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Abstract. We exhibit explicit, combinatorially defined graphs
satisfying the kth extension axiom: Given any set of k distinct
vertices and any partition of it into two pieces, there exists another
vertex adjacent to all of the vertices in the first piece and to none
in the second.

Quisani:1 I’ve been reading about zero-one laws, and many of the
results involve extension axioms. In the simple case of graphs, by which
I mean undirected graphs without loops or multiple edges, the kth

extension axiom2 says that, for any k distinct vertices x1, . . . , xk and
any subset S ⊆ {1, . . . , k}, there is another vertex adjacent to xα for
all α ∈ S and for no other α. I know that each of these axioms is true
in almost all sufficiently large finite graphs. (Of course, “sufficiently
large” depends on k.) So there are lots of these graphs, but I’d like to
see some actual examples.

Authors: Well, just take a big set of vertices, flip coins to decide
which pairs to join by edges, and chances are you’ll get what you want.
Q: Yes, but I’d like a reasonably regular-looking graph, not something
totally random.
A: There are strongly regular graphs that satisfy extension axioms. In
fact, Cameron and Stark [3] show that there are lots of them.
Q: What does “strongly regular” mean?
A: Every vertex has the same number of neighbors (i.e., the graph
is regular), every pair of adjacent vertices has the same number of
common neighbors, and similarly for pairs of non-adjacent vertices.
Q: That sounds good; so they got rid of the randomness.
A: No, part of their construction involves randomization.
Q: So they don’t get a really explicit example? That’s what I’d want
— an example that I can get my hands on and really see why the k-
extension axiom holds. Have people given explicit, non-randomizing
constructions of graphs that satisfy extension axioms? More precisely,
are there explicitly defined sequences of finite graphs such that, as you

1We thank Yuri Gurevich for lending us his graduate student, Quisani.
2Extension axioms are also called adjacency axioms, and graphs that satisfy the

kth extension axiom are also called k-existentially closed.
1
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go further in the sequence, more and more of the extension axioms are
true?
A: Yes. It was shown in both [1] and [2] that Paley graphs have the
property you want.3 Furthermore, they are strongly regular.
Q: What are Paley graphs?
A: Take a prime p (or a prime power) that is congruent to 1 modulo 4
and form a graph whose vertices are the elements of the field Fp of size
p. Join two distinct vertices by an edge if their difference is a square in
Fp. The theorem is that this graph will satisfy the kth extension axiom
provided p is sufficiently large compared to k.
Q: Three questions: How large is sufficiently large? Can you explain
why these Paley graphs satisfy extension axioms? And what’s the
purpose of having p ≡ 1 (mod 4)?
A: The easiest question to answer is the last. The congruence is needed
to ensure that −1 is a square in Fp, which in turn is needed to make
sure the Paley graph is an undirected graph; x is joined to y if and
only if y is joined to x. If p were ≡ 3 (mod 4) then we’d have a Paley
tournament instead of a graph.

Sufficiently large is exponentially larger than k, roughly k24k. (For
comparison, a random graph has a good chance of satisfying the kth

extension axiom when the number of vertices is somewhat larger than
k22k; see [4].)

Unfortunately, it’s not easy to explain why the Paley graphs satisfy
the extension axioms. Both [1] and [2] invoke non-trivial results from
number theory in the proofs of the extension axioms.
Q: So are there no explicit examples where one can directly see why
the extension axioms hold?
A: Actually, we have such examples.4 They’re not as pretty as the
Paley graphs, and they’re larger (for a given k), but we can explain
what they are and how they work, without appealing to any deep
theorems.
Q: Great! Show me.
A: OK. Given k, we’ll construct a graph whose vertices are certain
matrices of 0’s and 1’s. These matrices will have r = 2k(k−1)+1 rows

3The result isn’t explicitly stated in [2], but it’s proved in the course of proving
Theorem 3, which says that every finite graph occurs as an induced subgraph in all
sufficiently large Paley graphs.

4The first version of these examples was derived by the second author from a
construction, introduced for quite different purposes, in [8].



EXPLICIT GRAPHS WITH EXTENSION PROPERTIES 3

and c columns, where c is chosen large enough so that

2c ≥ 2k2

(
rc

k − 1

)
Q: Wait a minute; let me check that such a c exists. Yes. The left
side is exponential in c while the right side, despite the exponential
dependence on k, is only a polynomial in c when k is fixed, so any
sufficiently large c will do.
A: Right. Having fixed suitable r and c, let the vertices of our graph
be r by c matrices of 0’s and 1’s in which a majority of the r rows are
identical. That is, in each of our matrices, at least k(k − 1) + 1 of the
rows are identical.

To define the edges of our graph requires some preliminary terminol-
ogy. We consider constraints, which a vertex may or may not satisfy. A
constraint5 is given by a pair (A, F ) where A is a set of k− 1 locations
in our matrix (i.e., k − 1 pairs (i, j) with 1 ≤ i ≤ r and 1 ≤ j ≤ c)
and F is a family of at most k functions from A to {0, 1}. We say
that a vertex V satisfies a constraint (A, F ) if the entries in V at the
locations in A form an element of F , i.e., if

(∃f ∈ F )(∀(i, j) ∈ A) Vij = f(i, j).

We need to estimate the number of constraints (A, F ). There are(
rc

k−1

)
possibilities for A. For each fixed A, there are 2k−1 functions

from A to {0, 1}, so there are 2(k−1)k sequences of k such functions.
Every possible second component F of a constraint (A, F ), except for
F = ∅, is the range of such a sequence. So the number of F ’s for a
fixed A is certainly at most 2k2

, and the total number of constraints is
no more than (

rc

k − 1

)
2k2 ≤ 2c.

Therefore, we can fix a function C from the set of c-component vectors
of 0’s and 1’s onto the set of constraints. Since the notion “c-component
vector of 0’s and 1’s” will be needed repeatedly, we abbreviated it as
“row vector,” which makes sense since these are the vectors that occur
as rows in our matrices.
Q: You’re not choosing C at random, are you?
A: No. We promised an explicit construction, with no randomization.
To get a definite C, list all the row vectors in lexicographic order,
and, after choosing some reasonable notation for constraints, list the

5Readers familiar with combinatorial set theory will notice a similarity between
the notion of constraint and Hausdorff’s construction [7] of large independent fam-
ilies of sets.
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constraints lexicographically also. Then let C map the nth element of
the first list to the nth element of the second list, cycling back to the
beginning of the second list if the first list is longer (which in fact it
will be).
Q: OK. It’s an unpleasantly arbitrary C, but I agree it’s not random.
Why do you cycle back to the beginning rather than, say, just repeating
the last element?
A: The cycling is irrelevant in this argument, but we’ll want it for
another purpose later.

You’re quite right about the arbitrariness of C. Any surjection C
will work for this proof, so, if you can think of a nicer explicit C, feel
free to use it. But remember, we warned you that these graphs won’t
be as pretty as Paley graphs.

Using C, every vertex V of our graph determines a constraint V ∗ as
follows. A majority of the rows of V are the same row vector, which we
call the majority row of V ; apply C to that vector to get a constraint
V ∗.

Now define a directed graph by putting an arrow from V to W when-
ever W satisfies the constraint V ∗.
Q: I thought you were going to produce an undirected graph.
A: We will; the directed graph is only an auxiliary construction. The
undirected graph has an edge joining V and W if, of the two possible
directed edges, V to W and W to V , either both are present or neither
is present. That is, V is adjacent to W just in case

(V satisfies W ∗) ⇐⇒ (W satisfies V ∗).

We’ll show that the graph so defined satisfies the kth extension axiom,
but in order to do so we’ll need the following preliminary information.

Claim. Let V1, . . . , Vk be k distinct vertices of our graph, and let S be
any subset of {1, . . . , k}. There is a constraint that is satisfied by Vα

for all α ∈ S and for none of the other α’s.

Proof. It suffices to find a set A of k − 1 locations (i, j) that separate
the Vα’s, in the sense that, whenever α and β are distinct indices in
{1, . . . , k}, then Vα and Vβ differ at some location in A. Once we have
such an A, we have k distinct functions fα : A → {0, 1} defined by
fα(i, j) = (Vα)ij. Then let F = {fα : α ∈ S} and observe that (A, F )
can serve as the desired constraint. So it remains only to produce an
appropriate A.
Q: That would be trivial if you allowed

(
k
2

)
locations in A, rather than

only k − 1. You could just choose, for each Vα and Vβ, one location
where they differ.
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A: Right, and in fact, if you don’t want to worry about getting |A|
down to k − 1, you could rewrite this whole story with

(
k
2

)
in place of

k − 1, starting with the definition of c (where the exponent k2 would
also have to be adjusted).

But in fact, it’s not hard to achieve |A| = k−1. Proceed by induction
on k, the case k = 1 being vacuous. For k > 1, start by choosing a
location (i, j) where some Vα and Vβ differ. So our set of k vertices is
partitioned into two nonempty subsets, according to the (i, j) entries.
Let these subsets consist of a and b elements, so a+b = k. By induction
hypothesis, we can find a − 1 locations sufficient to separate any two
vertices from the first class and b−1 locations sufficient to separate any
two vertices from the second class. Together with (i, j), that gives us
(a−1)+(b−1)+1 = k−1 locations that separate all the vertices. �

Q: The claim you just proved gives a sort of extension axiom for the
auxiliary, directed graph. The constraint from the claim is C(w) for
some row vector w. An r × c matrix W having all its rows equal to w
would be a vertex of your graph, and there would be a directed edge
from W to Vα if and only if α ∈ S. So if you could arrange for this
W to satisfy all the constraints V ∗

α , then W would be adjacent, in the
undirected graph, to Vα if and only if α ∈ S.

Unfortunately, I don’t see how you can arrange that. The constraints
V ∗

α might contradict each other.
A: That’s right, so we have to be a little sneakier.

Suppose we’re given distinct vertices V1, . . . , Vk and a set S ⊆ {1, . . . , k}
as above, and we want a vertex W adjacent to Vα if and only if α ∈ S.

First, fix an arbitrary (not random!) vertex W ′; for definiteness, let
it be the matrix of all zeros. Let

T = {α ∈ {1, . . . , k} : W ′ satisfies V ∗
α }.

Apply the claim with the given vertices Vα but with S replaced by the
complement of the symmetric difference of S and T , i.e., by {α : (α ∈
S) ⇐⇒ (α ∈ T )}. The constraint given by the claim is, as you noted,
C(w) for some row vector w. Let W ′′ be the vertex that has all its rows
equal to w. So we have, thanks to the choice of W ′′ and the definition
of T ,

Vα satisfies (W ′′)∗ ⇐⇒
(
(α ∈ S) ⇐⇒ (W ′ satisfies V ∗

α )
)
.

Since ⇐⇒ is an associative and commutative operation on truth
values, this can be rewritten as

(1) α ∈ S ⇐⇒
(
(Vα satisfies (W ′′)∗) ⇐⇒ (W ′ satisfies V ∗

α )
)
.



6 ANDREAS BLASS AND BENJAMIN ROSSMAN

Q: You’d be done if W ′ and W ′′ were equal, but that would require a
miracle. It’s true that W ′ was arbitrary, but W ′′ depends on T which
depends on the choice of W ′, so I see no chance to use the arbitrariness
of W ′ to make it match W ′′.
A: Absolutely right; there’s no reason to think W ′ and W ′′ are equal.
But we can combine them into a single W that inherits the desirable
features of both.

For each α, whether W ′ satisfies the constraint V ∗
α (and thus whether

α ∈ T ) depends only on the entries of the matrix W ′ in k−1 locations,
namely the locations in the first component A of the constraint V ∗

α =
(A, F ). So at most k(k−1) entries of W ′ are involved in the satisfaction
or non-satisfaction of the k constraints V ∗

α . Define W to agree with W ′

in those entries and with W ′′ at all other locations.
We’ve kept enough entries of W ′ in W to ensure that

(2) (W satisfies V ∗
α ) ⇐⇒ (W ′ satisfies V ∗

α ).

On the other hand, W agrees with W ′′ at all but at most k(k − 1)
entries. Since there are r = 2k(k − 1) + 1 rows, the majority of the
rows of W are identical to the rows of W ′′, namely the w that we chose
when constructing W ′′. So

(3) W ∗ = (W ′′)∗.

Inserting (2) and (3) into (1), we get

α ∈ S ⇐⇒
(
(Vα satisfies W ∗) ⇐⇒ (W satisfies V ∗

α )
)
.

So W is as required by the extension axiom.
Q: That’s a clever proof. You could have gotten by with a slightly
smaller graph, if you had been less generous when estimating the num-
ber of constraints. The factor 2k2

is larger, for any k > 1, than the
value actually given by your argument, 2k(k−1) + 1. Even that can be
reduced since a typical family F will have many sequences enumerating
it in different orders, and with different repetitions in case |F | < k.
A: That’s right. And other reductions are possible. For example, we
could define the vertices of our graph to be only those r by c matrices
in which all the rows are identical except for at most k(k−1) locations
where 1’s have been changed to 0’s. These vertices suffice, because they
include every W used in the proof of the k-extension property (since
W ′′ had all its rows identical and we took W ′ to be the all 0 matrix).

Another substantial reduction could be obtained by being more clever
in our choice of error-correcting code.
Q: I didn’t see any error-correcting code here.
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A: When we took a row vector w and repeated it r times to make a
matrix W ′′, we were in effect using the simplest error-correcting code,
namely repetition. The point of the repetition is that when we changed
at most k(k− 1) entries of W ′′ to form W , the original w could still be
recovered, despite the changes. That’s exactly what error-correcting
codes are good for. By using a more sophisticated code, we could get
by with vertices that contain far fewer than rc binary components, and
so we could get a smaller graph.

Furthermore, since the “errors” that we introduced into a “code
word” W ′′ to produce our W were only replacing some 1’s by 0’s, never
the reverse, the code only has to correct errors of this one sort.
Q: This improvement looks pretty complicated, especially since I know
almost nothing about coding theory. Rather than going into the details,
it might be more interesting to look for other extension properties that
can be obtained by the same method.
A: A slight modification of the method gives tournaments satisfying
the natural extension axioms.
Q: Presumably, the kth of these natural extension axioms for tourna-
ments says that, given k distinct vertices V1, . . . , Vk and given a subset
S ⊆ {1, . . . , k}, there is another vertex W with a directed edge to Vα

when α ∈ S and a directed edge from Vα when α /∈ S.
A: That’s right. The same arguments as for undirected graphs show
that each of these extension axioms holds in almost all sufficiently large
finite graphs and that the extension axioms plus the basic axioms for
tournaments (saying that, for each pair of distinct vertices, there is an
edge between them in exactly one direction and that there are no loops)
constitute a complete first-order theory.6 Thus, one gets a zero-one law
for the first-order7 properties of tournaments.

Also, recall that the Paley construction with p ≡ 3 (mod 4) produces
tournaments rather than undirected graphs. It is known [6] that these
Paley tournaments satisfy the kth extension axiom8 provided p is large
enough compared to k. As with the Paley graphs, any p ≥ k24k is large
enough, and the proof relies on the same non-trivial number theory.
Q: I suppose that your construction of undirected graphs can be con-
verted into an analogous construction for tournaments by replacing

6As in the undirected case, one can prove completeness either by showing that
the theory admits elimination of quantifiers or by showing that it is categorical in
power ℵ0.

7This extends easily to finite-variable infinitary logic.
8The result stated in [6] is weaker, namely that, given any k vertices, there is

another vertex with edges directed to each of the given ones. A minor modification
of the proof, however, would establish the extension axiom.
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“adjacent” and “non-adjacent” with “edge directed one way” and “edge
directed the other way,” right?
A: That’s the basic idea, but we need to clarify what is “one way” and
what is “the other way.”
Q: Can’t you just linearly order the vertices and let “one way” mean
from the earlier to the later vertex in this ordering?
A: That doesn’t quite work. The problem is that, if you’re given
the vertices Vα and the set S specifying the directions for the edges
between the Vα’s and the desired W , you need to convert these data
into specifications of adjacency or non-adjacency between the Vα’s and
W in the undirected graph. These new specifications will depend on the
position of W relative to the Vα’s in your ordering. By Murphy’s law,
if you choose a particular relative position for W , you’ll get constraints
that can only be satisfied by W ’s in other relative positions, not the
one you chose.
Q: I understand the problem. How do you escape from it?
A: Here’s a modification of the undirected construction. First, increase
c if necessary so that

2c ≥ (k + 1)2k2

(
rc

k − 1

)
.

This ensures that, when we produce the map C from row vectors to
constraints, each constraint is the image of at least k + 1 row vectors.
In fact, because of the specific way we obtained C (which was irrelevant
earlier but is important now), as w runs through all the row vectors
in lexicographic order, C(w) will cycle through the contraints at least
k + 1 times. Thus, C has the following “interval property”:

• The lexicographic order of the row vectors contains k + 1 dis-
joint intervals, each of which is mapped by C onto all of the
constraints.

Second, list the vertices in such an order that, if the majority row of
V lexicographically precedes the majority row of W then V precedes
W in the list.
Q: That implies that all the vertices with a given majority row occur
consecutively in the list.
A: Right, and that will be important for our proof.

The interval property above and the specification of our list have the
following consequence, an “interval property” for vertices:

• The list of vertices contains k +1 disjoint intervals such that, if
we are given one of these intervals and we are given a constraint,
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then there exists a row w such that C(w) is the given constraint
and all vertices with majority row w are in the given interval.

Now define a tournament just as you suggested above: There is an
edge from V to W if and only if either V and W are adjacent in our
undirected graph and V precedes W in our list or V and W are not
adjacent in the undirected graph and W precedes V in the list.

To prove that this tournament satisfies the kth extension axiom, let
distinct vertices V1, . . . , Vk be given, along with a set S ⊆ {1, . . . , k}.
Since there are only k given vertices Vα and there are k +1 intervals in
the interval property for vertices, fix one of these intervals, say I, that
contains no Vα. Thus, the set

U = {α : W precedes Vα in the list}
is the same for all vertices W ∈ I.

In our proof of the kth extension axiom for our undirected graph, we
found a row w coding a certain constraint and then we constructed the
required W to have majority row w (while a minority of rows provided
sufficient agreement with W ′). In the present context, we can always,
thanks to the interval property, choose w so that all vertices W with
majority row w are in I. We use this to find some W ∈ I that is
adjacent, in the undirected graph, to Vα exactly when α is in both or
neither of S and U , that is, when

(α ∈ S) ⇐⇒ (α ∈ U).

Then, for each α ∈ S, we have that each of the following statements is
equivalent to the next.

• There is a directed edge from W to Vα.
• (Vα and W are adjacent in the undirected graph) ⇐⇒ (W pre-

cedes Vα in the list).
•

(
(α ∈ S) ⇐⇒ (α ∈ U)

)
⇐⇒ (α ∈ U).

• α ∈ S.

Q: So you got around the “Murphy’s law” problem by making sure
that you could specify the position of W relative to the Vα’s and still
have enough W ’s to obtain the desired adjacencies and non-adjacencies.

Can your construction be used to get extension axioms in more con-
texts?
A: Probably, but we haven’t yet looked into this carefully. It would be
particularly interesting to get triangle-free graphs satisfying the appro-
priate extension axioms. These axioms are the same as for ordinary,
undirected graphs, except that they assume the vertices Vα for α ∈ S
are pairwise non-adjacent. That’s obviously necessary so that the ver-
tex W given by the axiom doesn’t complete a triangle. What makes
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this case particularly interesting is that it is not known that the de-
sired objects — finite triangle free graphs satisfying the kth extension
axiom for a prescribed k — exist at all. The probabilistic arguments
used to give existence proofs in the case of graphs and tournaments do
not apply to the case of triangle-free graphs. Nor is there a Paley-style
construction; indeed it is known that a strongly regular triangle-free
graph cannot satisfy the 4th extension axiom (see [5]).
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