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The work of both Rebecca Herb and Paul Sally is in the area of harmonic analysis on
locally compact groups, a theory which has its roots in the classical Fourier analysis. The
classical theory is one of the most applied parts of math, in math as well as outside of math.
The reason for this fact is certainly the power of the theory. But is is also related to the
simplicity of basic principles of the classical theory. It is hard to expect such simplicity
in the setting which we shall consider, since the groups with which we shall deal are much
more complicated then the one of the classical theory (which deals with (R/Z)n and Rn).
Nevertheless, at some directions we get remarkably simple answers.

In the Gelfand concept of harmonic analysis on a locally compact group G, roughly the
role of sine and cosine functions is played by the set

Ĝ

of all equivalence classes of irreducible unitary representations of G, which is called the
unitary dual of G. It is a topological space in a natural way.

Both Rebecca and Paul studied harmonic analysis on reductive groups over a locally com-
pact non-discrete field F . Denote such a group by G. Here one defines the non-unitary
dual

G̃

of G similarly as the unitary dual, but drops the condition of the unitarity of the action.
Then we have a natural embeding

Ĝ ↪→ G̃.

Harish-Chandra created a strategy of getting the unitary dual in two steps:

• classify G̃;
• determine the subset Ĝ of G̃.
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2 M. TADIĆ

The second step is called the

unitarizability problem.

This problem turned out to be quite hard to solve for a long time, even in the case when

G̃ was completely classified, like in the case of archimedean fields F .

Both Rebecca and Paul worked with real as well as p-adic groups, which is not too often.
Talking about these two directions, it is natural to recall of the Harish-Chandra prediction
called Lefschetz principle, which says:

”Whatever is true for real groups is true for p-adic groups.”

Our primary interest in this lecture will be the unitarizability problem. We shall also
discuss how much we can understand here the Lefschetz principle, and also, can we have
still some reasonable amount of simplicity.

Our experience is that the unitarizability is understood in the simplest and the most
natural way when we have also good understanding of the Lefschetz principle1. Also from
our experience, the key for achieving this seems to be appropriate understanding of the
reducibility questions.

Reducibility questions interested also Rebecca and Paul. For example, the thesis of their
Ph.D. students N. Winarsky, D. Keys, C. Jantzen and D. Goldberg were on the reducibility.

We shall talk in our lecture only about classical groups, the most important subclass of
the reductive groups. In a way as reductive groups are natural setting among algebraic
groups2 for the questions that interested Harish-Chandra, classical groups seem to have
similar role inside reductive groups for some other questions.

Paul complete work is related to (particular cases of) classical groups, while smaller but
important part of Rebecca work is also related to them (on automorphic induction or
elliptic representations for example).

In what follows I shall try to have exposition as simple as possible, and I shall try to avoid
technicalities as much as possible, trying not to oversimplify.

We shall start with a very simple solution of the

1A general problem regarding the Lefschetz principle is that we often relay in the two settings addressed
by this principle on incompatible ”group algebras” even in the cases when we can use more uniform tools.
For example, (complex) representations of p-adic Lie algebras (or its enveloping algebras) do not give any
non-trivial information. The similar situation is regarding representations of algebras of locally constant
functions on Lie groups. When after using such different tools we get the same results, it is not surprising
that the fact that they are the same may look sometimes pretty mystical.

2and groups close to the algebraic groups
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1. Unitarizability in the case of GL(n, F )

We shall use well-known Bernstein-Zelevinsky notation × for parabolic induction of two
representations πi of GL(ni, F ):

π1 × π2 = Ind
GL(n1+n2,F )
P(n1,n2)

(π1 ⊗ π2),

where P(n1,n2) denotes the parabolic subgroup containing upper triangular matrices, whose
Levi subgroup is naturally isomorphic to the direct product GL(n1, F )×GL(n2, F ). Denote
by

Du = Du(F )

the set of all equivalence classes of irreducible square integrable (modulo center) represen-
tations of all GL(n, F ), n ≥ 1. Let

ν = | det |F ,
where | |F is the normalized absolute value. For δ ∈ Du and m ≥ 1 denote by

u(δ,m)

the unique irreducible quotient of

(1.1) ν(m−1)/2δ × ν(m−1)/2−1δ × . . .× ν−(m−1)/2δ,
which is called a Speh representation. Let

Brigid

be the set of all Speh representations, and

B = B(F ) = Brigid ∪ {νασ × ν−aσ;σ ∈ Brigid, 0 < α < 1/2}.
Denote by M(B) the set of all finite multisets in B. Then the following simple theorem
solves the unitarizability for archimedean and non-archimedean general linear groups in
the uniform way:

Theorem A. A mapping
(σ1, . . . , σk) 7→ σ1 × . . .× σk

defined on M(B) goes into ∪n≥0GL(n, F )̂ , and it is a bijection.

The main reason for the simplicity of the above answer, as well as of the proof of the
theorem, is the following fundamental reducibility property of the representations theory
of general linear groups:

(U0) Unitary parabolic induction for GL(n, F ) is irreducible (i.e., it carries irreducible
unitary representations to the irreducible ones).

Theorem A follows easily from five facts - kind of axioms, which are besides (U0):

(U1) u(δ,m)’s are unitarizable,
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(U2) ναu(δ,m)× ν−αu(δ,m)’s are unitarizable (for 0 < α < 1/2),
(U3) u(δ,m)’s are prime elements in appropriate factorial ring

and (U4), which is an easy consequence of a property of the Langlands classification. The
proofs of (U2), (U3) and (U4) are straitforward.

Further, (U1) can be replaced by requirements that u(δ,m)× u(δ,m− 2)’s are irreducible,
while for (U2), it is enough to show that ναu(δ,m) × ν−αu(δ,m)’s are irreducible. Also
(U3) is a consequence of a reducibility fact. Therefore, in the above axioms are crucial
irreducibility and reducibility facts.

One can find how above facts imply Theorem A in our short note from 19853 in the p-adic
setting. But there is no any difference with the archimedean case.

The above uniform approach to the p-adic and real case is achieved by not going into the
internal structure of representations (which is pretty different in these two cases). Because
of this, we call this strategy the external approach to the unitarizability.

Let us return to

2. (U0)

The work on (U0) includes some of the greatest names of the representation theory, like
I. M. Gelfand, A. A. Kirillov and J. Bernstein, while also Harish-Chandra is indirectly
related to it. We shall say a few words about their relation to (U0).

Denote by P the (mirabolic) subgroup of GL(n, F ) consisting of all matrices in the group
with bottom raw equal to (0, . . . , 0, 1). In a very early stage of the development of the
non-commutative harmonic analysis, I. M. Gelfand and M. A. Naimark realized4 that for
F = C, the claim

(K) π|P is irreducible for π ∈ GL(n, F )̂

implies (U0). More precisely, they proved this implication only related to the represen-
tations that they considered (but for which they expected to exhaust the whole unitary
duals; they worked with SL(n,C)-groups). For them, (K) was almost obvious, since great
majority of the representations by which they were inducing, were one-dimensional.

3M. Tadić, Unitary dual of p-adic GL(n), Proof of Bernstein Conjectures, Bulletin Amer. Math. Soc.
13 (1985), 39-42.

4in I. M. Gelfand and M. A. Naimark, Unitäre Darstellungen der Klassischen Gruppen (German trans-
lation of Russian publication from 1950), Akademie Verlag, Berlin, 1957.
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In 19625, A. A. Kirillov completely changed the point of view, proposing a proof of (K) for
a general π ∈ GL(n, F )̂ (he considered F = R and C cases). Kirillov is best known for
his orbit method, and it is not surprising that he saw (K) as a consequence of facts about
orbits.

Very roughly, he observed that for the adjoint action, in GL-orbits there are large P -orbits
(having the full measure in the group). After this observation, Kirillov considered ”twisted”
characters

chπ,A : f 7→ Trace(π(f)A), A ∈ EndP (π).

If these P -invariant distributions are given by functions, then the above observation about
orbits gives that they are GL-invariant. Then A must be a scalar, and the Schur lemma
implies the irreducibility of π|K.

Kirillov discovered this important way to prove (K), but in his four page long paper, which
is kind of announcement, he did not supply an argument that chπ,A’s are functions.

It is interesting to note that about that time was available a technology to complete Kir-
illov argument. Namely, chπ,A are P -invariant eigendistributions, and we have very big
P -conjugacy classes in GL-conjugacy classes. Therefore, it is natural to try to apply
Harish-Chandra type strategy, how he proved his regularity theorem for invariant eigendis-
tributions, that they are given by functions. Along this strategy E. M. Baruch completed
the proof of (K)6.

J. Bernstein proved7 (K) for p-adic F following the Kirillov strategy.

3. Division algebra case

The above unitarizability story is roughly three decades old8, except Baruch proof (which
follows Harish-Chandra strategy from the beginning of 1960-es). But this is not the end
of this unitarizability story. In the p-adic case, this is just a beginning. The field case is
just a tip of an iceberg, level one of infinitely many levels (recall that the Brauer group of
p-adic F is Q/Z).

5in A. A. Kirillov, Infinite dimensional representations of the general linear group, Dokl. Akad. Nauk
SSSR 114 (1962), 37–39; Soviet Math. Dokl. 3 (1962), 652–655.

6in E. M. Baruch, A proof of Kirillov’s conjecture, Ann. of Math. (2) 158 no. 1 (2003), 207–252.
7in J. Bernstein, P-invariant distributions on GL(N) and the classification of unitary representations

of GL(N) (non-archimedean case), Lie Group Representations II, Lecture Notes in Math. 1041, Springer-
Verlag, Berlin, 1984, 50-102.

8It is in the papers M. Tadić, Classification of unitary representations in irreducible representations of
general linear group (non-archimedean case), Ann. Sci. Ecole Norm. Sup. 19 (1986), 335-382, and

Tadić, M., Unitary representations of general linear group over real and complex field, preprint
MPI/SFB 85-22 Bonn (1985) (http://www.mpim-bonn.mpg.de/preblob/5395), published in slightly
modified version much later as M. Tadić, GL(n,C)̂ and GL(n,R)̂ , in ”Automorphic Forms and L-
functions II, Local Aspects”, Contemp. Math. 489 (2009), 285-313.

http://www.mpim-bonn.mpg.de/preblob/5395
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Namely, if we for division algebra A change in the definition of Brigid and B

Du(F ) by Du(A)

and

ν by νσ := νmin{α>0;σ×νασ reduces},

then after these simple modifications, Theorem A is also the solution of the unitarizability
problem for GL(n,A)-groups.

The proof in this generalisation follows the same strategy, i. e., it follows also using axioms
(U0) - (U4), but actually one needs to prove only (U0) and (U1) (the other axioms follow
more or less as in the filed case, and they were known to hold already at the end of
1980-es9.). The proof of these two facts was achieved in the last decade, and it was not
easy.

I. Badulescu and D. Renard proved10 (U1) using previous work of Badulescu on the Jacquet-
Langlands correspondence (which is using a simple form of the Arthur trace formula).

The proof of (U0) was a particular problem, since (K) does not hold here, so one needed
to find a new strategy. V. Sécherre proved11 (U0) using his classification of simple types,
and using a number of other very non-trivial results, including Bernstein proof of (U0) in
the field case (which is based on (K)).

Very recently, very simple proofs of these two facts were obtained. The first is a local
proof of (U1) of I. Badulescu12 (he proved irreducibility of u(δ,m)× u(δ,m− 2) using the
Mœglin-Waldspurger algorithm for the Zelevinsky involution).

The second is an announcement of E. Lapid and A. Mı́nguez of a proof of (U0). Their proof
is essentially non-unitary. It is a proof of a fact about unique irreducible subrepresentation.
This fact implies a weaker form of (U0), which can be used instead (U0) to get Theorem A
(which obviously implies (U0)). Their proof, based on Jacquet modules, is pretty simple
(and elementary). It is even interesting in the field case, since it is simpler then the delicate
Bernstein argument.

So finally, we have not only simple description of the unitarizability for GL-groups over
p-adic division algebras, but also simple proof.

9M. Tadić, Induced representations of GL(n,A) for p-adic division algebras A, J. reine angew. Math.
405 (1990), 48-77.

10in A. I. Badulescu, and D. A. Renard, Sur une conjecture de Tadić, Glasnik Mat. 39 no. 1 (2004),
49-54.

11in V. Sécherre, Proof of the Tadić conjecture (U0) on the unitary dual of GLm(D), J. reine angew.
Math. 626 (2009), 187-203.

12in A. I. Badulescu, On p-adic Speh representations, Bulletin de la SMF 142, 2 (2014)
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Let us observe that not only the unitarizability can be simple. We shall give a following
example where remarkable simplicity related to the characters of the irreducible unitary
representations shows up. It is an example how one can express

4. Irreducible unitary characters

of general linear groups by characters of irreducible square integrable representations. The-
orem A implies that for this, it is enough to have such expression for Speh representations.
We consider bellow the case of p-adic field F (the story below holds also for division
algebras, after one replaces ν by νρ).

Recall that by the Bernstein-Zelevinsky theory, we have bijection

∆↔ δ(∆)

between segments ∆ = [νaρ, νbρ] of irreducible cuspidal GL-representations and irreducible
essentially square integrable representations (δ(∆) is a unique irreducible subrepresentation
of νaρ× νa+1ρ× . . .× νbρ).

Parameterize now by segments essentially square integrable representations entering the
definition (1.1) of Speh representation:

ν−(m−1)/2+i−1δ = δ([νaiρ, νbiρ]), i = 1, . . . ,m.

Then in the Grothendieck group we have the following simple formula

(4.2) u(δ,m) = det
[
δ([νaiρ, νbjρ])

]
1≤i,j≤m,

expressing the Speh representation by irreducible square integrable representations (the
multiplication in above formula is parabolic induction). In the above formula we use a
convention that for bj < ai we take δ([νaiρ, νbjρ]) = 0, except if ai = bj + 1 when we take
it to be 1.

We got the above simple formula in 199513, while the above obvious but very important
determinant interpretation of it belongs to G. Chenevier and D. Renard14. Thanks to the
determinant interpretation, they got a significant simplification of our proof (replacing one
our very complicated technical argument by a simple determinate identity of the nineteen
century mathematics). I. Badulescu gave further simplification of the proof in his recent
paper which we have mentioned (with a simple local proof of (U1)). E. Lapid and A.

13in M. Tadić, On characters of irreducible unitary representations of general linear groups, Abh. Math.
Sem. Univ. Hamburg 65 (1995), 341-363.

14G. Chenevier and D. Renard, Characters of Speh representations and Lewis Caroll identity, Represent.
Theory 12 (2008), 447-452.
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Mı́nguez generalized the above formula to a non-unitary setting15. Curiously, their non-
unitary generalization has interesting unitary applications.

One may ask if the above simple formula, which resembles a little bit to high school math,
can find a place in contemporary math full of complicated and powerful theories. It can,
at least in one case. Namely, J. Arthur in his recent fundamental book16 on endoscopic
classification of representations says that this formula, and such formula in the archimedean
case, are used ”in the critical final stages of the global classification”.

Let us return to the unitarizability. Up to now, we have covered all except one local division
algebra, the algebra of Hamiltonian quaternions H. For this we need

5. Vogan classification

D. Vogan has classified GL(n, F )̂ for F = R,C and H17. Formulation of his classification
looks quite different from the classification Theorem A, together with the proof (compare
Theorem 6.18 of Vogan Inventiones paper with Theorem A). The main toll in his clas-
sification is (besides parabolic) the cohomological induction (and K types). Clearly, for
F = R and C, his classification can be shown to be equivalent to Theorem A18. For F = H,
Vogan classification implies that Theorem A holds also in this case. In the moment, his
classification is the only way to conclude (U0) in this case.

Remark: Recall that the classification theorem A is field insensitive completely. Pre-
sently, we have the proofs of Theorem A for real and p-adic fields using the same strategy
(and they are pretty close). It would be interesting to find also a proof which is completely
field insensitive. Such a proof would give a new insight in our understanding of unitarity
(and in our opinion it would be a part of a future general theory).

Now we go to the other

15in E. Lapid and A. Mı́nguez, On a determinantal formula of Tadić, Amer. J. Math. 136 (2014), no.
1, 111-142.

16J. Arthur, The endoscopic classification of representations. Orthogonal and symplectic groups, Amer-
ican Mathematical Society Colloquium Publications, 61. American Mathematical Society, Providence, RI,
2013.

17in D. A. Vogan, The unitary dual of GL(n) over an archimedean field, Invent. Math. 82 (1986),
449-505.

18Written proof of this fact can be found in A. I. Badulescu and D. A. Renard, Unitary dual of GLn

at archimedean places and global Jacquet-Langlands correspondence, Compositio Math. 146 no. 5 (2010),
1115-1164
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6. Classical groups ( 6= GL)

After Theorem A for the case of general linear groups, where the nature of the field is
completely irrelevant, it is natural to expect that the most natural solution of the unita-
rizability for the (other) classical groups will be again the one which is independent of the
nature of the field. The problem is that (U0), which was crucial in the GL-case (in formu-
lation of the classification, but also in the proofs) does not hold here in general (already
for SL(2) = Sp(2)).

Among classical groups, for simplicity, we shall restrict below to the symplectic groups
Sp(2n, F ) and the split odd-orthogonal groups SO(2n + 1, F ). For these groups, as far
as we know, we do not have explicit solution of the unitarizability, i. e., the one which is
not kind of algorithm. We have explicit classification of unitarizability for two important19

subclasses.

The first is explicit classification of unitarizability for generic irreducible representations.
We shall not go here into details of the classification of the generic unitary dual20, except
mentioning that the classification is the same for both non-archimedean and archimedean
case.

From the point of view of the unitarizability, more interesting is the classification of

7. Spherical unitary dual (p-adic case)

In this case, explicit classification21 reduces the spherical unitary dual to some reducibilities,
which are then explicitly described.

We shall not present here the classification, but rather present an example22 which illus-
trates the difference between classical groups and the groups of type A. The example
addresses the most delicate parts of the unitary duals, the isolated representations.

Example: (a) The number of isolated spherical representations in SL(n, F )̂ is 1 for any
n ≥ 3 .

(b) The number of isolated spherical representations in SO(451, F )̂ is

(7.3) 1 289 535 202 500.

19In particular for the theory of automorphic forms.
20obtained in E. Lapid, G. Muić and M. Tadić, On the generic unitary dual of quasisplit classical groups,

Int. Math. Res. Not. no. 26 (2004), 1335–1354.
21obtained in G. Muić and M. Tadić, Unramified unitary duals for split classical p–adic groups; the

topology and isolated representations, in ”On Certain L-functions”, Clay Math. Proc. vol. 13, 2011,
375-438.

22from M. Tadić, On automorphic duals and isolated representations; new phenomena, J. Ramanujan
Math. Soc. 25 no. 3 (2010), 295-328.
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From this example we can drew two conclusions:

• The unitarizability is much more complicated for classical groups then for SL and GL-
groups.

• Despite the complexity of the unitary duals for classical groups, we can still have full
explicit control of the most delicate part of the unitary dual in the spherical case.

To get an idea of the spherical unitary dual, and which information is important there, we
shall say few words about the proof of (b). Isolated representation can not be a subrepre-
sentation of a representation parabolically induced by unitary representation of a proper
Levi subgroup. It also cannot be a member of a complementary series. When we count
all the representations in the spherical part of SO(451, F )̂ which remain after we remove
these two groups, we have

(7.4) 140 630 679 543 940

representations (these representations seem to be important in the automorphic dual).
Observe that a very huge amount of the above representations, more then 99% of them, is
not isolated. One gets that they are not isolated from the fact that to each of these more
then 99% representations, there is a complementary series approaching it.

From the other side, still a huge number of representations is isolated. To prove this, one
needs roughly to show that no complementary series reach any of the isolated representa-
tions (recall that we have indicated above that there are really very many complementary
series representations).

Existence of complementary series is related to the irreducibility of the corresponding
unitarily induced representations (when a symmetry condition is satisfied). The above
discussion shows that we must have a very explicit understanding of the above (unitary)
reducibility questions (not only on some algorithmic level). Also, we need to know lengths
of complementary series (and therefore understand related non-unitary reducibility ques-
tions). Such explicit understanding was obtained by G. Muić for this case23.

Instead of explaining the Muić classification, we shall give an idea of the way how one
can control such type of reducibilities in the dual setting, which is more essential for
the unitarizability. We shall consider the first representation which one considers in the
harmonic analysis, the regular representation L2(G) (and to which a considerable part of
the Harish-Chandra work is related). The support of this representations consist of

23in G. Muić, On the Non-Unitary Unramified Dual for Classical p-adic Groups, Trans. Amer. Math.
Soc. 358 (2006), 4653–4687.
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8. Irreducible tempered representations

We continue to assume F to be p-adic. For Sp(2n, F ), maximal Levi subgroups are of the
form

GL(k, F )× Sp(2(n− k), F ).

Now for a representation π of GL(k, F ) and σ of Sp(2(n− k), F ), we denote by

π o σ

the parabolically induced representation IndSp(2n,F )(π⊗σ). Analogously, we define πoσ in
the case of SO(2n+1, F ). This is a natural extension of the Bernstein-Zelevinsky notation
× from the GL-case.

We shall assume below always that inducing representations are irreducible. Further, we
shall denote always by ρ an irreducible cuspidal representation of a general linear group.
For the reducibility questions of the parabolic induction that we shall consider, interesting
case is when ρ is self dual (otherwise, we have always irreducibility). Because of that, we
shall assume below always that ρ is self dual.

We get tempered representations in two stages:

(i) Classifying irreducible square integrable representations of Levi subgroups.
(ii) Classifying irreducible subrepresentations of the representations parabolically in-

duced by representations from (i).

The first problem seems harder, but these two problems are related in a nice way, and in
a sense, they are not very far from being equivalent as we shall indicate soon.

Regarding understanding of the square integrable induction (and (ii)), the first step may
be to try to understand the simplest case, the question of reducibility of representations

(8.5) δ o π,

where δ and π are square integrable. Actually, D. Goldberg has shown24 that understanding
of this case is enough for understanding of (ii).

We shall illustrate on example how one can handle the problem of understanding of the
reducibility of representations (8.5). For this, it will be useful to recall our old, natural
result25 (proved using Jacquet modules):

24in D. Goldberg, Reducibility of induced representations for Sp(2n) and SO(n), Amer. J. Math. 116
(1994), 1101-1151.

25from M. Tadić, On reducibility of parabolic induction, Israel J. Math. 107 (1998), 29–91.
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Theorem B. Let δ(∆) be an irreducible essentially square integrable representation of a
general linear group and let σ be an irreducible cuspidal representation of a classical group.
Then

δ(∆)× σ reduces ⇐⇒ µo σ reduces for some µ ∈ ∆.

Denote
δ(ρ, n) := δ([ν−(n−1)/2ρ, ν(n−1)/2ρ]).

One gets each irreducible square integrable representation of a general linear group as some
δ(ρ, n).

Example: (1) We shall consider now odd-orthogonal groups, and the simplest possible
square integrable representation π there, the trivial representation 1SO(1,F ) of the trivial

group SO(1, F ). F. Shahidi has shown26 that either ρo 1SO(1,F ) or ν1/2ρo 1SO(1,F ) reduces
(this is the only reducibility point ≥ 0 along ρ). Now this and Theorem B obviously imply
that

δ(ρ, n) o 1SO(1,F ) is

{
reducible for one parity of n;

irreducible for the other parity of n.

So, we have a very regular and simple picture here.

(2) Move now to the symplectic groups and consider the same question. For ρ 6= 1F× , we
have the same answer, except that the parities are switched (the switching is a consequence
of the Shahidi duality). For ρ = 1F× , as it is well-known, the reducibility point is at 1 (i.e.
ν1F× o 1Sp(0,F ) reduces). Now Theorem B obviously implies

δ(1F× , n) o 1Sp(0,F ) is

{
reducible for all odd n, except for n = 1;

irreducible all even n.

Therefore, the only exception in the above even/odd pattern reducibility story is

δ(1F× , 1) = 1F× .

In general, for a general irreducible square integrable representation π of a classical group,
there can be more then one exception as above (from the above even/odd pattern) for fixed
ρ, but there can be at most finitely many exceptions.

Definition: The union of all such exceptions δ(ρ, n)’s (for all ρ’s) is denoted by

Jord(π).

In previous example we have obviously

Jord(1SO(1,F )) = ∅,
Jord(1Sp(0,F )) = {1F×}.

26in F. Shahidi, Twisted endoscopy and reducibility of induced representations for p-adic groups, Duke
Math. J. 66 (1992), 1-41.
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A more non-trivial example of Jordan blocks we get for n ≥ 1:

Jord(StSO(2n+1,F )) = {δ(1F× , 2n)} = {StGL(2n,F )},
Jord(StSp(2n,F )) = {δ(1F× , 2n+ 1)} = {StGL(2n+1,F )},

where StG denotes the Steinberg representation of a reductive group G.

Let us give one more example. Denote by ψ any character of order two of F×. Then
δ([ψ, νψ]) o 1Sp(0,F ) has precisely two irreducible square integrable subquotients. Denote
them by π±. Then

Jord(π±) = {1F× , ψ, δ(ψ, 3)} = {1F× , ψ, ψStGL(3,F )}.

We may say that Jord(π) is the set of all singularities regarding the above even/odd pattern
regarding reducibility. In this way, Jord(π) is the most delicate part of the tempered
induction related to an irreducible square integrable representation π of a classical group.

Let us recall that J. Arthur classified in his recent fundamental book mentioned earlier
irreducible tempered representations of classical groups by pairs consisting of an admis-
sible homomorphism of the Weil-Deligne group, and a characters of the corresponding
component group. Clearly, it would be important to know Jordan blocks in terms of his
parameters. This fundamental result is done27 by C. Mœglin. The answer is very niece:

Theorem C. (C. Mœglin) The admissible homomorphism attached by J. Arthur to an
irreducible square integrable representation π of a classical group is

⊕δ∈Jord(π)ΦGL(δ),

where ΦGL denotes the local Langlands correspondence for general linear groups.

After this, the use of admissible homomorphisms or Jordan blocks is equivalent. This
indicates that the very basic level of the harmonic analysis (considering just the regular
representations) determines in natural way L-packets for classical groups.

The Mœglin theorem implies that Arthur classification gives a very direct control of the
most delicate part of the tempered induction. Recall that Jordan blocks are defined entirely
in terms of the unitary (tempered) induction. But what to do regarding the non-unitary
parabolic induction (which is important for example for construction of complementary
series). We shall illustrate on an example of cuspidal representations how one can control
such reducibilities. This reducibility is very important in the GL-case, but for the difference
with the GL-case, here we can have infinitely many possibilities for cuspidal reducibility
points.

Let σ be an irreducible cuspidal representation of a classical group. Then

ναρ,σρo σ

27in C. Mœglin, Multiplicité 1 dans les paquets d’Arthur aux places p-adiques, in ”On certain L-
functions”, Clay Math. Proc. 13 (2011), 333-374.
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reduces for a unique αρ,σ ≥ 0 (and αρ,σ is in (1/2)Z). Observe that Theorem B obviously
implies, what Mœglin has observed, that Jord(σ) is without gaps, i.e.

δ(ρ, k) ∈ Jord(π) and k ≥ 3 =⇒ δ(ρ, k − 2) ∈ Jord(π).

Actually, Mœglin has classified cuspidal representations in the Arthur classification. Her
classification is simple, but we shall not go into details here. For Jordan blocks the condition
is that there are no gaps.

Theorem B (and some most basic elementary arithmetic) obviously imply that

αρ,σ =
1 + max{k; δ(ρ, k) ∈ Jord(σ)}

2
.

for reducibility αρ,σ ≥ 1 (this is called the basic assumption). Obviously for fixed ρ, this
type of reducibility can happen only for finitely many ρ’s. Remaining reducibilities (i. e.,
those < 1) does not depend on σ, but only on the series of the groups which is considered,
and they can be determined using the local Langlands correspondence ΦGL for general
linear groups.

Now the question of more general non-unitary reducibility

δ([νaρ, νbρ]) o σ

becomes trivial. Namely, one just needs to check if ναρ,σρ or ν−αρ,σρ is in [νaρ, νbρ], or not.

These were some kind of very initial examples of handling reducibilities. G. Muić has done
much more28 regarding non-unitary reducibility of representations

δ(∆) o π,

for general square integrable π (he also considered the case of tempered π). But this requires
understanding of square integrable representations in terms of cuspidal representations
(which is given in works of C. Mœglin and me, but we shall not talk about it here).

At the end of this section, let us observe that similarly as it was easy to conclude from
Theorem B the condition on Jordan blocks of cuspidal representations, it is easy to conclude
how look Jordan blocks of generic cuspidal representations using the Shahidi result that
αρ,σ in this case is in {0, 1/2, 1}. Using this, Theorem B obviously implies (well-known fact)
that the Jordan blocks of a generic cuspidal representations of classical groups consist only
of cuspidal representations (and it is equal to to the set of all ρ such that νρo σ reduces).

28in G. Muić, Composition Series of Generalized Principal Series; The Case of Strongly Positive Discrete
Series, Israel J. Math 149 (2004), pp. 157-202, and

G. Muić, Reducibility of Generalized Principal Series, Canad. J. Math. 57 (2005), pp. 616-647.
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9. Thinking about general case of unitarizability for classical groups
(p-adic case mostly)

Very oversimplified, we expect that we shall have similar shape of (explicit) classification of
unitary duals of classical groups as in the spherical (and generic) case, but certainly much
more technically complicated. In a sense, the existing classifications of spherical and generic
unitary duals should be two opposite poles (or specializations) of the general classification
(which we do not know). Our feeling is that we know rough strategy how to attack
the problem. But on the way to the general classification, there are some not very easy
questions to solve, and the expected answer will certainly be much more complicated then
in the case of general linear groups. Despite this, our feeling is that we are in better position
now then we have been at the beginning of 1980-es, before the very fast development which
resulted with the solution of the unitarizability for general linear groups started. We shall
discuss this shortly later.

Recall that we have denoted before the Speh representations of general linear groups by
Brigid. In the sequel we shall denote this set by

BGL
rigid.

One of these hard questions is: what would for classical groups play the role of BGL
rigid, i. e.

what would be
B cl. gr.
rigid =?.

The general classification should be based on these two sets. An important part of the prob-
lem would be to find natural (explicit) parameterization of this hypothetical set, such that
the parameters in a natural way contains essential information related to the reducibility
(relevant for the unitarizability). Our hope is that the Arthur classification of irreducible
square integrable representations and Muić relatively simple classification of strongly neg-
ative irreducible spherical representations belong roughly to two opposite poles of a such
hypothetic general story. It is natural to expect that representations in hypothetic B cl. gr.

rigid

are automorphic. Actually, probably some important parts of this story are already solved
in the works of C. Mœglin and J. Arthur.

Let us now compare briefly the present moment of the unitarizability for the classical
groups with the period before 1984, when we did not know how unitarizability looks for
the general linear groups.

The crucial Bernstein paper for our work (mentioned before, where (U0) was proved in
the p-adic case) was published in 1984. There Bernstein gave also an algorithm for test-
ing unitarizability of an irreducible representation of p-adic GL(n) (in terms of Zelevinsky
polynomials analogous to the Kazhdan-Lusztig polynomials, conjecturally describing mul-
tiplicities). There Bernstein discusses if the unitarizability is solvable explicitly (but he
does not rule out the possibility that that unitarizable representations can be described
explicitly by ”simple-minded methods”).
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It is interesting to note that Paul Sally in a sense was the one who brought me to the
the story of unitarizability from the first part of the lecture. Namely, he organized p-
adic summer period at the University of Chicago in 1983, and gave me a preprint of the
Bernstein paper. Then I started to work on the unitarizability problem from the Bernstein
paper, and my work progressed very fast. Namely, my paper with Theorem A (in the
p-adic case) was submitted to Ann. Sci. Ecole Norm. Sup. in the January of 1984, before
the Bernstein paper was published (in the fall of 1983 we reported about the progress on
our work on the unitarizability in the Jussieu automorphic forms seminar).

In the moment, the unitarizability problem for classical groups seems quite hard, and the
solution will be definitely not simple. Despite this, it seems that regarding this problem we
are now in better position then we have been regarding GL-unitarizability just before that
problem was solved (at the beginning of 1980-es), although the solution there turner out to
be very simple. The biggest problem in that time was that a simple answer (as in Theorem
A) was not expected. The expectations were quite opposite (and even a possibility of an
explicit solution of the problem was in question). Observe that for example, after Gelfand -
Naimark book from 1950 and the E. M. Stein paper on complementary series from 196729,
all essential ingredients of Theorem A in the complex case were present (here Brigid is
simply (C×)̂ ), while after B. Speh paper from 198330, the whole BGL

rigid was available in the

real case (BGL
rigid was the biggest problem in the p-adic case; this set is much bigger in this

case then in the archimedean).

The second big problem for us was the exhaustion, which usually makes the papers on
the unitarizability messy even in the low ranks (to solve GL-groups, we needed to handle
groups of arbitrary high split ranks). Surprisingly, this problem was solved in a relatively
simple way for general linear groups. In this solution (U0) played a crucial role.

Regarding the first problem in the case of classical groups, now we do not have such problem
as we had for general linear groups before 1984. Let us just quote Bernstein opinion in
the case if we will have explicit description of the unitarizability for GL-groups (what
we have obtained): ”Then we can suppose that the classification of irreducible unitary
representations for any reductive group (p-adic or real) can be given by reasonably explicit
formulae”. We completely agree with his opinion (more precisely, our opinion is that it
will be given in two steps).

The second big problem that we mention above, how to handle exhaustion, looked hopeless
for a long time in the case of classical groups (since (UO), which was crucial in the GL-case,
is very far from being true here). But now we have reasonable proofs of exhaustions in the
generic and spherical case. For these proofs we expect that they can be extended to the

29E. M. Stein, Analysis in matrix spaces and some new representations of SL(N,C), Ann. of Math. 86
(1967), 461-490.

30B. Speh, Unitary representations of GL(n,R) with non-trivial (g,K)- cohomology, Invent. Math. 71
(1983), 443-465.
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general case (actually, that there are specialisations of a general proof of the exhaustion).
But for such an extension, a number of not so easy questions will be necessary to solve.

Let us end with a joke of Paul Sally related to the the above unitarizability story in the
case of GL-groups. Lefschetz principle usually functions in a way that one gets first a
result in the real (often simpler) case, which gives an idea to extend it to the p-adic case.
Since Theorem A was first proved in the p-adic case, and the idea that it holds in the real
case came from the p-adic case, he called this fact an example of ”Schefletz principle”31.

31This is our free interpretation how to write Paul pronunciation.
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