Square Integrable Representations

Midwest Representation Theory Conference
University of Chicago

September 5-7, 2014

Joseph A. Wolf

University of California at Berkeley

_pl



.

<

e o @

°

Helsenberg Group

(w,w") is the standard hermitian inner product on C" T
h., = iR + C™ Heisenberg alg, [z + w, 2’ + '] = Im (w, w")

H, = iR + C" Heisenberg group: Lie algebra p,,

H, has center Z = iR, b,, has center 3 = iR

Each R—linear functional ¢ : C" — R defines a unitary
character x¢ : z +w — exp(2mi§(w)) on Hy,

0 # A\ € 3* defines an infinite dimensional irreducible
unitary representation =, of H,, with |z = exp(2mi))

Uniqueness of the Heilsenberg commutation relations
says that every irreducible unitary representation of H,, is
equivalent to a y, If it annihilates Z, to a =, If it does not

Fourier inversion has form f(x) = ¢, j; Or, (1 f)|A]"dA

|
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Kirillov Theory

B Kirillov used representation theory of H,, to give a generalj
theory of unitary reps of csc nilpotent Lie groups

#® N Is acsc Lie group, n its Lie algebra, n* dual space of n

® If f € n*: coadjoint orbit Ad*(/N)f has invariant symplectic
formw; fromb; :nxn =R, be(z,y) = f(lz,9]).

# polarization: subalgebrap € ns.t. kerb; C p C nand
p/ker by maximal null (Lagrangian) subspace of n/ker by

® s :exp(z) — ¥/ (@) unitary character on P = exp(p)

o That defines an (irreducible) unitary rep 7¢ = Ind g(xf)
» 7, depends (to unitary equiv) only on the orbit Ad*(V) f

» Every irreducible unitary rep of N Is equiv to some 7
. Summary: bijection N «» n*/Ad*(N) o
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Helsenberg Group Case

H, = 1R + C" center Z =R, b, =R + C" center 3 =:R T
unitary characters x¢(z +w) = exp(2mi§(w)) for £ € b}, with

¢l =0(.e. &(z+w) = ¢{(w)) and Ad™(N)¢ = {¢}-

Infinite dimensional irreducible unitary representations

mx = Ind 3 (exp(27iA|,)) with 0 # X € 3* extended to b, by
AMC™) =0. Here Ad*(N)A ={v en* | v|, = A|;}

the coefficients f, ,(g) = (u,m\(g)v) of 7 satisfy

| fuul € L2(N/Z).

the Fourier transform is f(A) = trace [y f(g)ma(g)dg for
f e C(N) (oreven for f € S(N) Schwartz space)

the Fourier inversion formula is f(g) = Cf;,* f(A)\)\]”dA
where ¢ depends only on normalization of measures

|
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Moore — W. Theory

B Moore and W. simplified Kirillov theory for csc nilpotent T
Lie groups with square integrable (modulo center)
representations, e.g. Heisenberg group and many others

® Let N be a csc nilpotent Lie group, n = 3 + v vector space
direct sum where 3 Is its center, n* = 3* + v*

® P: 3" — Ris the polynomial P()\) = Pf(by), where Pf(b))
IS the Pfaffian of the antisymmetric form b, on n/;3

# The following are equivalent for \ € n*:
o LA (N)A={ven |y, =]}
s 2. 7, € N has coefficients in L2(N/Z)
e 3. P(\)#0

# the Fourier inversion formula is f(g) = cf FOVPE()[dA
L where ¢ depends only on normallzatlon of measures
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Upper Triangular Matrices 1

# We foliate the upper triangular matrices:
- = 0 @« @ o o o B
0O ¢ @« o o B
0 0O ¢ o o W o
0 O e o M o
0O 0 O o o
0O 0 O o o
9 or 0O 0 0 O o o
0O 0 0 O °
O 0O 00 0O e e
0O 00 0 0 e
O 0 0 0 0 0 e
O 0 0 0 0 O
- s O 0 0 0 0 0 O

#® Red indicates a normal subgroup L that is a Heisenberg
group (the square is its center); blue Is a subgroup L- that
IS a Heisenberg group (the square is its center); green Is
a subgroup Ls that is a Heisenberg (or abelian) and the

L square is its center. J
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Upper Triangular Matrices 2
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# More generally this gives a decomposition

N=1Ly...L,,_1L,, where
(a) each L, has unitary reps with coef. in L*(L,/Z,),
(b) each N, := L1L, ... L, Is a normal subgp of N with
N, = N,_1 x L, semidirect product decomposition,
(c) Let [, =3, + v, and n = s + v vector space direct

L sums, s = ®3,, and v = $ v, J
Then [I,.,3s] =0and [[,,[s] Cvforr > s.
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Construction of Representations

B a
N=1L1Ls...Ly_1Ly where (a) each L, has unitary reps with coef. in LQ(LT/ZT),
(b) each N, := L1L> ... L, is a normal subgp of N with N, = N,._1 x L, semidirect,

(C) [/r' — 57‘* + U/r', b = @Ufr, [[7",53] — O and [[7", [S] o fOI"I" > 8.

® )\ € 5>1k with =" ()\1) # 0 giVGS T, € E

® Then Ay € 35 with P, (\2) # 0, and my, € L, combines to
give my, +a, € Ny With coefficients |f, .| € L2(Na2/Z1 Zs),

[lull[]ol]”

® |n faCt Hfu,UHL2 N2/21Z2) o ‘P[l()\l)P[2()\2)‘

# lterate the construction: A\, € 3~ with each P, _(\,) # 0, and

the square integrable 7, € L,, combine to give Ty € N
with coefficients | f,..| € L2(N/21 m), in fact

[l *[]v]]”

Zm) = TPy ) P O] -
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Reformulate

. N

S=7145...Zy has Lie algebras =31 + 30+ -+ + 3, SO
ST =31ttt

S A=)+ X+ -+ Ay With A\, € 3}

# view by as an antisymmetric bilinear form on n/s

® P(\) =Pf(by) = P,(M)P,(A2) ... B, (Am)

® If P(\) #0then ) € N has coefficients | fuw| € L*(N/S)
_ P

® | furllFaovss = Tr00

#® These representations ), are the stepwise square
Integrable representations of V.

o |
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Plancherel Measure & Fourier Inversion

D my has distribution character T

O:(f) = trace / F(g)ma(g)dy for f € S(N)
N
® Plancherel measure on N is concentrated on
{Xes*| P(\) #£ 0} and given by (const)|P()\)|dA
® Fourier inversion formula

f(x) = (const) / O\(rx )| P(N)|dX for f € S(N)
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Compact Quotients

N nilpotent Lie group with stepwise square integrable

-

representations

[': discrete su
consistent wit

' N, cocom

pgroup with N/I" compact in a way that is
N the decomposition N = LiLs. .. Ly:

Dactin N, = Li1Ly...L,for1 <r<m

L*(N/T) =" __5 mult(r)r discrete direct sum with
multiplicities mult(7w) < oo

mult(m) > 0 only for = = 7, with X integral in the sense

that exp(2mi)\)
Theorem. Let

IS well defined on the torus Z/(I'N Z)
A € s*with P(\) #£ 0, 1.e. with 7 stepwise

sguare integrable. Then (with appropriate normalizations
of measures) the multiplicity m(my) = |P()\)].
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lwasawa Decomposition

. N

# N maximal unipotent subgroup

#® Theorem. N satisfies the conditions for stepwise square
Integrable representations

Gz real reductive Lie group, G = K AN Ilwasawa decomp

N=LiLs...Ly, 1L, where (a) each L, has unitary reps with coef. in LQ(LT/ZT),
(b) each N, := L1 Ls ... L, is a normal subgp of N with N, = N,._1 x L, semidirect,

(C) [fr' — 57" —|— U/r', b = @Ur, [[7’,33] — O and [[/r', [S] C D fOf’I" > S.

# |dea of proof — at least the construction:

® {B1,...,8m} maximal set of strongly orthogonal a—roots (cascade down)
® AT ={aeAt(ga)|p1—aecAT(ga)

®» Al ={aeAT(ga)\ (AT U--UAT) | Bri1 —a € At(g,a)}

o [r:gBT+ZAjgafor1§r§m

Lﬂ Upper triangular matrices: case G = GL(n;R) or SL(n; IR{)J
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Minimal Parabolics |

-

P = M AN: minimal parabolic subgroup of G, M = Zx(A)
principal M-orbits on s*: Ad*(M)X where P(\) #0

have measurable choice of base points \° for principal
orbits Ad* (M)A with all isotropy subgroups the same

bbb—‘

°

a polynomial on s*, defined by Pf, transforms by the
modular function of P, and its Fourier transform D Is a
differential operator on P (or on AN) that balances lack of
unimodularity in the Plancherel formula

® for a € A, Ad(a)Dets- = (], exp(8;(log a))4™3) Det,:

#® D Is an invertible self-adjoint diff op of degree
2(dimn + dims) on L?(M AN) with dense domain
L C(MAN), and f(x) = [5trace m(D(r(z)f))dp, ()

|
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Minimal Parabolics Il

. N

# Choose points In u* where isotropies
Mo, As, (M A)s = MsA, same for each orbit

® M, = FM) where F = exp(ia) N K trivial on s*, M = FM"

Write u* for the nonsingular set { P(\) # 0} In s*.

#® Stepwise sg-int w, extends to rep wi of M, on H,

®ifye ]\/4\<> setny~ = Ind %%@ (A ® )

® and if ¢ € a, setmy ., 4 = Ind ¥4, (1 ® € ® 7)
® {O01,...,0,}: the (open) Ad™ (M A)—orbits on u*; \; € O,

» Characters ©, , are tempered; If f € S(MAN) then
» f(:l?) — CZ{O,L-} ZM: fag; @sz»yqu(T(x)f”P()‘z)’ dimW de

o |
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Non-Minimal Parabolics

. N

The real parabolics containing P are parameterized by
subsets & C ¥ of the simple restricted root system

#® Denote Qo = MasAe N
# Add together the [; N ng for the same g3;|,,: ne = Zj (5
® Then Ny = Ly 1Le o ... Lo has stepwise square

Integrable representations — with a slight weakening of
one of the technical conditions

#® The Dixmier—Pukanszky operator D is similar to the
minimal parabolic case: Fourier inversion for A Ng

# Extension to the parabolic Mg AgsNg 1S NOt yet settled: the
problem is how to fit the the ag—weight spaces on ng
together with the [ ; , for example whether the

L Bilas-Weight space is contained in an [y ; J
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Infinite Dimensional Groups

B G finitary simple oo—dim real reductive Lie group T
o G= @Gn where
s (1) the restricted root Dynkin diagram D¢, IS a
subdiagram of D¢, ,

s (il) the ordered set {4, ..., 5, } Of strongly orthogonal
roots restricted roots for G,, extends to {1, ..., Bm, . }

® Example: G = SL(oo;H), ¢ > 0 and Gy, = SL(2¢ + 4n; H)

# Nilradicals of minimal parabolics have decompositions
Ny, = L1Ls...Ly, with N, normal in N,,.{, Mackey
obstructions vanish so my, 4, extends from N, to
N,.1 and we construct stepwise square integrable
representations my, 1y, Of Nyyq.

L. This constructs stepwise square integrable unitary J
representations m, = ligmlJr,__an of NV := ligNn
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Happy Birthday Becky!!
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