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1 Introduction

Computation based on a conversation with Roger Howe (Aug 2013).

• The computation is elementary but tedious. The end result is
an interesting spectral expansion of δ1SL(2):

δ1SL(2) = e0 + e1

2
+ e1 + · · ·

into invariant orthogonal idempotent distributions ek belonging
to the Bernstein center, with the very important properties:

· ek is related to representations of depth k.

· ek has support in the topologically unipotent set of elements of
SL(2). In particular, the distribution Ek = ek ◦ exp is an invari-
ant distribution on the Lie algebra supported on the topologically
nilpotent set. I will mention geometrically what I think is the
Fourier Transform FT (Ek).

• The computation, in particular, relies on the SL(2) discrete series
character table computed by Sally-Shalika in 1968.



2 Notation

· F a p-adic field (characteristic 0) with residue field Fq = RF/PF .

· G/F a connected reductive algebraic group, Lie(G) The Lie-
algebra of G, G := G(F ), g = Lie(G)(F ).

Fix Haar measures µG on G and µg on g.

· C∞
c (G), C∞

c (g) the vectors spaces of locally constant compactly
supported functions.

· ψ a non-trivial character of F . Will assume conductor is PF .



3 Review of Bernstein Center distributions, Components and Projectors.

For next few sections G is a general connected reductive p-adic
group. Suppose D ∈ HomC(C

∞
c (G),C), i.e., a distribution and

f ∈ C∞
c (G). We have the convolution D ⋆ f :

(D ⋆ f) (x) := D(λx(C(f) ) ) where

{
(λx (h) ) (y) := h(x−1y) is left translation

C(h) (y) := h(y−1) is inversion

D is called left-essentially compact if:
∀f ∈ C∞

c (G), we have D ⋆ f ∈ C∞
c (G).

Similar notion of right-essentially compact. An essentially com-
pact distribution is, by definition, one which is both left and right
essentially compact.
Bernstein center (geometric version):

Z(G) : = algebra of essentially compact G-invariant distributions

For any z ∈ Z(G), and any smooth representation π, there is a
canonical way to define π(z) ∈ EndC(Vπ).



Remark: Explicit examples of Bernstein center distributions are rather
sparse:

· The delta function δz of a central element z ∈ G, e.g., δ1G.

·When G is semisimple, and π is an irreducible cuspidal repre-
sentation, then the character f −−→ trace(π(f )) is a Bernstein
center distribution.

· (Bernstein’s example) When G = SL(n), and ψ is a non-trivial
additive character, then the distribution which is integration
against the function

ψ ◦ trace

is in Z(G).

·When G is quasi-split, M-Tadić produced some Bernstein center
distributions as linear combinations of orbital integrals of split
elements.



Spectral realization of Bernstein Center

Consider pairs [M,σ] where M is a Levi subgroup of G and σ is a
(equivalent class of) cuspidal representation of M .

• The group G acts by the Adjoint map on the collection of pairs,
and the resulting set of orbits is the space Ω(G) of infinitesimal
characters. There is an map from the smooth dual:

Ĝ
Inf

−−−−→ Ω(G)

• For a fixed Levi M , the unramified characters Ψ(M) of M act
on pairs with [M,σ] by twisting σ. Then

Ω([M,σ]) = Inf( Ψ(M) [M,σ] ) ,

is a Bernstein component. It and therefore Ω(G) too is a complex
variety.



• If z ∈ Z(G), and π and π′ are two irreducible smooth represen-
tations with Inf(π) = Inf(π′), then π(z) = π′(z). In particular,
each z ∈ Z(G) defines a function zΩ(G) on Ω(G).

• Spectral expansion characterization of z ∈ Z(G).

(i) zΩ(G) is a regular function on each component Ω, and

z(f ) =

∫

Ĝtemp

zΩ(G)(π) Θπ ( f ) dµ(π)

(ii) Conversely, given a system of regular functions on the Bern-
stein components Ω, then the above integral gives a distribu-
tion in Z(G).



Bernstein Projectors

Recall the abstract Plancherel formula

δ1(f ) =

∫

Ĝtemp

Θπ ( f ) dµ(π) .

Suppose Ω is a Bernstein component. The distribution

eΩ( f ) :=

∫

Ĝtemp ∩ Inf−1(Ω)
Θπ ( f ) dµ(π) .

is an idemponent in Z(G). The eΩ’s are called the Bernstein
component projectors. We have:

δ1 =
∑

Ω

eΩ , and

C∞
c (G) =

⊕

Ω

eΩ ⋆ C
∞
c (G) ⋆ eΩ

is a decomposition of the (non-unital) algebraC∞
c (G) into ideals.



4 Depths of representations and components.

Suppose π ∈ Ĝ.

Work of M-Prasad defines a rational non-negative number (depth)
ρ(π) attached to π.

Furthermore, if Inf(π), Inf(π′), belong to the same component then
ρ(π) = ρ(π′), so one can define the depth of a component Ω.

For a given depth d there are only finitely many components Ω with
depth d.

Set
ed :=

∑

ρ(Ω)=d

eΩ .



I’ll state the interesting outcome of a computation for the very
special case of SL(2) and d = 0 when the residual characteristic
of F is odd. For SL(2):

1. M-Tadić explicitly computed the projectors eΩ for principal series
components in 2001. Marko and I did the initial work during a
one month NSF international collaboration visit (July 2000) here
in Chicago.

2. For a cuspidal component, i.e., representation π, the projector is
given as:

eπ = dπ Θπ (Θπ is the character) .

Sally and Shalika computed these characters in 1968.



5 Topologically nilpotent and unipotent and compact sets.

Back to general setting. A failing of the p-adic situation is:

exp : g −→ G

is not always defined.

An element γ ∈ G is called topologically unipotent if for any F -
rational representation τ : G −−−→ GL(V ), the characteristic poly-
nomial charpoly(τ (γ), x) satisfies:

charpoly(τ (γ), x) ∈ RF [x] , and ≡ (x− 1)dim(V ) mod PF .

Similarly γ ∈ g is topologically nilpotent if:

charpoly(τ (γ), x) ∈ RF [x] , and ≡ xdim(V ) mod PF .

LetNtop and Utop denote respectively the sets of topologically nilpo-
tent and topologically unipotent. Then under suitable conditions,

exp is a G-equivariant bijection of Ntop with Utop .



In particular, functions/distributions on G supported on Utop can

be pulled back to Ntop.

An element γ ∈ G is compact if it lies in some compact subgroup.
This is equivalent to:

∀ τ : charpoly(τ (γ), x) ∈ RF [x] .

Set
C := set of compact elements.

Obviously,
Utop ⊂ C

Result of Dat in general setting:

∀ Ω : supp(eΩ) ⊂ C.

WhenG is semi-simple, a cuspidal representation π gives a singleton
Bernstein component Ω, and eΩ = dπθπ. In this situation, Deligne
was the first to note θπ has support in C.



6 Statement of a SL(2) calculation result.

For G = SL(2)(F ), the idempotent distribution

e0 :=
∑

ρ(Ω)=0

eΩ

has support in Utop.

Remark: The components for SL(2) are either principal series or
cuspidal. Neither of the two idempotents

e0,PS : =
∑

Ω PS
ρ(Ω) = 0

eΩ , e0,cusp : =
∑

Ω cuspidal
ρ(Ω) = 0

eΩ

has support in Utop. More generally, no linear combinations of just
PS (or just cusp) idempotents has support in Utop.



Some elementary remarks on elements in Utop and C for SL(2).

1. If γ ∈ Utop is not unipotent, then it is semi-simple (either split

or elliptic) with eigenvalues α, α−1 which are principal units
(|α− 1|E < 1). (E is F or relevant quadratic extension.)

2. We note

C = Utop
∐

−I2×2Utop
∐

rest

rest is the set of strongly regular (compact) elements:

rest = { γ ∈ C | the eigenvalues of γ modulo P are distinct }



7 PS projectors for SL(2).

The PS components of depth zero are parameterized by characters pairs {χ, χ−1} of R×
F/( 1 +

PF ). The Bernstein projectors are given by the following table: For y ∈ Creg,

Regular PS

eΩ({χ,χ−1})( y ) =





(q + 1)
χ(α) + χ(α−1)

|α− α−1 |F
,

y split with eigenvalues α, α−1

0 otherwise

Sgn PS

eΩ(sgn)( y ) =





(q + 1)
sgn(α )

|α− α−1 |F
,

y split with eigenvalues α, α−1

0 otherwise

Unramified PS (Iwahori fixed vectors)

eΩ( y ) =





2 q

|α− α−1 |F
− (q − 1) ,

y split with eigenvalues α, α−1

−(q − 1) y elliptic



8 Cuspidal projectors for SL(2).

We give a description of the cuspidal depth zero representations.
We recall there are two conjugacy classes of maximal compact sub-
groups in SL(2) with representatives:

K = SL(2)(RF ) ,

K ′ = v K v−1 , where v :=

[
̟−1 0

0 1

]
.

(8.1)

Let K1 and K ′
1 be the 1st congruence subgroups of K and K ′

respectively. The quotients K/K1 and K ′/K ′
1 are naturally iso-

morphic to SL(2)(Fq).

• Any irreducible cuspidal depth zero representation π is (com-
pactly) induced uniquely from either K or K ′ of a cuspidal
reprentation inflated from SL(2)(Fq).



• Recall SL(2)(Fq) has:
1. (q − 1)/2 cuspidal representations of degree (q − 1).

2. a pair of cuspidal representations of degree (q − 1)/2.

They are associated to pairs of regular characters, and the sgn
character of the elliptic torus.

1. If σ is a cuspidal representation of degree (q − 1), then:

π := IndGK σ ◦ inf , π′ := IndGK ′ σ ◦ inf

have characters Θπ and Θπ′ conjugate under the adjoint action
of the element v. They form a 2 element L-packet.

2. The two degree (q − 1)/2 cuspidal representations, when in-
flated to K and K ′, and then induced to G, give a 4 element
L-packet.

The next slide is the Sally-Shalika tables of ‘unramified’ discrete
series. The case of the level h = 1 corresponds to depth 0.



Table 2



Predating Dat’s (2000) result (and Deligne’s (1970’s) result for
cuspidal representations too), the Sally-Shalika 1968 table shows
Ωπ = degπ Θπ has support in C.

Tediously combining the M-Tadić results for the PS components
with the Sally-Shalika results for the cuspidal components yields e0
vanishes on C\Utop = −I2×2Utop

∐

rest, so

supp( e0 ) ⊂ Utop .



9 Actual values of e0.

On Utop

e0 ( y ) = (q2 − 1)





( 2
|α−α−1 |F

− 1
)

when y is split with eigenvalues α, α−1

−1

when y is elliptic



Question: For SL(2), the possible depths are the integers and half
integers 0, 12, 1,

3
2, . . . . What can be said for the other idempotents

ed?

For d > 0, matters are less delicate. The sum of just the PS
component projectors (of depth d) already has support in Utop. In
particular,

supp( ed ) ⊂ Utop .

But for d > 0, the tedious computations of the exact values of ed
have not yet been computed.

Saying something for the lowest depth 0 was always considered a
key obstruction.



Important take away is:

δ1G =
∑

d

ed

is an expansion of the delta distribution into a sum of G-invariant
essentially compact distributions, each representable by a locally L1

function, and supported in Utop.

I finished the support computations in December 2013, and look-
ing at my e-mails, I wrote to Roger and Ju-Lee Kim about the
answer on December 22. I believe Paul would have appreciated the
use of the Sally-Shalika characters tables in the computation, and
especially the harmonic analysis that I think occurs when we move
the distributions ed to the Lie algebra.



Pull the distribution ed to the topological nilpotent set Ntop:

Ntop
exp
−→ Utop

ed−→ C .

Question: What is the Fourier transform FT ( ed ◦ exp )?

Since the G-invariant distribution ed ◦ exp is presumably an (essen-
tially compact) idempotent distribution on g, its Fourier Transform
should be the characteristic function of a G-invariant set Ξd.

• The orthogonality of the idempotents ed, means, up to measure
zero, the sets Ξd are disjoint.

• The expansion δ1G =
∑
d
ed means, up to measure zero, the union

of the sets Ξd is all of g.

Is there a nice description of the sets Ξd?



10 Fourier Transform.

For k ≥ 0 a integer or half integer, consider the G-invariant set:

g−k = {

[
a b

c −a

]
| det = (−a2 − bc) ∈ P−2k

F } .

We have
· · · ⊃ 1g−1

⊃ 1g− 1

2

⊃ 1g0

1g−ℓ
= ̟−1 1g−ℓ+1

.

In the general setting, there is a definition of the sets gs for s ∈ R
as:

gs :=
⋃

x∈B

gx,s .



Let 1gs be the characteristic function. Then,

• (Harish-Chandra) The Fourier Transform FT ( 1gs ) can be rep-
resented by a locally L1 function supported on the regular set.

• The distributions FT ( 1gs ) on g are essentially compact:

∀f ∈ C∞
c (g), the function FT ( 1gs ) ⋆ f is in C∞

c (g).

So, FT ( 1gs ) is in the Lie algebra Bernstein center.

There is a expansive period relationship gs−1 = ̟−1
gs, which gives an

opposite contractive relationship between FT ( 1gs−1
) and FT ( 1gs ).

In the situation of SL(2), we have the following fact about the
supports of FT ( 1g0 ), and FT ( 1g−1

2

) :

Proposition 10.1. The Fourier Transforms FT ( 1g0 ), and
FT ( 1g−1

2

) have support in the topologically nilpotent set Ntop.

Corollary 10.2. For k a non-positive integer or half integer,

FT ( 1gk ) has support in the topologically nilpotent set Ntop.



Here is a sketch of the proof for FT ( 1g0 ). We are allowed to
evaluate FT ( 1g0 ) at any convenient element in a regular conjugacy
class.

Split elements: For X =

[
A 0

0 −A

]
, and y =

[
a b

c −a

]
, we have:

trace ( y X ) = 2 aA (10.3)

so,

FT ( 1g0 ) (X ) =

∫

g

1g0(y) ψ( trace (yX) ) dy =

∫

g

1g0(y) ψ(2 aA) da db dc

= PV
(∫

g0

ψ(2 aA) da db dc
) (10.4)

We need to show for A /∈ PF , the PV integral is zero. For r a
(large) positive integer, define Br to be the ‘box’:

Br := {

[
a b

c −a

]
| a, b, c ∈ P−r

F } (10.5)

We show the integral vanishes over L(0,r) := Br ∩ g0. We focus on

the (1,1)-entry a.



Partition L(0,r) into

L(0,r),+ : = {

[
a b
c −a

]
∈ L(0,r)| a ∈ RF }

L(0,r),− : = {

[
a b
c −a

]
∈ L(0,r)| a ∈ F \RF }

Case L(0,r),+:

If Y =

[
a b
c −a

]
∈ L(0,r),+, then for all x ∈ RF , the matrix

Yx =

[
a + x b
c −(a− x)

]
(10.6)

is also in L(0,r),+ and ψ(trace(YxX ) ) = ψ( 2 (a+x)A). We can
fix the variables b and c and integrate the variable a over the set
RF to see the integral over a vanishes. Therefore, the integral over
L(0,r),+ vanishes.



Case L(0,r),−:
Write an element y ∈ L(0,r),− as y =

[
u̟−k B

C − u̟−k

]
, with u a unit

and k > 0. The condition y ∈ L(0,r),− is k ≤ r, and

u2̟−2k + BC ∈ RF .

If x ∈ RF , then the element
[
u̟−k + x B′

C ′ − (u̟−k + x )

]
(10.7)

lies in L(0,r),− precisely when

−B′C ′ ∈ v ̟−2k + RF , (10.8)

where v is the unit v = (u2 + 2 x̟k).



For each x ∈ RF , the measure of the set of elements (b, c) ∈
P−r
F × P−r

F satisfying −bc ∈ (u2 + 2x̟k)̟−2k + RF does not
depend on x, and thus the integral

∫

L(0,r),−

ψ( 2aA )da db dc (10.9)

vanishes.



Ellipti elements:

The proofs for unramified and ramified elliptic elements are sim-
ilar. We only show case of an unramfied elliptic element. Such an
elliptic element is GL(2)-conjugate to:

X =

[
0 B
C 0

]
with B,C units and BC a non-square (10.10)

For y =

[
a b
c −a

]
, we have trace ( y X ) = ( bC + cB ) and so,

FT ( 1g0 ) (X ) =

∫

g

1g0(y) ψ( bC + cB ) da db dc

= PV
(∫

g0

ψ( bC + cB ) da db dc
) (10.11)



We show the integral∫

g0∩Br
ψ( bC + cB ) da db dc

vanishes for r >> 0, where the box Br is (10.5).

We fiber the set g0 ∩Br by values of a, and show the integral over
a fiber is zero.

Case a ∈ RF :
Then the condition −a2 − bc ∈ RF becomes bc ∈ RF . We fur-
ther decompose this into the subcases where k = −val(b), satisfies
either k ≥ 1, or k ≤ 0, i.e., b ∈ RF .

• Case k ≥ 1. The condition b c ∈ RF is equivalent to c ∈ PkF ,
and so ψ ( bC + cB ) = ψ ( bC ), so integration over the c
variable gives

ψ( bC )meas(PkF ) .



Then, replacing b by b + x with x ∈ RF gives

ψ(xC )ψ( bC )meas(PkF ) . (10.12)

This means over a PF -coset b+x+PF with x ∈ RF , integration
over the c variable gives

ψ(xC )ψ( bC ) meas(PF ) meas(PkF )

We then deduce that the integral over (b, c) with −val(b) ≥ 1 is
zero.

•When −val(b) � 1, then b ∈ RF . The variable c is allowed to
run over a (fractional) ideal containing RF . With a and b fixed
the integration over this ideal is zero.



Case a /∈ RF :
Here, a2 /∈ P−1

F . The condition a2 + bc ∈ RF combined with
p odd means the product −bc must be a square, and 2 val(a) =
val(b) + val(c). Write −bc = a20; so, a

2 ∈ a20 + RF . We deduce

a = ± a0 u , where u ∈ 1 + P
val(b)+val(c)
F

(10.13)

Suppose −val(b) ≥ −val(c), i.e., |b| ≥ |c|. Then −val(b) ≥ 1 and
we can think to perturb b to b + x where x ∈ RF . Since −bc is a
square, so too is −(b + x)c (say −(b + x)c = a2†). The set of a

′ so

that (a′)2+(b+x)c ∈ RF is then as in (10.13) with a0 replaced by
a†. Crucially the measure of the two sets over which a and a′ are
allowed is the same. Therefore the integral over those y ∈ Br with
a /∈ RF can be decomposed into integrals fibered over the product
−bc a square. For a given val(b) + val(c), the measure of the set of
qualifying a depends only on val(b) + val(c). We can then perturb
the variable b or c which has maximum size by elements x ∈ RF ,



while fixing the other. The resulting decomposition of the integral
results in vanishing integrals over subsets which partition the subset
of Br with a /∈ RF . We conclude the Fourier transform integral
(10.11) vanishes.

This completes the sketch the Fourier transform FT ( 1g0 ) has sup-
port in the topologically nilpotent set Ntop.



Expectation/Conjecture:

• e0 ◦ exp = FT ( 1g0 ).

•More generally, if k ≥ 0 is an integer or half-integer:
( ∑

0≤j≤k

ej
)
◦ exp = FT ( 1g−k )

A tedious, but elementary calculation will determine the status of
the above in the situation of SL(2). If true, one then can speculate
what happens in higher rank.



11 Excerpt from an e-mail Paul sent after the death of Shalika in Fall 2010.

“I was at the Institute in Autumn, 1967, lecturing on p-adic SL(2) following the works of Bruhat,

Gel’fand-Graev, and a few others, including Shalika. Joe was at Princeton. We finally got

together in early 1968 and started working. It was an incredibly exciting adventure for two

non-tenured, rambunctious rookies. We soon discovered the road map for our project (Harish-

Chandra, Plancherel formula for the 2×2 real unimodular group, Proc.N.A.S., 1952). We thought

we could do it all: Characters, Plancherel Theorem, and the Fourier Transform of Elliptic Orbital

Integrals. We also had the Big Guy down the hall, for regular advice and direction.

We worked mainly in the Seminar Room in Building C, computing, shouting, and wrangling

for eight to ten hours at a time. It was spring, and the days were getting longer. So after we

finished work, we would walk across the golf course to Andy’s Bar on Alexander Street. There,

we would drink four or five beers, eat two or three cheeseburgers, revel in the day’s successes, and

look forward to the same effort the next day. For those who have been in the chase there is no

need to talk further about the exhilaration that accompanies this. I went home to Chicago for

the 1968-1969 academic year and I made many trips to Princeton. I returned to the Institute for

the summer of 1969 to finish the Orbital Integral project, which ultimately used Shalika Germs

to derive the Plancherel Formula again.

During the summers of 1968 and 1969, Joe would come occasionally with me to the Nassau

Swim Club. Besides being a swimmer, much to my amazement, Joe could do a really nice full

summersault off the diving board.

Joe was a good buddy. He gone. Too bad.” Sept 2014: Ditto for Paul.
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