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THE INTERACTION BETWEEN CATEGORY THEORY AND SET THEORY

Andreas Blass

This paper, like the lecture on which it is based, is a survey of a few
of the ways that category theory and set theory interact, The topics to be
treated were not chosen in any particularly rational way; my own interests and
knowledge were the dominant factor in the selection of material. I apologize
to all whose work should have been mentioned but was not.

In the first section, we discuss the interaction arising as a special case
of set theory's foundational role in mathematics. In the second section, we
discuss interactions arising as a special case of category theory's role of
clarifying and unifying concepts from a broad range of subfields of mathematics.
The third section is devoted to the possibility of building set-theoretic
structure into certain categories, particularly topoi, and using the interplay
between set-theoretic and category-theoretic ideas to illuminate both. 1In the
final section, we exhibit two situations where it is fairly clear that category
theory is trying to tell us something about certain set-theoretical concepts
and results, but the message is not yet well understood. The two appendices
contain justifications for some of the mathematical assertions made earlier in

the paper; non-mathematical assertions are left unjustified.

1, Set theory interacts with everything

It is a remarkable empirical factl that mathematics can be based on set
theory. More precisely, all mathematical objects can be coded as sets (in the
cumulative hierarchy built by transfinitely iterating the power set operation,

starting with the empty set), and all their crucial properties can be proved
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from the axioms of set theory. For example, the natural numbers can be coded
as von Neumann ordinals, the integers and the rational numbers as equivalence
classes of ordered pairs (which in turn can be coded as sets of the form
{{x],{x,y}j), real numbers as Dedekind cuts (or equivalence classes of Cauchy
sequences), functions as sets of ordered pairs, etc. Then the basic properties
of these systems, for example that the real numbers form a complete
Archimedean ordered field, are theorems of set theory (by which we mean, for
the sake of definiteness, ZFC, Zermelo-Fraenkel set theory with the axiom of
choice).

At first sight, category theory seems to be an exception to this general
phenomenon. It deals with objects, like the categories of sets, of groups,
etc. that are as big as the whole universe of sets and that therefore do not
admit any evident coding as sets. Furthermore, category theory involves
constructions, like the functor category, that lead from these large categories
to even larger ones. Thus, category theory is not just another field whose
set-theoretic foundation can be left as an exercise. An interaction between
category theory and set theory arises because there is a real question: What
is the appropriate set-theoretic foundation for category theory? We shall
consider three of the answers that have been given to this question.

Answer 1. None,

The point of this answer is that for its own internal development category
theory, like most branches of mathematics, does not need a set-theoretic
foundation. Once the basic concepts are clearly understood, their set-
theoretic encoding is irrelevant. (For example, an analyst wants the real
numbers to form a complete ordered field; he does not care whether they are
Dedekind cuts or equivalence classes of Cauchy sequences or anything else.)

But this approach is not adequate for answering questions like: Does category
theory necessarily involve existential principles that go beyond those of other
mathematical disciplines? At first sight, the answer to this question is yes,

because of the need for large (and superlarge and . . .) categories; a more
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careful analysis amounts to an attempt to provide a set-theoretic foundation
for category theory.

Answer 2. Grothendieck universes.

The idea here is to assume the existence of an inaccessible cardinal K
(an assumption that goes beyond ZFC) and to think of the "sets" that cccur in
ordinary mathematics as being only the sets created in the first K stages of
the cumulative hierarchy, the so-called small sets. Then there are further
stages available at which large (and superlarge and . . .) categories can be
created. This approach has two drawbacks. One is that, as already mentioned,
it uses a hypothesis that goes beyond ZFC, so large categories still seem to
require stronger existence principles than the rest of mathematics, The other
is that, if one wants to use category theory to prove a theorem about ordinary
sets, this approach will establish the theorem only for small sets. To get
the result for all sets, we need to have not just one inaccessible K but a
proper class of them, so that every set is small for some choice of K. The
need to be able to change from one K to another (change of universe) results
in a lot of technicalities which, from a non-foundational point of wview, look
irrelevant. On the other hand, there are some positive things to be said for
this approach., 1t made inaccessible cardinals popular in France. It provides
a rigorous set-theoretic foundation for free manipulations of large categories.
Its set-theoretic assumption that goes beyond ZFC, the existence of a proper
class of inaccessible cardinals, is rather mﬂd2 at least in comparison with
the large-cardinal hypotheses that set-theorists are fond of. And it probably
helped to motivate the third answer.

Answer 3., Reflection principles.

Here again, one replaces the sets of ordinary mathematics with the small
sets, those created in the first K stages of the cumulative hierarchy. But
one does not assume that K is inaccessible, Instead, one assumes that each
first-order statement (in the language of set theory, with small sets as

parameters) has the same meaning when the variables are interpreted as ranging
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over all sets as when they range only over small sets. In other words, the
universe of small sets is an elementary substructure of the universe of all
seﬁs. This approach, developed in [10], has two advantages. First, the
assumptions guarantee that, if we prove a theorem about small sets by using
large catepgories, then the same theorem holds for arbitrary sets; we never need
to introduce more K's to make more sets small. Second, the assumptions do
not really go beyond ZFC; any assertion in the first-order language of set
theory, not mentioning K, that can be proved using these assumptions can

also be proved without them.3 Thus, the results obtained for small sets by
considering large categories can also be obtained (though with more involwved
proofs) for arbiﬁrary sets, on the basis of just the ZFC axioms. In this sense,
category theory does not really depend on principles beyond those of ZFC, at
least as far as theorems about sets are concerned.

Although this approach was first proposed in connection with the problem
of foundations for category theory, it is natural to use it whenever objects
seem to be too large to be coded as sets. In particular, it seems to me that
it should be of some use in clarifying forcing with proper classes [9,20,29]
by making the natural (regular open) Boolean algebra available even though it

is superlarge.

4
2. Category theory interacts with nearly everything

It is a remarkable empirical fact that the important structural properties
of mathematical objects are often expressible in category-theoretic terms,
specifically as universal properties. Among the concepts admitting universal
descriptions are, for example, natural numbers, power set, cartesian product,
free product, tensor product, universal enveloping algebra, Stone—éech
compactification, universal covering space, and the logical connectives and
quantifiers.

Not only do universal descriptions exist, but they are useful in at least
two ways. First, they tend to express the more important properties of

mathematical structures, so that keeping them in mind helps one to avoid



CATEGORY THEORY AND SET THEORY 9

irrelevant complications. For example, there exist long computational proofs
that the operation - &M of tensor product with a fixed module preserves the
exactness of sequences A =B - C = 0 of modules, These proofs are based on
an explicit description of the elements of a tensor product. This description,
though valuable for many purposes, is not the essential property of the tensor
product. The essential (and simpler, once one gets accustomed to thinking
categorically) property is a universal one, namely that - ®M is left adjoint
to Hom (M,-). From this point of view the right exactness of - &M is an
immediate corollary of the general (and quite simple) fact that left adjoints
preserve coequalizers (or, more generally, colimits). For another example,
consider the statement that, if A 1Is a proper subalgebra of a Boolean algebra
B, then there are two distinct ultrafilters in B with the same intersection
with A. This is not hard to prove directly, but it becomes trivial if one
uses the proper formulation of the Stone representation theorem, the form that
(in the spirit of category theory) pays attention to morphisms as well as
objects and asserts that the Stone space construction is a contravariant
equivalence from the category of Boolean algebras to the category of totally
disconnected compact Hausdorff spaces. When such an equivalence is applied to
a monomorphism that is not an isomorphism, like the inclusion of A into B,
the result is an epimorphism that is not an isomorphism, and such a morphism
of totally disconnected compact Hausdorff spaces is not one to one; so two
distinct points of the Stone space of B have the same image in the Stone
space of A, as desired.

The second use of category-theoretic descriptions is that they can reveal
structural similarities between concepts in diverse areas of mathematics. For
example, free groups, abelianizations of groups, universal enveloping algebras,
and Stone-Cech compactifications are all instances of the same construction,
the left adjoint of a foregetful functor. And indeed it is often useful to
think of abelianization as "the abelian group freely generated by a group" and

Stone-Cech compactification as "the compact Hausdorff space freely generated by

a spaces". Here are some examples involving set theory.
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The first involves my thesis, "Orderings of Ultrafilters" [2], which
should have been 'Categories of Ultrafilters". At the time, I was aware of
(ahd discussed in [2] and [3]) a category, with ultrafilters as objects,
closely related to the Rudin-Keisler ordering of ultrafilters. But I only
recently realized, though the idea is implicit in Glazer's work [18], that the
Rudin-Frolik ordering is also closely related to a category, one whose
morphisms are (sequences of) ultrafilters, It turns out that one of the most
important properties of the Rudin-Frolfk ordering, its treelike character
established By Rudin [31], becomes, in a categorical formulation, a simple
algebraic condition that is also satisfied (in a stronger form) by the category
freely generated by any directed graph. For details, see Appendix A,

A second example involves Boolean-valued models of set theory. A well-
known construction due to Scott and Solovay (see [20]) associates to every
complete Boolean algebra B a B-valued model of set theory ?B and (as any
category theorist would feel compelled to add) functorially associates to
every complete homomorphism B - B' a transformation VB - VB'. A crucial
property of complete homomorphisms is that, if we view them as functors by
viewing the Boolean algebras as partially ordered sets and thus as categories,
then they have adjoints on both sides. In iterated forcing, the construction
known as the inverse limit is really the inverse limit with respect to the left
adjoints of the homomorphisms. The construction known as the direct limit is
not really a limit of the Boolean algebras, but Scedrov [32] has shown that
the corresponding Boolean valued model is a limit in the sense of fibered
topoi [19]; again we find a connection with an entirely different branch of
mathematics, algebraic geometry.

Finally, let me mention that the dual Ramsey theorem recently proved by
Carlson and Simpson [8] can, as the name implies, be motivated (though un-
fortunately not proved) by formulating Ramsey's theorem in (partially)
category-theoretic terms and then reversing the arrows. As suggested in [8],

the same procedure should yield other reasonable concepts and conjectures in

combinatorial set theory.
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3. Set-theoretic concepts in categories

Many of the elementary concepts of category theory were introduced for the
purpose of expressing familiar concepts of set theory and their generalizations
in other areas of mathematics, A partial list of such pairs of concepts is

given in the following table:

Category theory Set theory

Object Set

Morphism Function
Monomorphism One-to-one function
Epimorphism Surjection
Isomorphism Bijection

Product Cartesian product
Coproduct Disjoint union

The full extent of this '"categorical set theory'" appears in topos theory, and
it is there that set theory and category theory interact most strongly. As a
prologue to the topos axioms, let us briefly consider the standard ways of
describing things in set theory and in category theory.

A set is usually specified by saying what its elements are. The axiom of
extensionality guarantees the uniqueness of sets so specified. Of the other
axioms, most (null set, pairing, separation, union, power set, replacement)
assert the existence of a set specified in this manmner, and the axiom of
infinity can be rephrased to fit the same pattern. The axiom of choice cannot
be so rephrased; indeed the whole point of this axiom is to assert the
existence of (a few of the) sets whose members we are unable to specify. It
seems that it is precisely this unusual characteristic of the axiom of choice
that led to the controversies about it in the early part of this century. The
axiom of regularity can, with some effort, be rephrased as the existence of
sets with specified members: Every set has an ordinal rank. But this re-
phrasing is quite distant from the usual formulation of the axiom and, partially
as a result, the axiom of regularity has suffered an even worse fate than the

axiom of choice; people don't deny the axiom of regularity, they just ignore it.
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An object in a category is usually specified by giving a universal
property, that is, by saying what the morphisms into or out of it are.
Yoﬁeda's lemma says that this information (in a suitably functorial form)
suffices to uniquely determine an object, up to isomorphism.

If we view objects in a category as generalized sets (as in the table
above), then morphisms into X, from an arbitrary I, are (generalized) I-
indexed families of members of X. Thus, one of the two modes of category-
theoretic description (using morphisms into, rather than out of, X) generalizes
the set—theéretic mode by specifying families of elements rather than single
elements, And it turns out to be this mode that expresses the essential
existence properties of the category o of sets., These properties, the topos
axioms, assert the existence of objects X with the “incoming morphisms"
specified in the following table; we have included in the last line a version
(due to Freyd [15]) of the axiom of infinity, which is not among the topos
axioms but is often assumed in conjunction with them. (Like the usual set-
theoretic form, it does not uniquely determine X because X occurs in the

right column.)

Object X Morphisms I - X
1 Exactly one morphism
Pullback of Y Commutative squares I =Y
i 1 1

W =2 W2
Set (Q of truth values Subobjects of I
set 27 of maps Morphisms I XY -2
from Y to 2
Dedekind-infinite set Partitions of I as JO U J1

together with maps Jl =+ X.

A remarkable theorem of Juul-Mikkelsen [22] asserts that these axioms (without
infinity) imply the existence of objects, like coproducts, whose category-
theoretic description involves "outgoing morphisms'". Indeed, these axioms
suffice for doing set theory in a topos as long as set theory is based on
intuitionistic logic [1, 6, 12, 26, 28]. Specifically, one can interpret

intuitionistic type theory in any topos, with the objects of the topos as types
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and with morphisms 1 = Q as truth values. If the topos is sufficiently
complete, then one can interpret in it an intuitionistic version IZF of ZF;
see [13]. These results say that topoi are very like the universe of sets.

As Fourman and Scott [12, 33] have emphasized, a topos is essentially the same
thing as a theory formulated in a many-sorted intuitionistic logic with higher
types.

On the other hand, topoi can be very unlike the universe of sets. The
category o of sets is the most trivial of topoi, in the same sense that a
single point is the most trivial of topological spaces. We give a few examples
to explain this remark by indicating the rich variety of topoi.

1, The category Sh(X) of sheaves over any topological space X 1is a
topos. This reduces to o if X 1is a single point. In general, there is
much structure in a topos Sh(X) that is not detected by the internal logic,
the intuitionistic type theory discussed above. For instance, if we let X
be a circle and let A and B be its two non-isomorphic double coverings
(two circles, and one circle winding around twice), then the sentence asserting
that A and B are isomorphic is true (i.e, has the largest truth value) in
the internal logic, because A and B are locally isomorphic, The difference
between A and B implies only that no isomorphism is definable in the
internal logic. Quite generally, internal existence corresponds to local
existence while internal definability corresponds to global existence. Thus,
global phenomena are reflected, not in the internal logic itself, but in its
metatheory. In this sense, the internal logic is rather weak for geometric
purposes., In another sense, however, it is too strong, for it contains
operations (implication and universal quantification) that are not preserved
when sheaves are pulled back along a continuous map of spaces. To be fair,
one should add that the internal logic lacks some operations (infinite dis-
junctions) that are preserved. This discrepancy has led to extensive studies
[21, 25, 32, 38] of the restricted part of (infinitary) logic that enjoys this

preservation property, the so-called geometric logic, and the topoil, called

classifying topoi, naturally associated to theories in this logic.
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2., As a special case of the preceding example, taking X to be discrete,
we have the topos /X of X-indexed families of sets. More generally, for
an} object X of any topos &, we have the topos d&/X, whose objects are
morphisms into X and whose morphisms are commutative triangles in &,

3, If P is any partially ordered set (poset), there is a topos JP
whose objects are P-indexed families of sets (AP)P €P equipped with
functions aqp: Ap d‘&q for p < q such that ardqu = arp for p<q=<r
and upp = identity. The morphisms are families of maps Ap i Bp compatible
with the maés within the objects. These topoi are Kripke models of
intuitionistic set theory, but we shall see them again in two other roles.

4, If G is any group (or monoid) the category JG of sets with a G-
action (and G-equivariant maps) is a topos. As another instance of the
category-theoretic unity of mathematics, we mention that the notion of geo-
metric morphism of topoi, obtained by abstracting the properties of pulling
back sheaves along a continuous function, yields, when applied to topoi JG
with G a group, restriction of operators along a homomorphism of groups.

In particular, one and the same topos-theoretic concept describes the natural
morphisms of both topological spaces and groups. Better yet, one can mix the
two; a geometric morphism ffom Sh(X) to M is a one-dimensional cohomology
class of X with coefficients in G.

5. Generalizing the last three examples, we have the topos of presheaves,
i.e., contravariant set-valued functors, on an arbitrary small category. And
generalizing all the preceding examples, we have topoi of sheaves over sites
[19], called Grothendieck topoi.

6. Finally, to avoid giving the impression that all topoi are
Grothendieck topoi, we mention that the sets and functions of any model (even
a nonstandard model) of set theory form a topos.

The dissimilarities between various topoi, indicated by the examples, can
be exploited in combination with the similarities in their internal logical

structure to produce two sorts of applications.
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The first sort of application directly uses the fact that whatever can be
defined or (intuitionistically) proved in set theory is available in all topoi.
Rousseau [30] has shown that certain theorems in the function theory of one
complex variable can be proved intuitionistically and then interpreted in the
topos of sheaves over " to yield theorems about n+l variables. In other
topoi, one can model the continuum by a ring R (not the usual Dedekind or
Cauchy reals) in which the set D = {x € R[xz =0} is just large enough so
that every function D R is x b ax + b for unique a and b in R, Then
derivatives can be defined algebraically, and one can develop a theory of
"synthetic differential geometry'"; see [23] and the references given there. 1In
the development of this theory, one need not (and usually does not) pay any
attention to the topos in which one is working; one argues as in ordinary set
theory, except that the arguments must be (formally) intuitionistic, and one
tacitly relies on the validity of intuitionistic set theory in the topos.

The second application is to use topoi as models for establishing con-
sistency and independence results in set theory. We cite three examples.

1. Cohen-style independence proofs, using forcing (but not symmetry
arguments), can be rewritten in terms of the topoi JP, where P 1is a poset
(= a notion of forcing), and their double-negation subtopol (= Godel negative
translation of classical into intuitionistic theories). This was done by
Lawvere and Tierney for the independence of the continuum hypothesis [24, 37]
and by Bunge [7] for the independence of Souslin's hypothesis; géedruv [32]
has a general study of forcing from a topos-theoretic point of view.

2. The independence proof for the axiom of choice, using forcing and
symmetric submodels can also be cast in topos-theoretic terms [13], but Freyd
[16] has given a direct topos-theoretic proof of the independence of the axiom
of choice from (classical) ZF, using the double-negation subtopos of JAO{
where A°P? is the dual of the following easily described category A. The
objects are the finite von Neumann ordinals, and the morphisms m - n are the

functions from m onto n that leave all members of n fixed., Scedrov and

I [5] and independently Solovay [35] have shown that this model is equivalent
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to the following Cohen-style model, which seems not to have been previously
considered by set theorists, Adjoin, to some general model M of ZFC,
coﬁntably many generic sets a of natural numbers, let B be the Boolean
algebra (of sets of natural numbers) generated by the an's, and take the
smallest model having M U {an|all n} U {B} as a subset,

3. Fourman and Scedrov [14] used the topos of presheaves on a category

[+
0

with BZ = identity to show that one cannot prove in IZF (plus the axiom of

that looks like

dependent choice) the "world's simplest axiom of choice": If a family of two-
element sets has at most one member (i.e., every two members are equal), then

it has a choice function,

4, Two coincidences

In this section, I shall present two situations where the category-
theoretic point of view shows us similarities between things that ét first sight
seem unrelated. In both cases, these similarities are not yet well understood;
they have merely been observed.

The first concerns implications between axioms of choice from finite sets,
a subject that begins with Tarski's proof [27] that, if all families of two-
element sets have choice functions, then so do all families of four-element
sets. (Of course this proof is in ZF, without the axiom of choice.) Impli-
cations of this sort were studied by Mostowski [27] and Gauntt [17] (see also
[39]) who gave group-theoretical necessary and sufficient conditions for the
implications to be provable. For simplicity, we consider first a slightly
different sort of implication, for which the necessity of a slightly different
group-theoretical condition follows from Gauntt's work while the sufficiency is
proved in Appendix B using an extension of Mostowski's technique.

For any set 1 and any natural number k, let Ck(l) be the statement

that every I-indexed family of k-element sets has a choice function. Then
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the following are equivalent, for any natural numbers kl,...,kr, n.

(1) 1t is provable in ZF that, whenever a set I satisfies

c, (I),¢c, (I),..., and C
k1 k2 k

(2) Any group that can act without fixed points on an n-element set can

(I), then it also satisfies Cn(I).
r

also act without fixed points on a set of one of the cardinalities

k Jk

TEREETL
Category theory, more specifically topos theory, enters the picture if we
introduce, for a natural number k and a topos &, the statement Ck(d):
"Every object of & internally isomorphic to k has a global element"., 1In
other words, if X 1is an object of & such that the assertion "X has
exactly k pairwise distinct elements" is true In the internal logic then
there is a morphism 1 =X in &. With this notation, it is not hard to check
that a set I has the property Ck(I) in a model " of ZF if and only if

CkchI) holds, Thus, (1) is equivalent to the statement that the implication

(3) 1f Ckl(db and . . . and Ckr(ﬁ) then Cn(d}

holds for all topoi & of the form W/I with M a model of ZF and I €.
On the other hand, a group G can act without fixed points on a k-element

set if and only 1if it is not the case that Ck(JG). (All k-element G-sets
are internally isomorphic in HG to k, and global elements are fixed points.)
Therefore (2) is equivalent to the statement that the implication (3) holds for
all topol 8 of the form Jﬁ with G a group.

The equivalence of (1) and (2) thus amounts to a transfer principle for
implications of the form (3) between two classes for topoi, those of the form
/1 and those of the form JG . It 1s reasonable to expect this insight to
shed new light on such equivalence results, perhaps leading to a "soft" proof,
but it has not yet done so.

For the sake of completeness, we add a few words about the original

result of Mostowski and Gauntt. They proved the equivalence of
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(1'y 1t is provable in ZF that, if all sets I satisfy
¢, (I),c, (I),..., and C. (I), then they all satisfy
l"'1 kz kr
C, (1) as well. (S0 the truth of C (I) can depend on
the truth of Cy (J) for J different from TI.]

i
and
(2'Y Any group that can act without fixed points on an n-

element set has a subgroup that can act without fixed

points on a set of one of the cardinalities kl,...,kr.

This equivalence can be expressed as the transfer, between the same two
classes of topol as before, of the implication
(3') 1f, for all objects X of &, Ce (8/¥) and . . . and
1

Ckr(az’X}, then Cn(ﬁ).

The second curiosity concerns Scott's theory of domains for denotational
semantics (see [34] and the references there) in the form that involves semi-
lattices P of finite pieces of data. Two of the central notions of Scott's
theory, the ideal elements of the domain P and the approximable functions
from one domain P to another Q, are precisely equivalent to the notions of
geometric morphism o — i and T respectively. Scott's construction
of the domain of approximable functions gives us a new domain [P — Q] with
the property that JEP Al is the exponential (-!’P)JQ in the category of
Grothendieck topoi. What is striking here is that the same topoi JP occur
as Kripke models for intuitionistic set theory, as ingredients in the forcing
technique, and now as a form of Scott domains. The first two of these have
been connected by Fitting [11], but it is not yet clear how the third fits in.

As an application of this curiosity, Scott's construction of a nontrivial
domain D isomorphic to [D = D] immediately yields an example of a non-
trivial (i.e., different from o) topos £ equivalent to .:9'5: I know of no
essentially different way to produce such an example.

Incidentally, the information systems used in [34] as an alternative basis

for the theory of domains are essentially the same as Horn theories in
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propositional logic, and the corresponding topoi JP are just the classifying

topoi of these Horn theories.

Appendix A
This appendix is an explanation of the remark in Section 2 that the Rudin-

’
Frolik ordering is related to a category whose morphisms are sequences of
ultrafilters. We begin with the definition of this ordering. An ultrafilter
s
U on a set I 1is Rudin-Frolik below an ultrafilter V on a set J, written

U< __V, if and only if there is an I-indexed family of ultrafilters W, on

RF i

J such that

(i) there are sets Ai € Wi such that Ai

for all distinct 1 and i' in I, and

is disjoint
from Ai'
(ii) For all B < J, we have B €V 1if and only if

{iterfpew }eu.

(If we view ultrafilters on J as points of the Stone-Cech compactification
of J, then (i) says that the family of Wi's is discrete and (ii) says that
its limit with respect to U 1is V.) This ordering is usually studied in the
special case where I and J are countable, and in this situation a theorem
of Rudin [31] asserts that the Rudin-Frolik ordering is tree-like, that is,
the set of predecessors of any ultrafilter is linearly ordered.

The following category (C 1is intended to formalize the general idea behind
the definition of the Rudin-Frolik ordering. The objects of C are simply
sets; a morphism from I to J is an I-indexed family (Wi) where each

iel

wi is an upward-closed family of subsets of J. (For our present purposes, we

could have required the W to be ultrafilters, but the more general

g's
situation is also of interest, for example when the sets are finite.) The
composite of (Wi): I -J and (Wg): J =K is the morphism (Wi): I =K

where, for BCK and i €1

B €W, if and only if {1 €JlB ew'j'} €w; .
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The identity morphism of I is the family of principal ultrafilters on I
with the obvious I-indexing.

If we restrict attention to the subcategory of ¢ whose morphisms are
discrete (in the sense of (i) above) families of ultrafilters, then
U< RFV if and only if V factors through U when both are viewed as
morphisms with domain 1. Rudin's theorem then asserts that any commutative

square in this subcategory, of the form

U

1 ——.1

Vl ”’ l
’I

J ——— K

with 1,J,K countable, admits a "diagonal fill-in" either from I to J or
from J to I making the upper triangle commute. (The same remains true with
arbitrary, not necessarily countable sets in place of 1 and K.)

A similar but stronger fill-in principle, in which both triangles are
required to commute, is an important property of the free categories on
arbitrary directed graphs. 1Indeed, such categories are characteri%ed by this
principle plus the requirement that the relation "proper factor of'" on the set
of morphisms be well-founded.

Unfortunately, this stronger fill-in principle does not generally hold in
the ultrafilter situation, but it nearly does. If the fill-in morphism goes
from I to J, then the two I-indexed families, say (Wl) and (W!): I —K,

i

in the bottom triangle agree modulo U; that is,

{ter:w =wlev.

Returning to the larger category ¢, we remark that it is dual to the
category of power sets (= complete atomic Boolean algebras) and inclusion-
preserving functions. The duality sends I to its power set &(I) and sends

a morphism (wi) I -J to the function

ie1f

1) (M) : AP {1 €T)A ij_} .
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The subcategory whose morphisms are families of ultrafilters is dual, in the

same way, to the category of power sets and Boolean homomorphisms.

Appendix B

For each natural number n and each finite set Z of natural numbers,

consider the principle

c+(n,2): For every set I, if every I-iIndexed family of k-element
sets with k € Z has a choice function, then so does every

I-indexed family of n-element sets.

We shall show that C+(n,z) is provable In Zermelo-Fraenkel set theory if and

only if n and Z have the following property, first considered by Gauntt
[17].

L(n,Z) : Every group that can act without fixed points on an
n-element set can also act without fixed points on a

k-element set for at least ome k € Z.

Before we begin the proof, however, a few clarifying remarks are in order.
First observe that, if every I-indexed family of k-element sets has a
choice function, then the same is true with I replaced by any of its subsets
J, for we can always extend a J-indexed family to an I-indexed family and
then restrict the choice function to J. This implies that the ambiguity, in
the hypothesis of c+(n,2), as to whether k can be different for different
sets in the family, is of no consequence; indeed, if the choice function exists
when k 1is constant, then in the case of variable k we can select choice
functions for the subfamilies where k 1is constant and combine these into a
choice function for the whole family., (The selecting is permissible because
Z 1is finite so there are only finitely many subfamilies to consider.)
Second, to prevent confusion, it should be emphasized that C+(n,Z) is

not in general equivalent to the similar-looking principle
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C(n,z): If, for each k € Z, every family of k-element sets has
a choice function, then so does every family of n-element

sets.

Indeed, it is an old theorem of Tarski [27] that C(4,{20), but follows from
work of Gauntt [17], as well as from the result that we shall proveé, that
there are models of ZF where C+(4,[2]) fails, because the alternating group

A, 1is a counterexample to L(4,{20). Of course the implication from

4
c+(n,2) to C(n,Z) 1is true, since the hypothesis of C(n,Z) allows us to
apply C+(n,z) to every I, thereby producing the conclusion of C(n,Z).

This last remark, applied to well-ordered I, shows that C+(n,2) implies

the principle

C*(n,Z): 1f, for each k € Z, every well-ordered family of
k-element sets has a choice function, then so does

every well-ordered family of n-element sets.

The point of introducing ¢” 1is that Gauntt [17] (see [39] for details) has

shown that C*(n,z) is provable in ZF if and only if L(n,Z) holds. There-
fore, the provability of C+(n,z) implies the truth of L(n,Z), and we have

half of the desired equivalence.

To prove the other half, we consider arbitrary n,Z,I, and (xi)i €1

such that L(n,Z) is true, all I-indexed families of k-element sets with
k € Z have choice functions, and (xl) is an I-indexed family of n-element
sets. Our goal of proving (in ZF) the existence of a choice function for

(xi) will be reached in a sequence of steps in which the sets x, are endowed

i

with more and more "structure', culminating in enough structure to determine a

specific element. Although the final structure we want for each =x, 1is quite

i

simple, a single chosen element, the structures along the way to this one will

involve sets of sets of . . . subsets of X - To simplify the discussion, we

shall treat the sets x;, as though they consisted of wur-elements, at least

to the extent that, when we form the cumulative hierarchy of finite sets

over X,
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Vo(xi) =x,
Vk+1(xi) =% u PCVk(xi})
V(xi} = Uk Vk(xi) 4

the sets that "ought to be" newly added at each stage are in fact new, i.e.,
Q(Vk(xi)} - Q(Vk_l(xi)) is disjoint from Vk(xi). This amounts to saying
that no member of X, is a subset of Vk(xi), and it can be arranged without

loss of generality, by suitably "tagging" the members of the x,6's; for a

: &
detailed discussion of a similar situation, see [27]. It will be convenient

to fix once and for all a particular n-element set, which we call n, and
whose members we treat as ur-elements in the same sense as above. We note

for future reference that ?(E? contains the natural numbers (coded as finite
von Neumann ordinals) and is closed under formation of ordered pairs (coded as
{{al,{2,b}}. We also note that the group §, of all permutations of n acts
on v(E) in a canonical manner: for a € vk+I(E) - Vk(E) and T € Sn, (a)

-~

is defined (by induction on k) to be {Tmb)\b €al}, Thus, each 7 € Sn
preserves the membership relation € and therefore everything definablg from
€, In particular, 1 leaves each natural number fixed and commutes with
formation of ordered pairs. For each a € V(E), we denote its symmetry group

{mes_ Ina) =a} by sym (a).

Lemma. Let an action of some subgroup G of Srl on some finite set a
be given. Then there exists a' €V(n) = n such that G CSym (a') and a’,
with the G-action obtained by restricting the canonical action of Sn on

~

V{n), is G-isomorphic to a.

Proof. The set a is a disjoint union of subsets (the G-orbits) on
which G acts transitively, and it suffices to prove the lemma for these sub-
sets, as we can then take the disjoint union of the resulting sets in V(E?
to obtain the desired a'. (To make the sets in V(E) disjoint, we take
advantage of the availability in V(n) of natural numbers and ordered pairs.)

So we may assume that G acts transitively on a., Then a 1is (as a G-set)
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a quotient of the regular action, i.e., of the set G with G acting by left
multiplication. Since we can form quotients in V(E)’ it suffices to prove
the lemma when a is the regular G-set G. But iIn this case a straight-
forward calculation shows that we can take a' to be a G-orbit in the set of

bijections from the von Neumann ordinal n to the set n. a

In view of the lemma and the finiteness of Z, we can find a natural
number k so large that, whenever the set a in the hypothesis of the lemma
has cardinality in Z, the set a' in the conclusion can be taken to be in
Vk(gg. Fix such a k for the rest of the proof.

We are now in a position to describe the structures on the x that we

i
shall construct. They are simply choices of specific elements from certain
sets in Vk(xi). Thus, at each stage, we will have a partial choice function
on every Vk(xi)' To keep track of these structures, it will be convenient
to have canonical examples of them, so we select one representative from each
isomorphism class of structures of the form (Vk(E},e,f), where f 1is a
partial choice function on Vk(g). This selection involves no use of the axiom
of choice since there are only finitely many structures involved. (This is
why we introduced k.)

As indicated above, our proof proceeds in stages. At the beginning of

each stage, we shall have a family (fi) of partial choice functions on

i€l

the corresponding Vk(xl). The proof begins with all £, empty, and it ends

i
when, for each i, the set X, is in the domain of fi so the desired choice
has been made. We now describe a typical stage in the proof. For each i,
the structure (vk(xi)’ g, fi) is isomorphic to exactly one of our repre-
sentative structures (Vk(E?’ €, f). We partition I into finitely many
pieces, putting two i's into the same piece if and only if the corresponding
(Vk(xi)’ €, fi)'s are isomorphic, and we focus attention on one such piece of

I, say J, and the representative structure (Vk(nJ, €, f) associated to it.

Let G = Sym(f); we consider two cases.
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Case 1. G fixes some p €n. Then we can extend all the fi's, with

i €J, so as to have X, in their domains as follows. For each i €J,

consider any isomorphism ¢ £from (Vk&?}, €, f) to (Vk(xi), €, fi)' We
assert that ¢@(p) is independent of the choice of ¢. Indeed, if | 1is
another such isomorphism then ¢_l¢ is an automorphism of (Vk(2>, €, B,
which implies ¢_1¢ € G. By the case hypothesis, ¢_l¢(P) =p so Y(p) = ¢(p)

as desired. So we can extend fi by setting fi(xi) = ¢(p).

Case 2. G fixes no p €n. By L(n,Z), G acts without fixed points
on some set a with cardinality in Z. By the lemma and the choice of Kk,
we may assume that a € Vk(n) - n, GCSym(a), and the fixed-point-free

action of G on a 1is the restriction of the canonical action of Sn on

~

Vk(nJ. As in Case 1, we find that, for each i € J, all of the isomorphisms

from (Vk(E)’ €, £f) to (vk(xi), €, fi) send a to the same element a;

of Vk(xi}.

We assert that a, is not in the domain of £, , for any i. 1In view of

i {34

the isomorphism, it suffices to verify that a 1is not in the domain of f£.
1f f(a) were defined, it would have to be fixed by G, since £ and a are.
But no element of a is fixed by G, and our assertion is therefore proved.

Since all the a; (i €J) have cardinality in Z and since J C I,

there is a choice function selecting an element P, from each such a We

i
extend fi by setting fi(ai) =0y for all i €J.

We have described how to extend fi for all i in one of the pieces J

of I. Do this for all of the pieces. (There are only finitely many, so the
axiom of choice is not used here.) This completes the description of one stage
of our proof. Since the domain of each fi gets strictly larger every time
Case 2 occurs and contains xi as soon as Case 1 occurs, we see that after

at most as many steps as there are sets in Vk(n) the domain of fi will

contain X5 and we have achieved our goal. |
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Remark. It can be shown that each occurrence of Case 2 makes the group

G in the proof strictly smaller, so the number of steps needed in the proof

is bounded, independently of k (hence of Z), by the number of prime

factors of n!, counted with multiplicity.

Footnotes
It is not clear to me whether this fact is a mathematical one, a
historical one, or a psychological one (or something else). Does set
theory have some essential structural property that guarantees its ability
to encode other theories? Does set theory serve as a foundation for merely
those theories that have been constructed in the past, with no expectation
that it will serve for future theories? Or is there something about human
brains that prevents them from producing mathematics that cannot be coded
in set theory? My guess is that the historical view is closest to the
truth, but for psychological reasons; mathematics codable into set theory
was produced first (and we have not progressed beyond it) because it is
easier for our minds to grasp. I also suspect that we have noﬁ yet come
close to grasping the full complexity of what can be coded in set theory,
so non-codable theories will probably not arise (naturally) for quite

some time.

Many set theorists (including me) feel that the same intuitive conception
of the cumulative hierarchy of sets that justifies the axioms of ZFC also
justifies the assumption that there are arbitrarily large inaccessible

cardinals.

The reason for this remarkable fact, proved in [10], is that any single
proof can use oﬁly finitely many of the assumptions, i.e., the equivalence
of "sets" with "small sets'" in finitely many formulas, and, for each such
finite subset of our assumptions, the existence of a K satisfying them
is provable in ZFC. Note that it is essential that the assumptions be

stated as infinitely many statements, one about each formula. The argument
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would not work if we had the single assumption "For any formula ¢, ¢

is true when the variables range over all sets if and only if ¢ 1is true
when the variables range over small sets'", Fortunately, we were in no
danger of making such an assumption.because, by the well-known theorem of
Tarski [36] on undefinability of truth, the concept of a set theoretical
formula being '"true when the variables range over all sets' is not
(uniformly) definable in set theory. The closest one can come to
expressing it in set theory is to express it for each ¢ indiviaually

(by saying ¢), and this Is what we did in formulating the assumptions.

The word "nearly" seems to be necessary here. I know of no interaction

between category theory and, say, analytic number theory.

I believe that the categorical viewpoint also deserves the credit for the
observation that complete regularity of a space X 1is not needed for the
existence of the Stone-Cech compactification BX but only to guarantee
that the canonical map X — gX (the unit of the adjunction) is an

embedding.

An easier construction of a model of ZF with atoms, where every
countable family of pairs has a choice function but not every countable

family of four-element sets does, is indicated in the last section of [4].
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