Michigan Math Club Thursday at 4pm in the Commons

Free Pizza and Pop

What's so great about generating functions?

Gabe Frieden

02 April 2015

Everyone who has taken Math 116 knows about infinite sequences of numbers: a_0, a_1, a_2, \ldots To study such sequences, it is very common to turn the sequence into a power series $F(x) = a_0 + a_1 x + a_2 x^2 + \ldots$, which is called a generating function. If you've never seen this before, you're probably wondering what is gained by taking a simple list of numbers and turning it into a seemingly complicated function. It turns out that it is often possible to first understand the function F(x), and then use the function to understand the coefficients a_0, a_1, a_2, \ldots

To illustrate how this works, I will derive a closed form for the Catalan numbers, a famous sequence that appears throughout combinatorics. As another fun example, I will explain how it is sometimes easier to calculate infinitely many integrals at once than one integral at a time!