A Plancherel Formula for Almost Symmetric Spaces

Chicago, Sept. 2014

Birgit Speh
Cornell University

Suppose G reductive group, H reductive subgroup.

Disintegrate the representation of \mathbf{G} on $L^{2}(G / H)$.

> Why ?

- Central theme in harmonic analysis: Harish Chandra for $\mathrm{H}=e$.

Recommended Reading

Contemporary Mathematics
Volume 557, 2011

THE PLANCHEREL FORMULA, THE PLANCHEREL THEOREM, AND THE FOURIER TRANSFORM OF ORBITAL INTEGRALS

REBECCA A. HERB (UNIVERSITY OF MARYLAND) AND PAUL J. SALLY, JR. (UNIVERSITY OF CHICAGO)

Abstract

We discuss various forms of the Plancherel Formula and the Plancherel Theorem on reductive groups over local fields.

Dedicated to Gregg Zuckerman on his 60th birthday

1. Introduction

The classical Plancherel Theorem proved in 1910 by Michel Plancherel can be stated as follows:

Theorem 1.1. Let $f \in L^{2}(\mathbb{R})$ and define $\phi_{n}: \mathbb{R} \rightarrow \mathbb{C}$ for $n \in \mathbb{N}$ by

$$
\phi_{n}(y)=\frac{1}{\sqrt{2 \pi}} \int_{-n}^{n} f(x) e^{i y x} d x
$$

The sequence ϕ_{n} is Cauchy in $L^{2}(\mathbb{R})$ and we write $\phi=\lim _{n \rightarrow \infty} \phi_{n}$ (in L^{2}). Define $\psi_{n}: \mathbb{R} \rightarrow \mathbb{C}$ for $n \in \mathbb{N}$ by

$$
\psi_{n}(x)=\frac{1}{\sqrt{2 \pi}} \int_{-n}^{n} \phi(y) e^{-i y x} d y
$$

The sequence ψ_{n} is Cauchy in $L^{2}(\mathbb{R})$ and we write $\psi=\lim _{n \rightarrow \infty} \psi_{n}$ (in L^{2}). Then,

$$
\psi=f \text { almost everywhere, and } \int_{\mathbb{R}}|f(x)|^{2} d x=\int_{\mathbb{R}}|\phi(y)|^{2} d y
$$

This theorem is true in various forms for any locally compact abelian group. It is often proved by starting with $f \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$, but it is really a theorem about square integrable functions.

There is also a "smooth" version of Fourier analysis on \mathbb{R}, motivated by the work of Laurent Schwartz, that leads to the Plancherel Theorem.

Definition 1.2 (The Schwartz Space). The Schwartz space, $\mathcal{S}(\mathbb{R})$, is the collection of complex-valued functions f on \mathbb{R} satisfying:
(1) $f \in C^{\infty}(\mathbb{R})$.
(2) f and all its derivatives vanish at infinity faster than any polynomial. That is, $\lim _{|x| \rightarrow \infty}|x|^{k} f^{(m)}(x)=0$ for all $k, m \in \mathbb{N}$.

Fact 1.3. The Schwartz space has the following properties:

[^0]For nontrivial H and the left regular representation on $L^{2}(G / H)$

- Helgason for H maximal compact subgroup,
- H= fix point set of an involution work of van den Ban , Schlichtkrull, Delorme, Oshima ,
- In other special cases by many others.

Other interesting perspectives:

- Burger, Li, Sarnak : $\pi \in L^{2}(G / H)_{d i s}$ implies $\pi \in L^{2}(G / \Gamma)_{d i s}$ for some Γ

Other interesting perspectives:

- Burger, Li, Sarnak : $\pi \in L^{2}(G / H)_{d i s}$ implies $\pi \in L^{2}(G / \Gamma)_{d i s}$ for some Γ
- Conversely understanding $L^{2}(G / \Gamma)_{d i s}$ gives us information about $L^{2}(G / H)$. (For example G classical and quasi split)

Other interesting perspectives:

- Burger, Li, Sarnak : $\pi \in L^{2}(G / H)_{d i s}$ implies $\pi \in L^{2}(G / \Gamma)_{d i s}$ for some Γ
- Conversely understanding $L^{2}(G / \Gamma)_{d i s}$ gives us information about $L^{2}(G / H)$. (For example G classical and quasi split)
- Benoist + Kobayashi recently considered(solved) the problem: Find a condition so that all representations in $L^{2}(G / H)$ tempered, but they obtained no information about the multiplicities. Interesting to look at cases where $L^{2}(G / H)$ is not tempered and find the multiplicities of the tempered representations.

The following is joint work in progress with Bent Ørsted.

We consider a noncompact subgroup $H=H_{s s} Z_{H}$ where H is a subgroup of finite index in the fix points of an involution of G and $Z_{s s}=\mathbb{R}$ is a subgroup of finite index of the center of H. We call $G / H_{s s}$ an almost symmetric space.

The following is joint work in progress with Bent Ørsted.

We consider a noncompact subgroup $H=H_{s s} Z_{H}$ where H is a subgroup of finite index in the fix points of an involution of G and $Z_{s s}=\mathbb{R}$ is a subgroup of finite index of the center of H. We call $G / H_{s s}$ an almost symmetric space.

Theorem 1. Suppose that G / H is an almost symmetric space. As a left regular representation of G

$$
L^{2}\left(G / H_{s s}\right)=L^{2}(G / H) \cdot L^{2}\left(Z_{H}\right) .
$$

Corollary 2. All irreducible representations in the discrete spectrum of $L^{2}\left(G / H_{s s}\right)$ have infinite multiplicity.

Corollary 2. All irreducible representations in the discrete spectrum of $L^{2}\left(G / H_{s s}\right)$ have infinite multiplicity.

Corollary 3. $L^{2}\left(G / H_{s s}\right)$ is tempered iff $L^{2}(G / H)$ is tempered.

An Example:

$G=S L(2, \mathbb{R}), H$ diagonal matrices Then $X=G / H$ is a hyperboloid and

$$
L^{2}(G / H)=\oplus_{\nu} \text { even } D_{\nu}+2 \int_{0}^{\infty} \pi_{i t}
$$

where D_{ν} are the discrete series representations with parameter ν and $\pi_{i t}$ are the tempered principal series representations with parameter it.

Here $H_{s s}=\mathbb{Z}_{2}$, then $L^{2}\left(G / H_{s s}\right)=L^{2}(P S L(2, \mathbb{R}))$ and so the left regular representation contains the even discrete series representations with ∞ multiplicity.

If H is connect then $L^{2}(G / H)$ contains all discrete series representations and so does the left regular representation of G on $L^{2}(G)$.

Example 2: $\quad G=S L(2 n, \mathbb{R})$, We take H as the connected component of $S\left(G L(p, \mathbb{R}) G L(q, \mathbb{R})\right.$. Then $H_{s s}=S L(p, \mathbb{R}) S L(q, \mathbb{R})$ where $p+q=2 n$.

- If $\mathrm{p}=\mathrm{q}=\mathrm{n}$ then $L^{2}(S L(2 n, \mathbb{R} / H)$ is tempered.
- If $p-q \geq 2$ then $L^{2}(S l(2 n, \mathbb{R}) / S L(p, \mathbb{R}) \times S L(q, \mathbb{R}))$ is not tempered.
- Using induction by stages we get Let $m<n$ we deduce $L^{2}(S l(2 n, \mathbb{R}) / S L(m, \mathbb{R}) S L(m, \mathbb{R}))$ is tempered.

Example 3: $\quad G=S L(2 n, \mathbb{C}), H_{s s}$ has a covering $T^{1} S L(p, \mathbb{C}) \times$ $S L(q, \mathbb{C}), \mathrm{p}+\mathrm{q}=2 \mathrm{n}$ with a one dimensional torus T^{1}.

Then

$$
L^{2}(S L(n, \mathbb{C}) / S L(p, \mathbb{C}) \times S L(q, \mathbb{C}))=\oplus_{\delta \in \hat{T}} L^{2}\left(S L(n, \mathbb{C}) / H_{s s}, \delta\right)
$$

where $L^{2}\left(S L(n, \mathbb{C}) / H_{s s}, \delta\right)$ are the L^{2}-section of the line bundle defined by the character δ of $H_{s s}$.

Result:

- If $\mathrm{p}=\mathrm{q}=\mathrm{n}$ then $L^{2}\left(S L\left(2 n, \mathbb{C} / H_{s s}\right)\right.$ is tempered
- If $p-q \geq 2$ then $L^{2}(S l(2 n, \mathbb{C}) / S L(n, \mathbb{C}) \times S L(n, \mathbb{C}))$ is not tempered.

Example 4: Cayley type spaces considered in Olafson- \varnothing rsted.

1. $G=S p(n, \mathbb{R}), H=G L(n, \mathbb{R})$ and $H_{s s}=S L_{+/-}(n, \mathbb{R}), n>1$
2. $G=S O(2, n), H=S O(1,1) S O(1, n-1)$ and $H_{s s}=S O(1, n-$ 1), $n>2$
3. $G=S U(n, n), H=S L(n, \mathbb{C}) \mathbb{R}^{+}$and $H_{s s}=S L(n, \mathbb{C})$
4. $G=O^{*}(4 n), H=\mathbb{R}^{+} S U^{*}(2 n)$ and $H_{s s}=S U^{*}(2 n)$
5. $G=E_{7}(-25), H=E_{6}(-26) \mathbb{R}^{+}$and $H_{s s}=E_{6}(-26)$

Results: If n is large enough then

- $L^{2}\left(S p(n, \mathbb{R}) / S L(n, \mathbb{R})\right.$ and $L^{2}\left(E_{7}(-25) / E_{6}(-26)\right)$ are tempered
- $L^{2}\left(S O(2, n) / S O(1, n-1), L^{2}(S U(n, n) / S L(n, \mathbb{C}))\right.$ and $L^{2}\left(O^{*}(4 n) / S U^{*}\right.$ are not tempered.

All representations have infinite multiplicity in Plancherel formula.

Proof of the theorem:

1. Step:
$H \subset G$ a subgroup with finite number of connected components and $H=H_{s} Z_{H}$ with $Z_{H}=\mathbb{R}^{+}$in the center of H .

We extend a character $\chi \in \widehat{Z_{H}}$ to a character of H and consider the induced representation Ind ${ }_{H}^{G} \chi$ on $L^{2}(G / H)_{\chi^{-1}}$.

Proof of the theorem:

1. Step:
$H \subset G$ a subgroup with finite number of connected components and $H=H_{s} Z_{H}$ with $Z_{H}=\mathbb{R}^{+}$in the center of H .

We extend a character $\chi \in \widehat{Z_{H}}$ to a character of H and consider the induced representation Ind ${ }_{H}^{G} \chi$ on $L^{2}(G / H)_{\chi^{-1}}$.

Lemma 4. As a representation of G

$$
L^{2}\left(G / H_{s s}\right)=\int_{\chi \in \widehat{Z_{H}}} L^{2}(G / H)_{\chi^{-1}} d \chi
$$

Proof: Uses Fourier analysis on Z_{H} and is not difficult..

Proof: Uses Fourier analysis on Z_{H} and is not difficult..

Main Problem:

Let χ and $\tilde{\chi}$ be characters of Z_{H} considered as characters of H. Show that

$$
\operatorname{Ind}_{H}^{G} \chi=\operatorname{Ind} d_{H}^{G} \tilde{\chi} .
$$

Now have to assume that

$$
H=H_{s s} Z_{H}
$$

where H is a subgroup of finite index in the fix points of an involution of G and $Z_{s s}=\mathbb{R}$ is a subgroup of finite index of the center of H.

Now have to assume that

$$
H=H_{s s} Z_{H}
$$

where H is a subgroup of finite index in the fix points of an involution of G and $Z_{s s}=\mathbb{R}$ is a subgroup of finite index of the center of H.

Observation

We may consider H as a subgroup of finite index in the Levi subgroup of a maximal parabolic subgroup $P=L N$ with abelian unipotent radical N .

Let $\chi \in \widehat{Z_{H}}$. We consider again χ as a character of H and consider the unitary induced representation. Ind ${ }_{H}^{P} \chi$.

Let $\chi \in \widehat{Z_{H}}$. We consider again χ as a character of H and consider the unitary induced representation. $\operatorname{Ind}_{H}^{P} \chi$.

Proposition 5. Let χ and $\tilde{\chi}$ be characters of Z_{H} considered as characters of H. Then

$$
\operatorname{Ind}_{H}^{P} \chi=\operatorname{Ind} d_{H}^{P} \tilde{\chi}
$$

Let $\chi \in \widehat{Z_{H}}$. We consider again χ as a character of H and consider the unitary induced representation. $\operatorname{Ind}_{H}^{P} \chi$.

Proposition 5. Let χ and $\tilde{\chi}$ be characters of Z_{H} considered as characters of H. Then

$$
\operatorname{Ind}_{H}^{P} \chi=\operatorname{Ind} d_{H}^{P} \tilde{\chi}
$$

Sketch of the proof:
We denote the induced representations act on functions $F \in$ $L^{2}(N)$ by

$$
\begin{gathered}
\rho_{\chi}\left(n_{0}\right) F(n)=F\left(n \cdot n_{0}\right) \\
\rho_{\chi}\left(h_{0}\right) F(n)=\chi\left(h_{0}\right) F\left(h_{0}^{-1} n h_{0}\right)
\end{gathered}
$$

Using the Fourier transform on $L^{2}(N)$ we realize the representation $\operatorname{Ind} d_{H}^{P} \chi$ on $L^{2}(\widehat{N})$ by

$$
\begin{aligned}
& \hat{\rho}_{\chi}\left(n_{0}\right) \text { is a multiplication operator } \\
& \hat{\rho}_{\chi}\left(h_{0}\right) \widehat{F}(\xi)=\chi\left(h_{0}\right) J\left(h_{0}^{t} \xi\right)^{1 / 2} \widehat{F}\left(h_{0}^{t} \xi\right)
\end{aligned}
$$

Now \hat{N} is the closure of a finite number of open orbits \mathcal{O}_{i} of L on \widehat{N} and so the representation $\hat{\rho}_{\chi}$ is a direct sum of representations on

$$
\oplus_{i} L^{2}\left(\mathcal{O}_{i}\right)
$$

On each summand we have an intertwining operator (dependent on the orbit)

$$
I_{i}(\chi, \tilde{\chi}): \hat{\rho}_{\chi} \rightarrow \hat{\rho}_{\tilde{\chi}}
$$

Example: Consider the group $P=H N$ with

$$
H=\left\{\left(\begin{array}{cc}
a & 0 \\
0 & 1
\end{array}\right), \quad \mid a>0\right\}
$$

and

$$
N=\left\{\left.\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right) \quad \right\rvert\, b \in \mathbb{R}\right\}
$$

Example: Consider the group $P=H N$ with

$$
H=\left\{\left(\begin{array}{cc}
a & 0 \\
0 & 1
\end{array}\right), \quad \mid a>0\right\}
$$

and

$$
N=\left\{\left.\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right) \quad \right\rvert\, b \in \mathbb{R}\right\}
$$

There are 3 orbits of H on

$$
\widehat{N}=\left\{\xi_{t} \left\lvert\, \xi_{t}\left(\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right)\right)=e^{i t \cdot b}\right.\right\} .
$$

namely $\mathcal{O}^{+}=\left\{\xi_{t} \mid t>0\right\}, \mathcal{O}^{-}=\left\{\xi_{t} \mid t<0\right\}$ and $\mathcal{O}^{1}=\left\{\xi_{0}\right\}$.

The unitary representation ρ_{1} of P induced from the trivial representation of H acts on $L^{2}(N)$ by

$$
\rho_{1}\left(\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right)\right) F(x)=a^{1 / 2} F(a x)
$$

and

$$
\rho_{1}\left(\left\{\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right)\right) F(x)=F(x+b) .\right.
$$

The unitary representation ρ_{1} of P induced from the trivial representation of H acts on $L^{2}(N)$ by

$$
\rho_{1}\left(\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right)\right) F(x)=a^{1 / 2} F(a x)
$$

and

$$
\rho_{1}\left(\left\{\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right)\right) F(x)=F(x+b) .\right.
$$

The representation ρ_{1} is a direct sum of 2 unitary representations on square integrable functions whose Fourier transform has support in $\xi \in \mathcal{O}^{+}$, respectively in $\xi \in \mathcal{O}^{-}$.

The unitary representation ρ_{1} of P induced from the trivial representation of H acts on $L^{2}(N)$ by

$$
\rho_{1}\left(\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right)\right) F(x)=a^{1 / 2} F(a x)
$$

and

$$
\rho_{1}\left(\left\{\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right)\right) F(x)=F(x+b) .\right.
$$

The representation ρ_{1} is a direct sum of 2 unitary representations on square integrable functions whose Fourier transform has support in $\xi \in \mathcal{O}^{+}$, respectively in $\xi \in \mathcal{O}^{-}$.

Consider $\chi_{s}: a \rightarrow a^{i s}$ as a character of H and consider the representation $\widehat{\rho_{s}}$ induced from χ_{s}.

After applying the Fourier transform the representation $\widehat{\rho_{s}}$ has the form

$$
\widehat{\rho_{s}}\left(\left(\begin{array}{cc}
a & 0 \\
0 & 1
\end{array}\right)\right) \widehat{F}(\xi)=a^{-1 / 2} a^{i s} \widehat{F}\left(a^{-1} \xi\right)
$$

and

$$
\widehat{\rho_{S}}\left(\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right)\right) \widehat{F}(\xi)=e^{i b \xi} \widehat{F}(\xi)
$$

The equivalence of the representations $r \widehat{h} o_{s}$ and $\hat{\rho}_{1}$ follows from the intertwining operator

$$
\mathcal{I}_{s}: \hat{\rho}_{0} \rightarrow \hat{\rho}_{s} \quad \text { defined by } \quad \mathcal{I}_{s} \widehat{F}(\xi)=\xi^{i s} \widehat{F}(\xi)
$$

Induction to G

Proposition 6. Let χ and $\tilde{\chi}$ be characters of Z_{H} considered as characters of H. Under we have

$$
\operatorname{Ind}_{H}^{G} \chi=\operatorname{Ind}_{H}^{G} \tilde{\chi}
$$

Proof. By induction by stages

$$
\operatorname{Ind} d_{H}^{G} \chi=i n d_{P}^{G} \operatorname{Ind} d_{H}^{P} \chi=i n d_{P}^{G} \operatorname{Ind}{ }_{H}^{P} \tilde{\chi}=\operatorname{Ind} d_{H}^{G} \tilde{\chi}
$$

Induction to G

Proposition 6. Let χ and $\tilde{\chi}$ be characters of Z_{H} considered as characters of H. Under we have

$$
\operatorname{Ind}_{H}^{G} \chi=\operatorname{In} d_{H}^{G} \tilde{\chi}
$$

Proof. By induction by stages

$$
\operatorname{Ind} d_{H}^{G} \chi=i n d_{P}^{G} \operatorname{Ind} d_{H}^{P} \chi=i n d_{P}^{G} \operatorname{Ind} d_{H}^{P} \tilde{\chi}=\operatorname{Ind} d_{H}^{G} \tilde{\chi}
$$

I conjecture that this proposition is true if $L=H A$ is the Levi subgroup of a "very nice " parabolic subgroup in N. Wallach's terminology.

We consider a noncompact subgroup $H=H_{s s} Z_{H}$ where H is a subgroup of finite index in the fix points of an involution of G and $Z_{s s}=\mathbb{R}$ is a subgroup of finite index of the center of H. We call $G / H_{s s}$ an almost symmetric space.

We consider a noncompact subgroup $H=H_{s s} Z_{H}$ where H is a subgroup of finite index in the fix points of an involution of G and $Z_{s s}=\mathbb{R}$ is a subgroup of finite index of the center of H. We call $G / H_{s s}$ an almost symmetric space.

Theorem 7. Suppose that G / H is an almost symmetric space. As a left regular representation of G

$$
L^{2}\left(G / H_{s s}\right)=\left(I n d_{H}^{G} 1\right) \cdot L^{2}\left(Z_{H}\right)=L^{2}(G / H) \cdot L^{2}\left(Z_{H}\right)
$$

Proof. This follows from previous proposition.

Happy birthday Becky

[^0]: Date: June 21, 2011.

