Free Pizza and Pop

The Taylor series of $\sec (x)$ and $\tan (x)$

Steven Karp • 21 February 2019

In a calculus class, one learns elegant formulas for the Taylor series about $x=0$ for functions such as $e^{x}, \frac{1}{1-x}, \sin (x), \cos (x), \ln (1+x), \ldots$

In this talk, we will explore the series:

$$
\begin{aligned}
\sec (x) & =1+\frac{1}{2} x^{2}+\frac{5}{24} x^{4}+\frac{61}{720} x^{6}+\cdots \\
\tan (x) & =x+\frac{1}{3} x^{3}+\frac{2}{15} x^{5}+\frac{17}{315} x^{7}+\cdots
\end{aligned}
$$

They are related to combinatorial objects called 'up-down permutations'. I will also discuss connections to ox plowing, 'maximal morsifications' of functions, and Euler's famous formula

$$
1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\cdots=\frac{\pi^{2}}{6}
$$

Image source: Arnold, Bernoulli-Euler updown numbers associated with function singularities, their combinatorics and arithmetics

