Seminar Event Detail

Applied Interdisciplinary Mathematics (AIM)

Date:  Friday, April 01, 2016
Location:  1084 East Hall (3:00 PM to 4:00 PM)

Title:  Elementary channel flows with surprising response: (i) Biofilms and flow and (ii) Trapping of bubbles in stagnation point flows

Abstract:   In this talk I describe two distinct problems that we have studied where seemingly modest variations in an elementary channel flow produce new effects. First, we investigate influences of flow on biofilms. In particular, we identify the formation of biofilm streamers, which are filaments of biofilm extended along the central region of a low Reynolds number channel flow, and show how these filaments are capable of causing catastrophic disruption and clogging. We present a mathematical model to rationalize the rapid growth of the streamer. Second we consider flow in a T-junction, which is perhaps the most common element in many piping systems. In this example, the flows are laminar but have high Reynolds numbers, typically Re=100-1000. It seems obvious that any particles in the fluid that enter the T-junction will leave following the one of the two main flow channels. Nevertheless, we report experiments that document that bubbles and other low density objects can be trapped at the bifurcation. The trapping leads to the steady accumulation of bubbles that can form stable chain-like aggregates in the presence of surfactants, or give rise to a growth due to coalescence. Our three-dimensional numerical simulations rationalize the mechanism behind this phenomenon.


Speaker:  Howard Stone
Institution:  Princeton University (Mech. Eng.)

Event Organizer:   Shravan Veerapaneni


Edit this event (login required).
Add new event (login required).
For access requests and instructions, contact

Back to previous page
Back to UM Math seminars/events page.