Square Integrable Representations

Midwest Representation Theory Conference University of Chicago September 5–7, 2014

> Joseph A. Wolf University of California at Berkeley

Heisenberg Group

- ${}$ ${}$ ${}$ $\langle w,w'\rangle$ is the standard hermitian inner product on \mathbb{C}^n
- $\mathfrak{h}_n = i\mathbb{R} + \mathbb{C}^n$ Heisenberg alg, $[z + w, z' + w'] = \operatorname{Im} \langle w, w' \rangle$
- $H_n = i\mathbb{R} + \mathbb{C}^n$ Heisenberg group: Lie algebra \mathfrak{h}_n
- H_n has center $Z = i\mathbb{R}$, \mathfrak{h}_n has center $\mathfrak{z} = i\mathbb{R}$
- Each \mathbb{R} -linear functional $\xi : \mathbb{C}^n \to \mathbb{R}$ defines a unitary character $\chi_{\xi} : z + w \mapsto \exp(2\pi i \xi(w))$ on H_n
- $0 \neq \lambda \in \mathfrak{z}^*$ defines an infinite dimensional irreducible unitary representation π_{λ} of H_n with $\pi_{\lambda}|_Z = \exp(2\pi i\lambda)$
- Uniqueness of the Heisenberg commutation relations says that every irreducible unitary representation of H_n is equivalent to a χ_{ξ} if it annihilates Z, to a π_{λ} if it does not
- Fourier inversion has form $f(x) = c_n \int_{\mathfrak{z}^*} \Theta_{\pi_\lambda}(r_x f) |\lambda|^n d\lambda$

Kirillov Theory

- Similar Kirillov used representation theory of H_n to give a general theory of unitary reps of csc nilpotent Lie groups
- ▶ N is a csc Lie group, n its Lie algebra, n^* dual space of n
- If *f* ∈ n^{*}: coadjoint orbit Ad^{*}(N)*f* has invariant symplectic form $ω_f$ from $b_f : n × n → \mathbb{R}$, $b_f(x, y) = f([x, y])$.
- polarization: subalgebra p ∈ n s.t. ker b_f ⊂ p ⊂ n and p/ker b_f maximal null (Lagrangian) subspace of n/ker b_f
- $\chi_f : \exp(x) \mapsto e^{2\pi i f(x)}$ unitary character on $P = \exp(\mathfrak{p})$
- That defines an (irreducible) unitary rep $\pi_f = \operatorname{Ind} P^N(\chi_f)$
- π_f depends (to unitary equiv) only on the orbit $\mathrm{Ad}^*(N)f$
- Every irreducible unitary rep of N is equiv to some π_f
- Summary: bijection $\widehat{N} \leftrightarrow \mathfrak{n}^*/\mathrm{Ad}^*(N)$

Heisenberg Group Case

- unitary characters $\chi_{\xi}(z+w) = \exp(2\pi i\xi(w))$ for $\xi \in \mathfrak{h}_n^*$ with $\xi|_{\mathfrak{z}} = 0$ (i.e. $\xi(z+w) = \xi(w)$) and $\operatorname{Ad}^*(N)\xi = \{\xi\}$.
- infinite dimensional irreducible unitary representations $\pi_{\lambda} = \operatorname{Ind}_{P}^{N}(\exp(2\pi i\lambda|_{\mathfrak{p}}))$ with $0 \neq \lambda \in \mathfrak{z}^{*}$ extended to \mathfrak{h}_{n} by $\lambda(\mathbb{C}^{n}) = 0$. Here $\operatorname{Ad}^{*}(N)\lambda = \{\nu \in \mathfrak{n}^{*} \mid \nu|_{\mathfrak{z}} = \lambda|_{\mathfrak{z}}\}$
- the coefficients $f_{u,v}(g) = \langle u, \pi_{\lambda}(g)v \rangle$ of π_{λ} satisfy $|f_{u,v}| \in L^2(N/Z)$.
- the Fourier transform is $\hat{f}(\lambda) = \text{trace } \int_N f(g) \pi_\lambda(g) dg$ for $f \in C_c^\infty(N)$ (or even for $f \in S(N)$ Schwartz space)
- the Fourier inversion formula is $f(g) = c \int_{\mathfrak{z}^*} \widehat{f}(\lambda) |\lambda|^n d\lambda$ where *c* depends only on normalization of measures

Moore – W. Theory

- Moore and W. simplified Kirillov theory for csc nilpotent Lie groups with square integrable (modulo center) representations, e.g. Heisenberg group and many others
- Let N be a csc nilpotent Lie group, n = 3 + v vector space direct sum where 3 is its center, n* = 3* + v*
- P : $\mathfrak{z}^* \to \mathbb{R}$ is the polynomial P(λ) = Pf(b_λ), where Pf(b_λ) is the Pfaffian of the antisymmetric form b_λ on n/β
- The following are equivalent for $\lambda \in \mathfrak{n}^*$:
 - 1. $\operatorname{Ad}^*(N)\lambda = \{\nu \in \mathfrak{n}^* \mid \nu|_{\mathfrak{z}} = \lambda|_{\mathfrak{z}}\}$
 - 2. $\pi_{\lambda} \in \widehat{N}$ has coefficients in $L^2(N/Z)$
 - 3. $P(\lambda) \neq 0$
- the Fourier inversion formula is $f(g) = c \int_{\mathfrak{z}^*} \widehat{f}(\lambda) |Pf(\lambda)| d\lambda$ where *c* depends only on normalization of measures

Upper Triangular Matrices 1

We foliate the upper triangular matrices:

• Red indicates a normal subgroup L_1 that is a Heisenberg group (the square is its center); blue is a subgroup L_2 that is a Heisenberg group (the square is its center); green is a subgroup L_3 that is a Heisenberg (or abelian) and the square is its center.

Upper Triangular Matrices 2

More generally this gives a decomposition

 $N = L_1 L_2 \dots L_{m-1} L_m \text{ where}$ (a) each L_r has unitary reps with coef. in $L^2(L_r/Z_r)$, (b) each $N_r := L_1 L_2 \dots L_r$ is a normal subgp of N with $N_r = N_{r-1} \rtimes L_r$ semidirect product decomposition, (c) Let $\mathfrak{l}_r = \mathfrak{z}_r + \mathfrak{v}_r$ and $\mathfrak{n} = \mathfrak{s} + \mathfrak{v}$ vector space direct sums, $\mathfrak{s} = \oplus \mathfrak{z}_r$, and $\mathfrak{v} = \oplus \mathfrak{v}_r$. Then $[\mathfrak{l}_r, \mathfrak{z}_s] = 0$ and $[\mathfrak{l}_r, \mathfrak{l}_s] \subset \mathfrak{v}$ for r > s.

Construction of Representations

 $N = L_1 L_2 \dots L_{m-1} L_m$ where (a) each L_r has unitary reps with coef. in $L^2(L_r/Z_r)$, (b) each $N_r := L_1 L_2 \dots L_r$ is a normal subgp of N with $N_r = N_{r-1} \rtimes L_r$ semidirect, (c) $\mathfrak{l}_r = \mathfrak{z}_r + \mathfrak{v}_r, \, \mathfrak{v} = \oplus \mathfrak{v}_r, \, [\mathfrak{l}_r, \mathfrak{z}_s] = 0$ and $[\mathfrak{l}_r, \mathfrak{l}_s] \subset \mathfrak{v}$ for r > s.

- $\lambda_1 \in \mathfrak{z}_1^*$ with $P_{\mathfrak{l}_1}(\lambda_1) \neq 0$ gives $\pi_{\lambda_1} \in \widehat{L_1}$
- Then $\lambda_2 \in \mathfrak{z}_2^*$ with $P_{\mathfrak{l}_2}(\lambda_2) \neq 0$, and $\pi_{\lambda_2} \in \widehat{L_2}$, combines to give $\pi_{\lambda_1+\lambda_2} \in \widehat{N_2}$ with coefficients $|f_{u,v}| \in L^2(N_2/Z_1Z_2)$,

• In fact
$$||f_{u,v}||^2_{L^2(N_2/Z_1Z_2)} = \frac{||u||^2||v||^2}{|P_{\mathfrak{l}_1}(\lambda_1)P_{\mathfrak{l}_2}(\lambda_2)|}$$
.

• Iterate the construction: $\lambda_r \in \mathfrak{z}_r^*$ with each $P_{\mathfrak{l}_r}(\lambda_r) \neq 0$, and the square integrable $\pi_{\lambda_r} \in \widehat{L_r}$, combine to give $\pi_{\lambda} \in \widehat{N}$ with coefficients $|f_{u,v}| \in L^2(N/Z_1...Z_m)$, in fact

•
$$||f_{u,v}||^2_{L^2(N/Z_1...Z_m)} = \frac{||u||^2||v||^2}{|P_{\mathfrak{l}_1}(\lambda_1)...P_{\mathfrak{l}_m}(\lambda_m)|}$$

Reformulate

• $S = Z_1 Z_2 \dots Z_m$ has Lie algebra $\mathfrak{s} = \mathfrak{z}_1 + \mathfrak{z}_2 + \dots + \mathfrak{z}_m$ so $\mathfrak{s}^* = \mathfrak{z}_1^* + \mathfrak{z}_2^* + \dots + \mathfrak{z}_m^*$

•
$$\lambda = \lambda_1 + \lambda_2 + \cdots + \lambda_m$$
 with $\lambda_r \in \mathfrak{z}_r^*$

view b_{λ} as an antisymmetric bilinear form on n/s

$$P(\lambda) = Pf(b_{\lambda}) = P_{\mathfrak{l}_1}(\lambda_1) P_{\mathfrak{l}_2}(\lambda_2) \dots P_{\mathfrak{l}_m}(\lambda_m)$$

If $P(\lambda) \neq 0$ then $\pi_{\lambda} \in \widehat{N}$ has coefficients $|f_{u,v}| \in L^2(N/S)$

$$||f_{u,v}||_{L^2(N/S}^2 = \frac{||u||^2 ||v||^2}{|P(\lambda)|}$$

These representations π_{λ} are the stepwise square integrable representations of N.

Plancherel Measure & Fourier Inversion

• π_{λ} has distribution character

$$\Theta_{\lambda}(f) = \text{trace } \int_{N} f(g) \pi_{\lambda}(g) dg \text{ for } f \in \mathcal{S}(N)$$

- Plancherel measure on \widehat{N} is concentrated on $\{\lambda \in \mathfrak{s}^* \mid P(\lambda) \neq 0\} \text{ and given by } (const)|P(\lambda)|d\lambda$
- Fourier inversion formula

$$f(x) = (const) \int_{\mathfrak{s}^*} \Theta_{\lambda}(r_x f) |P(\lambda)| d\lambda \text{ for } f \in \mathcal{S}(N)$$

Compact Quotients

- N: nilpotent Lie group with stepwise square integrable representations
- Γ : discrete subgroup with N/Γ compact in a way that is consistent with the decomposition $N = L_1 L_2 \dots L_m$:
- $\Gamma \cap N_r$ cocompact in $N_r = L_1 L_2 \dots L_r$ for $1 \leq r \leq m$
- $L^2(N/\Gamma) = \sum_{\pi \in \widehat{N}} mult(\pi)\pi$ discrete direct sum with multiplicities $mult(\pi) < \infty$
- *mult*(π) > 0 only for $π = π_λ$ with λ integral in the sense that exp(2πiλ) is well defined on the torus Z/(Γ ∩ Z)
- Theorem. Let $\lambda \in \mathfrak{s}^*$ with $P(\lambda) \neq 0$, i.e. with π_{λ} stepwise square integrable. Then (with appropriate normalizations of measures) the multiplicity $m(\pi_{\lambda}) = |P(\lambda)|$.

Iwasawa Decomposition

- G real reductive Lie group, G = KAN lwasawa decomp
- N maximal unipotent subgroup
- Theorem. N satisfies the conditions for stepwise square integrable representations

 $N = L_1 L_2 \dots L_{m-1} L_m$ where (a) each L_r has unitary reps with coef. in $L^2(L_r/Z_r)$, (b) each $N_r := L_1 L_2 \dots L_r$ is a normal subgp of N with $N_r = N_{r-1} \rtimes L_r$ semidirect, (c) $\mathfrak{l}_r = \mathfrak{z}_r + \mathfrak{v}_r, \, \mathfrak{v} = \oplus \mathfrak{v}_r, \, [\mathfrak{l}_r, \mathfrak{z}_s] = 0$ and $[\mathfrak{l}_r, \mathfrak{l}_s] \subset \mathfrak{v}$ for r > s.

- Idea of proof at least the construction:
 - $\{\beta_1, \ldots, \beta_m\}$ maximal set of strongly orthogonal \mathfrak{a} -roots (cascade down)

•
$$\Delta_1^+ = \{ \alpha \in \Delta^+(\mathfrak{g}, \mathfrak{a}) \mid \beta_1 - \alpha \in \Delta^+(\mathfrak{g}, \mathfrak{a}) \}$$

•
$$\Delta_{r+1}^+ = \{ \alpha \in \Delta^+(\mathfrak{g}, \mathfrak{a}) \setminus (\Delta_1^+ \cup \cdots \cup \Delta_r^+) \mid \beta_{r+1} - \alpha \in \Delta^+(\mathfrak{g}, \mathfrak{a}) \}$$

•
$$\mathfrak{l}_r = \mathfrak{g}_{\beta_r} + \sum_{\Delta_r^+} \mathfrak{g}_{\alpha}$$
 for $1 \leq r \leq m$

• Upper triangular matrices: case $G = GL(n; \mathbb{R})$ or $SL(n; \mathbb{R})$

Minimal Parabolics I

- P = MAN: minimal parabolic subgroup of G, $M = Z_K(A)$
- Principal M-orbits on s^* : Ad^{*}(M)λ where P(λ) ≠ 0
- have measurable choice of base points $λ^b$ for principal orbits $Ad^*(M)λ$ with all isotropy subgroups the same
- a polynomial on s*, defined by Pf, transforms by the modular function of P, and its Fourier transform D is a differential operator on P (or on AN) that balances lack of unimodularity in the Plancherel formula
- for $a \in A$, $\operatorname{Ad}(a)\operatorname{Det}_{\mathfrak{s}^*} = \left(\prod_r \exp(\beta_r (\log a))^{\dim \mathfrak{z}_r}\right)\operatorname{Det}_{\mathfrak{s}^*}$
- *D* is an invertible self-adjoint diff op of degree $\frac{1}{2}(\dim \mathfrak{n} + \dim \mathfrak{s})$ on $L^2(MAN)$ with dense domain $\mathcal{C}(MAN)$, and $f(x) = \int_{\widehat{P}} \operatorname{trace} \pi(D(r(x)f)) d\mu_P(\pi)$

Minimal Parabolics II

- Write \mathfrak{u}^* for the nonsingular set $\{P(\lambda) \neq 0\}$ in \mathfrak{s}^* .
- Choose points in \mathfrak{u}^* where isotropies $M_\diamond, A_\diamond, (MA)_\diamond = M_\diamond A_\diamond$ same for each orbit
- $M_{\diamond} = FM_{\diamond}^0$ where $F = \exp(i\mathfrak{a}) \cap K$ trivial on \mathfrak{s}^* , $M = FM^0$
- Stepwise sq-int π_{λ} extends to rep π_{λ}^{\dagger} of M_{\diamond} on $\mathcal{H}_{\pi_{\lambda}}$
- if $\gamma \in \widehat{M}_{\diamond}$ set $\eta_{\lambda,\gamma} = \operatorname{Ind}_{NM_{\diamond}}^{NM}(\pi_{\lambda} \otimes \gamma)$
- and if $\phi \in \mathfrak{a}_{\diamond}$ set $\pi_{\lambda,\gamma,\phi} = \operatorname{Ind}_{NA_{\diamond}M_{\diamond}}^{NAM}(\pi_{\lambda} \otimes e^{i\phi} \otimes \gamma)$
- $\{O_1, ..., O_v\}$: the (open) $Ad^*(MA)$ -orbits on \mathfrak{u}^* ; $\lambda_i \in O_i$
- Characters $\Theta_{\pi_{\lambda,\gamma,\phi}}$ are tempered; if $f \in \mathcal{S}(MAN)$ then

Non-Minimal Parabolics

- The real parabolics containing P are parameterized by subsets $\Phi \subset \Psi$ of the simple restricted root system
- Denote $Q_{\Phi} = M_{\Phi} A_{\Phi} N_{\Phi}$
- Add together the $\mathfrak{l}_i \cap \mathfrak{n}_{\Phi}$ for the same $\beta_i|_{\mathfrak{a}_{\Phi}}$: $\mathfrak{n}_{\Phi} = \sum_j \mathfrak{l}_{\Phi,j}$
- Then $N_{\Phi} = L_{\Phi,1}L_{\Phi,2} \dots L_{\Phi,\ell}$ has stepwise square integrable representations with a slight weakening of one of the technical conditions
- The Dixmier–Pukánszky operator D is similar to the minimal parabolic case: Fourier inversion for $A_{\Phi}N_{\Phi}$
- Extension to the parabolic $M_{\Phi}A_{\Phi}N_{\Phi}$ is not yet settled: the problem is how to fit the the \mathfrak{a}_{Φ} -weight spaces on \mathfrak{n}_{Φ} together with the $\mathfrak{l}_{\Phi,j}$, for example whether the $\beta_i|_{\mathfrak{a}_{\Phi}}$ -weight space is contained in an $\mathfrak{l}_{\Phi,j}$

Infinite Dimensional Groups

- \blacksquare G: finitary simple ∞ -dim real reductive Lie group
- $G = \varinjlim G_n \text{ where }$
 - (i) the restricted root Dynkin diagram \mathcal{D}_{G_n} is a subdiagram of $\mathcal{D}_{G_{n+1}}$
 - (ii) the ordered set $\{\beta_1, \ldots, \beta_{m_n}\}$ of strongly orthogonal roots restricted roots for G_n extends to $\{\beta_1, \ldots, \beta_{m_{n+1}}\}$
- Example: $G = SL(\infty; \mathbb{H})$, $\ell > 0$ and $G_n = SL(2\ell + 4n; \mathbb{H})$
- Nilradicals of minimal parabolics have decompositions $N_n = L_1 L_2 \dots L_{m_n}$ with N_n normal in N_{n+1} , Mackey obstructions vanish so $\pi_{\lambda_1 + \dots + \lambda_{m_n}}$ extends from N_n to N_{n+1} and we construct stepwise square integrable representations $\pi_{\lambda_1 + \dots + \lambda_{m_n}}$ of N_{n+1} .
- This constructs stepwise square integrable unitary – representations $\pi_{\lambda} = \varinjlim \pi_{\lambda_1 + \ldots + \lambda_{m_n}}$ of $N := \varinjlim N_n$

Happy Birthday Becky!!