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Some things mathematicians do 
1.   Ask “natural questions” 
2.   Explore and experiment 
3.   Represent (multiply) 
4.   Look for structure (patterns, symmetry, etc.) 
5.   Connect (exactly, analogously, metaphorically, etc.) 
6.   Conjecture 
7.   Consult (experts, literature, Google, etc.) 
8.   Seek proofs 
9.   Be opportunistic 
10.   Prove 
11.   Attend to rigor, scientific integrity, aesthetics, taste 
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Our (“Natural”) Mathematical Question 
(From the study of fractions) 

•  Some cakes (c cakes) are to be equally shared 
by some students (s students) 

(Jeff Lagarias prefers that I say something other than “students,” like “secretaries,” 
or “surgeons.”) 

•  What is the least number of cake pieces 
needed to make this equal distribution? 

•  [Don’t confuse with other “fair share” 
problems.]  
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(Explore) Examples: 
5 cakes shared by 7 students:  c = 5  s = 7 

7 Students:       Ä    Ä    Ä    Ä    Ä    Ä 

5 Cakes:   

How many cake pieces are needed to share? 
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•   Represent the problem, visually. 
•   What are your ideas about how to do this? 



The “Linear Distribution” 
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Ä    Ä   (2 pieces each)    Ä               Ä   

      Ä      Ä 
(1 piece each) 

Altogether:  11 pieces 



The “Euclidean Distribution” 
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                Ä              Ä              Ä              Ä 
(1 piece each) 

 Ä         (3 pieces each)             Ä 

Altogether:  11 pieces 
Remarkable; coincidence? 

More natural questions. 



Is 11 the minimum possible? 
Natural questions; continued exploration 

What do you expect the answer to be for 
general c and s?   
  (How is 11 related to 5 and 7?) 

For example, what happens for 33 students 
sharing 17 cakes? 

Or 14 students sharing 10 cakes? 

7 



From Round to Rectangular Food:  I. The linear distribution 
A more illuminating representation (“1-dimensional”) 
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Cake 1 Cake 2 Cake 3 Cake 4 Cake 5 
S1             S2 S3 S4 S5 S6 S7 
1                     
                     5/7 

2  
  2/7 

3        
         3/7 

4              
               4/7 

5 
1/7  

6 
                     5/7 

7 
1/7 

8 
               4/5 

9 
         3/7 

10 
  2/7 

11 
                    5/7 

 

Cake 1 Cake 2 Cake 3 Cake 4 Cake 5 
 

Cake 1 Cake 2 Cake 3 Cake 4 Cake 5 
S1             S2 S3 S4 S5 S6 S7 
 



From Round to Rectangular Food:   II. The Euclidean distribution 
A more illuminating representation (2-dimensional) 

5 cakes: Cake 1, Cake 2, … , Cake 5  
for 7 students: S1, S2,  …, S7 

Horizontal: Cake 
separations; Cakes are  
the 5 rows 

Vertical:  Cake cuts 

Colors: Student shares  

With 11 pieces:  
P1, P2, … , P11   

9 

S1                                                                      
                       Cake 1                       P1 

S6 
                      P6 

S2                                                            
                       Cake 2                       P2 

S6 
                      P7 

S3                                                         
                       Cake 3                       P3 

S6 
       P8 

S7 
       P9 

S4                                                         
                       Cake 3                       P4 

S7 
                    P10 

 S5                                                           
                       Cake 5                       P5 

S7 
                    P11 



A Bi-product of the Euclidean Distribution 
Connections; Opportunism 

Square Tiling of the rectangle 

Euclidean algorithm: 
7  =    1•5  +  2        

  (1  5x5 square) 
5  =    2•2  +  1   

  (2  2x2 squares) 
2  =    2•1  +  0   

  (2  1x1 squares) 

Sum of the side lengths of the tiles:  5 + 2 + 2 + 1 + 1   =   11  
(Connection)  

The “complete perimeter” (more later)  =  2•(5 + 7) + 5 + 1 + 2 + 2  =  34 
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5 cakes for 12 students: Euclidean Distribution 
More exploration, connection 

12  =   2•5  +  2    5   =    2•2  +  1   2      =    2•1  +  0 

# tiles   =   2  +  2  +  2  =  6 
#  pieces   =   2•5  +  2•2  +  2•1   =   16 
Sum of side lengths of tiles   =   5 + 5 + 2 + 2 + 1 + 1   =   16  (Connection)  
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The Minimum Number of Pieces 
At first a Conjecture; a long time to prove 

Theorem.  (a) The minimum number, p(c, s), of cake 
pieces required to equally distribute c cakes among s 
students is  
   p(c, s)  =  c  +  s  -  d, 

where  
    d  =  gcd(c, s). 

(b) This minimum number of pieces is achieved by both 
the linear and the Euclidean distributions. 
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Proof of (b) for the linear distribution 
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Cake 1 Cake 2 Cake 3 Cake 4 Cake 5 
S1             S2 S3 S4 S5 S6 S7 
1                     
                     5/7 

2  
  2/7 

3        
         3/7 

4              
               4/7 

5 
1/7  

6 
                     5/7 

7 
1/7 

8 
               4/5 

9 
         3/7 

10 
  2/7 

11 
                    5/7 

 

Cake 1 Cake 2 Cake 3 Cake 4 Cake 5 
 

Cake 1 Cake 2 Cake 3 Cake 4 Cake 5 
S1             S2 S3 S4 S5 S6 S7 
 



Proof that the linear distribution produces c + s - d pieces. 
Note how well suited the linear representation is to the argument. 

Place the c (rectangular) cakes, each of length s, end to end, so 
that total length is c•s units.  Treat this as one long cake of 
length c•s.  Cake separations are at multiples of s:    

c - 1 of these. 
Student share separations are at multiples of c:   

s - 1 of these. 
These cuts coincide at multiples of m = lcm(c,s):   (c•s  =  d•m)  

  d - 1 of these.      
So the total number of cuts is  

(c - 1) + (s - 1) - (d - 1)  =  c + s - d - 1,   
So, the total number of pieces is   

c + s - d. 
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Proof that the euclidean distribution  
produces c + s - d pieces. 

•  This relies on an inductive argument based on 
the Euclidean algorithm. 

•  No time for the details here. 
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•  We have shown that      
     p(c,s)   ≤   c + s – d 
This was proved early, using the linear and euclidean distributions 

•  It remains to show that,   
     p(c,s)   ≥   c + s – d 
This took much longer   

•  Needed a new idea 
 A new, combinatorial (rather than geometric) representation of a 
distribution 
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Graphs Γ 

Vertices: V   Edges:  E 
End points: E --- > VxV 

             
o                 o         o                      o          o                      o 

    o                    o                                                o            o 

      o                    o         o                        o           o                         o     
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The Basic Inequality for a connected graph: 
#E   ≥   #V  -  1       

Equality   < = >   Γ is a tree 

- Start with a single vertex:   #V  =  1,   #E  =  0 
- Adjoin edges, one at a time 
- Attach only one endpoint:    

  - Both #V & #E increase by 1.   
  - Still a tree. 

- Attach both endpoints:   
  - #V unchanged,  #E increases by 1.   
  - No longer a tree. 
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The (bipartite) graph Γ(D) of a cake distribution D 

 V   =  {cakes}      |_|  {students} 
  #V  =  c  +  s 

 E   =  {cake pieces} 
  #E  =      the number of cake pieces in D 

 End points of   p  in  E:  
  p   joins the cake from which it came  
  to the student to which it is given 
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The graph Γ(DL) of the  
linear distribution DL of 5 cakes for 7 students 

   o           o               o            o          o                o          o 

 _____        _____           _____             _____        _____ 

Each student vertex has degree ≤ 2 
One cake vertex has degree 3 
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The graph Γ(DE) of the  
Euclidean distribution DE of 5 cakes for 7 students 

 o               o               o               o               o 

          _____            _____          _____          _____        _____ 

               o                 o 
Degree 1 vertices:  5 students 
Degree 2 vertices:  4 cakes 
Degree 3 vertices:  2 students & 1 cake 
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Proof that:  p(c,s)  ≥  c + s - d 
1)  Let D be a distribution of c cakes among s 

students using the minimal number,  
 p  =  p(c,s) of cake pieces, and let  
 Γ  = Γ(D) be its graph.  We have seen already that: 

2)   p   ≤  c  +  s  -  d 

3)  We have   
  #V   =   c + s,  &   #E   =  p  
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Proof that p(c,s) ≥ c + s - d  (cont) 
4)  Let Γ’ be a connected component of Γ, with vertices V’ and edges E’.  

Say  
  #V’   =   c’ + s’   and   #E   =   p’,  
 where Γ’ has c’ cake vertices, s’ student vertices, and p’ edges.   

5)  Then Γ’ is the graph of a distribution D’ of c’ cakes among s’ students, 
and D’, like D, is clearly still minimal (uses the smallest possible 
number of pieces);  otherwise the number of pieces in D could be 
reduced.   Since all students, not just those in Γ’, receive the same 
share, we must have, 

6)     c’/s’  =  c/s.     
 Let c0/s0 be the reduced form of this fraction.  Then  
   c = dc0,   s = ds0,   c’ = d’c0,   and   s’ = d’s0,  where  
   d  =  gcd(c, s)   and  d’  =  gcd(c’, s’). 
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Proof that p(c,s) ≥ c + s - d  ( ) 

7)  Since the distribution D’ is minimal we have 
   p’   ≤  c’  +  s’  -  d’ 

8)  On the other hand, since Γ’ is connected, it follows from the Basic 
Inequality for graphs that   p’  ≥  c’  +  s’  -  1,  

 with equality iff Γ’ is a tree. 
  c’  +  s’  -  1  ≤  p’  ≤  c’  +  s’  -  d’ 

9)  It follows that:  d’  =  1, and so:  (c’, s’)  =  (c0, s0),   p’  =  c0 + s0 - 1,    
and  Γ’ is a tree.  All this is independent of the connected component Γ’. 

10) Thus, Γ is a disjoint union of  d  trees, each with  
 c0 cake vertices, s0 student vertices, and c0 + s0 - 1  edges.   
 It follows that  p   =  d•(c0 + s0 - 1)  =    c  +  s  -  d 
     QED 
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Square Tilings of Rectangles 
Returning to opportunism 

We have seen that the Euclidean Algorithm “is” a kind of 
“greedy algorithm” for square tiling a rectangle. 

Is it optimal?  For example, does it produce a tiling using the 
least number of square tiles? 

No  (not always.)   

But it does for ‘Fibonacci rectangles.’ 

And we shall see that it is optimal for minimizing the “complete 
perimeter” of the tiling.  (“Isoperimetric tiling”) 
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How many squares to tile a rectangle?  (The 8 x 9 case) 
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The Greedy (Euclidean) tiling:  9 tiles 

Fewer (7) tiles 



Perimeter measures of square tilings 
R  =  a (c x s)-rectangle, tiled by a set T of square tiles 

For each (square) tile   σ in T   let  
   s(σ)   =  side length of σ,    

and put  
   p(T)   =  Σ σ in T  s(σ) 

Thus,  
   Area(R)   =   Σ σ in T  s(σ)2    =   c•s  
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The “complete perimeter,”  CP(T) 
 CP(T)  =  the sum of the lengths of all line segments in  

 the diagram of the square tiling T of R. 
Example:  c = 8, s = 9,  T = {σ1, σ2, σ3, σ4, σ5, σ6, σ7 } 
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s(σ1)  =  s(σ2)  =  1,  s(σ3)  =  2,  s(σ4)  =  3,  s(σ5)  =  s(σ6)  =  4,  s(σ7)  =  5 

So  p(T)   =    1+1+2+3+4+4+5   =    20,       and  

 CP(T)   =    (8 + 8 + 8 + 4 + 1) + (9 + 9 + 5 + 4 + 2)  =   58 



The Euclidean tiling makes CP smaller 
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Example:  c = 8,   s = 9   again.   
 TE  =  the Euclidean tiling  =  {σ0, σi |1≤i≤8} 

 s(σ0)  =  8,   s(σi)  =  1  (1≤i≤8), 

 p(TE)   =   8 + 8   =   16   =   8 + 9 - 1 

 CP(TE)  =  (8 + 8 + 8) + (9 + 9 + 8)  =  50 



The Iso-Complete-Perimetric Theorem 

Let T be a square tiling of a (c x s)-rectangle R 

1.     CP(T)   =  2•p(T) + (c + s),   
so  

 CP(T) and p(T) are simultaneously minimized by T. 

2.     p(T)   ≥  p(c, s)  =  c + s - d,  
 with equality for the Euclidean tiling TE, for which  
  CP(TE)   =  3(c + s) - 2d.    
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Proof: Make a cake distribution  
from a square tiling 

•  Assume that we have a square tiling of a c x s 
rectangle such that c, s, and all of the tile side 
lengths are integers. 

•  Using a theorem of Max Dehn, the general case can 
be reduced to this one 

•  Cut the rectangle into c horizontal (1 x s)-rectangles, 
that we consider to be the “cakes” 
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                     c  =  8           s  =  9                    Rows  =  Cakes 

  Vertical cuts make the Cake Pieces 

  # Pieces  =    p(T)   =    Σ σ in T  s(σ) 
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    1    2      3     4     5     6     7     8     9 

Column labels are the students 

                 The Distribution 

Corollary.     p(T)  ≥  c  +  s  -  d,   
with equality for the Euclidean tiling. 
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1 6 

2 7 

3 8 

4 9 

5 6 

1 3 7 

2 4 8 

1 2 5 9 



What about  
non integer rectangles?? 
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Square tiling of any rectangle? 
•  Why doesn’t this theorem apply to any square tiling of any  

 (c x s)-rectangle R?    (c, s real numbers) 
•  What then would be the meaning of d = gcd(c, s) if c and s are 

not integral? 
•  It is easy to extend the meaning of d whenever c and s are 

commensurable (c/s is rational).  Then d is the positive 
generator of the (cyclic) group Zc + Zs. 

•  An old theorem of Max Dehn says that:  
 “The rectangle R admits a (finite) square tiling iff “R is 
commensurable,” (c/s is rational).” 

•  In this case the Iso-CP Theorem remains meaningful, and is 
true. 
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Max Dehn (1878-1952)  
A German mathematician who studied under David Hilbert at Gottingen.  Dehn 

did deep and fundamental work in geometry, topology, and group theory.  
He was the first to solve one of Hilbert’s famous list of 23 problems.  Giving 
a negative solution to Problem #3,  Dehn showed that a cube and a regular 
tetrahedron of the same volume could not be cut into polyhedra that are 
pairwise congruent.  This contrasts with what happens in the plane, where 
two polygons of the same area can be decomposed into triangles that are 
pairwise congruent. 

In 1938 Dehn, a Jew, was forced by the Nazis to leave his professorship in 
Frankfurt.  In 1945 he became the unique math professor at Black Mountain 
College in North Carolina, where he remained till his death.  There was no 
opportunity there to teach advanced mathematics, but he also taught Latin, 
Greek, and Philosophy. The Black Mountain faculty included such figures as 
John Cage, Merce Cunningham, Willem de Kooning, Buckminster Fuller (of 
whom Dehn became a close friend), Walter Gropius, and many other artists. 

•    
•    
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Max Dehn (1878-1952)  
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Thanks 

hybass@umich.edu 
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Noticing the symmetry of c  and s 
Patterns; structure 

Symmetric Reformulation   
•  Given one cake, a group of s1  (= c) students, and a 

group of s2  (= s) students. What is the smallest 
number of cake pieces into which we can cut the cake 
so that we can make both an equal share distribution 
D1 to the s1 students, and also an equal share 
distribution D2 to the s2 students?  (Using the same 
pieces in each case.) 
     [Noticed also by Man-Keung Siu] 
•  Why just two groups?  What about n? 

39 



n simultaneous equal distributions 
Opportunism;  natural questions; generalization 

•  Let M be a number > 0. 

•  By a partition P of M, with p = #P pieces, we mean a sequence  
  (m1, m2, . . .  , mp) of numbers mi > 0 such that 
  m1 + m2 + . . .  + mp  =  M 

•  For an integer s > 0, call P an s-equi-partition if there is a map D: [p]   [s] 
such that, for each h, 1 ≤ h ≤ s , we have 

  Σ {mk | D(k) = h}  =  M/s  (“equal shares,” independent of h) 

•  For a sequence (s1, s2, . . .  , sn) of integers > 0, we call P an   
  (s1, s2, . . .  , sn)-equi-partition of M  
 if it is an sj-equi-partition of M for each j = 1, 2, … , n. 
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Generalized cake-pieces problem 
•  Let (s1, s2, . . .  , sn) be a sequence of integers > 0,  

 and let M be a number > 0.  What is the minimum number,   
  pn  =  pn(s1, s2, . . .  , sn), 

   of pieces of an (s1, s2, . . . , sn)-equi-partition of M? 

•  The problem does not depend on M; we can rescale M and P. 

•  For n = 1, it is clear that:   p1(s) = s.   
   For n = 2, we have proved that:  

     p2(s1, s2)  =  s1 +  s2 - gcd (s1, s2). 
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Remarks 
•  Consider a p-uniform partition P of M, that decomposes M into a sum of p 

equal pieces, each equal to M/p.  Then this is an (s1, s2, . . .  , sn)-equi-
partition of M if and only if each sj divides p, i.e. if and only if p is a multiple 
of  

[s1, s2, . . .  , sn]  =  lcm(s1, s2, . . .  , sn) 
•  Since we can rescale M and P,  we shall, for the present discussion, take M 

to be  
   S  =  Π1≤j≤n  sj =  s1•s2• . . .  •sn 

•  For n = 1, the s1-uniform partition is clearly a minimal equi-partition, and so  
p1(s1)  =  s1 

•  For n = 2, we have  p2(s1, s2)  =  s1  +  s2  -  (s1, s2) 
 where we here use the notation   (s1, s2, . . .  , sn)  =  gcd(s1, s2, . . .  , sn) 

•  The linear equi-partition LP:  For each j, cut the interval [0, S] into sj 
subintervals of equal length sj’ = S/sj .  Then the union of all of these cuts 
creates the linear equi-partition, LP, consisting of the sequence of lengths of 
the resulting subintervals of [0, S]. 
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PROPOSITION 1.  

  # LP   =  ΣJ  (-1)#J – 1 (sJ) 

where the sum is over all non-empty subsets J of [n], 
and  

  (sJ)  =  gcd {sj | j in J } 
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New Questions 

1.  Conjecture:  
pn(s1, s2, . . .  , sn)  =  ΣJ (-1)#J - 1 (sJ)  

2.  What n-dimensional equi-partition corresponds to the 
Euclidean distribution for n = 2?  Is there some 
connection with n-dimensional cubical tilings? 
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