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Suppose G reductive group , H reductive subgroup.

Disintegrate the representation of G on L2(G/H).

Why ?

• Central theme in harmonic analysis: Harish Chandra for H=e.

Recommended Reading

2



THE PLANCHEREL FORMULA, THE PLANCHEREL
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INTEGRALS
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Abstract. We discuss various forms of the Plancherel Formula and the Plancherel
Theorem on reductive groups over local fields.

Dedicated to Gregg Zuckerman on his 60th birthday

1. Introduction

The classical Plancherel Theorem proved in 1910 by Michel Plancherel can be
stated as follows:

Theorem 1.1. Let f ∈ L2(R) and define φn : R → C for n ∈ N by

φn(y) =
1√
2π

∫ n

−n
f(x)eiyxdx.

The sequence φn is Cauchy in L2(R) and we write φ = limn→∞ φn (in L2). Define
ψn : R → C for n ∈ N by

ψn(x) =
1√
2π

∫ n

−n
φ(y)e−iyxdy.

The sequence ψn is Cauchy in L2(R) and we write ψ = limn→∞ ψn (in L2). Then,

ψ = f almost everywhere, and

∫

R
|f(x)|2 dx =

∫

R
|φ(y)|2 dy.

This theorem is true in various forms for any locally compact abelian group. It
is often proved by starting with f ∈ L1(R)∩L2(R), but it is really a theorem about
square integrable functions.

There is also a “smooth” version of Fourier analysis on R, motivated by the work
of Laurent Schwartz, that leads to the Plancherel Theorem.

Definition 1.2 (The Schwartz Space). The Schwartz space, S(R), is the collection
of complex-valued functions f on R satisfying:

(1) f ∈ C∞(R).
(2) f and all its derivatives vanish at infinity faster than any polynomial. That

is, lim|x|→∞ |x|kf (m)(x) = 0 for all k, m ∈ N.

Fact 1.3. The Schwartz space has the following properties:
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For nontrivial H and the left regular representation on L2(G/H)

• Helgason for H maximal compact subgroup,

• H= fix point set of an involution work of van den Ban ,

Schlichtkrull, Delorme, Oshima ,

• In other special cases by many others.
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Other interesting perspectives:

• Burger, Li, Sarnak :

π ∈ L2(G/H)dis implies π ∈ L2(G/Γ)dis for some Γ
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Other interesting perspectives:

• Burger, Li, Sarnak :

π ∈ L2(G/H)dis implies π ∈ L2(G/Γ)dis for some Γ

• Conversely understanding L2(G/Γ)dis gives us information

about L2(G/H). (For example G classical and quasi split)

• Benoist + Kobayashi recently considered(solved) the prob-
lem: Find a condition so that all representations in L2(G/H)
tempered, but they obtained no information about the mul-
tiplicities. Interesting to look at cases where L2(G/H) is not
tempered and find the multiplicities of the tempered repre-
sentations.
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The following is joint work in progress with Bent Ørsted.

We consider a noncompact subgroup H = HssZH where H is a

subgroup of finite index in the fix points of an involution of G

and Zss = R is a subgroup of finite index of the center of H. We

call G/Hss an almost symmetric space.
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The following is joint work in progress with Bent Ørsted.

We consider a noncompact subgroup H = HssZH where H is a

subgroup of finite index in the fix points of an involution of G

and Zss = R is a subgroup of finite index of the center of H. We

call G/Hss an almost symmetric space.

Theorem 1. Suppose that G/H is an almost symmetric space.

As a left regular representation of G

L2(G/Hss) = L2(G/H) · L2(ZH).
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Corollary 2. All irreducible representations in the discrete spec-

trum of L2(G/Hss) have infinite multiplicity.
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Corollary 2. All irreducible representations in the discrete spec-

trum of L2(G/Hss) have infinite multiplicity.

Corollary 3. L2(G/Hss) is tempered iff L2(G/H) is tempered.
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An Example:
G = SL(2,R), H diagonal matrices Then X = G/H is a hyper-
boloid and

L2(G/H) = ⊕ν even Dν + 2
∫ ∞

0
πit

where Dν are the discrete series representations with parameter
ν and πit are the tempered principal series representations with
parameter it.

Here Hss = Z2, then L2(G/Hss) = L2(PSL(2,R)) and so the left
regular representation contains the even discrete series represen-
tations with ∞ multiplicity.

If H is connect then L2(G/H) contains all discrete series repre-
sentations and so does the left regular representation of G on
L2(G).
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Example 2: G = SL(2n,R), We take H as the connected

component of S(GL(p,R)GL(q,R). Then Hss = SL(p,R)SL(q,R)

where p+ q = 2n.

• If p=q =n then L2(SL(2n,R/H) is tempered .

• If p − q ≥ 2 then L2(Sl(2n,R)/SL(p,R) × SL(q,R)) is not

tempered.

• Using induction by stages we get Let m < n we deduce

L2(Sl(2n,R)/SL(m,R)SL(m,R)) is tempered.
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Example 3: G = SL(2n,C) , Hss has a covering T1SL(p,C)×
SL(q,C), p+q = 2n with a one dimensional torus T1.

Then

L2(SL(n,C)/SL(p,C)× SL(q,C)) = ⊕δ∈T̂L
2(SL(n,C)/Hss, δ)

where L2(SL(n,C)/Hss, δ) are the L2-section of the line bundle
defined by the character δ of Hss.

Result:

• If p=q =n then L2(SL(2n,C/Hss) is tempered

• If p − q ≥ 2 then L2(Sl(2n,C)/SL(n,C) × SL(n,C)) is not
tempered.
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Example 4: Cayley type spaces considered in Olafson- Ørsted.

1. G = Sp(n,R), H = GL(n,R) and Hss = SL+/−(n,R), n > 1

2. G = SO(2, n), H = SO(1,1)SO(1, n−1) and Hss = SO(1, n−
1), n > 2

3. G = SU(n, n), H = SL(n,C)R+ and Hss = SL(n,C)

4. G = O∗(4n), H = R+SU∗(2n) and Hss = SU∗(2n)

5. G = E7(−25), H = E6(−26)R+ and Hss = E6(−26)
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Results: If n is large enough then

• L2(Sp(n,R)/SL(n,R) and L2(E7(−25)/E6(−26)) are tempered

• L2(SO(2, n)/SO(1, n−1) , L2(SU(n, n)/SL(n,C)) and L2(O∗(4n)/SU∗(2n))

are not tempered.

All representations have infinite multiplicity in Plancherel for-

mula.
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Proof of the theorem:

1. Step:

H ⊂ G a subgroup with finite number of connected components

and H = HsZH with ZH = R+ in the center of H.

We extend a character χ ∈ ẐH to a character of H and consider

the induced representation Ind G
Hχ on L2(G/H)χ−1.
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Proof of the theorem:

1. Step:

H ⊂ G a subgroup with finite number of connected components

and H = HsZH with ZH = R+ in the center of H.

We extend a character χ ∈ ẐH to a character of H and consider

the induced representation Ind G
Hχ on L2(G/H)χ−1.

Lemma 4. As a representation of G

L2(G/Hss) =
∫
χ∈ẐH

L2(G/H)χ−1dχ
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Proof: Uses Fourier analysis on ZH and is not difficult..
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Proof: Uses Fourier analysis on ZH and is not difficult..

Main Problem:

Let χ and χ̃ be characters of ZH considered as characters

of H. Show that

IndGHχ = IndGHχ̃.
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Now have to assume that

H = HssZH

where H is a subgroup of finite index in the fix points of an

involution of G and Zss = R is a subgroup of finite index of the

center of H.
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Now have to assume that

H = HssZH

where H is a subgroup of finite index in the fix points of an

involution of G and Zss = R is a subgroup of finite index of the

center of H.

Observation

We may consider H as a subgroup of finite index in the Levi

subgroup of a maximal parabolic subgroup P = LN with abelian

unipotent radical N.

14



Let χ ∈ ẐH. We consider again χ as a character of H and

consider the unitary induced representation. IndPHχ.
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Let χ ∈ ẐH. We consider again χ as a character of H and

consider the unitary induced representation. IndPHχ.

Proposition 5. Let χ and χ̃ be characters of ZH considered as

characters of H. Then

IndPHχ = IndPHχ̃.

Sketch of the proof:
We denote the induced representations act on functions F ∈
L2(N) by

ρχ(n0)F (n) = F (n · n0)

ρχ(h0)F (n) = χ(h0)F (h−1
0 nh0)
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Using the Fourier transform on L2(N) we realize the representa-

tion IndPHχ on L2(N̂) by

ρ̂χ(n0) is a multiplication operator

ρ̂χ(h0)F̂ (ξ) = χ(h0)J(ht0ξ)
1/2F̂ (ht0ξ)

Now N̂ is the closure of a finite number of open orbits Oi of L on

N̂ and so the representation ρ̂χ is a direct sum of representations

on

⊕iL2(Oi)

On each summand we have an intertwining operator (dependent

on the orbit )

Ii(χ, χ̃) : ρ̂χ → ρ̂χ̃.
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Example: Consider the group P = HN with

H = {
(
a 0
0 1

)
, | a > 0}

and

N = {
(

1 b
0 1

)
| b ∈ R}
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Example: Consider the group P = HN with

H = {
(
a 0
0 1

)
, | a > 0}

and

N = {
(

1 b
0 1

)
| b ∈ R}

There are 3 orbits of H on

N̂ = {ξt | ξt(
(

1 b
0 1

)
) = eit·b}.

namely O+ = {ξt | t > 0} , O− = {ξt | t < 0} and O1 = {ξ0}.
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The unitary representation ρ1 of P induced from the trivial rep-

resentation of H acts on L2(N) by

ρ1(

(
a 0
0 1

)
)F (x) = a1/2F (ax)

and

ρ1({
(

1 b
0 1

)
)F (x) = F (x+ b).
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1 b
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)
)F (x) = F (x+ b).

The representation ρ1 is a direct sum of 2 unitary representa-

tions on square integrable functions whose Fourier transform has
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The unitary representation ρ1 of P induced from the trivial rep-

resentation of H acts on L2(N) by

ρ1(

(
a 0
0 1

)
)F (x) = a1/2F (ax)

and

ρ1({
(

1 b
0 1

)
)F (x) = F (x+ b).

The representation ρ1 is a direct sum of 2 unitary representa-

tions on square integrable functions whose Fourier transform has

support in ξ ∈ O+, respectively in ξ ∈ O−.

Consider χs : a → ais as a character of H and consider the
representation ρ̂s induced from χs.
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After applying the Fourier transform the representation ρ̂s has

the form

ρ̂s(

(
a 0
0 1

)
)F̂ (ξ) = a−1/2aisF̂ (a−1ξ)

and

ρ̂s(

(
1 b
0 1

)
)F̂ (ξ) = eibξF̂ (ξ)

The equivalence of the representations ˆrhos and ρ̂1 follows from

the intertwining operator

Is : ρ̂0 → ρ̂s defined by IsF̂ (ξ) = ξisF̂ (ξ).
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Induction to G

Proposition 6. Let χ and χ̃ be characters of ZH considered as

characters of H. Under we have

IndGHχ = IndGHχ̃.

Proof. By induction by stages

IndGHχ = indGP Ind
P
Hχ = indGP Ind

P
Hχ̃ = IndGHχ̃
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Induction to G

Proposition 6. Let χ and χ̃ be characters of ZH considered as

characters of H. Under we have

IndGHχ = IndGHχ̃.

Proof. By induction by stages

IndGHχ = indGP Ind
P
Hχ = indGP Ind

P
Hχ̃ = IndGHχ̃

I conjecture that this proposition is true if L = HA is the Levi

subgroup of a ”very nice ” parabolic subgroup in N. Wallach’s

terminology.
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We consider a noncompact subgroup H = HssZH where H is a

subgroup of finite index in the fix points of an involution of G

and Zss = R is a subgroup of finite index of the center of H. We

call G/Hss an almost symmetric space.
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We consider a noncompact subgroup H = HssZH where H is a

subgroup of finite index in the fix points of an involution of G

and Zss = R is a subgroup of finite index of the center of H. We

call G/Hss an almost symmetric space.

Theorem 7. Suppose that G/H is an almost symmetric space.

As a left regular representation of G

L2(G/Hss) = (IndGH1) · L2(ZH) = L2(G/H) · L2(ZH).

Proof. This follows from previous proposition.
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Happy birthday Becky
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