involving existential quantifiers generally involves
finding or constructing a certain object that satisfies some conditions.
For example, a proof that there exists a twice differentiable function
f : R → R such that f ′′ + 9 f = 0 might go something like this:

Let g(t) = sin(3t + 5). Since

g′′(t) + 9g(t) = −9 sin(3t + 5) + 9 sin(3t + 5) = 0,

a function satisfying the differential equation f ′′ + 9 f = 0 exists.

Exercises

3.1 Write the following propositions in plain English.

(a) ∃n ∈ N such that n2 = 9.

(b) ∃m ∈ Z such that m < −
√

2.

(c) ∃ℓ, m ∈ N such that 3ℓ+ 5m = 13.

(d) ∃j ∈ {3, 4, 7} such that j3 is divisible14 by 8. 14 If m and n are integers, we say that
m divides n provided that there is some
integer k such that km = n. When this
happens, we say that n is divisible by m
and m is a factor of n.

3.2 Which of the following propositions are true? Justify.

(a) ∃ℓ, m ∈ N such that 3ℓ+ 5m = 13.

(b) ∃x ∈ R such that x2 = 0.

(c) ∃k ∈ N such that k > 1 and k is not prime.15 15 A natural number p is said to be prime
provided that it has exactly two distinct
positive integer factors.(d) ∃ℓ ∈ N such that ℓ2 − 5ℓ+ 6 = 0.

(e) ∃q ∈ Q such that q2 − 2 = 0.
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3.3 Rephrase the statement “x2 − 2x − 3 has a real root” using the
quantifier ∃.

x ∈ R is a root of a polynomial p
provided that p(x) = 0.

3.4 Prove there exists a non-trivial rational solution to x2 + y2 = 1.
(Here, non-trivial means different from the trivial solutions (0,±1)
and (±1, 0)).

Hint: What’s your favorite Pythagorean
triple?

3.5 Suppose A is a set and ℓ : A → R is a function. Use the quantifier
∃ to define what it means for ℓ to be a nonzero function.16

16 The zero function from A to R is the
function that sends every element of
A to 0. A nonzero function from A to
R is any function that is not the zero
function.3.6 Prove your answer to question 3.3.

3.7 Suppose c ∈ R is not zero. Show that there is a nonzero differentiable
function f : R → R that satisfies f ′ − c f = 0. Does your
function also work when c = 0? Graph the function f you find for
c = − ln(2). x

y

1

3.8 Diophantine equations are equations where only integer solutions
are of interest. For example, the Diophantine equation x2 + 2xy −
3y2z − 17 = 0 has solution (x, y, z) = (1, 2,−2). On the other hand,
the Diophantine x2 + y2 + 1 = 0 has no solutions.17

17 The tenth of David Hilbert’s
influential list of twenty-three problems,
which he published in 1900, asks if
there is a general algorithm which can
decide whether a given Diophantine
equation has a solution or not. Thanks
to the mid twentieth century work of
Martin Davis, Yuri Matiyasevich, Hilary
Putnam, and Julia Robinson we know
the answer is no.

(a) Prove the linear Diophantine equation 36x + 35y = 11 has a
solution.

(b) Prove the Diophantine equation x2 + y2 + 1 = 0 has no solution.

(c) Prove that the Diophantine equation x2 − 2y2 = 1 has a nontrivial
solution other than x = ±3 and y = ±2. (Here the trivial

Hint: 17/12 is approximately
√

2.

solutions are x = ±1 and y = 0.)

3.9 (Review.) Show that A = {t(1, 0,−1) ∈ R3 : t ∈ R} is a subset of Hint: Given (t, 0,−t) = t(1, 0,−1) in A,
in order to show that it belongs to B try
letting r = −2t and s = t.

B = {r(1, 1, 1) + s(3, 2, 1) ∈ R3 : r, s ∈ R}.

3.10 Use the quantifier ∃ to describe what it means for a set H to have
at least three elements.

3.11 Show there exists a positive integer which can be expressed as the
sum of two cubes in two different ways.

I remember once going to see
[Ramanujan] when he was
ill at Putney. I had ridden
in taxi cab number 1729 and
remarked that the number
seemed to me rather a dull
one, and that I hoped it was
not an unfavourable omen.
“No” he replied, “it is a very
interesting number; it is the
smallest number expressible
as the sum of two cubes in
two different ways.”

– G. H. Hardy



Universal Quantifiers

The universal quantifier “for all” is the second of our two
major quantifiers. “For all” (or alternatively, “for every”) is often
abbreviated as ∀. This quantifier is called universal because it talks
about all objects, instead of a single one (contrast this with ∃).

A proof involving universal quantifiers generally involves
proving that a property holds for all objects in a certain set. Because
you cannot work with all elements of a set simultaneously, proving a
statement P(x) for all x is done by picking an arbitrary x and using
the properties and theorems you know to deduce P(x). Since your
choice of x was arbitrary at the beginning and could have been any x,
you may deduce that P(x) holds for all x. For example, a proof that
every integer that is divisible by 14 is even might go something like
this: “Fix an integer n divisible by 14. Then there exists k ∈ Z for
which n = 14k. Thus, n = 2m where m = 7k. Hence n is even.”

Exercises

Remember to fix an element to work with in your proof and state at
the very beginning that you are fixing such an element. For example,
in Exercise 4.4 below, you need to first state something like “Fix a
prime number p.” and work from there.

4.1 Write the following propositions in plain English.

(a) ∀ even integers n, n2 is divisible by 4.

(b) ∀n ∈ Z, n2 ≥ 0.

(c) ∀x ∈ R with |x| > 1, we have that x2 > x.

(d) ∀a, b, c ∈ Z with a2 + b2 = c2, we have that a is even or b is even.

4.2 Rephrase the statement “p + 7 is composite18 for any prime p” 18 A natural number is called composite
provided that (a) it is not one and (b) it
is not prime.

using the quantifier ∀.
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4.3 Which of the following propositions are true? If the proposition is
false, explain why.

(a) Every prime number is a Sophie Germain prime.19 19 A Sophie Germain prime is a prime p
such that 2p + 1 is also prime. Germain
used them in her work on Fermat’s Last
Theorem (see page 41).

(b) ∀n ∈ Z, n2 ≥ 0.

(c) ∀ sets S, S has a finite number of elements.

(d) Every integer divides zero. Hint: See sidenote 14.

(e) ∀x ∈ R, x has a real square root.

(f) ∀a, b ∈ Z, a
b is in Q. never divide by zero.

4.4 Show that for all primes p, p + 7 is composite. Hint: You may want to split the proof
into two cases: odd and even primes.

4.5 Prove that ∀x, y ∈ R, we have that x2 + y2 ≥ 2xy.

4.6 Rephrase the statement

A2 is upper triangular for any upper triangular 2 × 2 matrix A

using the quantifier ∀.

A two-by-two upper triangular matrix
with entries in R looks like

[
a b
0 d

]

with a, b, d ∈ R.
4.7 Show that the square of every two-by-two upper triangular matrix

is again an upper triangular matrix.

4.8 True or False. These are examples of vacuous truths.

(a) Every negative natural number is irrational.

(b) Every real solution to the equation x2 + 1 = 0 is blue.

(c) Not every real solution to the equation x2 + 1 = 0 is blue.

4.9 (Review.) True or False. The positive square root of 2 is a rational
number. Justify your answer.

4.10 (Review.) Show that function composition is associative . That is, if
A, B, C, and D are sets and f : A → B, g : B → C, and h : C → D
are functions, then show

h ◦ (g ◦ f ) : A → D is equal to (h ◦ g) ◦ f : A → D.

Hint: Two functions ℓ, m : A → D are
equal provided that ℓ(a) = m(a) for all
a ∈ A.

4.11 (Review.) Suppose A = {6m | m ∈ Z}, B = {15n | n ∈ Z}, and
C = {30ℓ | ℓ ∈ Z}. Show that A ∩ B = C.



Combining Quantifiers

Combining existential and universal quantifiers provides
a way for us to form more complicated mathematical statements. For
example, the Extreme Value Theorem20 states that if f : [a, b] → R is 20 You are probably more familiar

with this version: If f : [a, b] → R

is continuous, then f has both a
maximum and a minimum on [a, b].

continuous, then

∃c, d ∈ [a, b] such that ∀x ∈ [a, b], f (c) ≤ f (x) ≤ f (d),

the Archimedean Property21 says 21 As with many things in mathematics,
this result is probably named after the
wrong person; Archimedes himself
credited it to Eudoxus of Cnidus.

∀ε > 0 ∃n ∈ N such that 1/n < ε,

and the fact that Q is dense in R may be written as

∀x, y ∈ R with x < y ∃q ∈ Q such that x < q < y.

The order in which you list the quantitifiers ∀ and ∃ is extremely
important. Writing ∀x∃y means that given any x, you can find a y for
it. Each x has its own y. Writing ∃y∀x means that there exists a y that
works for every single x. That is, the same y works for every x.

A proof of a ∃y∀x statement requires that you first produce a The mathematical statement ∃y∀x
means that you present the reader of
the proof with a y before they give you
an x. Because the reader chooses x after
you present them a y, the y you present
cannot depend on x.

y and then show it works for all x. For example, if X is a set, then a
proof that there is a set A ⊂ X such that for every set B ⊂ X we have
A ∪ B = B might go like this: “Let A = ∅. Fix B ⊂ X. Note that
A ∪ B = ∅ ∪ B = B.”

A proof of a ∀x∃y statement requires that given any x you find The mathematical statement ∀x∃y
means that the reader of the proof
hands you an x before you hand them
a y. Because the x is presented to you
before you choose y, your choice of y
can depend on x.

a y that makes things work. For example, if X is a set, then a proof
that for all A ⊂ X there is B ⊂ X such that X = A ∪ B and ∅ = A ∩ B
might go something like this: “Fix A ⊂ X. Let B = X \ A. Note that
A ∪ B = A ∪ (X \ A) = X and A ∩ B = A ∩ (X \ A) = ∅.”

Exercises
Remember the tips from the previous
worksheets, especially from the
Universal Quantifiers worksheet on
page 15.

5.1 Write the following propositions in plain English.
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R>0 := {s ∈ R | s > 0}.(a) ∀x ∈ R>0 ∃n ∈ N such that 1
n < x.

(b) ∀p, q ∈ Q with p < q, ∃z ∈ R \ Q such that p < z < q.

(c) ∀x ∈ R ∃n ∈ N such that |x| > n.
Recall that the absolute value function
| | : R → R is defined by

|x| =
{

x if x ≥ 0
−x if x < 0

for x ∈ R.

(d) ∃n ∈ N ∀m ∈ N, n ≤ m.

(e) ∀m, n ∈ N ∃ℓ ∈ Z such that m + ℓ = n.

(f) ∀x, y ∈ R with x < y ∃q ∈ Q such that x < q < y.

(g) ∀p ∈ Q>0 ∃q ∈ Q such that 0 < q < p. Q>0 := {r ∈ Q | r > 0}.

5.2 Rephrase the statement “every positive real number has a square
root” using quantifiers.

5.3 Suppose f : R → R. Use quantifiers to define what it means for f
to be periodic (like cos is periodic with period 2π).

Hint: Don’t be afraid to name things.

5.4 Prove that ∀x ∈ R, ∃y ∈ R such that x2y + 2x = x. never divide by zero.

5.5 Prove that there is n ∈ Z such that for all m ∈ Z, n divides m. If k and ℓ are integers, we say that k
divides ℓ provided that there is some
integer j ∈ Z such that ℓ = jk.5.6 Provide a proof of Exercise 5.1g.

5.7 Prove that for any y ∈ R and any ε ∈ R>0, there exists a q ∈ Q Hint: You may want to use that Q is
dense in R.such that |q − y| < ε.

y y + ε

5.8 (Bonus.) Prove that for every non-zero vector v⃗ ∈ R2, there exists a
vector w⃗ ∈ R2 such that v⃗ and w⃗ are linearly independent.

Two vectors v⃗ and w⃗ in R2 are linearly
independent provided that the only
solution to av⃗ + bw⃗ = 0⃗ is a = b = 0.

5.9 (Bonus.) Show that for all matrices of the form

(
a 0
0 b

)
with a, b ∈

R \ {0}, there exists a two-by-two matrix M such that
(

a 0
0 b

)
M =

(
1 0
0 1

)
.

5.10 (Bonus.) Provide a proof22 of Exercise 5.1d. 22 A rigorous proof will probably
involve induction (see page 43).

5.11 (Review.) Show: {2n | n ∈ Z} = {6a + 10b | a, b ∈ Z}.

5.12 (Review.) In Exercise 2.7 on page 12 we introduced the functions
IdX(x) = x, f1(y) = 1/(1 − y), f2(z) = 1 − 1/z, g1(u) = 1/u,

The set of functions

G = {IdX , f1, f2, g1, g2, g3}
is an example of a (noncommutative)
group under function composition. You
can can learn more about groups in
Math 312, 412, or 493.

g2(v) = 1 − v, and g3(w) = w/(w − 1) all of which have domain
and codomain X = R \ {0, 1}.

(a) Show that f1 ◦ f1 = f2 and f2 ◦ f2 = f1.

(b) Since function composition is associative, both f1 ◦ f1 ◦ f1 and
f2 ◦ f2 ◦ f2 make sense. Compute them.



Functions (part two)

Injective, surjective, and bijective functions occur everywhere
in mathematics.

If you have not studied existential and
universal quantifiers (pages 13 and 15),
now would be a good time to do that.

A function is injective provided that different inputs map to
different outputs. That is, for sets S and T a function f : S → T is
injective provided that for all a, b ∈ S, if f (a) = f (b), then a = b.
Injective functions are also called one-to-one functions.

If g : A → B is injective, some people
will write

g : A ↪→ B.

A proof that a function is injective often has the following
structure: choose two elements s1, s2 of the source space that map
to the same element in the target; then use the fact that they map to
the same element in the target to show that s1 = s2. So, for example,
a proof that the function f : N → N defined by f (n) = 2n + 1 is
injective might go like this: “Choose n, m ∈ N such that f (n) = f (m).
Since f (n) = f (m), we have 2n + 1 = 2m + 1. Thus 2n = 2m. Since
2 ̸= 0, we conclude that n = m. Consequently, f is injective.”

Exercises

6.1 Formulate what it means for a function not to be injective. Have an
experienced student of mathematics check your definition.

6.2 Fix a ∈ R>0. Prove that the function w : R → R2 given by w(s) =
(2as, 2a/(1 + s2)) is injective. Due to mistranslation, the curve
described by w is often called the Witch of Agnesi.23

23 In 1748 Maria Gaetana Agnesi studied
this curve, which she called versiera, in
Instituzioni analitiche ad uso della gioventù
italiana, the first textbook to cover both
differential and integral calculus. Below
are graphs of versiera for a equal to .3,
.5, and .7.

x

y

1

6.3 Prove that the function d : Z → Z given by d(x) = 2x is injective.

6.4 Prove that the function s : Z → Z given by s(x) = x2 is not
injective.

6.5 (Bonus.) Prove that the function j : Q>0 → N given by j(q) =

2m3n, where m, n are positive and q = m/n in lowest terms24, is

24 We say q = m/n is in lowest terms
provided that the only natural number
that divides both m and n is 1.

injective.

Hint: No integer can be both odd and
even. Also, by convention ∀,, ,0 = 1.
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A function is surjective provided that every element in its target
has something mapping to it from the source. That is, for sets A and
B a function g : A → B is surjective provided that for every b ∈ B
there exists a ∈ A such that g(a) = b. Surjective functions are also

If g : A → B is surjective, some people
will write

g : A ↠ B.

called onto functions. Q: What do you call a knight who goes
around the castle stabbing everyone?
A: Sir Jective.

–NB, 2018

Q: What did the citizens of the castle
say as Sir Jective left the castle?
A: Bye, Jective.

–HB, 2020

A proof that a function is surjective often has the following
structure: choose an element t of the target space; produce s in the
source that maps to t; verify that s is mapped to t. So, for example,
a proof that the function f : R → R defined by f (x) = x3 − x is
surjective might go like this: “Choose y ∈ R. Since limx→∞ f (x) = ∞,
there is a b ∈ R for which f (b) > y. Since limx→−∞ f (x) = −∞, there
is an a ∈ R<b for which f (a) < y. Since f is continuous on [a, b] and
f (a) < y < f (b), by the Intermediate Value Theorem25 there is an 25 The Intermediate Value Theorem says

that if h : [a, b] → R is continuous and
d ∈ R is between h(a) and h(b), then
there exists c ∈ [a, b] for which h(c) = d.

x ∈ [a, b] ⊂ R for which f (x) = y.”

Exercises

6.6 Formulate what it means for a function not to be surjective. Have
an experienced student of mathematics check your definition.

6.7 Prove26 that the function ℓ : R → R defined by ℓ(x) = |x| is not 26 Remember to write in complete
sentences.surjective.

6.8 Prove that the function g : Q → N give by g(q) = n, where n is
positive and q = m/n in lowest terms27, is surjective.

27 By convention we represent 0 in
lowest terms by 0/1.

6.9 (Bonus.) Prove that any nonzero linear28 function f : R67 → R is 28 A function g : R67 → R is said to be
linear provided that

• g(x⃗ + y⃗) = g(x⃗) + g(⃗y) for all
x⃗, y⃗ ∈ R67 and

• g(cx⃗) = cg(x⃗) for all c ∈ R and
x⃗ ∈ R67.

surjective. Is it necessary to assume f is nonzero?

6.10 (Bonus.) Use Intermediate Value Theorem to show that for f : R →
R continuous, if limx→∞ f (x) = ∞ and limx→−∞ f (x) = −∞, then
f is surjective.

A function is bijective provided that every element in the target
has exactly one element mapping to it. That is, a function is bijective
provided that it is both injective and surjective. Bijective functions are
important because they are invertible.29

29 Suppose A and B are sets. A function
h : A → B is said to be invertible
provided that there exists g : B → A
such that h ◦ g(b) = b for all b ∈ B
and g ◦ h(a) = a for all a ∈ A. When
h : A → B is invertible, the function
g : B → A is called an inverse or inverse
function of h.Exercises

6.11 Prove that for any k ∈ Z, the function f : R2 → R2 given by
f (x, y) = (x + 2ky, 3x + y) is bijective.

Hint: If (a, b) = (x + 2ky, 3x + y),
then x = a−2bk

1−6k and y = b−3a
1−6k . Also

1/6 ̸∈ Z.

6.12 Prove that the function g : R → R defined by g(x) = x3 is bijective.
(Taking cube roots is not allowed until after this result is proved.) Hint: You may assume a2 + ab + b2 = 0

if and only if a = b = 0; this will be
proved in Exercise 12.6 of the Casework
worksheet (see page 33). Also, thanks
to the Intermediate Value Theorem (see
Exercise 6.10 above), if f : R → R is
continuous and lim▷◁→∞ f (▷◁) = ∞
while lim⋆→−∞ f (⋆) = −∞, then for
all t ∈ R there exists s ∈ R such that
f (s) = t.



Negating Universal Quantifiers

Negating quantifiers is challenging but necessary if we
want to prove that statements involving quantifiers are false. Given
a set X, if you want to show a property P does not hold for all
x ∈ X, you must show that P fails to hold for some x in X. So, the
negation of “∀x, P(x) is true” is “∃x such that P(x) is false.” Because
negating statements can be tricky, you may want to spend some time
reviewing elementary predicate logic. 30

nb: the words “such that” are paired
with the words “there exists”.

30 See, for example, Mathematical Hygiene
on page 53.

A Proof that involves negating a universal quantifier
usually arises because we want to show that a statement is false. For
example, to prove that the statement

Every natural number is prime.

is false, we could proceed as follows: “To show that the statement
‘Every natural number is prime.’ is false, it is enough to show that
the statement’s negation, ‘There exists a natural number which is not
prime.’, is true. Consider the natural number 42. Since 1, 2, 3, 6, 7, 14,
21, and 42 are positive divisors of 42, the number 42 has more than
two distinct positive divisors and is therefore not prime.”

Exercises

7.1 Negate the following statements. In order to negate a statement, you do
not need to know the technical meaning
of the words in the statement.(a) All primes are odd.

(b) Every subgroup of S5 is a normal subgroup of S5. To learn about groups, subgroups, and
normal subgroups, please take Math
312, 412, or 493.(c) ∀x ∈ R, x2 = 1.

(d) ∀x ∈ R, x2 < 0.

7.2 Which of the following statements are true? If a statement is false,
negate it and prove31 the negated version. 31 Remember to write in complete

sentences.
(a) Every nonnegative real number has two distinct real square

roots.
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(b) ∀n ∈ N, 2n ≤ n!. The notation n! is read as “n factorial,”
and it is shorthand for the product
1 · 2 · 3 · · · · n. So, for example, 4! is 24.(c) ∀x ∈ R, x2 − 2x + 1 ≥ 0.

(d) ∀x ∈ [0, 1), it is true that x2 < x.

(e) Every odd number greater than 4 is the sum of two primes. Every odd number greater than 5 is the
sum of three primes. This was proved
in 2013 by Harald Helfgott. Goldbach’s
conjecture remains open.

7.3 Consider the statement

For all irrational numbers x, y, it is true that xy is irrational.

Is this statement true? If so, prove it. If not, negate it and prove the
negated version.

7.4 Consider the statement

For all odd integers m, n, it is true that mn is odd.

Is this statement true? If so, prove it. If not, negate it and prove the
negated version.

7.5 (Bonus.) Consider the statement

For all m, n ∈ N, the vectors

[
2
3

]
and

[
5m + 7
n + 2

]
are linearly

independent.

Two vectors v⃗ and w⃗ in R2 are linearly
independent provided that the only
solution to av⃗ + bw⃗ = 0⃗ is a = b = 0.

Is this statement true? If so, prove it. If not, negate it and prove the
negated version.

7.6 (Bonus.) Formulate and prove the negation of this statement

For all k ∈ Z, the matrix [
1 2k
0 k

]

is invertible.

A two-by-two matrix A with real entries
is said to be invertible provided that
there exists a two-by-two matrix B with
real entries such that AB = BA = Id2.
Here Id2 is the two-by-two matrix

[
1 0
0 1

]
.

7.7 (Review.) Decide whether each of the following functions is
injective, surjective, and/or bijective. Justify your answers.

(a) s : N → Z defined by s(n) = n2.

(b) The ceiling function ⌈·⌉ : R → Z. For r ∈ R we define ⌈r⌉ := n where
n ∈ Z and n − 1 < r ≤ n.

−4 −3 −2 −1 1 2 3 4

−3

−2

−1

1

2

3

4

x

y(c) (Bonus) t : N → Z defined by

t(n) =





n/2 − 1 if n is even;

−(n + 1)/2 if n is odd.

7.8 (Review.) Each of the following statements is either true or false.
Prove the statements that are true.

(a) ∀x ∈ R and ∀y ∈ R ∃z ∈ R such that x + y = z.

(b) ∀x ∈ R ∃z ∈ R such that ∀y ∈ R we have x + y = z.



Negating Existential Quantifiers

Negating existential quantifiers is a challenging but
essential skill for working with nearly all mathematical proofs. Given
a set X, if you want to show there is no x ∈ X satisfying property
P, then you must show that the negation of P, written ¬P, holds for
all x ∈ X. That is, the negation of “∃x such that P(x) is true” is “∀x,
¬P(x) is true.”

A proof that involves negating an existential quantifier
usually arises because we want to show that a statement is false. For
example, to prove that the statement

There exists even n ∈ Z such that n2 is odd.

is false, we could proceed as follows: “To show that the statement
‘There exists even n ∈ Z such that n2 is odd.’ is false, we show that
the statement’s negation, ‘For every even integer n we have that n2 is
even.’ is true. Fix an even integer n. Then there is a k ∈ Z such that
n = 2k. Note that

n2 = (2k)2 = 4k2 = 2(2k2),

hence n2 is even.”

More generally, the product of an even
integer with any integer is even. Can
you show this? Under what conditions
on integers a and b is the product ab
odd?

Exercises

You may want to review the worksheet Universal Quantifiers on
page 15 for tips on proving “for all” statements. In particular,
remember that if you want to show something is true for all x in
a set X, then you need to fix an arbitrary x in X with which to work.

8.1 Negate the following statements. In order to negate a statement, you do
not need to know the technical meaning
of the words in the statement.(a) It rained one day.

(b) ∃x ∈ R \ Q such that x2 ∈ Q.

(c) There is a Cauchy sequence in R that doesn’t converge. To learn about Cauchy sequences,
please take Math 297, 351, or 451.
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(d) ∃x ∈ Q such that x2 + 4x + 2 = 0.

(e) ∃a, b, c ∈ N such that a3 + b3 = c3.

(f) Some days are better than today.

(g) Some triangles are scalene.32 32 A triangle is said to be scalene
provided that all three sides have
different lengths.8.2 Which of the following statements are true? If a statement is false,

negate it and prove33 the negated version. 33 Remember to write in complete
sentences.

(a) There exists an integer greater than one with an odd number of
positive factors.

(b) ∃ odd n ∈ Z such that n2 is even.

(c) ∃a, b, c ∈ N such that a2 + b2 = c2.

(d) ∃q ∈ Q such that q2 − 2 = 0.

(e) ∃n ∈ N such that n is even and n can be written as a sum of
two primes in two different ways.

(f) ∃ odd n, m ∈ Z such that n + m is odd.

8.3 Prove that there does not exist a positive real number x such that
x + 1/x < 2.

Hint: Multiplication by positive real
numbers preserves inequalities.

8.4 Consider the statement

There exist irrational α, β ∈ R such that αβ is rational.

Is this statement true? If so, prove it. If not, negate it and prove the
negated version.

Hint: Consider
√

2,
√

2
√

2
, and 2 =

(
√

2
√

2
)

√
2
.

8.5 Prove that there does not exist x ∈ R such that x2 − 3x + 3 ≤ 0. Hint: Calculus or Completing the
Square work equally well.

8.6 Consider the statement

C0(R) denotes the set of continuous
functions from R to R.

There exists f ∈ C0(R) that is not the derivative of any function
g : R → R.

Is this statement true? If so, prove it. If not, negate it and prove the
negated version.

Hint: The Fundamental Theorem of
Calculus states:

(i) Suppose f : [a, b] → R is continuous
and F : [a, b] → R is differentiable
with F′ = f . We have

∫ b

a
f = F(b)− F(a).

(ii) Suppose g : [a, b] → R is continuous.
If c ∈ (a, b), then G : [a, b] → R

defined by

G(x) =
∫ x

a
g

is differentiable at c and G′(c) =
g(c).

8.7 (Bonus.) Prove that there do not exist invertible n × n matrices A
and B such that AB is not invertible.

8.8 (Review.) Each of the following statements is either true or false.
Prove the statements that are true and find a counterexample for
the statements that are false.

(a) ∀x ∈ R ∃z, y ∈ R such that x + y = z.

(b) ∃x ∈ R such that ∀y ∈ R and ∀z ∈ R we have x + y = z.



Negating Nested Quantifiers

Negating complex statements that are composed of nested
quantifiers is extremely challenging. Be especially careful with your
writing for this worksheet!

Exercises

9.1 Using your prior experience with negating quantifiers and
thinking through what the negation should be, figure out how
to negate the following statements. Ask an experienced student of
mathematics to check your work after you’re done. Here, P(x, y)
denotes that P is a property of the objects x, y.

(a) “∀x ∃y such that P(x, y) is true.”

(b) “∃y ∀x P(x, y) is true.”

9.2 Which of the following statements are true? If a statement is false,
negate it and prove the negated version.

(a) For all x ∈ R there exists n ∈ N such that n < x.

(b) There exists m ∈ Z such that rm ∈ Q for all r ∈ R.

(c) For all x ∈ R there exists y ∈ R such that x + y = 42.

(d) There exists u ∈ R such that for all v ∈ R we have u + v = 42.

(e) There exists f ∈ C0(R) such that for all differentiable g : R → R

we have g′ − f ̸= 0.
Hint: You may want to use the
Fundamental Theorem of Calculus.

(f) For every continuous, strictly increasing function g : R → R

there exists c ∈ R such that g(c) = 0.

9.3 A set S ⊆ R is said to be bounded above provided that there
exists M ∈ R such that for all x ∈ S we have x ≤ M. Use the
Archimedean Property to show that N is not bounded above in
R.
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9.4 Consider the following statement: “there exists n ∈ N such that
every prime divides n.” Negate this statement and then prove the
negated statement.

Hint: The Fundamental Theorem of
Arithmetic states that every n ∈ N with
n > 1 has a prime factorization:

n = pm1
1 pm2

2 · · · pmℓ
ℓ

where p1, p2, . . . , pℓ are the (unique)
prime factors of n and mj ∈ N for
1 ≤ j ≤ n. For example, the prime
factorization of 9, 009 is 32 · 7 · 11 · 13.

9.5 Consider the following statement: “for all even n ∈ N there exists
m ∈ N such that nm is odd.” Negate this statement and then
prove the negated statement.

9.6 A sequence34 (an) is said to converge to L ∈ R provided that for all 34 A sequence is a function b : N → R.
By convention, we denote b(n) by bn
and use the shorthand (bn) to denote
the function b : N → R. So, for
example, the function c : N → R

given by c(ℓ) = 2ℓ has c6 = 64 and
(cn) = (2, 4, 8, 16, . . .). Sometimes
people use the shorthands n 7→ bn or
{bn} instead of (bn).

ε > 0 there exists N ∈ N such that m > N implies |am − L| < ε.

(a) Explain what this definition means intuitively. You may write a
geometric interpretation for this, if you find it helpful.

(b) Use the definition given above of what it means for a sequence
to converge to prove that the sequence

(an) =

(
1
n

)
=

(
1,

1
2

,
1
3

,
1
4

, . . .
)

converges to 0.
Hint: You may want to use the
Archimedean Property.

(c) Use the definition given above of what it means for a sequence
to converge to prove that the sequence

(an) = ((−1)n) = (−1, 1,−1, 1, . . . )

does not converge to 1/2.

9.7 (Bonus.) Show that the vectors (1, 0, 1) and (1, 2,−1) do not span35 35 A collection of vectors v⃗1, . . . , v⃗n
in R3 spans R3 provided that for
every w⃗ ∈ R3 there exist coefficients
c1, . . . , cn ∈ R such that

w⃗ = c1v⃗1 + · · ·+ cn v⃗n.

R3.

9.8 (Review.) Each of the following statements is either true or false.
Prove the statements that are true and provide counterexamples
for the statements that are false.

(a) ∀x ∈ N ∃y ∈ R such that y2 = x.

(b) ∃x ∈ N such that ∀y ∈ R we have y2 = x.

(c) ∀n ∈ N ∃m ∈ N such that mn = 1.

(d) ∃n ∈ Z such that ∀m ∈ N we have mn = 1

(e) For all injective functions f : R → R there exists a surjective
function g : R → R such that g ◦ f = IdR.

The function IdR : R → R is defined by
IdR(x) = x for all x ∈ R.

9.9 (Review.) There are many functions of the form s : A → B where
A, B ⊂ R and s(x) = x2. Find choices for A and B so that Hint: You should also make sure that

your choices for A and B make sense.
For example, if A = R, then B cannot
be (−∞, 0).

(a) s : A → B is neither injective nor surjective.

(b) s : A → B is injective but not surjective.

(c) s : A → B is surjective but not injective.

(d) s : A → B is bijective.



Sets and Functions

Building new objects from existing ones is a common theme
in mathematics. As an example, consider power sets. The power set,
P(X), of a set X is defined to be

P(X) := {A | A ⊆ X}.

That is, P(X) is the set of all subsets of X. The power set of a set can

P(∅) = {∅}
P({▷◁}) = {∅, {▷◁}}

P({□,♢}) = {∅, {□}, {♢}, {□,♢}}

be quite large—how many subsets are there of N? of R? of P(R)?
In fact, the power set always has greater cardinality than the original
set. For example, if X is a finite set with n elements, then P(X) has
2n elements.36 36 One can visualize this by thinking

of binary strings of length n—a subset
A ∈ P(X) corresponds to the string
whose kth digit is 1 if and only if the
kth element of X belongs to A.

Functions on power sets occur in all branches of mathematics.
Suppose X and Y are sets. If f : X → Y is a function, then we can
define a new function, called the induced set function, f : P(X) →
P(Y) by:

f [A] = { f (x) | x ∈ A}

for A ⊂ X. For C ∈ P(X), the subset f [C] of Y is called the direct
image or forward image of C. Similarly, we can define f−1 : P(Y) →

Using the notation f to denote both the
function f : X → Y and the induced
function f : P(X) → P(Y) may strike
you as unwise. However, in practice
it is always clear from context which
function we are using, and it turns out
to be extremely convenient to use the
same notation for both.

P(X) by

f−1[B] = {x ∈ X | f (x) ∈ B}

for B ⊂ Y. For D ∈ P(Y), the subset f−1[D] of X is called the
preimage of D. You should verify that both f−1 : P(Y) → P(X) and
f : P(X) → P(Y) are functions.37 37 If S, T are sets, then a function

µ : S → T is a rule that assigns to every
s ∈ S a unique µ(s) ∈ T.

Exercises

10.1 Find the power set of {,, ▷◁,/}.

10.2 Consider the map g : R → R defined by g(x) = |x|. Find the
forward image of A = (−∞,−1] ∪ (1, ∞) under g, and prove that
your answer is correct.

Hint: Your proof may require some
casework. Also, you may wish to
review how to prove two sets are
equal (see the Set Theory worksheet on
page 9).
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10.3 Consider the map h : R → R defined by h(x) = x2 + 3. Find h[R]

and prove your claim.

10.4 Consider the map ℓ : R → R defined by ℓ(x) = 2x + 1. Find the
preimage of [−3, 5] under this map, and prove that your answer is
correct.

10.5 Is the function p : R → R2 given by p(θ) = (θ cos(θ), θ sin(θ))
injective? Justify your answer. What is p[R]? What is p−1[R2]?

10.6 Suppose X and Y are sets. Let f : X → Y be a function. Suppose
A ⊆ X and B ⊆ Y.

(a) Show: f [ f−1[B]] ⊂ B.

(b) Is f [ f−1[B]] always equal to B? If yes, prove it. If not, provide
an example of a function where they are not equal.

Hint: In all questions of this sort, it
pays to consider the function s : R → R

defined by s(x) = x2.
(c) Show: A ⊂ f−1[ f [A]].

(d) Is f−1[ f [A]] always equal to A? If yes, prove it. If not, provide
an example of a function where they are not equal.

10.7 Suppose X and Y are sets. Let f : X → Y be a function. Is the
function f−1 : P(Y) → P(X) an inverse38 of f : P(X) → P(Y)? 38 See sidenote 29.

10.8 (Bonus.) Suppose X and Y are sets. Let f : X → Y be a function.
Suppose A, C ⊆ X and B, D ⊆ Y.

(a) Is f−1[B ∩ D] = f−1[B] ∩ f−1[D]? Does one set always contain
the other? Justify your answers.

(b) Is f [A ∩ C] = f [A]∩ f [C]? Does one set always contain the other?
Justify your answers.

10.9 (Bonus.) Suppose X and Y are sets. Let f : X → Y be a function.
Suppose A, C ⊆ X and B, D ⊆ Y.

(a) Is f [A ∪ C] = f [A]∪ f [C]? Does one set always contain the other?
Justify your answers.

(b) Is f−1[B ∪ D] = f−1[B] ∪ f−1[D]? Does one set always contain
the other? Justify your answers.

10.10 (Bonus.) Suppose X and Y are sets. Let f : X → Y be a function.
Suppose A, C ⊆ X and B, D ⊆ Y.

(a) Is f [A \ C] = f [A] \ f [C]? Does one set always contain the other?
Justify your answers.

(b) Is f−1[B \ D] = f−1[B] \ f−1[D]? Does one set always contain the
other? Justify your answers.



Proof Techniques





Uniqueness

Showing that there is at most one object possessing a given
property P is a common mathematical task; such proofs are called
uniqueness proofs.

Students of mathematics are
appropriately prickly about the
use of the pronouns “a” and “the”.
The definite article “the” specifies
uniqueness, as in the statements “The
smallest composite number is 4.” and
“The line passing through the points
(3, 2) and (1, 4) intersects the y-axis.”
In the absence of uniqueness, we use
the indefinite article “a” as in the
statements “A positive composite
number greater than 2 is 4.” and “A
non-vertical line passing through the
point (3, 2) intersects the y-axis.”

A proof of uniqueness will generally involve assuming there are
two objects x, y that satisfy P, and then showing that x and y must
in fact be the same object; that is, having the property P forces x, y
to be the same. So, for example, a proof that there is at most one
differentiable function f : R → R for which f ′(x) = 4x + 1 and
f (2) = 42 might go something like this: “Suppose g, h : R → R are
differentiable and g′(x) = h′(x) = 4x + 1 and g(2) = h(2) = 42. From
the Mean Value Theorem,39 there is a C ∈ R such that g(t) = h(t) + C 39 Suppose a < b. The Mean Value

Theorem says that if ℓ : [a, b] → R is
continuous on [a, b] and differentiable
on (a, b), then there exists a point
d ∈ (a, b) such that

ℓ′(d) =
ℓ(b)− ℓ(a)

b − a
.

How are we using the Mean Value
Theorem here?

for all t ∈ R. Plugging in 2 for t we have

C = g(2)− h(2) = 42 − 42 = 0.

Consequently, g = h and so if a solution exists, it is unique.”

Existence and uniqueness proofs are common throughout
mathematics. For these proofs, you must show both that a solution
exists and that there is at most one solution. So, for example, a proof
that there exists a unique f : R → R for which f ′(x) = 4x + 1 and
f (2) = 42 might go something like this: “Define f (x) = 2x2 + x + 32.
Since f ′(x) = 4x + 1 and f (2) = 2 · 22 + 2 + 32 = 42, a solution
exists. To show that 2x2 + x + 32 is the unique solution, please see the
paragraph above.”

Exercises

For uniqueness proofs, make sure to state that you are supposing
two x, y exist satisfy whatever properties the x and y are required to
satisfy.

11.1 Every element of R has a unique additive inverse. You have An element ▷◁∈ R is an additive inverse
of ⋆ ∈ R provided that ▷◁ +⋆ =
⋆+ ▷◁= 0. If an additive inverse of ⋆
exists and is unique, it is often denoted
−⋆.



32 demonstration: proof beyond the possibility of doubt

probably never seen a proof of the uniqueness of additive inverses,
so let us remedy this now. Complete the following proof that an
additive inverse of ⋆ ∈ R is unique.

Hint: if you find yourself writing −⋆,
then you are probably assuming what
you are trying to prove!

Suppose ▷◁, ▷◁′∈ R are additive inverses of ⋆. Note that

▷◁= 0+ ▷◁= (▷◁′ +⋆)+ ▷◁= · · · =▷◁′ .

Hence if an additive inverse of ⋆ ∈ R exists, then it is unique.

11.2 Similarly, every nonzero r ∈ R has a unique multiplicative
inverse.40 Since you’ve probably never shown that a multiplicative

40 An element s ∈ R is a multiplicative
inverse of r provided that rs = sr = 1.

inverse of a nonzero r ∈ R is unique, do so now.

Hint: The role of zero in Exercise 11.1
will now be played by one. If you find
yourself writing 1/r or r−1, then you
are probably assuming what you are
trying to prove!

11.3 Suppose A and B are sets and h : A → B is invertible (see
sidenote 29). Show that h has a unique inverse function.

Hint: If g : B → A and f : B → A are
inverses of h : A → B, then you need to
show g(b) = f (b) for all b ∈ B.

Inverses often have specialized notation. For example, in
situations where it is known that additive inverses exist and are
unique, the additive inverse of an object D is denoted by −D. So,
for example, additive inverses of matrices exist and are unique, and
the additive inverse of a matrix A is denoted −A. Similarly, when
it is known that a multiplicative inverse of an object ☼ exists and is
unique, it is often denoted ☼−1.

11.4 Which of the following are unique?

(a) A square root of a positive real number. Recall that ⋆ is a square root of %
provided that ⋆2 = %.

(b) A complex square root of a real number.

(c) A positive square root of a positive real number.
If a nonnegative square root of % ∈ R

exists and is unique, it is denoted
√
%.

11.5 For the objects you claimed to be unique in Exercise 11.4, prove
that they are unique.

Hint: if you find yourself writing
√

x,
then you are probably assuming what
you are trying to prove!

11.6 Show there is a unique differentiable function ellen : R>0 → R for
which ellen′(s) = 1/s for all s ∈ R>0 and ellen(1) = 0.

11.7 Show that there is a unique real number solution to the equation
x3 = 1.

Hint: You may assume that for a, b ∈ R

we have a2 + ab + b2 = 0 if and only if
a = b = 0.

11.8 Let ax2 + bx + c be a degree two polynomial such that b2 − 4ac = 0.
Show, without using the quadratic formula, that ax2 + bx + c = 0
has a unique solution.

Hint: Complete the square: ax2 + bx +
c = a[(x +,)2 + (c/a −,2)]; what’s ,?

11.9 (Bonus.) Show that 0 is the unique element of R such that s + 0 =

0 + s = s for all s ∈ R. Similarly, show that 1 is the unique element
of R such that s · 1 = 1 · s = s for all s ∈ R.

11.10 (Bonus.) Is there a unique invertible n × n matrix A such that
A2 = A?

Hint: Don’t think too much. Maybe try
something like A = A Idn = · · · = Idn
where the stuff in the middle follows
from the given information and Idn
is the n-by-n matrix with ones on
the diagonal and zeroes elsewhere.
Also, since A is invertible, there exists
a (unique) n × n matrix B so that
AB = BA = Idn.



Casework

Using casework in a proof is a pretty intuitive idea—sometimes
you want to prove a property P is true for a set of objects S, but the
proof varies for different types of elements in S.

A common example of using casework involves proving something
for a few objects by checking them individually. For example, if you
wanted to prove that 1, 2 and 3 are roots of x3 − 6x2 + 11x − 6, you
could just check these numbers individually. Another way to use
casework is to split up an infinite set by some relevant property. For
example, if you wanted to prove that for an integer n the number
n(n + 1)/2 is always an integer, it makes sense to split into the cases
when n is even and when n is odd.41 Casework can also be used to 41 This makes sense because this is a

problem about divisibility by two.deal with fringe cases; for example, when proving something about
primes, you may have to split into the p = 2 and p ̸= 2 cases or
deal with small primes like 2, 3, 5 individually (see Exercise 4.2 on
page 15).

A proof involving casework usually has the following structure:
begin by specifying what the cases will be; explain why these are the
only cases; prove the result in each case. For example, a proof that for
every integer n, n(n + 1)/2 is an integer might go something like this:

Suppose n is an integer. Since every integer is either even or odd, we
have two cases:

• n is even: In this case we can write n = 2k with k ∈ Z. We have

n(n + 1)
2

=
(2k)(2k + 1)

2
= k(2k + 1).

• n is odd: In this case we can write n = 2k + 1 with k ∈ Z. We have

n(n + 1)
2

=
(2k + 1)(2k + 2)

2
= (2k + 1)(k + 1).

Since the result holds in each case, the claim is proved.

Exercises

Remember to label the separate cases of your proof to avoid confusion.
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12.1 Prove42 that 7 divides x2 + x + 12 for x ∈ {1, 5, 8}. 42 Remember to write in complete
sentences.

12.2 Prove that 5, 13, and 25 can all be written as the sum of two
squares (of integers).

12.3 Prove that any non-horizontal line in R2 intersects the x-axis. Vertical lines are lines too.

Hint: This is a problem about
divisibility by three.

12.4 Show that every perfect cube is a multiple of 9 or has the form
9m ± 1 for some m ∈ Z.

Hint: This is another problem about
divisibility by three.

12.5 Suppose n ∈ N. Show that if n, n + 2, and n + 4 are prime, then
n = 3.

12.6 (Review.) Suppose a, b ∈ R. Show that a2 + ab + b2 = 0 if and only Hint: 2(a2 + ab + b2) = (a + b)2 + a2 +
b2.if a = b = 0.

12.7 The notation (n
k), or n choose k, denotes the number of ways to

pick k elements from a set of n elements (ignoring order). Prove
that (

n + 1
k

)
=

(
n

k − 1

)
+

(
n
k

)

using casework style logic. Do not prove it algebraically.

The numbers (n
k) have been studied for

millennia. The formula discussed in
this problem was known to Acharya
Pingala in the second century BC.

Hint: Suppose that (n + 1) objects are
lined up in order, and consider two
cases – one where you pick the first
element, and one where you do not.

12.8 (Bonus.) Find the number of three digit positive integers (that
is, integers between 0 = 000 and 999) whose second digit is the
average of its first and third digits. (For instance, 630 is one such
number, since 3 is the average of 6 and 0.)

Hint: The number of ways to choose
two objects from a set of four is (4

2) =
4!

(4−2)!2! = 6.

12.9 (Bonus.) Determine which 2 × 2 matrices A with two entries of 0
and two entries of 1 satisfy A2 = A.

12.10 (Review.) Suppose A and B are sets. Show that if A ⊂ B, then
P(A) ⊂ P(B).

12.11 (Bonus.) Show that the converse of Exercise 12.10 is also true.



Either/Or, Max/Min

A proof involving either/or looks very much like a casework
proof. Either/or methods will generally involve splitting your
proof into two cases by breaking it up by inequality conditions.
For example, if you assume x ̸= 0, you might state next that “either
x > 0 or x < 0” and deal with each situation separately. A proof of
the proposition

If x2 − 5x + 6 ≥ 0, then either x ≤ 2 or x ≥ 3.

might go something like this:

Factoring the polynomial, we have that (x − 2)(x − 3) ≥ 0. So, because
of the sign, either x − 2 ≤ 0 and x − 3 ≤ 0, or x − 2 ≥ 0 and x − 3 ≥ 0. In
the former case we have x ≤ 2 and x ≤ 3, so x ≤ 2. In the latter case,
we have x ≥ 2 and x ≥ 3, so x ≥ 3. Thus, we must have x ≤ 2 or x ≥ 3.

Exercises

13.1 If p is a prime number and b is an integer such that p does not
divide43 b, then the only positive integer that divides both p and b 43 Recall that if m and n are integers, we

say that m divides n provided that there
is some integer k such that km = n. A
natural number p is prime if and only
if p has exactly two distinct positive
divisors.

is 1.

13.2 Let A be a 2 × 2 matrix such that A2 = Id2. Then the top left entry
or the bottom left entry of A is nonzero.

13.3 Suppose a, b ∈ R. If ab = 0 then a = 0 or b = 0. For this proof you
may assume that r · 0 = 0 for all r ∈ R.

Hint: When asked to prove something
that appears obvious, you usually need
to go back to first principles.

For Max/min proofs, it’s important to know how to interpret
statements about a maximum of a set or a minimum of a set.44 44 If A ⊂ R, then M is a maximum for A

provided that both M ∈ A and M ≥ a
for all a ∈ A. Similarly, m is a minimum
for A provided that both m ∈ A and
m ≤ a for all a ∈ A.

Relations between a number x ∈ R and a max or min of a set S ⊆
R tells you about the relative positioning of x to the set S on the
number line.

Bounding a minimum above is easier, while bounding it below
is harder. The reverse is true for maximums (bounding below is
easy, bounding above is hard). For example, if you want to show
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min S ≤ x, you just need that there exists some element in S that is
less than or equal to x. But if you want min S ≥ x, then you need that
every element of S is greater than or equal to x. (Take a moment to
think on the difference).

A proof involving max/min requires careful attention to the use of
the quantifiers “for all” and “there exists”. For example, a proof that
min{x(x − 2) | x ∈ R} ≥ −1 might go something like this:

To show min{x(x − 2) | x ∈ R} ≥ −1, we need to show that for all
x ∈ R we have x(x − 2) ≥ −1. Fix45 x ∈ R. Note that x(x − 2) ≥ −1 if 45 Remember that a proof that shows

that something is true “for all s ∈ S”
will almost always use the words “Fix
s ∈ S.”

and only if x2 − 2x + 1 ≥ 0, and this is true if and only if (x − 1)2 ≥ 0.
Since the square of a real number is always nonnegative, we conclude
(x − 1)2 ≥ 0 and so min{x(x − 2) | x ∈ R} ≥ −1.

Exercises

13.4 Suppose B ⊂ R. Show46 that B has at most one maximum 46 Remember to write in complete
sentences.and at most one minimum. That is, show that if they exist, then

maximums and minimums are unique.

13.5 Does every subset of R have a maximum? A minimum?

13.6 Find, if possible, the max and min for each of the following sets.

(a) {x ∈ [e, π] | x ≥
√

2}
(b) (3, 5]

(c) {q ∈ Q | q2 ≤ 2}
(d) ∅

13.7 Let S, T be subsets of R, let x ∈ R, and suppose that max S,
min S, and min T all exist. Rewrite the statements below using
quantifiers47. 47 Remember, these are phrases like for

every, there exists, for all.
(a) max S ≤ x.

(b) max S ≥ x.

(c) min S ≤ min T.

(d) min S ≥ min T.

13.8 Prove that max{−x(x − 1) | x ∈ R} ≥ 1/4.

Hint: You may want to use calculus
here. Also, you may need to remember
how to complete the square.

13.9 Let S = {(x − 2)(x − 3) | x ∈ R} and T = {(x − 1)(x − 5) | x ∈ R}.
Show that min T ≤ min S.



Counterexamples

Counterexamples help us understand the boundaries of truth.48 48 ”Every good theorem must have a
good counterexample.“ (Francesco
Severi as quoted in American
Mathematical Monthly, June, 1976)

They are also useful for disproving universal statements – to disprove
a “for all” statement, you need only find a single instance of the
statement failing. Sometimes, finding counterexamples requires little
effort.49 However, the further one travels into mathematics, the more 49 Consider, for example, the statements:

“All birds can fly.” “All prime numbers
are odd.” and “ Subtraction is
commutative.”

challenging finding counterexamples becomes. As with art, pretty
much the only way to get better is by practicing.

When determining whether or not a counterexample may
be warranted, pay attention to wording. In particular, it’s usually
difficult to derive a strong conclusion from little information. You
may want to ask yourself: how are the given information and the
conclusion related? is there any reason the hypotheses should imply
the conclusion? how can we relate the hypothesis with the conclusion
given the tools at hand? For example, consider the statement “if a, b
are irrational numbers, then ab is also irrational.” How would you
be able to translate the information about the irrationality of a, b, into
facts about ab? If the word irrational were replaced with rational, then
we’d know what to do. However, as stated, there’s no clear way to
get from information about a, b to information about ab. Indeed, it
turns out that this statement is false (counterexample: a = b =

√
2).

23

18

27
146

Descartes’ Circle Theorem, a result of
Descartes’ collaboration with Princess
Elisabeth of Bohemia during the 1640s,
states that if four circles are mutually
tangent, as in the figure above, then

(κ1 + κ2 + κ3 + κ4)
2 = 2(κ2

1 + κ2
2 + κ2

3 + κ2
4)

where κj = 1/rj is the curvature of the
circle of radius rj. In the figure above,
the curvatures are 18, 23, 27, and 146.
Descartes’ Circle Theorem shows up in
various areas of mathematics, including
the study of Apollonian circle packings
by Michigan Professor Jeffrey Lagarias
and his collaborators.

Exercises

14.1 True or False? In this exercise, you do not have to provide justification.
However, don’t answer without mentally checking the thought
process behind your answer (that is, be confident in your answer).

(a) All birds can fly.

(b) All prime numbers are odd.

(c) The Diophantine equation (a + b + c + d)2 = 2(a2 + b2 + c2 + d2)

has no natural number solutions.

(d) Subtraction in Z is commutative.
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(e) (a + b + c)2 ≤ 3(a2 + b2 + c2) for all a, b, c ∈ R. Hint: Consider

(a − b)2 + (a − c)2 + (b − c)2.
(f) x + y ≥ x for all x, y ∈ R.

(g)
√

x ≤ x for all x ∈ R≥0.

(h) If p is prime, then 2p − 1 is also prime. Hint: Try some primes less than 15.

(i) Suppose n is the product of three consecutive integers and 7
divides n. Then 6, 28, and 42 all divide n.

(j) The only real number r satisfying r2 = r is one.

To find a counterexample, try to think of how the statement
could fail. For example, in Exercise 14.1g the basic idea is that
squaring big numbers results in very big numbers, so perhaps small
numbers are a natural place to look for a counterexample.

It is also often a good idea to think about simple things. For
example, in a problem like Exercise 14.1j you might want to check
what happens to zero.

14.2 Prove50 all of your answers to Exercise 14.1, making sure to give 50 Remember to write in complete
sentences.an example/counterexample where applicable.

14.3 (Bonus.) True or False. Justify your answer.

(a) The set of invertible 2 × 2 matrices is a subspace51 of the vector 51 If V is a vector space, then W ⊂ V
is called a subspace provided that W
contains 0⃗ and is closed under addition
and scalar multiplication. That is, a
subspace of V is a subset W ⊆ V such
that
i. 0⃗ ∈ W;

ii. if x⃗, y⃗ ∈ W, then also x⃗ + y⃗ ∈ W;
iii. if x⃗ ∈ W and k is any scalar, then

also kx⃗ ∈ W.

space R2×2 of 2 × 2 matrices.

(b) The set of 3 × 3 matrices with trace equal to zero is a subspace of
R3×3.

(c) There is a 2 × 3 matrix Q such that

QQT =

[
6 0
0 3

]
.



Contrapositive

The contrapositive of the statement P =⇒ Q is the statement
¬Q =⇒ ¬P. The technique of proof by contraposition or taking the
contrapositive employs the logical equivalence52 of P =⇒ Q and 52 The truth table for P =⇒ Q is

P Q P =⇒ Q
T T T
T F F
F T T
F F T

and the truth table for ¬Q =⇒ ¬P is

P Q ¬Q ¬P ¬Q =⇒ ¬P
T T F F T
T F T F F
F T F T T
F F T T T

¬Q =⇒ ¬P. It often happens that the contrapositive is considerably
easier to prove than the original statement!

A proof by contrapositive usually has the following structure:
begin by stating that this is is a proof by contraposition; then prove
the contrapositive. So, for example, a proof of the statement

Any real number x that satisfies |x| < ε for all ε > 0 must be zero.

might proceed as follows:

Fix x ∈ R. We are trying to show

∀ε > 0, |x| < ε =⇒ x = 0.

We will prove this by contraposition. The contrapositive is

x ̸= 0 =⇒ ∃ε > 0 such that |x| ≥ ε.

Suppose x ̸= 0. Let ε = |x| /2 > 0. Note that |x| > |x| /2 = ε, so |x| ≥ ε.

Exercises

15.1 Suppose A and B are statements. Negate the following statements.

(a) A or B.

(b) A and B.

(c) A and ¬B.

(d) ¬A and ¬B.

These laws were observed by Aristotle
two millennia before DeMorgan was
born.

15.2 Suppose P and Q are statements. Use truth tables to verify
DeMorgan’s laws:

¬(P ∨ Q) ⇐⇒ (¬P) ∧ (¬Q),

¬(P ∧ Q) ⇐⇒ (¬P) ∨ (¬Q). The symbol ⇐⇒ is shorthand for “if
and only if”.
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15.3 (Review.) Suppose A and B are subsets of a set X. Show Hint: If your proof does not make use
of DeMorgan’s laws (see Exercise 15.2),
then it is probably wrong.X \ (A ∪ B) = (X \ A) ∩ (X \ B),

X \ (A ∩ B) = (X \ A) ∪ (X \ B).

15.4 Find the contrapositive of each of the following statements.

(a) Suppose n ∈ Z. If n2 + 3n − 7 is even, then n is odd.

(b) Suppose m ∈ N. If the remainder of m upon dividing by 4 is 2
or 3, then m is not a perfect square.53 53 An integer ℓ is called a perfect square

provided that there exists k ∈ Z such
that ℓ = k2.(c) Suppose a, b ∈ R. If (a + b)2 = a2 + b2, then a = 0 or b = 0.

15.5 Prove54 that if x67 − x7 + x2 ̸= 1, then x ̸= 1. 54 Remember to write in complete
sentences.

15.6 Prove the statement of Exercise 15.4a.

15.7 Prove the statement of Exercise 15.4b. Hint: A natural number is either even
or odd.

15.8 Prove the statement of Exercise 15.4c.

15.9 Prove: If 3 does not divide ab, then 3 does not divide a and 3 does
not divide b.

Remember that if m and n are integers,
then we say that m divides n provided
that there is some integer k such that
km = n.

15.10 Prove: If the equation ax2 + bx + c = 0 has no solution, then the
equation 5ax2 + 5bx + 5c = 0 has no solution.

15.11 (Bonus.) Use proof by contrapositive to show that for all vectors
u⃗, v⃗ ∈ R2, we have that if u⃗, v⃗ are linearly independent then
u⃗ + v⃗, u⃗ − v⃗ are linearly independent. “I am a linearly independent woman –

all of my relationships are trivial.”
–NJ, 2020



Contradiction

Proof by contradiction has been described as “one of a mathematician’s
finest weapons.”55 A proof by contradiction works by assuming that 55 “. . . reductio ad absurdum, which

Euclid loved so much, is one of a
mathematician’s finest weapons. It
is a far finer gambit than any chess
play: a chess player may offer the
sacrifice of a pawn or even a piece, but
a mathematician offers the game.” – G.
H. Hardy, A Mathematician’s Apology,
1940, italics in original.

a statement is false, and then shows that this assumption leads to
a contradiction. More precisely, if P =⇒ Q is the statement to
be proved, then a proof by contradiction proceeds by showing that
¬(P =⇒ Q) =⇒ r ∧ ¬r for some statement r. That this is
logically equivalent to showing P =⇒ Q is verified in the truth
table below. The statement r is not given to you, but usually arises

P Q P =⇒ Q ¬(P =⇒ Q) r ∧ ¬r ¬(P =⇒ Q) =⇒ (r ∧ ¬r)
T T T F F T
T F F T F F
F T T F F T
F F T F F T

naturally from the problem under consideration. In the proof that the
positive square root of 2 is not rational on page 6 of the Introduction,
the statement r is “At most one of a and b is even.” In the proof that
21/3 is not rational given below, the statement r is “an + bn = cn has no
solution in N for n > 2.”

A proof by contradiction usually has the following structure:
begin by stating that this is a proof by contradiction; write down
what you are assuming;56 derive a contradiction; finish by stating

56 Instead of writing ¬(P =⇒ Q),
we often write the logically equivalent
P ∧ ¬Q.

P Q P ∧ ¬Q
T T F
T F T
F T F
F F F

what has been achieved. For example, a proof that 21/3 is irrational
might go something like this: “Suppose 21/3 is rational. Then there
exists m, n ∈ N such that 21/3 = m/n. Thus 2n3 = m3, or n3 + n3 =

m3. But from Fermat’s Last Theorem57 we know that a3 + b3 = c3 has
57 Fermat’s Last Theorem (1637) says

(∃a, b, c ∈ N an + bn = cn) =⇒ (n ≤ 2).

It was proved by Andrew Wiles in 1995.

no natural number solutions, a contradiction. Thus, it must be the
case that 21/3 is irrational.”

Exercises

16.1 Prove58 by contradiction: If s ∈ R and s2 = 3, then s ̸∈ Q. 58 Remember to write in complete
sentences.
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16.2 Prove by contradiction: Suppose a ∈ N. Show that if a3 is even,
then a is even.

16.3 Prove by contradiction: If α ∈ R \ Q and q ∈ Q, then α − q ∈ R \ Q.

16.4 Prove by contradiction: For every t ∈ [0, π/2] we have sin(t) +
cos(t) ≥ 1.

Hint: Both sin and cos are nonnegative
on [0, π/2]. Also, if 0 ≤ y < 1, then
0 ≤ y2 < 1.

16.5 Prove that the function f (x) = 3x9 + 4x3 + 42x + 4 cannot have
more than one root.

Hint: Rolle’s Theorem, which was
stated by Bhāskara II five centuries
before Michel Rolle lived, might be
useful here. Suppose a < b. Rolle’s
Theorem says that if f : [a, b] → R is
continuous on [a, b], differentiable on
(a, b), and f (a) = f (b), then there exists
a point d ∈ (a, b) such that f ′(d) = 0.

16.6 Show: There are no integers a, b such that 21a + 35b = 1.

16.7 (Bonus.) The vectors

[
3
2

]
and

[
2
−2

]
are linearly independent.

16.8 (Bonus.) Show: For all integers a, b, c, if a2 + b2 = c2, then a is even
or b is even.

Hint: Suppose k ∈ Z. What are the
possible remainders when we divide k2

by 4?



Proof by Induction

The Principle of Mathematical
Induction states:

[S(1)∧(∀k ∈ N, S(k) ⇒ S(k + 1))]

⇒ (∀m ∈ N, S(m)).

This is an axiom – that is, it is one of
our basic, unprovable assumptions
about the nature of the natural
numbers.

Mathematical induction is a common method of proof when
showing that a statement S(n), which depends on n, is true for all n
in N. In general, induction is useful in contexts where the statement
S(ℓ+ 1) is easily relatable to the statement S(ℓ). Thus, for example,
statements about indexed sums and products are often proved
by induction, statements about square matrices can sometimes
be proved by induction on their size, and statements about finite-
dimensional vector spaces can sometimes be proved by induction on
their dimension.

A proof by induction follows a fairly standard template: show
the base case, S(1), is true; show that the inductive step (S(k) true ⇒
S(k + 1) true) is valid; invoke the Principle of Mathematical Induction
to conclude that S(n) is true for all n ∈ N. For example, a proof that
the statement G(n), which is given by

This is the result Carl Friedrich Gauss
may or may not have formulated when
he was in kindergarten.

1 + 2 + · · ·+ n =
n(n + 1)

2
,

holds for all n ∈ N might go something like this: “We will prove this
by induction. Since 1 = 1(1 + 1)/2, the base case G(1) is valid. For the
inductive step we assume k ∈ N and that G(k) is true. We have

1 + 2 + · · ·+ k + (k + 1) = [1 + 2 + · · ·+ k] + (k + 1)

(since G(k) is assumed to be true)

=
k(k + 1)

2
+ (k + 1) =

(k + 1)(k + 2)
2

;

that is, G(k) true implies G(k + 1) is true. Therefore, the statement
G(m) holds for all m ∈ N by induction.”

Some tips to follow when writing
induction proofs:

• State at the start of your proof that
you are doing a proof by induction.

• Label the base case and inductive
step clearly.

• State where you use the inductive
hypothesis.

• Write some variation of “therefore
the statement holds for all n by
induction” at the end of your proof.

Exercises

17.1 Suppose r ∈ R \ {1}. Show 1 + r + · · ·+ rn = (1 − rn+1)/(1 − r). This is called the gemoetric sum formula.

17.2 Show: ∀j ∈ N, 1 + 3 + 5 + · · ·+ (2j − 1) = j2.
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17.3 For which of the following statements is proof by induction
applicable? If it is not applicable, give a short explanation why.

If words like “show for all n ∈ N”
occur in the statement of a problem,
then a correct solution will likely
involve a proof by induction.

(a) ∀r ∈ Q≥0, there exists some s ∈ R such that s2 − 1 = r.

(b) ∀n ∈ N, 1 + 21 + 22 + · · ·+ 2n = 2n+1 − 1.

(c) ∃m in N such that 7 divides m2 + m − 2.

(d) ∀k ∈ N, k! + 10 > k2.

(e) If a, c ∈ R≥0 with a < c, then an < cn for all n ∈ N.

17.4 Prove statements (17.3a) and (17.3e).

17.5 For all n ≥ 2:

ln(n) ≥ 1
2
+ · · ·+ 1

n
.

Hint: For x > 0, ln(x) =
∫ x

1
1
t dt.

1 2 3 4 5 6 7 8 9 10 11

1

2

t

1/t

17.6 Let f (x) = ln(1 + x), and let f (m)(x) denote the m-th derivative of
f . Prove that for all m ∈ N By convention, 0! = 1.

f (m)(x) = (−1)m+1 (m − 1)!
(1 + x)m .

17.7 For all n ∈ N: ∫ ∞

0
xne−x dx = n!

Hint:
∫

u dv = uv −
∫

v du; recall the
definition of

∫ ∞
0 ; set u = xn+1 and

v = −e−x .

17.8 For every integer ℓ ≥ 0 and for all x ≥ −1, (1 + x)ℓ ≥ 1 + ℓx. By convention, ∀,, ,0 = 1.

17.9 Suppose Y is a finite set with n elements. The power set of Y,
denoted P(Y), is the set of all subsets of Y. (Power sets were
introduced on the worksheet Sets and Functions on page 27.) Show
that P(Y) has 2n elements.

Hint: Fix y0 ∈ Y. Let Y′ = Y \ {y0}.
Show that

P(Y) = P(Y′) ⊔ (P(Y) \ P(Y′)).

What is 2n + 2n?

17.10 Suppose you contribute P dollars at the end of each year to an
ordinary annuity with an annual rate of return I. Show that the I is sometimes called the interest or

discount rate, and P is often called the
payment.

future value of your annuity at the end of n years is given by
F(n) = P · (1+I)n−1

I .

17.11 (Bonus.) The determinant59 of an upper triangular n × n matrix is 59 Developed to help solve systems
of equations, determinants were
independently introduced in the late
seventeenth century by Seki Takakazu
and Gottfried Wilhelm Leibniz.

the product of the diagonal entries.



Direct Proof

While we’ve spent much time covering some of the popular,
alternative proof techniques, we end with a refresher on straightforward,
direct proof writing. For a statement p ⇒ q, there are a few standard
ways to start constructing a direct proof. You can look at the conclusion
q, and think about what could imply it (this could correspond to
the penultimate steps in your proof). For example, in Exercise 18.7
below, you know that you are going to need an integer to plug into
the final equation. You can also look at the given p, determine
some properties you can quickly derive from p, and then see if
these properties move you any closer to proving q. For example, in
Exercise 18.1 below, you might start by writing down the area of A in
terms of x and y.

We close with a few tips that apply to all of your future mathematical
writing.

• Justify each step of your proof. Explain what you’re trying to do
at the beginning of major sections in your proof60 as well as what

60 For example: “We will split the
problem into two cases and prove that
the statement holds in each case.”happens at each step.61

61 For example: “Multiplying by two on
both sides, we see that . . . ”• Write in complete sentences, with correct grammar, punctuation,

and capitalization.

• Cite the results that you use.62 62 For example: “By theorem 1.10 we
know that...” or “By the lemma from
class stating that every matrix satisying
. . . has the property . . . , we conclude
. . . ”

• When writing proofs, be clear and precise with your language.
Write with enough detail that you could hand your proof to a
classmate and they could easily follow along.

Exercises

18.1 Suppose the right triangle A has legs x, y and hypotenuse z, and
that A has area z2/4. Prove that x = y; that is, prove that A is
isosceles. A

y
z

x

The right triangle of Exercise 18.1
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For more on complex numbers see
Complex Numbers on page 61.

18.2 Let a + bi be a nonzero complex number. Explicitly calculate the
multiplicative inverse of a + bi and write it in standard form. That
is, find c, d ∈ R such that:

(a + bi)(c + di) = 1.

18.3 Consider the diagram to the right. Prove that if ∠A ∼= ∠C and
AB ∼= BC, then AD ∼= EC. (Here “∼=” means “congruent”.)

A

B
C

D

E

The diagram for Exercise 18.3

18.4 Suppose S, T, and U are sets, f : S → T is a function, and g : T →
U is a function.

(a) Show63 that if f and g are injective, then g ◦ f : S → U is 63 Remember to write in complete
sentences.injective.

(b) Show that if f and g are surjective, then g ◦ f : S → U is
surjective.

18.5 If n ∈ N is not prime, then 2n − 1 is not prime. Hint: If n = ab, find an expression for
(2n − 1)/(2a − 1).

18.6 Suppose a, b, c, d ∈ Z.

(a) (Rule of 3) If a + b = c and d divides both a and b, then d divides
c.

(b) (Transitivity of divisibility) If a divides b and b divides c, then a
divides c.

18.7 If n is an integer satisfying 2n2 − 7n + 6 = 0, then 3n2 − 5n = 2. Hint: What are the last steps leading up
to “3n2 − 5n = 2”?

18.8 Let a, b be the legs of a nondegenerate right triangle, and c the
hypotenuse. For n > 2, prove that cn > an + bn.

Hint: c > a and c > b. Why?

18.9 (Bonus.) Prove that for an invertible n-by-n matrix M, det(M−1) =

(det M)−1. You may use the fact that det(A)det(B) = det(AB) for
all n × n matrices A and B.

Hint: What does it mean that M is
invertible?

18.10 (Bonus.) Suppose that α ∈ R. Show that α has a terminating or
repeating decimal expansion if and only if α ∈ Q. Hint: The remainder at each step

in the long division d
)

c belongs to
{0, 1, 2, . . . , (d − 1)}.
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The Joy of Sets

The study of modern mathematics requires a basic familiarity with
the notions and notation of set theory.1 For a rigorous treatment of set 1 In 1906 Grace Chisholm Young and

her spouse William published their
highly influential The Theory of Sets of
Points. It was the first textbook on set
theory.

theory, you may wish to take Math 582, Introduction to Set Theory.

What is a set?

A colony of beavers, an unkindness of ravens, a murder of crows, a
team of oxen, . . . each is an example of a set of things. Rather than
define what a set is, we assume you have the “ordinary, human,
intuitive (and frequently erroneous) understanding”2 of what a set is. 2 Paul Halmos, Naive Set Theory,

Springer–Verlag, NY 1974.Sets have elements, often called members. The elements of a set may
be flies, beavers, words, sets, vectors, . . . . If x is some object and S is
a set, we write x ∈ S if x is an element of S and x ̸∈ S if x is not a
member of S. For us, the most important property a set S has is
this: if x is an object, then either x ∈ S or x ̸∈ S, but not both.

The sets N, Z, Q, and R are well-known to you, though you may
not know their names. The set of natural numbers is denoted by N, Math 582, Introduction to Set Theory,

provides a rigorous treatment of N.and its elements are the numbers 1, 2, 3, 4, . . . . Note that if n, m ∈ N,
warning: Some people consider zero
to be a natural number.then n + m ∈ N; that is, N is closed under addition. However, N is

not closed under subtraction. For example, (4 − 5) ̸∈ N. To overcome
this inconvenience we consider Z, the set of integers, which has as The symbol Z is derived from Zahlen,

the German word for numbers.its elements the numbers 0, ±1, ±2, ±3, . . . . While Z is closed un-
der addition, subtraction, and multiplication, it is not closed under
division. For example, (−23)/57 ̸∈ Z. To surmount this difficulty, never divide by zero.

we form the set of rational numbers, Q. Intuitively, Q is the set of In Math 412, Introduction to Modern
Algebra, Q is rigorously defined.all numbers that can be expressed as a fraction n/m with n ∈ Z

and m ∈ N. While closed under multiplication, division, addition,
and subtraction, Q is missing important numbers like

√
2. There are

Approximately 1.41,
√

2 is the ratio
of a square’s diagonal to one of its
sides. Historians believe it was the first
number understood not to belong to Q.many ways to overcome this inconvenience; the most common ap-

proach is to introduce R, the set of real numbers. R is usually depicted Introductory analysis courses, including
Math 351 and Math 451, provide in-
depth treatments of R.

as a line that extends forever in both directions.

−23/57 0 ln(2) 1
√

2 2 e 3 π(4 − 5)

A way to specify a finite set is by listing all of its elements; this is
sometimes called the roster method. The cardinality of a finite set is the
number of elements that the set contains. For example, the sets

Approximately 3.14, π is the ratio of a
circle’s circumference to its diameter.

Approximately 2.72, e is lim
n→∞

(
1 +

1
n

)n
.

{π,
√

2, 32,−5.4} and {π,−2, e, {π,
√

2, 32,−5.4}}

both have cardinality four. The cardinality of a set A is denoted |A|.
The most common way to specify a set is by using set-builder or

comprehension notation. For example, the set of primes could be written The first four primes are: 2, 3, 5, and 7.
In particular, 1 is not a prime number.



{n ∈ N | n has exactly two distinct positive divisors},

the open interval (ln(2), 1) could be written Approximately .69, ln(2) is
∞

∑
i=0

(−1)i

(i + 1)
.

For a, b ∈ R with a ≤ b we define

[a, b] := {x ∈ R | a ≤ x ≤ b},

(a, b] := {x ∈ R | a < x ≤ b},

[a, b) := {x ∈ R | a ≤ x < b},

(a, b) := {x ∈ R | a < x < b}, and

[a, ∞) := {x ∈ R | x ≥ a}.

The sets (a, ∞), (−∞, a), and (−∞, a]
are defined similarly.

{x ∈ R | 2 < ex < e},

and the set of non-negative integers, Z≥0, could be written

{m ∈ Z |m ≥ 0}.

Russell’s paradox provides a non-example of a set. Consider

{S is a set | S ̸∈ S}.

Call this candidate for set-hood T. As you should verify, we have
practice: Test your under-
standing of set notation using
Doug Ensley’s material at
math.lsa.umich.edu/courses/101/sets.html.

both T ∈ T and T ̸∈ T. Thus, T does not have the most important
property, and so is not a set.

Set relations: Equality

One can’t do mathematics for more than ten minutes without grap-
pling, in some way or other, with the slippery notion of equality. Slip-
pery, because the way in which objects are presented to us hardly ever,
perhaps never, immediately tells us — without further commentary —
when two of them are to be considered equal.3 3 Barry Mazur, When is one thing equal

to some other thing?, Proof and other
dilemmas, 2008.Definition 1. Two sets are defined to be equal when they have precisely the

same elements. When the sets A and B are equal, we write A = B. The notations “=” and “:=” do not
mean the same thing. The latter means:
this is the definition of the object on the
left.

That is, the sets A and B are equal if every element of A is an ele-
ment of B, and every element of B is an element of A. For example,
thanks to Lagrange’s four-square theorem (1770),4 we have 4 When you encounter a new mathemat-

ical statement, work examples:

0 = 02 + 02 + 02 + 02

1 = 12 + 02 + 02 + 02

2 = 12 + 12 + 02 + 02

3 = 12 + 12 + 12 + 02

4 = 12 + 12 + 12 + 12

= 22 + 02 + 02 + 02

5 = 22 + 12 + 02 + 02

Also try to formulate new questions
based on your understanding of the
statement. For example, you could ask:
which numbers can, like 4, be written
as a sum of four squares in more than
one way?

Z≥0 = {n ∈ Z | n is the sum of four squares of integers}.

The next example shows that order and inefficiency do not matter.

{T, O, M, M, A, R, V, O, L, O, R, I, D, D, L, E}
= {I, A, M, L, O, R, D, V, O, L, D, E, M, O, R, T}
= {A, D, E, I, L, M, O, R, T, V}.

Since two sets are the same provided that they have precisely the
same elements, there is exactly one set with cardinality zero; it is
called the empty set or null set and is denoted ∅. beware: The set ∅
has zero elements, but the set {∅} has cardinality one.

Set relations: Subset

Definition 2. If A and B are sets, then we say that A is a subset of B warning: Some people say “A con-
tains a” to mean “a ∈ A.”(or A is contained in B, or B contains A, or A is included in B, or B

includes A), and write A ⊂ B or A ⊆ B, provided that every element of A warning: Some people write “A ⊂ B”
to mean “A ⊆ B, but A ̸= B.” We will
write “A ⊊ B” for this.

is an element of B.
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For example, N ⊂ Z ⊆ Q ⊂ R; to emphasize that each inclusion is
proper, we could write N ⊊ Z ⊊ Q ⊊ R. We also have 1 ∈ {1,

√
2} ⊂

(
√

2/2,
√

2] ⊂ [ln(2), e) ⊂ [ln(2), e] and the obvious5 inclusion 5 If you can demonstrate the reverse
inclusion, you will have proved the
Goldbach conjecture, one of the older
unsolved problems in mathematics.

4 = 2 + 2

6 = 3 + 3

8 = 3 + 5

10 = 7 + 3

= 5 + 5
...

{n ∈ N | n is even and the sum of two primes} ⊂ {2m + 2 |m ∈ N}.

Note that for any set A we have ∅ ⊂ A ⊂ A.

Unreasonably Useful Result. Suppose that X and Y are sets.

X = Y if and only if X ⊂ Y and Y ⊂ X.

Proof. By Definition 1, to say that X and Y are equal means that
every element of X is an element of Y and every element of Y is an
element of X. In other words, by Definition 2, to say X = Y means
that X ⊂ Y and Y ⊂ X. The symbol □ is called a tombstone

or halmos, after former Michigan
mathematics professor Paul Halmos.
It means: my proof is complete, stop
reading. It has replaced the initialism
Q.E.D. which stands for quod erat
demonstrandum; a phrase that means
that which was to be demonstrated.

Venn diagrams

Representing sets using Venn diagrams can be a useful tool for visu-
alizing the relationships among them. In a Venn diagram a larger
figure, often a rectangle, is used to denote a set of objects called the
universe (for example the universe could be R) and smaller figures,
usually circles, within the diagram represent subsets of the universe
— points inside a circle are elements of the corresponding subset.

Figure 1: The left Venn diagram illus-
trates relationships among upper case
letters in the Greek, Latin, and Russian
alphabets. The universe consists of all
upper case letters in these alphabets,
and each language is represented by
one of the circles. The Venn diagram
on the right describes the geographical
areas (red) and political entities (blue)
that make up the British Isles. With
the exception of the United Kingdom,
items labeled in blue are the elements
of the universe. The remaining words
describe the rule for membership in
their respective circles.

caution. Because many statements about sets are intuitive
and/or obvious, figuring out how to prove them can be difficult.
While Venn diagrams are excellent tools for illustrating many of these
statements, the diagrams are not substitutes for their proofs.

Set operations: Complement, union, and intersection
practice: Use Doug Ensley’s materials
to gain basic familiarity with set opera-
tions at math.lsa.umich.edu/courses/
101/venn2.html and math.lsa.umich.

edu/courses/101/venn3.html.

In the Venn diagrams illustrating the definitions of this section, the
set A is represented by the circle to the left, the set B is represented
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by the circle to the right, and the box represents a universe that con-
tains both A and B.

Definition 3. The union of sets A and B, written A ∪ B, is the set

{, | (, ∈ A) or (, ∈ B)}.

In other words, for an object to be an element of the union of two
sets, it need only be a member of one or the other of the two sets.
For example, the union of the sets {ε, δ, α} and {δ, β, ρ, ϕ} is the set
{α, β, δ, ε, ρ, ϕ}, the union of Z and Q is Q, and [ln(2),

√
2] ∪ (

√
2/2, e]

is [ln(2), e]. Note that S ∪ ∅ = S for all sets S.

Definition 4. The intersection of sets A and B, written A ∩ B, is the set

{/ | (/ ∈ A) and (/ ∈ B)}.

Thus, for an object to be a member of the intersection of two sets,
it must be an element of both of the sets. For example, the intersec-
tion of the sets {ε, δ, α} and {δ, β, ρ, ϕ} is the singleton {δ}, the inter-
section of Z and Q is Z, and [ln(2),

√
2] ∩ (

√
2/2, e] is (

√
2/2,

√
2].

Note that T ∩ ∅ = ∅ for all sets T.

Remark 5. For S and T sets, S ∩ T ⊂ S ⊂ S ∪ T and S ∩ T ⊂ T ⊂ S ∪ T.

Definition 6. Suppose A and B are sets. The difference of B and A,
denoted B \ A or B − A, is the set

{b ∈ B | b ̸∈ A}.

Note that, like subtraction, the difference operator is not sym-
metric. For example, {ε, δ, α} \ {δ, β, ρ, ϕ} is {α, ε} while {δ, β, ρ, ϕ} \
{ε, δ, α} is {β, ρ, ϕ}. As another example, we have [ln(2), e] \ (

√
2/2,

√
2]

is [ln(2),
√

2/2] ∪ (
√

2, e] and (
√

2/2,
√

2] \ [ln(2), e] = ∅.

Definition 7. Let U denote a set that contains a subset A. The comple-
ment of A (with respect to U), often written Ac, A∁, Ā, or A′, is the set
U \ A.

warning: It is common practice to suppress reference to the set
U occurring in the definition of complement. Relying on the reader
to implicitly identify the set U can cause confusion, but context often
clarifies. For example, if asked to find [−1, π)∁, then from context the
set U is R and [−1, π)∁ = (−∞,−1) ∪ [π, ∞).

Note that A∁ ∪ A is U, and A∁ ∩ A = ∅. Two sets with empty
intersection are said to be disjoint.

DeMorgan’s Laws relate the set operations. You should use the
definition of equality to verify6 them. They say 6 Mathematics is not a spectator sport.

In order to understand math, you need
to do math; now is a good time to start.(A ∪ B)∁ = A∁ ∩ B∁ and (A ∩ B)∁ = A∁ ∪ B∁.

© The University of Michigan, 2023
Comments to: math-updir@umich.edu
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Mathematical Hygiene

These notes are designed to expose you to elementary logic, the gram-
mar of mathematical communication. Once internalized, this material
will help keep your mathematics “healthy and strong.”1 For a rigor- 1 “Logic is the hygiene that the math-

ematician practices to keep his ideas
healthy and strong.” (Hermann
Weyl, quoted in American Mathemat-
ical Monthly, November 1992)

ous treatment of logic, you may wish to take Math 481, Introduction to
Mathematical Logic.

Statements

Ambiguity is accepted, maybe even welcomed, in certain methods of
discourse. As Definition 1 suggests, it is generally avoided in math.

Definition 1. A statement, also called a proposition, is a sentence that is
either true or false, but not both.

For example, the sentences 1 + 2 + 3 = 1 · 2 · 3. , 5 + 4 = 8. , and
See www.math.lsa.umich.edu/career/

for information about careers for
students of math.

In terms of future career satisfaction, math is a top-ranked degree.

are all statements. However, the sentences This sentence is false. ,
x = π + 34. , When does Michigan play today? , and Go Blue! are For a fixed value of x the sentence

x = π + 34. is either true or false.
However, as a value for x has not been
specified, the sentence is neither true
nor false.

all not statements.
To help distinguish between examples and the running text, state-

ments will often be placed in parentheses. For example, for a fixed
object x and a fixed set S both (x ∈ S.) and (x ̸∈ S.) are statements.

In math, the symbols P and Q are often used as short hand for The phrase “mind your P’s and Q’s”
becomes especially relevant in this part
of mathematics.

statements. If P is a statement, then its truth value is T if P is true
and F if P is false. For example, the truth value of the statement
(3 · 4 = 13.) is F, while the the truth value of both (1001 = 7 · 11 · 13.)
and (The Michigan Math Club meets on Thursdays at 4PM in the Math Club events feature an engaging

math talk and free pizza and pop. See
www.math.lsa.umich.edu/mathclub.

Nesbitt Commons Room, East Hall.) is T.

Negation and truth tables

The negation of a statement P is written ¬P and read “not P.” The
negation can usually be formed by inserting the word not into the
original statement. For example, the negation of (1000009 is prime.)

By writing it as a sum of two squares in
two different ways, Euler deduced that
1000009 = 293 · 3413.is (1000009 is not prime.). We require that ¬P have the opposite

truth value of P, and so, for example, ¬(All mathematicians are left-
handed.) is (Not all mathematicians are left-handed.) rather than (All
mathematicians are not left-handed.).

A truth table is a tabulation of the possible truth values of a logical
operation. For example, the truth table for negation appears in Ta-
ble 1. For each possible input (the truth value of P is either T or F)
the table records the output of the negation operation.

P ¬P
T F
F T

Table 1: The truth table for negation.



Equivalent statements

Suppose the edges of a triangle T have lengths a, b, and c with a ≤
b ≤ c. Thanks to Pythagoras and others we know2 that the statement 2 Euclid’s Elements, Book I, Propositions

47 and 48.(a2 + b2 = c2.) is equivalent to the statement (T is a right triangle.).
Similarly, (Not all mathematicians are left-handed.) is equivalent to
(Some mathematicians are not left-handed.).

When statements P and Q are equivalent, we write P ⇔ Q. We
remark that equivalent statements have the same truth values.

In the standard interpretation of English, two negatives make
a positive. The same is true in logic: for all statements P we have
¬(¬P) ⇔ P. As expected, ¬(¬P) and P have the same truth values:

“The English linguistics professor
J.L. Austin was lecturing one day. ‘In
English,’ he said, ‘a double negative
forms a positive. In some languages
though, such as Russian, a double
negative is still a negative. However,’
he pointed out, ‘there is no language
wherein a double positive can form
a negative.’ From the back of the
room, the voice of philosopher Sydney
Morgenbesser piped up, ‘Yeah, right.’ ”
(The Times, September 8, 2004)

P ¬P ¬(¬P)
T F T
F T F

Compound statements: Conjunctions and Disjunctions

Mathematics and English agree about the meaning of “and.” The P Q P ∧ Q
T T T
T F F
F T F
F F F

conjunction of statements P and Q is the statement (P and Q), often
written (P ∧ Q). Note that the statement (P ∧ Q) is true when both P
and Q are true and is false otherwise.

However, Mathematics and English disagree when it comes to
the meaning of the word “or.” For example, if your mathematics
instructor says

Michigan Math t-shirts are available for
purchase in the Undergraduate Office,
2082 East Hall.

“As a prize, you may have a t-shirt or a keychain,”

then the standard interpretation of this statement is “As a prize, you
may have a t-shirt or a keychain, but not both.” this is not the
mathematical meaning of the statement. The mathematical
meaning is “As a prize, you may have a t-shirt, a keychain, or both.”
The disjunction of statements P and Q is the statement (P or Q), often

In the table below, the first row of truth
values reflects the difference between
mathematics and English.

P Q P ∨ Q
T T T
T F T
F T T
F F F

written (P ∨ Q). Note that the statement (P ∨ Q) is false when both P
and Q are false and is true otherwise.

The operations of negation, conjunction, and disjunction corre-
spond3 to the set operations of complement, intersection, and union, 3

A∁ = {x | ¬(x ∈ A)}
A ∩ B = {/ | (/ ∈ A) ∧ (/ ∈ B)}
A ∪ B = {, | (, ∈ A) ∨ (, ∈ B)}

respectively. It is therefore not surprising that relations among nega-
tion, conjunction, and disjunction are encapsulated in DeMorgan’s
Laws:

¬(P ∨ Q) ⇔ (¬P) ∧ (¬Q) and ¬(P ∧ Q) ⇔ (¬P) ∨ (¬Q).

Conditional Statements
practice: To gain familiarity with
compound statements and conditionals,
use Doug Ensley’s materials at math.
lsa.umich.edu/courses/101/imply.

html, math.lsa.umich.edu/courses/
101/tt1.html, and math.lsa.umich.

edu/courses/101/tt2.html.

When Bruce Willis’ character in Die Hard expounds “If you’re not
part of the solution, [then] you’re part of the problem,” he has com-
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bined the statements r = (You’re not part of the solution.) and s =
(You’re part of the problem.) to form the conditional statement (If r,
then s.).

P Q P ⇒ Q
T T T
T F F
F T T
F F T

For statements P and Q the conditional statement (If P, then Q.)
is often written (P ⇒ Q) and read “P implies Q.” The statement P
is called the hypothesis (or antecedent or premise) and the statement Q
is called the conclusion (or consequent). Mathematically, the statement
(P ⇒ Q) is false when P is true and Q is false and is true otherwise.

When P ⇒ Q is true, we say that P is a
sufficient condition for Q. For example,
a sufficient condition for a function on
the real numbers to be continuous at π
is that the function be differentiable at
π.

When P ⇒ Q is true, we say that Q is a
necessary condition for P. For example,
lim

n→∞
an = 0 is a necessary condition for

the series
∞

∑
n=1

an to converge.

Note that P ⇒ Q is false exactly once: when a true hypothesis
implies a false conclusion. Does this agree with our ordinary under-
standing of implication? Consider Almira Gulch’s threat to Dorothy:

“If you don’t hand over that dog, then I’ll bring a damage suit that’ll
take your whole farm.” The Wizard of Oz, 1939

Suppose that Dorothy hands over that dog, Toto, thus failing to
carry out the hypothesis. In this case, Ms. Gulch’s statement is true
independent of whether or not she fulfills the conclusion by bringing
a damage suit. Should Dorothy choose to fulfill the hypothesis by
not handing over the dog, then Ms. Gulch’s statement is false unless
she files suit. So, it appears mathematics and English agree for this
example. On the other hand, the mathematically correct statement (If
3 = 7, then 8 = 4 + 4.) sounds bizarre, even to a mathematician.

As with all statements, the statement P ⇒ Q may be negated.
Since the negation of (P ⇒ Q) is required to be true when P is true
and Q is false, and false otherwise, we must have ¬(P ⇒ Q) ⇔
P ∧ ¬Q. Thus, the negation of (If you’re not part of the solution,

P Q P ∧ ¬Q ¬(P ⇒ Q)
T T F F
T F T T
F T F F
F F F F

then you’re part of the problem.) is (You are not part of the solution
and yet you are not part of the problem.), and for a function f on
the real numbers, the negation of (If f is differentiable at π, then f is
continuous at π.) is ( f is differentiable at π, and f is not continuous
at π.).

Predicates practice: To gain familiarity with
predicates, use Doug Ensley’s material
at math.lsa.umich.edu/courses/101/
predicate.html.

The sentence y > 4. is not a statement because, depending on the
value of the variable y, the sentence may be either true or false. Since
sentences such as y > 4. arise very often, we give them their own
name, predicate. We often use notation like P(x) to denote a predicate
that depends on a variable x. So, for example, P(x) might denote
the predicate 2 < ex < e and Q(,,/) might denote the predicate

,2 +/2 = 34. .
As with statements, a predicate can be negated. For example, practice: To gain familiarity with

negating predicates, use Doug Ensley’s
material at math.lsa.umich.edu/
courses/101/np1.html and math.lsa.

umich.edu/courses/101/np2.html.

suppose Q(,,/) = ,2 +/2 = 34. and r(y) = y > 4. , then

¬Q(,,/) is ,2 +/2 ̸= 34. and ¬r(y) is y ≤ 4. .
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Quantifiers practice: To gain familiarity with
quantifiers, use Doug Ensley’s material
at math.lsa.umich.edu/courses/101/
quantifiers.html.

By quantifying the variable that occurs in a predicate, we can create
statements. For example,

(There exists a real number y such that y > 4.) (1)

is true (and, since it is not false, is therefore a statement), and

We have used the phrase “such that”
rather than the incorrect “so that.”
See the comments of former Michigan
mathematics professor J.S. Milne at
www.jmilne.org/math/words.html.(For all real numbers y, we have y > 4.) (2)

is false (and, since it is not true, is therefore a statement). The words
there exists and for all in statements (1) and (2) are called quantifiers. “For all” is called a universal quantifier

and “there exists” is called an existential
quantifier.

While the words “for all” and “there exists . . . such that” don’t take
long to write out, they appear so frequently that the following short-
hand has been adopted: the symbol ∀ translates as “for all” and the
symbol ∃ translates as “there exists . . . such that.” Thus, statement (1)
is equivalent to (∃y ∈ R r(y).), and statement (2) is equivalent to
(∀y ∈ R, r(y).).

Often, quantifiers are hidden. For example, the statement (Every
integer is even.) can be written (∀n ∈ Z, n is even.) and the state-
ment (Some integers are even.) is equivalent to (∃m ∈ Z m is even.).
Ferreting out hidden quantifiers can be more than half the battle.

Here are two final examples that may be familiar to you. Fermat’s
Last Theorem says

. . . cuius rei demonstrationem mirabilem
sane detexi. Hanc marginis exiguitas non
caperet.

∀n ∈ N, ((∃a, b, c ∈ N an + bn = cn) ⇒ (n ≤ 2))

and, for a predicate S, the Principle of Mathematical Induction states

[S(1) ∧ (∀n ∈ N, S(n) ⇒ S(n + 1))] ⇒ (∀m ∈ N, S(m)).

Negation and quantifiers

Recall that if P is a statement, then the symbol ¬P denotes the nega-
tion of P. With the addition of quantifiers to the mix, negation can
be more challenging. For example, ¬(Everyone remembers how to
negate statements.) is (Somebody does not remember how to negate
statements.) and the negation of (Some integers are even.) is (Every
integer is odd.). The negation of statement (1) is (For all real numbers
w, w ≤ 4.), and the negation of statement (2) is (There exists a real
number z such that z ≤ 4.). Do you see the pattern? For a predicate
P(x) we have

In Calculus, a function f is said to be
continuous at a provided that

∀ε > 0, ∃δ > 0 ∀x ∈ R,

(|x − a| < δ) ⇒ (| f (x)− f (a)| < ε).

Thus, as you should verify, a function f
is not continuous at a provided that

∃ε > 0 ∀δ > 0, ∃x ∈ R

(|x − a| < δ) ∧ (| f (x)− f (a)| ≥ ε).¬(∀x, P(x)) is ∃z ¬P(z) and ¬(∃w P(w)) is ∀v,¬P(v).

Thus, the negation of (Every triangle is isosceles.) is (Some triangle
is not isosceles.) and ¬(There is a positive real number that is greater
than its square.) is (Every positive real number is less than or equal
to its square.).

"Don’t just read it; fight it! Ask your
own questions, look for your own ex-
amples, discover your own proofs.”
(Paul Halmos, I Want to be a Mathemati-
cian, 1985)

© The University of Michigan, 2023
Comments to: math-updir@umich.edu
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More Joy of Sets
In this handout we continue our summary of basic set theory begun in
The Joy of Sets, with a special emphasis on functions.

Functions

X = dom( f ) Y = cod( f )

x
•

f (x)
•

f

Figure 1: The function f : X → Y.
If X and Y are sets, a function from X to Y is a rule1 that assigns to

1 If you are worried about what exactly
a “rule” is or suspect that this definition
is not entirely rigorous, have patience!
We will remedy this below.

each element x in the set X a unique element y in the set Y. A good
name for a function is f . (You can probably guess why). If f is a
function from X to Y and x ∈ X, the unique element y ∈ Y that f
associates to x is called the value of f at x, usually written2 f (x). To

2 Thanks, Euler! (For those who read
left-to-right, it would have been better6

to write (x) f instead of f (x). Oh well.)

indicate that f is a function from X to Y, we write f : X → Y. In

“ f : X → Y” is read “ f maps X to Y.”
Note that the arrow “→” goes between
the domain X and codomain Y; for
individual elements in X and Y, we use
the arrow “ 7→” and write “x 7→ f (x).”

math, the words map or mapping are synonymous3 with function.

3 Variety is the spice of life.

If f : X → Y is a function from X to Y, the set X is called the
domain or3 source of f , and the set Y is called the codomain or3 target
space of f . Sometimes it is useful to have notation for this, so we
might write dom( f ) for the domain of the function f and cod( f ) for
its codomain.

It often helps to picture functions using “blobs and arrows” as in
Figure 1. If you picture dom( f ) as one blob (on the left) and cod( f )
as another blob (on the right), then you can represent f using arrows
that transform inputs in dom( f ) into outputs in cod( f ).

Functions are often defined using rules that specify how to convert
an input x into an output y = f (x). When variables are used in
this manner to define a function via a rule, the input variable (often,
but not always, x) is called the independent variable, and the output
variable (often, but not always, y) is called the dependent variable.

X = dom( f ) Y = cod( f )

•

•

•
••

im( f )

f

Figure 2: im( f ) = f [X] ⊆ cod( f ).

For any function f : X → Y, the image4 of f , written im( f ), is the

4 Some folks use range to mean image,
but others use it to mean codomain, so
we avoid the term altogether.

set
im( f ) := { f (x) : x ∈ X}

of all values that f takes on (see Figure 2). More generally, if f : X →
Y is any function, then for subsets A ⊆ X and B ⊆ Y we define the
direct image or3 forward image of A under f to be the set

5If f : X → Y is a function, then for all
A, B ⊆ X and C, D ⊆ Y we have:

(i) f [ f−1[C]] ⊆ C
(ii) f−1[ f [A]] ⊇ A
(iii) f [A ∪ B] = f [A] ∪ f [B]
(iv) f [A ∩ B] ⊆ f [A] ∩ f [B]
(v) f [A \ B] ⊇ f [A] \ f [B]
(vi) f−1[C ∪ D] = f−1[C] ∪ f−1[D]

(vii) f−1[C ∩ D] = f−1[C] ∩ f−1[D]

(viii) f−1[C \ D] = f−1[C] \ f−1[D]

f [A] := { f (a) ∈ Y : a ∈ A} ⊆ cod( f ),

and we define the preimage of B under f to be the set

f−1[B] := {x ∈ X : f (x) ∈ B} ⊆ dom( f ).

These operations have friendly properties that are fun to prove.5

Example. For any set X, the identity function IdX : X → X is defined
by the rule IdX(x) = x for all x ∈ X. Identity functions may seem
kind of boring, but you will encounter them frequently and find
them to be quite useful.



Example. The squaring function s : R → R is defined by the rule
s(x) = x2 for all x ∈ R.

Example. The power set of a set X is the collection of all subsets of X.
Viewed as a function P : V → V on the universe V of all sets, P is
defined by the rule P(X) = {Y : Y ⊆ X}.

X Y Z

x
•

f (x)
•

g( f (x))
•

f g

g ◦ f

Figure 3: The function g ◦ f : X → Z.
Functions can be iterated with each other to produce new func-

tions in a process called composition (see Figure 3). Specifically, if X,
Y, and Z are sets and f : X → Y and g : Y → Z are functions, the
composite function g ◦ f : X → Z is defined6 by (g ◦ f )(x) = g( f (x)) 6 Note that composition is read back-

wards: “g ◦ f ” means first apply f ,
then apply g. If we wrote (x) f , then we
could compose functions the same way
we read: from left to right. (Try it!)

for all x ∈ X. Composition of functions is associative; that is, for any
sets W, X, Y, and Z and functions f : W → X, g : X → Y, and
h : Y → Z, we have h ◦ (g ◦ f ) = (h ◦ g) ◦ f .

Definition. If f : X → Y is a function, then an inverse of f is a
function g : Y → X such that g ◦ f = IdX and f ◦ g = IdY. The
function f : X → Y is said to be invertible if it has an inverse.

If f is invertible, then its inverse is unique and is denoted f−1.
Fortunately, there is a handy way of checking* whether a function is
invertible without having to know much about its inverse.

The terms injective and surjective have
synonyms3 that you might have heard
of: namely, one-to-one and onto, respec-
tively.

Definition. Let f : X → Y be a function. Then f is:

• injective if for all x, x′ ∈ X, x ̸= x′ implies f (x) ̸= f (x′);

• surjective if for all y ∈ Y there is x ∈ X such that y = f (x);

• bijective if f is both injective and surjective.

A function f : R → R is injective if and
only if every horizontal line meets the
graph of f at most once, and surjective if
and only if every horizontal line meets
the graph of f at least once.

Try proving that f : X → Y is injective if
and only if there is g : Y → X such that
g ◦ f = IdX and surjective if and only if
there is g : Y → X such that f ◦ g = IdY .

While you’re at it, also prove this: for
any functions f : X → Y and g : Y → Z,
(i) If f and g are injective, so is g ◦ f ;
(ii) If f and g are surjective, so is g ◦ f ;
(iii) If f and g are bijective, so is g ◦ f ;
(iv) If g ◦ f is injective, then so is f ;
(v) If g ◦ f is surjective, then so is g.

Can you explain (see Figure 2!) how to think of injectivity and surjec-
tivity in terms of the “blobs and arrows” picture?

*Theorem. For any function f , f is invertible if and only if f is bijective.

Note that for two functions to be equal to each other they must
have the same domain and codomain. We can obtain new functions
from a given function f : X → Y by changing dom( f ) or cod( f ).

Definition. If f : X → Y is a function and if A ⊆ X, the restriction of
f to A is the function g : A → Y defined by the rule g(x) = f (x) for
all x ∈ A. The restriction of f to A is often denoted f ↾ A or3 resA f .

Example. Let f : R → R be the squaring function. Then f is neither
injective nor surjective, but f ↾ [0, ∞) is injective, and the function
g : [0, ∞) → [0, ∞) defined by g(x) = x2 is bijective (thus invertible). For any function f : X → Y, the

function g : X → im( f ) defined by
g(x) = f (x) for all x ∈ X is surjective,
which shows that any function can be
converted into a surjective one simply
by shrinking its codomain.

Lists

Recall from The Joy of Sets that sets do not care about order or repeti-
tion; for instance, {N, A, S, A} = {N, S, A} = {S, A, N, S}. If we want
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to distinguish between NASA, the NSA, and a useful bit of Latin, we For us, a list is by definition a finite
ordered set. Of course, infinite sets
can be ordered as well, and an infinite
ordered set that is ordered like N is
called a sequence.

will need to use finite ordered lists rather than sets.
As in our notation for sets, we can name a list by writing out its

elements separated by commas, but in order to distinguish lists from
sets we will enclose the elements between parentheses rather than Thus (N, A, S, A) is a list, while

{N, A, S, A} is a set.between braces. The crucial difference between lists and finite sets is
that order and repetition do matter for lists. So, for instance,

In linear algebra, bases are sets but
finite ordered bases are lists. And
sometimes we really do need to use
ordered bases, such as when we define
coordinate vectors.

(N, A, S, A) ̸= (N, A, S) and (N, A, S) ̸= (N, S, A).

The length of a list is the number of elements in it. It is often con-
venient to index the elements of a list of length n using the natural
numbers from 1 to n. That is, we might write Lists of length n are often called n-

tuples, particularly when their elements
are numbers.L = (x1, . . . , xn) or L = (xk : 1 ≤ k ≤ n)

if L is a list of length n whose kth element is xk. Two lists are equal if Repetition is allowed in lists: (1, 1, 1) ̸=
(1, 1), since these lists do not even have
the same length.

they have the same length and the same elements, in the same order.

Cartesian Products Although named for René Descartes,
Nicole Oresme came up with the idea
of using rectangular coordinates in both
two and three dimensions more than
half a millennium before Descartes was
born.

Of special importance are lists of length two, which are called ordered
pairs. In the past you have probably used ordered pairs (a, b) of real
numbers to represent points in the Cartesian plane. More generally,
for any sets X and Y, the Cartesian product of X and Y is the set

X × Y := {(x, y) : x ∈ X and y ∈ Y}

consisting of all ordered pairs whose first element belongs to X and
whose second element belongs to Y.

You are faimilar with the summation
symbol, which is the capital Greek letter
sigma: ∑. The corresponding symbol
for products is a capital pi: ∏. So we
might write X1 × · · · × Xn = ∏n

k=1 Xk .

More generally still, we can form the Cartesian product of any finite
list of sets (X1, . . . , Xn), namely

X1 × · · · × Xn := {(x1, . . . , xn) : xk ∈ Xk for each 1 ≤ k ≤ n}.

As you might guess, we can also use exponential shorthand for re-
peated products: e.g., X × X = X2, Y × Y × Y = Y3, etc. Thus

R2 = R × R = {(a, b) : a ∈ R and b ∈ R},

and, in general, Rn is the set of all n-tuples of real numbers.

In linear algebra, we often refer to
the n-tuples in Rn as vectors. This is
because the Cartesian product Rn be-
comes a vector space once we introduce
the addition and scalar multiplication
operations on it, so it is natural to think
of its elements as vectors. There is no
contradiction in Rn being both a Carte-
sian product and a vector space, or in
x⃗ ∈ Rn being both an n-tuple and a
vector. It’s a bit like the fact that you are
both a leader and the best.

The Graph of a Function

1

Figure 4: The graph of the exponential
function y = ex .

In calculus, one of the best ways to get a visual representation of a
function is to draw its graph. For instance, consider the exponen-
tial function exp : R → R defined by exp(x) = ex for all x ∈ R. Its
graph is a certain subset of R2, namely

graph(exp) = {(x, y) ∈ R2 : ex = y} ⊆ R2.
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Now that we have defined Catesian products in general, there is When X and Y are arbitrary sets, we
cannot really “draw” the graph of a
function f : X → Y the way we would
for a function from R to R, but the
set of points (x, y) ∈ X × Y such that
f (x) = y still makes good sense as a set.

nothing to stop us from doing this with any function. That is, for any
function f : X → Y, we define the graph of f to be the set

graph( f ) := {(x, y) ∈ X × Y : f (x) = y} ⊆ X × Y.

Rigorous Definition of Function “In mathematics rigor is not everything,
but without it there is nothing.” –Henri
Poincaré

“Everything is vague to a degree you
do not realize till you have tried to
make it precise.” –Bertrand Russell

Earlier we defined a function to be a “rule,” and informally this can
be a useful way to think about functions, but it has some serious
drawbacks that make it untenable as an official definition. Chief
among them: what is a rule? “Rule” is not a precise mathematical
notion. Furthermore, consider the functions f , g : R → R defined by For instance, does the rule “ f (n) = the

least natural number that cannot be
described in fewer than n words” define
a function? If so, what is f (14)?f (x) =

√
x2 and g(x) =




−x if x < 0;

x if x ≥ 0.

The functions f and g are defined by different rules, but we are in-
clined to say that they are the same function. This is because they
have the same domain and codomain and their values agree on every
input. In other words, they have the same graph.

In fact, the graph of a function encodes all the information we
need to know about it, and is already a well-defined mathematical
object. So we elect to bypass the idea of a “rule” altogether and just
define a function to be its graph.

Function! Graph!

Definition. A function f from X to Y is a subset f ⊆ X × Y with the
property that for every element x ∈ X there is exactly one element
y ∈ Y such that (x, y) ∈ f .

Of course, “(x, y) ∈ f ” is a bit of set-theoretic folderol that will never
appear again outside this definition, since it just means “y = f (x).”

Sets All the Way Down

Art by Zach Weinersmith www.smbc-comics.com

One of the goals — and one of the great achievements — of set the-
ory is to represent literally every mathematical object as a set. In
defining a function to be its graph, which is a set of ordered pairs,
we have reduced the notion of function to that of ordered pair. This
is enough to satisfy everyone but the set theorists, and now to satisfy
them as well we show how to represent ordered pairs as sets. Given
elements x and y, define the ordered pair (x, y) to be the set

(x, y) := {{x}, {x, y}}.

Then for all a, b, c, d we have (a, b) = (c, d) if and only if a = c and
b = d, which is all we ever needed from ordered pairs to begin with.
There — now everything7 is a set. 7 Thanks, Bourbaki! (Essentially all

mathematical objects can be represented
as sets. To get a feel for how this is
done, take Math 582.)

© The University of Michigan, 2023
Comments to: math-updir@umich.edu

60 demonstration: proof beyond the possibility of doubt



Complex Numbers
While you should already be somewhat familiar with the number
systems N of natural numbers, Z of integers, Q of rational numbers,
and R of real numbers, you may feel less acquainted with the num-
ber system C of complex numbers. This handout provides a friendly
introduction.

What are complex numbers?

Intuitively, a complex number is a number of the form While x and y are the go-to variables
for real numbers, we tend to use z and
w to represent complex numbers.z = a + bi,

where a and b are real numbers and i 2 = −1. The set of complex
numbers is denoted C. When b = 0, the complex number a + bi is
real, so R ⊆ C. For any complex number z = a + bi, the real numbers Thus N ⊆ Z ⊆ Q ⊆ R ⊆ C. Note that

“complex” does not necessarily mean
“nonreal.” π,

√
2, and 217 are complex

numbers too!

Re(z) = a and Im(z) = b are called the real and imaginary parts of z,
respectively. Addition, subtraction, and multiplication are defined by

The easy way to remember the multi-
plication rule is that you just expand
everything and collect like terms, using
the fact that i2 = −1.

(a + bi) + (c + di) = (a + c) + (b + d)i,

(a + bi)− (c + di) = (a − c) + (b − d)i,

and (a + bi)(c + di) = (ac − bd) + (ad + bc)i.

Division is a bit trickier, but we can do that too: Whenever we say “divide,” of course,
we mean division by a nonzero number.
It is a cardinal rule in math that you are
never allowed to divide by zero.

a + bi
c + di

=

(
ac + bd
c2 + d2

)
+

(
bc − ad
c2 + d2

)
i. (1)

The fact that you can add, subtract, multiply, and divide in C makes There is no need to memorize the
division rule; just remember that you
can eliminate the imaginary part of
the denominator by multiplying by its
complex conjugate (see below).

C a field, just like Q and R; we will have more to say about this later.

Ok, but what do they look like?

You may have noticed that complex numbers are basically just pairs1 1 In fact, we can rigorously define C by
setting C = R2 as sets. We then define
zero in C to be (0, 0), one in C to be
(1, 0), addition in C by

(a, b) + (c, d) = (a + c, b + d),

and multiplication in C by

(a, b) · (c, d) = (ac − bd, ad + bc).

We set i = (0, 1).

of real numbers, which makes them seem a lot like elements of R2.
This analogy between C and R2 is quite useful for visualizing com-
plex numbers. If we let the horizontal axis represent the real part of

We can also represent complex numbers
using 2 × 2 matrices. If we define the
map φ : C → R2×2 by

φ(a + bi) =

[
a −b
b a

]
,

then for all z, w ∈ C we have φ(z+w) =
φ(z) + φ(w) and φ(zw) = φ(z)φ(w).

a complex number, and the vertical axis the imaginary part, then we
can plot a complex number z = a + bi in the complex plane (also called
an Argand diagram) like so:

“I’m sorry, the number you
have dialed is imaginary.
Please rotate your phone 90
degrees and try again.”

Re

Im

•
z = a + bi

a

b

θ

r



Converting to polar coordinates, we can express the complex num-
ber z = a + bi in polar form as

z = r cos θ + (r sin θ)i = reiθ ,

where the second equality follows from Euler’s formula:

Re

Im

a = r cos θ

b = r sin θ

θ

r = |z|
• z

The best way to verify Euler’s formula
is using the Taylor series expansions at
0 of ex , cos x, and sin x. Try it!eiθ = cos θ + i sin θ.

The nonnegative real number r =
√

a2 + b2 is called the modulus For all z, w ∈ C, we have |zw| = |z||w|
and |z + w| ≤ |z|+ |w|.of the complex number z = a + bi, usually written |z|. The angle

θ ∈ (−π, π] is called the argument of z, written Arg(z). Multiplying, Technically this θ is called the principal
argument of z, while any number
differing from it by an integer multiple
of 2π is an argument of z.

dividing, and taking powers of complex numbers becomes far easier
in polar form, since the usual rules of exponents allow us to write:

For instance, using polar form we can

quickly compute
(

1
2 +

√
3

2 i
)6

, since

(
1
2
+

√
3

2
i

)6

=
(

1e
πi
3

)6
= e2πi = 1.

In fact, the 6 sixth roots of 1 in C are
just e

2πki
6 , where k ∈ {0, 1, 2, 3, 4, 5}.

(i) (reiθ)n = rneinθ ,

(ii) r1eiθ1 · r2eiθ2 = r1r2ei(θ1+θ2),

and (if r2 ̸= 0) (iii) (r1eiθ1)/(r2eiθ2) = (r1/r2)ei(θ1−θ2).

What is complex conjugation?

The easiest way to understand the rule for dividing complex num-
Remember: never divide by zero.

bers given in (1) is to remember that the imaginary part of the de-
nominator in a+bi

c+di can be eliminated by multiplying the numerator You used a similar method in high
school to rationalize denominators.and denominator by c − di. The complex number c − di is called

the complex conjugate of w = c + di, and is usually written w̄. Geo- w̄ is pronounced “w-bar.”

metrically, complex conjugation is just reflection over the real axis.
Complex conjugation has the following properties:

Note that for all z ∈ C, we have that
z ∈ R if and only if z = z̄.

never divide by zero.• z + w = z̄ + w̄

• zw = z̄w̄

• z/w = z̄/w̄

• |z|2 = zz̄

• Re(z) = 1
2 (z + z̄)

• Im(z) = 1
2i (z − z̄).

What’s so special about C?

The complex number system C is an example of an algebraic struc-
ture called a field. Roughly speaking, a field is a set of numbers that

The field axioms, which you do not
need to memorize (yet), are:

1. ∀x, y, z, (x + y) + z = x + (y + z);

2. ∀x, x + 0 = 0 + x = x;

3. ∀x ∃y such that x + y = 0;

4. ∀x, y, x + y = y + x;

5. ∀x, y, z, (xy)z = x(yz);

6. 0 ̸= 1 and ∀x, 1 · x = x · 1 = x;

7. ∀x ̸= 0, ∃y such that xy = 1;

8. ∀x, y, xy = yx;

9. ∀x, y, z, x(y + z) = xy + xz.

A field is any system of numbers that
can be added and multiplied, includes
the special numbers zero and one, and
satisfies these nine axioms.

you can add, subtract, multiply, and divide (except by zero). N is not
a field because you can’t subtract, and Z is not a field because you
can’t divide, but Q is a field.

However, while you can add, subtract, multiply, and divide in Q,
there are two more things you might want to do but cannot: take
limits of certain sequences, and solve certain polynomial equations.
For instance,

3.1, 3.14, 3.141, 3.1415, 3.14159, 3.141592, 3.1415926, 3.14159265, . . .
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is a sequence in Q that “should” converge but does not (in Q) be- The sequences (an)n∈N that “should
converge” are called Cauchy sequences,
and are defined by the property that for
every ϵ > 0 there is N ∈ N such that
|am − an| < ϵ whenever m, n ≥ N. You
may encounter these in Math 351 or 451.

cause π is irrational. Likewise, x2 − 2 = 0 and x2 + 1 = 0 are two
perfectly good polynomial equations which “should” have solutions
but do not (in Q) since neither 2 nor −1 has a rational square root.

To fix the first problem, we extend Q to R, i.e., we use real num-
bers: any sequence in R that “should” converge does converge. Intro- The technical term for this is that

R is complete. In general, any space
in which both the notion of Cauchy
sequence makes sense and every
Cauchy sequence converges to an
element of the space is called complete.

ducing R solves much of the second problem too; for instance, we get√
2 ∈ R, a solution of x2 − 2 = 0. But there are still some polynomial

equations that cannot be solved in R, like x2 + 1 = 0. To fix this prob-
lem, we extend R to C, i.e., we use complex numbers. The fact that C

really does solve the second problem is an important fact: The Fundamental Theorem of Algebra
is usually attributed to Gauss, who
proved it in his PhD thesis, although, as
is often the case in math, the full history
is a bit more complicated.

Theorem (The Fundamental Theorem of Algebra). For every noncon-
stant polynomial p(x) = ∑n

k=0 akxk with coefficients in C, the equation
p(x) = 0 has at least one solution in C.

But do “imaginary” numbers really exist?

I Shrink by Craig Snodgrass
notsohumblepi.com

We have said that
C = {a + bi : a, b ∈ R},

where i2 = −1. But how do we know that −1 should have a square
root? Are we really allowed to make up a new symbol, i, and say that
i2 = −1? The whole thing feels like cheating. If we can just introduce
a new symbol for whatever nonexistent thing we want, what’s to stop
us from “defining” j to be 1

0 and suddenly declaring division by 0 to
be possible? The field axioms are what is stopping

us! It is impossible to prove, using the
field axioms, that “there does not exist
x such that x2 = −1.” But it is possible
to prove that “there does not exist x
such that 0 · x = 1.”

In fact, there is no more reason to be skeptical of i than there is
to be skeptical of

√
2, and any queasiness you might have about i

probably stems from your relative familiarity with R as compared to
C, perhaps along with the fact that when we measure lengths in the
real world we use real numbers, giving us a sort of built-in geometric
intuition for them.

But the analogy between
√

2 and i is quite strong. If you are work-
ing in Q, then there is no number whose square is 2, making

√
2 just as

“imaginary” as i is from the perspective of Q. But it is perfectly legal “Legal” in the sense that it does not
contradict the field axioms.to introduce a new symbol,

√
2, and declare its square to be 2. In fact,

there is a smallest field containing both Q and
√

2, and you can do
math in this number system without breaking any rules. Similarly, if

The smallest field containing Q and√
2 is written Q(

√
2), and it consists of

numbers of the form a + b
√

2 where
a, b ∈ Q. We say that Q(

√
2) is obtained

from Q by adjoining a square root of 2.
you are working in R, then there is no number whose square is −1, but
it is again perfectly legal to introduce a new symbol, i, and declare its
square to be −1. There is then a smallest field containing both R and
i, and in fact this field is C. The theory of how all this works is called
the theory of field extensions, which you can learn about in a future
abstract algebra course.

One significant difference between
R and C is that real numbers can be
ordered to produce the familiar real
number line. In contrast, there is no
way to arrange complex numbers in a
line in a way that is compatible with the
algebraic operations.
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Polynomials and complex numbers Technically, it is more convenient to
define a polynomial p to be an infinite
sequence of coefficients (ak)k≥0, where
we demand that ak = 0 for all but
finitely many integers k. Then the
largest n for which an ̸= 0 is called the
degree of p, and we write ∑n

k=0 akxk to
represent (ak)k≥0 (By convention, the
degree of the zero polynomial is −∞.)

For any number system F (like R or C), a polynomial over F in the
variable x is an expression of the form

n

∑
k=0

akxk

where n ∈ N and ak ∈ F for each k. We write F[x] for the set of all
polynomials over F. Polynomials can be used to define polynomial
functions; in fact, each polynomial p = ∑n

k=0 akxk ∈ F[x] defines a The function c 7→ p(c) is so closely
connected to the polynomial p that the
two are often given the same name.

function from F to F by the rule p(c) = ∑n
k=0 akck for all c ∈ F.

The numbers ak are called coefficients, and the largest k such that
ak ̸= 0 is called the degree of the polynomial p, written deg(p). If Usually when we write p = ∑n

k=0 akxk ,
we implicitly mean that an ̸= 0, so that
n = deg(p).

∑n
k=0 akxk is a polynomial of degree n, then an is called the leading

coefficient of p, and p is called monic if an = 1.
Historically significant polynomials you
may encounter include x2 − 2, x2 + 1,
8x3 − 6x − 1, and x5 − x − 1.

Polynomials can be added and multiplied together in the usual
way, and writing p as a product of polynomials of smaller degree is
called factoring p. For any c ∈ F, the (degree one) polynomial x − c is

This was first proved by Descartes.a factor of p if and only if c is a root of p, meaning that p(c) = 0.
Polynomials of degree 1, 2, and 3 are called linear, quadratic, and Warning: this meaning of the term

“linear” is not the same as its usual
meaning in a linear algebra course! A
“linear” (i.e., degree one) polynomial is
usually not a linear transformation from
R to R. (In fact, when is it?)

cubic, respectively. By the well-known quadratic formula, the complex
roots of the quadratic polynomial q(x) = ax2 + bx + c are

r± =
−b ±

√
b2 − 4ac

2a
.

These roots are real if and only if b2 − 4ac ≥ 0, in which case q factors The quantity b2 − 4ac is called the
discriminant of ax2 + bx + c.(over R) into a product q(x) = (x − r+)(x − r−) of linear terms, where

r+ and r− are the real roots of q. If b2 − 4ac < 0, q is called irreducible
and cannot be factored (over R) into a product of linear terms. Here
are some important facts about polynomials with real coefficients:

• Every polynomial p ∈ R[x] of odd degree has a real root. This follows from the Intermediate
Value Theorem.

• For every polynomial p ∈ R[x] and complex number z ∈ C, z is a Here’s the proof idea: p(z̄) = ∑ ak z̄k =

∑ akzk = ∑ akzk = ∑ akzk = p(z).root of p if and only if z̄ is a root of p.

• Every polynomial p ∈ R[x] factors into a product of linear terms Can you prove this using the previous
fact and the Fundamental Theorem of
Algebra?

and irreducible quadratic terms.

Complex vector spaces

In many introductory linear algebra courses, it is built into the defini- Vector spaces that use real scalars are
called real vector spaces, or vector spaces
over R, while vector spaces that use
complex scalars are called complex vector
spaces, or vector spaces over C.

tion of vector space that scalars are always real numbers. But, in fact,
it makes sense to define vector spaces using scalars that belong to
other fields, like C or Q. You might see a fuller treatment of complex

What is the dimension of C considered
as a vector space over R? Over C? Over
(warning: this may hurt your head) Q?

vector spaces and of linear algebra over other fields in courses like
Math 296, 297, 420, or 493.

© The University of Michigan, 2023
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Notation

We list1 here some of the common notation you will encounter in 1 If this document were a book, this
section would be printed on the
endpaper.

both these worksheets and your undergraduate mathematics courses.

Set theory is the basis of most things mathematical. Suppose A,
B, and C are sets while x is an object. The commonly used symbols of
set theory are described below.

The basics of set theory are discussed in
The Joy of Sets on page 49.

x ∈ A x is an element of A
x ̸∈ A x is not an element of A
B ⊂ C B is a subset of C
B ⊆ C B is a subset of C
A ⊊ C A is a proper subset of C
A ∩ B the intersection of A and B
A ∪ B the union of A and B
A \ B the set difference of A and B
A∁ the complement of A
∅ the emptyset

Quantifiers allow us to specify the “quantity” of objects
under consideration. The existential and universal quantifiers appear
throughout mathematics.

The basics of working with quantifiers,
including how to negate statements
involving quantifiers, are discussed in
Mathematical Hygiene on page 53.

∃ existential quantifier there exists
∀ universal quantifier for all

nb: the words “such that” are often
paired with the words “there exists”.

Some sets are so common that people often forget to properly
introduce them when they appear. Here is a partial list of such sets.

Power sets and Cartesian products are
discussed in More Joy of Sets on page 57.

N the set of natural numbers
Z the set of integers
Q the set of rational numbers
R the set of real numbers
C the set of complex numbers
P(A) the power set of a set A
2A the power set of a set A
A × B the Cartesian product of sets A and B



66 demonstration: proof beyond the possibility of doubt

The notational conventions for functions are not universally
agreed upon. We list here some popular conventions. Suppose S and
T are sets and f : S → T is a function.

Functions are discussed in More Joy of
Sets on page 57.

If U is a set and and g : T → U is
a function, then g ◦ f denotes the
composition of g with f .

S the source or domain of f
dom( f ) the source or domain of f
T the target or codomain of f
cod( f ) the target or codomain of f
im( f ) the forward image of f
f [A] the forward image of a set A ⊂ S
f−1[B] the preimage of a set B ⊂ T

The English language has 26 letters, which is far too limiting
for math, science, and engineering. The Greek alphabet, whose
elements are listed below, is a common source of additional symbols.

An SMBC comic by Zach Weinersmith
www.smbc-comics.com

A α alpha N ν nu
B β beta Ξ ξ xi
Γ γ gamma O o omicron
∆ δ delta Π π pi
E ε epsilon P ρ rho
Z ζ zeta Σ σ sigma
H η eta T τ tau
Θ θ theta Υ υ upsilon
I ι iota Φ φ phi
K κ kappa X χ chi
Λ λ lambda Ψ ψ psi
M µ mu Ω ω omega

www.smbc-comics.com


Suggestions for Further Reading

Lara Alcock. How to Study as a Mathematics Major. Oxford University Press, 2013.

“Every year, thousands of students declare mathematics as their major. Many of these students are
extremely intelligent and hardworking. However, even the best struggle with the demands of making
the transition to advanced mathematics. Some struggles are down to the demands of increasingly
independent study. Others, however, are more fundamental: the mathematics shifts in focus from
calculation to proof, and students are thus expected to interact with it in different ways. These changes
need not be mysterious – mathematics education research has revealed many insights into the adjustments
that are necessary – but they are not obvious and they do need explaining.
This book aims to offer such explanation for a student audience . . . ” (page v).

Jeremy Avigad, Robert Y. Lewis and Floris van Doorn. Logic and Proof. https://leanprover.github.io/
logic_and_proof/index.html, 2021.

Ethan D. Bloch. Proofs and Fundamentals. Springer, 2011.

“This book is designed to bridge the large conceptual gap between computational courses such as
calculus, usually taken by first and second year college students, and more theoretical courses such as
linear algebra, abstract algebra and real analysis, which feature rigorous definitions and proofs of a type
not usually found in calculus and lower level courses. . . .
Though we emphasize proofs in this book, serious mathematics (contrary to a popular misconception) is
not ‘about’ proofs and logic any more than serious literature is ‘about’ grammar, or music is ‘about’
notes. Mathematics is the study of some fascinating ideas and insights concerning such topics as
numbers, geometry, counting, etc. Ultimately, intuition and imagination are as valuable in mathematics
as rigor. Both mathematical intuition and facility with writing proofs can be developed with practice,
just as artists and musicians develop their creative skills through training and practice.” (page xiii).

Gary Chartrand, Albert D. Polimeni and Ping Zhang. Mathematical Proofs: A Transition to Advanced Mathematics.
Pearson, 2018.

“As the teaching of calculus in many colleges and universities has become more problem oriented with
added emphasis on the use of calculators and computers, the theoretical gap between the material
presented in calculus and the mathematical background expected (or at least hoped for) in advanced
calculus and other more advanced courses has widened. In an attempt to narrow this gap and to better
prepare students for the more abstract mathematics courses to follow, many colleges and universities
have introduced courses that are now commonly called ‘transition courses.’ In these courses, students
are introduced to problems whose solution involves mathematical reasoning and a knowledge of proof

https://leanprover.github.io/logic_and_proof/index.html
https://leanprover.github.io/logic_and_proof/index.html
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techniques, where writing clear proofs is emphasized. . . . This textbook has been written for such a
course.” (page viii).

Daniel W. Cunningham. A Logical Introduction to Proof. Springer, 2012.

“Each student of mathematics needs to learn how to find and write mathematical proofs. These are
probably two of the most difficult skills that a mathematics major has to develop. Students often fail to
construct a proof of a mathematical statement because they lack confidence or just do not know how
to get started. This text is designed to increase students confidence . . . Even with a guide, the work
required to find a proof can be quite challenging. Professional mathematicians also have difficulty
finding proofs; however, mathematicians know that persistence often pays off and thus, they do easily
not give up.” (page vi).

Antonella Cupillari. The Nuts and Bolts of Proofs. Academic Press, 2001.

“The purpose of these notes is to help the reader to gain a better understanding of the basic logic of
mathematical proofs and to become familiar with some of the basic steps needed to construct proofs.
Thus the mathematical statements to be proved have been kept simple with these goals in mind. It is just
like learning where the chords are, before being able to play a nice piece of music!” (page xi).

Ulrich Daepp and Pamela Gorkin. Reading, Writing, and Proving: A Closer Look at Mathematics. Springer,
2003.

“In our experience, students beginning this course have little training in rigorous mathematical reasoning;
they need guidance. At the end, they are where they should be; on their own. Our aim is to teach the
students to read, write, and do mathematics independently, and to do it with clarity, precision, and care.
If we can maintain the enthusiasm they have for the subject, or even create some along the way, our
book has done what it was intended to do.” (page vii).

Larry J. Gerstein. Introduction to Mathematical Structures and Proofs. Springer, 2012.

“Students who are new to higher mathematics are often startled to discover that mathematics is a
subject of ideas, and not just formulaic rituals, and that they are now expected to understand and create
mathematical proofs. . . .
Students need experience in working with abstract ideas at a nontrivial level if they are to achieve the
sophisticated blend of knowledge, discipline, and creativity that we call ‘mathematical maturity.’ I
don’t believe that ‘theorem-proving’ can be taught any more than ‘question-answering’ can be taught.
Nevertheless, I have found that it is possible to guide students gently into the process of mathematical
proof in such a way that they become comfortable with the experience and begin asking themselves
questions that will lead them in the right direction. As with learning to swim or ride a bicycle, there are
usually anxieties to be overcome; and . . . it takes a while for students to come to believe that they may be
capable of solving a problem even when no instantaneous solution presents itself. ” (page vii).

Richard Hammack. Book of Proof - Third Edition. http://www.people.vcu.edu/~rhammack/BookOfProof/,
2013.

“Until this point in your education, mathematics has probably been presented as a primarily computational
discipline. You have learned to solve equations, compute derivatives and integrals, multiply matrices
and find determinants; and you have seen how these things can answer practical questions about the
real world. In this setting your primary goal in using mathematics has been to compute answers.

http://www.people.vcu.edu/~rhammack/BookOfProof/
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But there is another side of mathematics that is more theoretical than computational. Here the primary
goal is to understand mathematical structures, to prove mathematical statements, and even to invent
or discover new mathematical theorems and theories. The mathematical techniques and procedures
that you have learned and used up until now are founded on this theoretical side of mathematics.
For example, in computing the area under a curve, you use the fundamental theorem of calculus. It
is because this theorem is true that your answer is correct. However, in learning calculus you were
probably far more concerned with how that theorem could be applied than in understanding why it is
true. But how do we know it is true? How can we convince ourselves or others of its validity? Questions
of this nature belong to the theoretical realm of mathematics. This book is an introduction to that realm.
” (page viii).

Kevin Houston. How to Think Like a Mathematician: A Companion to Undergraduate Mathematics. Cambridge
University Press, 2009.

“The aim of this book is to divulge the secrets of how a mathematician actually thinks. As I went
through my mathematical career, there were many instances when I thought, ‘I wish someone had
told me that earlier.’ This is a collection of such advice. Well, I hope it is more than such a collection. I
wish to present an attitude – a way of thinking and doing mathematics that works – not just a collection
of techniques (which I will present as well!)” (page 4).

Tamara J. Lakins. The tools of mathematical reasoning. American Mathematical Society, Providence, RI, 2016.

“... this type of course is usually a completely new experience for students. It is normal to feel a bit
disoriented at first. It is important to persevere. It is especially important to study actively, by reading
the textbook equipped with pencil and paper, by writing lots of proofs, and by discussion the mathematics
with your instructor and fellow students. You should never expect to simply write down a proof
immediately after reading the statement to be proved. ... ” (page xii).

Joseph J. Rotman. Journey into Mathematics: An Introduction to Proofs. Dover Publications, 2007.

“Instructors have observed, when teaching junior level [math] courses . . . that many students have
difficulty out of proportion to the level of difficulty of the material. . . . The cause of this problem is plain
when one considers the previous mathematics courses. . . .
My solution is a one semester intermediate course between calculus and the first courses in abstract
algebra and real variables. This is not a new idea. There are many such ‘transition courses’ designed to
prepare students for junior-level courses, but they emphasize the elements of logic (from modus ponens
and truth tables through quantifiers) and set theory (from Boolean operations through relations and
functions). I find this material rather dull and uninspiring, and I imagine that this feeling is shared by
most students. Of course, these things should be learned eventually . . . ” (page vii).

Carol Schumacher. Chapter Zero: Fundamental Notions of Abstract Mathematics. Pearson, 2000.

“This is a book about mathematical reasoning. That is, it is a book about the kind of thinking that
mathematicians do when they are doing mathematics. Most mathematics courses through the level of
elementary calculus teach students how to use established mathematical techniques to solve problems.
This is a very good beginning, but a complete mathematical education cannot stop there. A student of
mathematics must learn to discover and prove mathematical facts on her own. It takes a long time to
learn how to create new mathematics. This book is designed for the beginning of the journey.” (page 1) .



Thomas Sibley. Foundations of Mathematics. Wiley, 2009.

“Over the past two decades, mathematicians have realized the need to provide a transition from
problem-solving courses to proof-based courses. Naturally, no one course can accomplish all the
preparation that students need in order to succeed in proving mathematical statements. Even so, many
mathematics departments designate some course early in the major that provides special emphasis
and instruction on proofs. This book is a text for such a course and is intended for students who have
successfully finished some calculus and possibly other college-level mathematics courses. ” (page ix).

Douglas Smith, Maurice Eggen and Richard St. Andre. A Transition to Advanced Mathematics. Thomson,
2006.

“ ‘I understand mathematics but I just can’t do proofs.’
Our experience has led us to believe that the remark above, though contradictory, expresses the frustration
many students feel as they pass from beginning calculus to a more rigorous level of mathematics. This
book developed from a series of lecture notes for a course at Central Michigan University that was
designed to address this lament.” (page vi).

Daniel Solow. How to Read and Do Proofs: An Introduction to Mathematical Thought Processes. Wiley, 2013.

“After finishing my undergraduate degree, I began to wonder why learning theoretical mathematics
had been so difficult. As I progressed through my graduate work, I realized that mathematics possessed
many of the aspects of a game – a game in which the rules had been partially concealed. Imagine trying
to play chess before you know how all the pieces move! It is no wonder that so many students have
trouble with abstract mathematics.
This book describes some of the rules by which the game of theoretical mathematics is played. It has
been my experience that virtually anyone who is motivated and who has a knowledge of high school
mathematics can learn these rules. Doing so greatly reduces the time (and frustration) involved in
learning mathematics. I hope this book serves that purpose for you.” (page vii).

Ted Sundstrom. Mathematical Reasoning: Writing and Proof. https://scholarworks.gvsu.edu/books/9/,
2021.

“[This book] is designed to be a text for the first course in the college mathematics curriculum that
introduces students to the processes of constructing and writing proofs . . .
This type of course has now become a standard part of the mathematics major at many colleges and
universities. It is often referred to as a ‘transition course’ from the calculus sequence to the upper-level
courses in the major. The transition is from the problem-solving orientation of calculus to the more
abstract and theoretical upper-level courses. This is needed today because many students complete their
study of calculus without seeing a formal proof or having constructed a proof of their own. This is in
contrast to many upper-level mathematics courses, where the emphasis is on the formal development of
abstract mathematical ideas, and the expectations are that students will be able to read and understand
proofs and be able to construct and write coherent, understandable mathematical proofs.” (page viii).

https://scholarworks.gvsu.edu/books/9/


Index

:=, 50
C0(R), 24
Id2, 22
IdS, 12
Idn, 32
IdR, 26
n choose k, 34

absolute value, 12, 18
additive inverse, 31
antecedent, 55
Archimedean Property, 17
Argand diagram, 61
argument, 62
associative, 16, 58

bijective, 20, 58
bounded above, 25

cardinality, 49
Cartesian product, 9, 59
casework, 33
Cauchy sequence, 63
ceiling function, 22
codomain, 11, 57
coefficients, 64
commutative, 12
complement, 52
complete, 63
complete the square, 32
complex conjugate, 62
complex numbers, 9, 61
complex plane, 61
composite, 15
composition, 12, 58
comprehension notation, 9, 49
conclusion, 55
conjuction, 54
consequent, 55

contrapositive, 39
converge, 26
cubic, 64

degree, 64
DeMorgan’s laws, 39, 54
dense, 17
dependent variable, 57
difference (set operation), 52
Diophantine equation, 14
direct image, 27, 57
discriminant, 64
disjoint, 52
disjunction, 54
divides, 13, 18
divisible, 13
domain, 11, 57

empty set, 50
equal, 10
Euler’s formula, 62
even, 5
existence and uniqueness, 31
existential quantifier, 13, 56
Extreme Value Theorem, 17

factor, 13
factorial, 22
Fermat’s Last Theorem, 41, 56
field, 62
field axioms, 62
for all, 15, 56
for every, 15
forward image, 27, 57
function, 11, 60, 57
Fundamental Theorem of Algebra, 63
Fundamental Theorem of Arithmetic,

26
Fundamental Theorem of Calculus,

24

geometric sum, 43
graph, 60

hypothesis, 55

identity function, 12, 57
if and only if, 10, 39
image, 57
independent variable, 57
induced set function, 27
injective, 19, 58
integers, 9, 49
Intermediate Value Theorem, 20
intersection, 52
inverse function, 20
invertible, 20, 58
invertible matrix, 22
irrational number, 12

linear, 20
linear (polynomial), 64
linearly independent, 18, 22
list, 59
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polynomial function, 64
power set, 27, 58
predicate, 55
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Rolle’s Theorem, 42
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sufficient, 55
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