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INTRODUCTION 

The research leading to this thesis was originally motivated by 

the following considerations. Intuitively, all non-principal ultrafilters. 
on the set W of natural numbers look pretty much alike. If one 

attempts to formalize this intuitive feeling, one might conjecture that 

any two such ultrafilters are isomorphic (i. e., correspond to each 

other under a; suitable permutation of w), but such a conjecture is 

quickly destroyed by a simple cardinality argument: There are too 

many ultrafilters and not enough permutations. Knowing that there are 

non-isomorphic (i. e., "essentially different") non-principal ultrafilters 

on W, one naturally asks what is the difference between them. What 

properties, invarinat under isomorphism, are possessed by some, but 

not all, non-principal ultrafilters on w? Or are there perhaps no such 

properties (expressible in the usual language of set theory)? The 

questions can be generalized to refer to uniform ultrafilters on sets of 

arbitrary cardinality. A partial answer was known, for Rudin had 

shown [14] that some, but not all, non-prlncipal ultrafilters on W 

.are P-points (see Definition 7.2) provided the continuum hypothesis is 

true, and Keisler had shown [7] that some, but not all, uniform 

ultrafilters on a set of cardinality K>w are K+- good (see Section 1) 

provided 2 K=K+. If one does not as sume any instances of the 
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generalized continuum hypothesis, the problem appears to be much 

more difficult. We shall show (Theorem 18,1) that a certain property 

applies to some but not all uniform ultrafilters on sets of certain 

cardinalities, but I know of no set theoretically definable properties 

which can be shown, without using the continuum hypothesis or some 

other special assumption, to apply to some, but not all, non-principal 

ultrafilters on w. 

In considering this problem, I was led to consider the weak 

partial ordering of ultrafilters which places one ultrafilter below another 

if and only if the former is the image of the latter under some function 

(Definition 2.1). The first results I obtained about this ordering 

(existence of minimal elements, directedness, and Corollary 9.10) 

convinced me that it deserved further study. That study is the 

principal subject of this thesis. It turned out that this ordering and its 

simpler properties (Sections 5 and 11), as well as Corollary 8.8 

(with GCH in place of FRH), had been known to Keisler and others, 

though nothing had been published on the subject. (As mentioned in 

Section 9, Corollary 9.10 also follows from work of Booth [2].) 

However, Keisler suggested three open questions about this ordering 

(all are answered negatively in Sections 17 and 18) and other questions 

suggested themselves (e. g., is the ordering an upper semi-lattice). 
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The results obtained indicate that the structure of the ordering is quite 

irregular. For example, if we assume the generalized continuum 

hypothesis and restrict our attention to non-principal ultrafilters on 

W, the partially ordered set RK(W) , obtained by identifying isomorphic 

ultrafilters, has the following properties. It has cardinality ~ Every 

element has ~2 immediate successors (in a strong sense; see 

Definition 16.2) but at most ~l predecessors. The long line and the 

Boolean algebra of all subsets of W can both be order-isomorphically 

embedded in RK(w). There are ~2 distinct minimal elements. 

There are two elements which have no least upper bound but have exactly 

n minimal upper bounds, for any given natural number n > 2 

In addition to the ordering described above, certain other (stronger) 

orderings of ultrafilters (see Definitions 18.1 and 15.8) and related 

properties of ultrafilters are considered. 

The thesis is divided into four chapters as follows. Chapter I 

consists of basic definitions and fundamental theo rems, a1mo st all of 

which were known in some form or another but many of which are not 

in the literature. In particular, Theorem 2.5, which is perhaps the 

most basic result in the field, has been discovered independently by 

nearly everyone who has worked in the subject, but no complete and 

general proof seems to have been published. Chapter II consists of 
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results obtained with essentially one tool -- construction of ultrafilters 

by frans\finite induction. This tool, in conjunction with the (generalized) 

continuum hypothesis, had been used by Keisler and Rudin to obtain 

the theorems mentioned above. We show that, in some cases, it is 

possible to replace the continuum hypothesis by a weaker hypothesis, 

and we prove some results about the arrangement of the P-points in 

our ordering. Chapter III concerns ultrapowers and the connection 

between their model-theoretic properties and the ordering-theoretic 

properties of the ultrafilters used to create them. Finally, Chapter IV 

consists of results depending on the ideas of limit, sum, and product 

of ultrafilters. 

The thesis is also divided into sections, which are numbered 

consecutively without reference to the chapters containing them. 

Definitions, lemmas, propositions, theorems, corollaries, and remarks 

are numbered in a single sequence within each section, starting over 

at the beginning of each section. The seventh numbered item of 

Section 15, being a lemma, is called Lemma 7 within that section and 

Lemma 15.7 elsewhere; the third of its eight parts is Lemma 7(3) or 

Lemma 15. 7( 3). 



CHAPTER 1.
 

THE CATEGORY OF ULTRAFILTERS.
 

§l. Notation and preliminaries. For any notation which we use 

Cind which is not standard, see Shoenfield [15], especially Chapter 9, 

Problems 28 and 29 of Chapter 5, and Section 2.5. The common 

notation f(aY, where f is a function, is ambiguous, denoting either 

fl a [15, p. 245] or {fl xIx E a n Do(f)} :: f" a. We shall usually 

write f(a) , as it will be clear which meaning is intended, but if 

confusion seems likely we will use the precise notations f' a and 

f11 a. The letter K will always denote an infinite cardinal, and K+ 

is the least cardinal > K. (G)CH is the (generalized) continuum 

hypothesis. We use the usual symbol ~ for satisfaction; thus, if 

·L is a (first-order) language, G a structure for L and cp a 

sentence of L(G) , then G ~ cp if and only if G(9'):: T 1£ D is 

an ultrafilter on I and f E ~e:Ai' we use the notation [f]D or 

sometimes just [f] (rather than Shoenfield's cP(f)) for 

Jg E-II A.I{i E Ilf(i):: g(i)} ED} 
~ iEI' 1 

we call [f]D the germ of f on D. 1£ g E [f]D' we shall say that 

f and g are equal modulo D (f:: g mod D) The set of germs is 

1 
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called D-prod.A., with a similar notation for ultraproducts of structures. 
1 1 

For any set X, P(X) is the set of all subsets of X, and PK:(X) 

is the set of those subsets of X whose cardinal is < K:. In particular, 

P (X) is the set of finite subsets of X. 
W 

" 

including the axiom of choice. For convenience, we shall occasionally 

speak of specific proper classes. 

We assume the set theory ZFC, .Zermelo-Frankel set theory 

A filter m a Boolean algebra such that, for 

all A, B E (f\ , A n B E F ~ A, B E F , and 0 ~ F. An ultrafilter 

inCB is a maximal filter in CB. A basis for a filter F is a set 

GS F such that F = {AIPIB E G)B SA}. A subset G of CB has 

the finite intersection property if and only if no finite meet of elements 

of G is O. By Zorn l s lemma, every such G is contained in an 

ultrafilter. G is said to generate, or to be a sub-basis for, the 

smallest filter containing it. Every filter is the intersection of the 

ultrafilters that contain it. A filter (or ultrafilter) on a set I is a 

filter (or ultrafilter) in the Boolean algebra P(I) 

Let F be a filter on a set I. We say that F-most elements 

i E I (or most 1 with respect to F) have a property Cj), and we 

write (V iF)cp (i), if and only if {i E I Ic,o(i)} E F. We say that 
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F-many i have cp, and we write (3:iF)cp(i), if and only if, for all 

A E F A n {i Icp(i)} =1= (/>. We then haveI 

(ifiF)(cp(i) and lj)(i)) ~ (ifiF)q:(i) and (ifiF)lj)(i) 

(3:iF)(cp (i) V ljJ(i)) ~(3:iF)cp(i) V (3:iF)ljJ(i) 

(ifiF)r(i) ~ ,... (3:i F) ,... cp(i) 

If F is the. principal fi 1 t e r generated by {J} with J c I thenI 

(ifiF)cp (i) ~ (ifi E J)+l (i) 

and 

In particular, if D is the principal ultrafilter containing {j} then 

(ifiD)~i) ~ (3:iD)CP(i) ~ CPU) 

For any filter F I 

F is an ultrafilter ~ [For arbitrary cp (YiF)CP(i) ~ {!riF)CP(i)]I 

~ [For abritrary Cp,"" (YiF)CP(i) ~ (ifiF),...CP(i)] 

If (ifi)(cp(i) -+ljJ(i)) and (ifiF)cp(i) then (ifiF)ljJ(i).I 
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Warning: The "quantifiers" (\fiF) do not commute with each 

other. If F consists of the cofinite subsets of w, then 

(Vx.F)(VyF)x. < Y but not (VyF)(Vx.F)x < y . 

The fundamental theorem on ultraproducts is, in this notation, 

The size of a filter F on a set I is the least of the cardinalities 

of the sets in F. F is uniform if and only if size(F) = Card Un(F) , 

i. e., all the sets in F have the Same cardinal. F is K-complete 

if and only if it is closed under formation of intersections of fewer than 

Ie elements at a time. Thus, all filters are w-complete. Those that 

are ~l- complete are also called countably complete. An ultrafilter D 

on a set I is Ie- regular if and only if there is a function 

f : Un(D) .... P (Ie) such that (Va E I<)(ViD)a E f(i). D is regular if and 
W 

on~y if it is size(D) -regular D IS K+-good if and only if, given any 

-0map q> : Un(D) P(P (1<)) satisfying (Vx E P (1<))(ViD)x E q,(i), there 
w W 

exists an f: Un(D) -op (I<) such that (VaE I<)(ViD)a E f(i) and 
w 

(ViD)f(i) E q>(i) D is good if and only if it is size(D)+-goQd. 

We now list a number of facts which we shall need. Since most of 

these are standard, we give references or brief hints rather than proofs 
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for theITl. 

1. Any set on which there is a non-principal countably cOITlplete 

ultrafilter ITlust be very large. It is (relatively) consistent with ZFC 

to suppose that there is no such set. (See Shoenfield [15, Section 9.10 

and ProbleITl 9.14] and Keisler-Tarski [11] ~) 

2. 1£ D is I{-regular, then size(D) > I{. (For any A ED, 

3. 1£ D is K- regular, then it is countably incoITlplete. (The 

sets 

An = {iICard(f(i))~n} 

are in D and have eITlpty intersection. ) 

+4. 1£ D is I{ - good,. then it is I{ - regular. (In the definition of 

I{ +-good, set cI>(i) = P (I{) for all 1 • ) 
w 

5. There is a I{-regular ultrafiltei on P (K), hence on any set 
W 

of cardinality I{. (The collection {A. la E I{}, where 
a 

A = {x E P (I{) la E x}, has the finite intersection property. Any
a w 

ultrafilter containing it is I{-regular, for we ITlay take f = id in the 

definition of regular. ) 
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6. Any uniform filter on an infinite set is contained in a uniform 

ultrafilter. (Adjoin to the filter all sets whose complement has smaller 

cardinality than the sets of the filter. Extend the resulting family to an 

ultrafilter. ) 

7. An ultrafilter is IC +- good if and only if if is countably incomplete 

-tand satisfies the following condition. Given any g : P (K) D such that 
W 

F C F' E P w(lC) > g(F) 2 g(F') 

there is an h: P W(K) D such that, for all F , F' E P ~IC)-t , 

h(F U F') = h(F) n h(F') and h(F) £; g(F). (Proof postponed. ) 

2 1C8.1£ =1C+ then there is a IC +-good ultrafilter on any set of 

cardinality IC. (Keisler [7].) 

9. Every countably incomplete ultrafilter is ~O - regular and 

~l,-good. (Keisler [7].) 

Let L be a language and G a structure for' L. G is 

IC- saturated if and only if, given any set r of formulas of L(G) 

with a single free variable, such that Card(r) < IC and every finite 

subset of r is simultaneously satisfiable in G, the whole set r 

is simultaneously sati sfiable in G. 
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10. D is Ie+-good if and only if for every language Land 

every family of structure s u.(i E Un(D)) for L, D-prod.u. is 
1 1 1 

+ . dIe -saturate. (Proof po stponed. ) 

11. Any two elementarily equivalent Ie- saturated structures of 

power Ie for a language with fewer than Ie symbols, are isomorphic. 

(The proof is like the proof that all countable dense linear orderings 

without endpoints are isomorphic. See also [15, Problem 5.26].) 

We now prove (7) and (10). In Keisler [8], goodness was defined 

by (essentially) the condition in (7) and proved equivalent to the condition 

+in(lO), so we need only prove (10). First suppose D is K - good, 

+let u = D-prod U., and let r be as in the definition of K - saturated. 
1 

In particular, Card(r) < Ie. For each [aJ E lu I, choose a representing 

function a ~ E -'-I. lu. I. Interpret L(Q) in u. by letting [a] denote 
1 1 1 

a" (i) For i E Un(D) , let 

4>(i) = {x E P w(f) Ix IS simultaneously satisfiable in C\} 

and, for x E cP(i) , let b(i, x) be an element of IG. I satisfying all 
1 

epEx. Thus 

epExEcP(i) >b(i,x) sati sfie s <f in u. 
1 

Any finite subset of r is, by hypothesis on r and the fundamental 
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theorem on ultraproducts, satisfiable in D-most of the G.. (For the 
1 

satisfiability of a finite set can be expressed by a single sentence, the
 

existential quantification of the conjunction.) Hence,
 

(Yx E P (D HyiD)x E cP (i)
w 

+ . Using the I( -goodness of D,. we can obtain f : Un(D) -> P (r) such 
w 

that (YiD)f(i) E q,(i) and (Yep E r)(YiD)ep E f(i) If we let b(i)=b(i,f(i)) 

(when f(i) E ·cP(i) ; b(i) arbitrary otherwise), then the properties of 

f and the implication displayed above show that (Yep E r)(YiD)b(i) 

satisfies ep in G. Hence [b] satisfies every ep Erin G. Thus, 
1 

is 1(+- saturated. 

For the converse, let L have two binary predicate symbols, 

E: and c Let G have universe P (I() U P(P (I()) , and interpret
W W 

E: and f; in the obvious way. Let i: G -> D-prod G be the canonical 

e~bedding (taking a to the germ of the function constantly a). Let 

q, be as in the definition of 1(+- good. For O! E 1(, let ep 01 be the 

formula: i( {01}) c x and x E [q,]. The set r = {ep 101 E I(} has 
ex 

+cardinality < K and any finite subset {ep IO! E m }(m E P (K)) is 
ex W 

+satisfied by i(m) . So, as we are assuming D-prod G K - saturated,
 

choose an [f] satisfying r. It is trivial to verify that f (or a
 

function equal to it modulo D) has the properties required in the
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+definition of Ie - good. 
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§2. The category of ultrafilters. DEFINITION 1. Let D be an 

?ltrafilter, and let f: Un(D) ... Y be a function. The image of D 

under f is defined to be the ultrafilter 

f(D) = {Bf;;ylf-l(B)ED} 

The following lemma is obvious. 

LEMMA 2. (1) If ill is a basis for D, then {f(A) IA E ill} is 

a basis for f(D) 

(2) If g: Y ... Z, then (g f)(D) = g(f(D))0 . 

(3) If id is the identity map of Un(D) , then id(D) = D . 

(4) f(D) is principal (with basis {{y}}) if and only if f is 

constant (with value y) on some set in D. In particular, if D is 

principal (with basis {{x}}), then f(D) is principal (with basis 

{ {f(x)}}) . 

For the remainder of the lemma, let f, f~ : Un(D) ",y, and let 

g, g 
~ 

: Y ... Z . 

(5) If f= f'modD then go f= g f"modD0 

(6) g = g'mod f(D) if and only if g 0 f = g' f mod D0 . 
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(7) If f = f' mod D then f(D) = f' (D) . 0 

In view of part (7) of this lemma, it makes sense to speak of the 

image of D under a germ [f]D; we shall also say that [f]D maps 

D to f(D). 

Example 3. We note that the converse of (5) is false; take f 

and f' to be different constant maps and take g to be any constant 

map. The converse of (7) is also false, as shown by the following 

example. Let E be a non-principal ultrafilter on w. The sets 

(A X A) - 6., where A E E and 6. = {(x, x) Ix E W} form a 

filterbase on W X w. If D is any ultrafilter containing this 

filterbase, and if 1T ,1T : W X W ->w are the projections, then
l Z 

1T1(D) = 1TZ(D) = E, but 1T1 =1= 1T Z mo d D . 

We define a category U. of ultrafilters as follows. The objects 

of U. are all ultrafilters (on arbitrary sets). A morphism from D 

to E is a germ [f]D which maps D to E. If [f]D: D -> E 

and [g]E: E -> Fare morphisms (so f(D) = E and g(E) = F) then, 

according to the lemma, [g f]D is a morphism from D to F,0 

depending only on [f]D and [g]E (not on the choice of representatives 

f and g), and we define the composite [g]E [f]D to be [g f]D0 0 

It is clear that composition is associative and that [idUn(D)]D is an 
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identity rrlOrphism for D, so tt is a category. To simplify the 

notation, we shall sometimes refer to a map f: Un(D) -+ Un(E) as a 

morphism, when we really mean that [f]D is a morphism. This 

practice should cause no confusion. 

PROPOSITION 4. In tt, every morphism is an epimorphism 

(in the category-theoretic sense). 

Proof. This proposition just restates the Ilif" part of statement (6) 

of the lemma. 0 

THEOREM 5. The only morphism from an ultrafilter to itself is 

the identity. 

Proof. Let [f]D: D -+ D where D is an ultrafilter on 

x =Un(D) and f: X -+ X We have f(D) = D, and we must show 

that f = id mod D 
X 

n o .
Let f be the nth iterate of f (n,;::: 0); f = Id

X 
n+1 ..n

f = f 0 1 . For x, y EX, define x ::: y if and only if fo r some 

n and m(~ 0) ~(x) = fm(y) Clearly this is an equivalence relation, 

and f(x) ~ x. Say that x is periodic if and only if, for some 

k 
k ~ 1 , f (x) = x . Let be a choice set for the partition of X 

into equivalence clas ses (i. e., for each equivalence clas s E, 
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Card(A n E) = V, and arrange that, if an equivalence class E 

contains' a periodic element, then the element of A n Eis periodic. 

(Clearly, such an A exists, by the axiom of choice.) 

Let u:s temporarily confine our attention to one (arbitrary) equivalence 

class E, and let a be the element of A n E. For each x E E , 

let m(x) be the least m such that for some n ~(x) = fm( a) , 

and let n(x). be the least n such that ~(x) = fm(x)(a). (These 

exist because x ;...- a .) Let d(x) = m(x) - n(x). I claim that 

d(f(x)) = d(x) + 1 or x = a (or both). 

Let y =f(x). Then 

(1 ) 

By definition of m(xJ, we conclude m(x) < m(y) . 

Case 1: m(x) < m(y). If n(x).2: 1, then 

(2) 

contrary to the definition of m(y). So in fact n(x) = 0, and 

m(x) m(x)+l 
x =f (a) Then y = f(x) = f (a), so m(y).$ m(x)·+ 1 As 

m(y) > m(x) , we conclude first that m(y) = m(x) + 1, and second 

(by definition of n(y)) that n(y) =O. So n(x) = n(y) = 0 and 
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m(x) + 1 = m(y). Therefore d(y) = d(x) + 1, as claimed. 

m
Case 2: m(x) = m(y) = m • Let b = f (a). Equation (1) now 

shows that n(x) ~ n(y) +1. If equality holds, then d(y) = d(x) + 1 as 

claimed. So suppose now that n(x) < n(y). If n(x) ~ 1, then we 

have (2) which now contradicts the fact that n(x) - 1 < n(y) , so in 

fact n(x) = 0 , x = r(a) = b Since ~(y)+1(b) = ~(Y)(y) =b, b is 

periodic; by definition of A, a is also periodic, say :f(a) = a (k ~ 1) • 

Choose p so that pk > m, and observe 

By definition of m(x) , m = 0, and x = b =a, as claimed. 

Since the equivalence class E was arbitrary, we have in fact 

defined d on all of X and proved that d(f(x)) = d(x) + 1 unless 

x EA. Let 

Xi = {x E X Id(x)= i(mod 2)} 1 = 0,1 

-1
Thus, Xi n f (Xi) cA. As D is an ultrafilter on X = X U Xl ' o 
X. E D for i = 0 or for i = 1. As f(D) = D, we also have 

1 

-1 -1
f (X.) ED, and therefore AED. Again, f (A) ED, so 

1 

An f-\A) ED. 
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-1
But if x E A n f (A), then x and f(x) are both in A and
 

both in the same equivalence class. By definition of A, this implies
 

x = f(x). Therefore, {x Ix = f(x)} ED, and f = idXmod D. 0
 

COROLLARY 6. If there are morphisms f: D E and g: E -t D-t , 

then D and E are isomorphic; indeed, f and g are inverse 

isomorphisms. Furthermore, under these circumstances, f is the 

only morphism from D to E (and g is the only morphism from 

E to D). 

Proof: For the first statement, apply the theorem to the morphisms 

gf : D D and fg: E E. For the second statement, observe that-t -t 

any f': D -t E would, like f, be an inver s e for g, but g can 

have only one inverse. 0 

The second statement of the corollary provides a partial converse 

. for part (7) of Lemma 2. 

PROPOSI TION 7. [f]D : D E is an isomorphism if and only if, for-t 

some A ED, f ~ A IS one-to-one. 

Proof: Suppose A E D and f ~ A is one-to-one. Extend its inverse 

f(A) -t A arbitrarily to a map g: Un(E) -t Un(D). Then g f = id mod p , 

so g(E) = g(f(D)) = D (by Lemma 2)', and [g]E: E -t D. Therefore 

0 
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[f]D IS an isomorphism by Corollary 6. Conversely, suppose [f]D 

is an'isomorphism with inverse [g]E. Then g f = id mod D, i. e. ,0 

A = {x Igf(x) = x} E D 

and clearly f'~ A is one-to-one. 0 

The following lemma often permits simplification of notation. In 

effect, it says that any morphism might as well be the projection of a 

product of two sets to one of the factors. 

LEMMA 8. Let [f]D: D -+ E be any morphism, and let K be the 

cardinal of Un(D) or Un(E) , whichever' is larger. Then there are 

ultrafilters D' on and on K, isomorphic to D and 

E respectively, such that the diagram 

= D --------"» D' 

E --------"» E' 

commutes, where 11" K X K -+ K is projection to the first factor. 

Proof: Let (3 Un(E) -+ K be an injection, and set E' = (3(E) By 

Proposition 7, [{3]E : E -+ E' is an isomorphism. Now map 
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a.
Un(D) -+ K X K by a.(x)::: ((3f(x), X) where x is the Xth element 

-1
of f (f(x)) in some (fixed) well-ordering of Un(D) of order type 

< I( Then 'ITa.::: (3f so the diagram commutes, and ex. is one-to-one 

so is an isomorphism. 11-
Essentially 'the same proof gives the following corollary. 

COROLLARY 9. In the situation of the lemma, let K .2: size(E), and
l 

suppose that, on some set of D, f is at-most-K 2 -to-one. Then there 

exist D' on K XK and E' on 1(1 such that all conclusions of
l 2 

the lemma hold. 0 

PROPOSITION 10. In 11, every monomorphism is an isomorphism. 

Proof: In view of Lemma 8, we may begin by supposing that D is an 

ultrafilter on K X K, E 1S an ultrafilter on K, 'IT is the projection 

to the first factor I( X K ... K, E = 'IT(D) , and ['IT]D is not an isomorphism. 

We must show that ['IT]D is not a monomorphism. 

Let p: K X I( X K ... K X K be the projection to the first two factors 

and q: K X K X K ... I( X K be projection to the first and third factors. 

Let 

6 ::: {(x,y,y) Ix,y E I(} = {t E K X I( X K Ip(t) ::: q(t)} 

For any A ED, let 

-1 -1 
::: p (A) n q (A) - 6 
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I claim the sets A '(A E D) form a filterbase. Clearly (A n B)' = A' nB' , 

so we need only prove A' =1= (/J. Suppose the contrary, namely A E D 

and A' = (/J. By definition of A', we find 

(x,y) E A and (x, z) E A. 

Then 1T is one-to -one on A, which, by Proposition 7 , contradicts 

the assumption that [1T]D is no isomorphism. Therefore, there is an 

ultrafilter F containing A' for every A ED. It immediately 

follows that p{F) =q{F) =D. Thus [P]F and [q]F are morphisms 

F -+ D; they are distinct because 6 ~ F (since 6 is disjoint from 

A'). But [1T]ri[P]F = [1T]D[q]F because 1Tp =1Tq. Therefore, [1T]D 

is not a monomorphism. [] 
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§ 3. Cartesian products of filters. There are two ways of defining 

the product of two filters. One definition will be considered in Chapter IV. 

It has the property that the product of two ultrafilters is always an 

ultrafilter. In this section, we consider the other definition, which we 

call the cartesian product. In most cases the cartesian product D X E 

. of two ultrafilters D and Ewill not be an ultrafilter. It turns out 

that D X E is an ultrafilter if and only if D and E have a 

product in U (in the category-theoretic sense of product), and then 

D X E is this product. 

DEFINITION 1. Let {F. Ii E I} be an indexed family of filters on sets 
1 

X.=Un(F.). with projection maps 'IT. : X -t X..Let X = ~EIXi
1 1 1 1 

-1
The sets 'IT. (A) (i E I ; A E F.) form a sub-basis of a filter which 

1 1 

we call the cartesian product -'-I F of the filters F.. We use the 
- iEI i 1
 

notations F 1 X F 2 ' F 1 X ••• X F n with the obvious meaning.
 

LEMMA 2. An ultrafilter D on X contains -'-I F if and only if,
iEI i
 

for each i E I , F. C 'IT.(D) .
 
1 - 1 

Proof: Both conditions say that, for each i E I and each A E F. , 
1 

-1
'IT. (A) ED. 0 

1 

PROPOSITION 3. Let {D. Ii < n} be a finite family of ultrafilters on 
1 

sets X. = Un(D.). Let F = -'-I. D. on X = -,-,. X.. For any
1 1 l<n 1 l<n 1 
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ultrafilter E and any family of morphisms [f.] : E .... D. (i < n) , 
1 E 1 

there are a unique ultrafilter E' on X and a unique morphism 

[f]E : E .... E' such that 

(i < n) 

. F urthermore, F C E ' . 

Proof: Existence: Let Y = Un(E). Let f: Y .... X be the (unique) 

map whose coordinates are the f. (i. e. , f. ='IT,f) and let E' = f(E) .l 
1 1 1 

by Lemma 2, and the other conclusions are clear. 

Uniqueness: Suppose f and r were two maps satisfying all 

-, ­
the conditions, with E' = f(E) , E = f(E) . Then 'IT. f = f. mod E 

1 1 

and 'IT.f - = f, mod E. By Section 1, (ifxE)
1 1 

'IT Of(x) = fO(x) and· • and 'ITn_1f (x) = f
n 

_
1

(x) 

and 'ITOf(x) = fO(x) and· . and 'ITn_i'(x) = f
n 

_
1
(x) 

-,
Therefore (ifxE)f(x) =-f (x) so f = -f mod E and E' = E . D 
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In the language of category theory, the last proposition says 

-II Horn (E, D.) :: II Horn (E, E") 
i<n 1 E"2F 

where II means disjoint union, and the bijection is natural with 

respect to E. As an immediate consequence, we have 

COROLLARY 4. If, in the situation of Proposition 3, F is an ultra­

filter, then F (together with the morphisms [rr)F: F -t D ) is a
i 

product of the D.'s in the category-theoretic sense. 0 
1 

Conversely, we have 

PROPOSITION 5. With the notation of Proposition 3, suppose that the 

D. have a product in the category-theoretic sense. Then F is an 
J. 

ultrafilter, and F IS isomorphic to the category-product of the D. 
1­

(with the [rr)F corresponding to the projections of the category-

product). 

Proof: Let the category-product be E with proj ections [f.]E: E D. ,-t 
1 1 

f, E .. b . b P ·t· 3 L t E N'·and let e as gIven y ropos1 Ion. e b e any 

ultrafilter containing F. By Lemma 2, [rrJE .... E '" -t D ., so, by 
1 

-tdefinition of category-products, there is a morphism [g]E .... : E .... E 

such that rr. = f. g mod E..... Since rr.f = f. mod E and E = g(E .... ) , 
1. 1 1 1 
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we conclude (using Lemma 2.2) 

~.fg = f.g = ~. mod E" 
1 1 1 

As in the proof of Proposition 3, we obtain fg =id mod E .... , and, in 

particular, E .... =fg(E") = f(E) = E". Thus E" is the only 

ultrafilter containing F. By Section 1, F is an ultrafilter. The 

remainder of the proposition may now be proved either by direct 

verification or by appealing to Corollary 4 and the uniqueness of 

category-products. 0 

THEOREM 6. For any two ultrafilters D and E, the following are 

equivalent. 

(1) _ D and E have a category-product (in U) 

(2) D X E IS an ultrafilter. 

(3) For every function f Un(D) -> E, there is a set A ED, with 

flxEAf(X) E E . 

Proof: (1) <;:::;> (2) has just been proved. 

(2) -> (3) Given f, let 

Z = {(x, y) E Un(D) X Un(E) Iy E r(x)} 
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If A E D and BEE, choose any x E A and any y E nx) n B . 

(A ~ (/J and r (x) n B ~ (/J because A E D and r(x) n BEE. ) 

Then (x, y) E (A X B) n Z. Thus, every set of D X E meets Z. 

As D X E is an ultrafilter, ZED X E. Thus, there exist A E D ~ 

BEE such that A X B f; Z Then, for any x E A and y E B , 

y E r(x), so B f;nEAr(x). As BEE, ()EAr(X) E E . 

(3) => (2): Let Z f; Un(D) X Un(E) be given. We must show that 

Z or its complement is in D X E. Since the quantifiers (VxD) and 

(VyE) commute with negation (see Section 1), either 

(4) (VxD)(VyE) (x, y) E Z 

or· the same statement holds when Z is replaced by its complement. 

Considering the complement rather than Z if necessary, we may 

as sume that (4) holds. Let r(x) = {y I(x, y) E Z} if this set is in E 

(which happens for D-most x, by (4)), and r(x) = Un(E) otherwise. 

Thus r: Un(D) -+ E. By (3) there is a set Al E D with 

nEAl(x) E E. Let A
2 

= {x I(VyE)(x, y) E Z} ED, so that,. for 

x E A , r(x) = {y I(x, y) E Z}, and let A = Al n A ED. Then let
2 2 

B = {y I(Vx E A)(x,y) E Z} =0EA {y /(x,y) E Z} 

=n r(x)::Jn r(x) E E 
, xEA - xEA 

l 
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Then A X BED X E, and A X B S Z, so ZED X E. 0 

COROLLARY 7. If D is principal and E IS arbitrary, -then E IS 

a category-product of D and E. 0 

COROLLARY 8. If- E is size (D)+ - complete, then DXE is an 

. ultrafilter. 0 

COROLLARY 9. Condition (3) of the theorem IS, despite its appearance, 

symmetrical in D and E. 0 

.	 COROLLARY 10. If D and E are countably incomplete, then they 

have no category-product in U . 

Proof: Let	 n A. tt D ; B , B , ... E E , 
I~W 1 l 2
 

n B. tt E . Replacing A. by A. -n A. we may suppose

I<W 1	 1 1 I<::W 1 n A. = QJ. For each x E Un(D) let n(x) be the least 1 such 

.	 I<W 1 

that x tt A.. Observe that n(x) is not bounded on any set of D, 
1 

d· " f nN-1Afor if n(x) < N for all x E A then A is IsJolnt rom . 1 . 
1::: 1 

which is in D. Let r(x) = n ()B. E E . Then, if A ED, 
1 <:::n x 1 

-nEAr(x) = EnB. fJ. 
x I<W 1 

so condition (3) of the proposition fails. 0 
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§4. Size, regularity, and completeness of ultrafilters in 11. 
In this section we investigate the correlation between the existence or 

non-existence of a morphism in U from D to E and various 

properties of D and E. 

PROPOSITION 1.. If D is an ultrafilter and f is any function on 

Un(D) , then size(f(D)) ~ size(D) If D =E, then size(D) = size(E) 

Every ultrafilter D is isomorphic to a uniform ultrafilter on the 

cardinal size(D) 

Proof: The first assertion is immediate from the definition of size, 

and the second follows from the first. For the third assertion, let 

K: = size(D) = Card(A) with A ED. Take a bijection A -+ K: and 

extend it arbitrarily to a map f:' Un(D) -+ K:. By Proposition 3.7, D 

is isomorphic (via f) to f(D) , and, by the second assertion, f(D) is 

uniform on K. D 

This proposition shows that we may, without loss of generality, 

restrict our attention to uniform ultrafilters on cardinals. To be precise, 

the inclusion, into U J of the full subcategory whose objects are 

uniform ultrafilters on cardinals, is an equivalence of categories. 

Observe that, although all the ultrafilters isomorphic to a given D 

form a proper class, those that are on size(D) form a set (of 
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cardinality at most Zsize(D)). 

DEFINITION 2. ttl. (I<:) ,U «I<:) ,U « 1<:) are the full subcategories of 

U whose objects are the ultrafilters of size I<: size < I<: and-
~:::; 1<:, respectively. 

PROPOSITION 3. If [g]D: D -+ E is a morphism and E is 

I<:-regular, then D is I<:-regular. 

Proof: If f: Un(E) -+ P (I<:) is as in the definition of I<:-regular, then 
W 

fog: Un(D) -+ P (I<:) shows that D is I<:-regular. 0 
W 

PROPOSITION 4. D is I<:-complete if and only if, whenever 

[g]D : D -+ E is a morphism and size(E) < I<: E is principal. 

Proof: Suppose D is I<:-complete, [g]D: D-+E and size(E) < I<: . 

Let A E E be such that Card(A) = size(E) < 1<:. Then 

-1 
so naEAg (A - {a}) = (/J rt D As D is 

-1
I<:-complete, there is an a E A such that g (A - {a}) rt D , so 

A - {a}·r/:. g(D) = E. But (A - {a}) U {a} E E, so {a} E E, and E 

is principal. 

For the converse, suppose D is not I<:-complete. Then, for 

some A < 1<:, we have a family {A",~<A}f;D withn,A rtD 
.... O!</I. O! 
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As usual, we may replace A by and thus assume 
a 

r)<AA a = Let(/J. 

g: Un(D) ----? A : x 1--7 (IJ. ci)(x f!. A ) 
a 

and let E = g(D) Then [g]D: D -> E and size(E).5 A < 1(. To 

complete the proof, we shall show that E is non-prinCipal. Otherwise, 

we would have {O!} E E for some O! < A. By Lemma 2.2(4), there 

is an A E D such that 

x E A :> g(x) = O! 

By definition of g, it follows that A n A =(/J, contrary to the fact 
O! 

that both A and A are in D. 0 
a 
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§5. The Rudin-Keisler ordering. DEFINITION 1. Let D and E 

be ultrafilters. D < E if and only if there is a morphism from E to 

D in U. The relation < is called the Rudin-Keisler ordering. 

PROPOSITION 2. (1) < IS reflexive and transitive. 

( 2) D =E <:;:=;> D S:. E and E < D . 

Proof: (1) follows from the fact that U is a category, as does half of 

(2). The remaining implication (right to left) follows from Corollary 2.6. 

Intuitively speaking, the relation < induces a partial ordering of 

isomorphism classes of ultrafilters. Unfortunately, too many things 

here are proper classes, so we define instead 

DEFINITION 3. D is the set of (uniform) ultrafilters on size(D) 

which are isomorphic to D. D S:. E if and only if D < E RK is 

the class of all sets of the form D, partially ordered by S:.. 

Rem.ark 4. By Proposition 2, the relation < on RK has all the 

properties of a partial order (except that it isn't a set). Obviously, 

D = E if and only if D:: E, so D is "as good as the isomorphism 

class of D." We shall sometimes act as though the ultrafilters 

themselves, rather than the sets D, were elements of RK. 

0 
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Translating the results of the preceding section, we get 

PROPOSITION 5. Size is a well-defined order preserving map of RK 

to the class of cardinals. If D..:s; E and D is Ie-regular, then so is 

E; in particular, it makes sense to say that an element of RK is 

Ie-regular. D is Ie-complete if and only if the only E < D with 

size( E) < Ie is· E = {{ {O}} } Hence, if D' < D and· D is 

Ie -complete, then so is D', and it makes sense to say that an element 

of RK is Ie -complete. 0 

. Remark 6. E is principal if and only if E = {{{O}}}. We sometimes 

write 0 for {{ {O}}} o is the least element of RK. 

,
 
DEFINITION 7. RK(Ie) , RK( < Ie) , RK( < Ie) ar e the sets of all D
 

where D is an ultrafilter of size Ie , size < Ie , size < Ie ,
 

respectively. (Note that thes: are really sets. )
 

We now begin an investigation of the structure of the partially
 

ordered class RK.
 

Ie 
PROPOSITION 8. (1) For any a E RK(..:s Ie) , Card{~ E RK I~ < a} ..:s 2 

(2) Card RK(.$ K) :: 221e . 

(3) For any a E RK(..:s Ie) , Card {f3 E RK« Ie) 1f3 > a} = 22
Ie 

. 
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(4) Card RK(I() = 221( • 

Proof: (1) Any ex E RK( < I() is D	 for some D on Ie, and any 

fJ < ex is f(D) for some f: I( .... 1(.	 Since there are only l functions 

from Ie to 1(, (1) follows. 

(2) It is well-known that there are 221( ultrafilters on Ie (see, 

eO.	 g., Cech [3]). The argument given for part (1) shows that each 

1e
isomorphism class contains at most 2 ultrafilters. Therefore, 

2 1e 
there must be 2 isomorphism classes. 

1e
2(3) Let ex = D where Un(D) =1(. For each of the 2 ul tra-

filters E on Ie, let E' be an ultrafilter on Ie X Ie such that 

E' :::> D X E . Then (by Lemma 3. 2; and are 

the projections Ie X 1( .... I(), so distinct E' s give distinct E'r s , 
\.J 

E 'r s E' > because 

are at most in any isomorphism class, (3) follows. 

and there are . _ex	 As there 

(4) This is immediate from (3) and the fact that 

fJ > ex => size(fJ) > size(ex) (and the fact that there is a uniform 

ultrafilter on K:). 0 

COROLLARY 9. RK(K:) has no maximal elements. 
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Proof: Clear from. (3) of the propo sition. 0 

PROPOSITION 10. Every subset of RK has an upper bound. In 

RK(.$ K:), any subset of cardinality < K: has an upper bound. 

Proof: Let {D. Ii E I} be a fam.ily of ultrafilters. By Lem.m.a 3.2, 
1 

any ultrafilter containing F = -"I.CID. is' > D. for every i E I 
L.. 1 - 1 

This proves the first assertion. For the second, we m.ay suppose 

I
Un(D.) = K: and Card(I) < Ie, so F is a filter on Ie • A basis for 

1 

-1
F is given by finite intersections of sets of the form. 7T. (A) with 

1 

. A ED. It follows that the set 
1 

for all but finitely ~any i E I} 

m.eets every set in F, so there is an ultrafilter E ~ F U {B}. As
 

before, E> D. for all i E I, and ''-.Size(E) < Card(B) = Ie. 0
 
1 

+COROLLARY 11. RK« Ie) contains a chain of order type Ie In fact, 

any elem.ent of RK('::::; Ie) is the first elem.ent of such a chain. 

Proof: Let ex E RK( < Ie). Define a strictly increasing function
 

+
f : Ie .... RK(Ie) as follows. f(O) == Cl. If f is already defined for all 

+ 
~ < 71( < Ie ), use the proposition to get an upper bound {3 for f"71. 

In view of Corollary 9, there is an elem.ent of RK( < Ie) which is > {3 
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Let f'T/ be such an eleInent. Then clearly f" Ie + is a chain of 

the required type whose first eleInent is a. 0 

Hav~ng shown the existence of upper bounds in RK we Inight 

naturally ask whether least upper bounds exist in RK. This question 

also arises froIn·the following consideration. As we shall see, the 

structure of RK, or even RK(w) , is rather wild. When confronted 

with a wild partially ordered set one naturally tries to cOInpare it with 

others of its kind, and the first one that COInes to Inind is the ordering 

of the degrees of recursive unsolvability (Turing degrees). This 

ordering has the one pleasant property of being an upper seIni-lattice, 

and one Inight hope that RK shares this property. 

It is clear that, if two ultrafilters D and E have a category-

product D X E, then D X E is a le~st upper bound for D and E·, 

unfortunately, by Corollary 3.10, this only happens if D or E is 

countably cOInplete. It is also obvious that if D and E are 

cOInparable, then the larger of the two serves as a least upper bound; 

w
unfortunately, Kunen has shown [12] that RK(w) contains 2

pairwise incoInparable eleInents, and we shall show in Chapter II that, 

K
assuIning GCH (or certain weaker hypotheses) there are 22


pairwise incoInparable (in fact IniniInal) eleInents of RK(Ie) , for all Ie.
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Thus, the trivial ways of obtaining least upper bounds do not suffice 

to m.ake RK an upper sem.i-lattice. We shall show in Chapter IV that, 

assum.ing CH, RK is in fact not an upper sem.i-lattice, and it is not 

a lower sem.i-lattice either. We shall obtain two elem.ents of RK(w) -, 

which have neither a least upper bound nor a greatest lower bound in 

RK. 
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§6. Ultrafilters omitting cardinals. DEFINITION 1. An ultrafilter 

D omits an infinite cardinal K if and only if, for every E < D , 

size(E) =1= I<: • 

PROPOSITION 2. (1) If D ~ D' and D' omits I<: then· D. omits 

I<: • 

(2) D does not	 omit size(D) 

(3) D omits all	 cardinals > size(D) . 

(4) D is K-complete if and only if D omits all infinite cardinals 

<I<:. 

(5)	 If D is a uniform ultrafilter on I<: and E is a A- regular 

I<: K 
ultrafilter with A .2: 2 , then D < E . In,particular, a 2 -regular 

ultrafilter does not omit 1<:. 

Proof: (1) and (2) are obvious, (3) is contained in Proposition 4.1, 

and (4) is Proposition 4.4. For (5), let f:Un(E)-lp (A) be such 
w 

that, for all ex E A) {x lex E f(x)} E E (as in the definition of A-regular), 

and let h: P(K) -l A be an injection. For each x E Un(E) , let g(x) 

be an arbitrary ·element of 

n A ED. 
h(A)Ef(x) 

and A E D 
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Then, if A ED, 

g-\A) = {xlg(x)EA}2 {xlh(A)E f(x)} EE
 

so g(E) = D. 0
 

The following theorem is a slight generalization of a theorem of 

Chang [4]. 

THEOREM. 3. Let K: be a regular cardinal. There is a cardinal A such 

+ K:
that K: .:s A .:s 2 and no ultrafilter of size A omits K:. (The proof 

. will yield an explicit definition of A.) 

K: 
Proof: Let X be the set of all maps K: -t K:, so Card(X) = 2 Let
 

A be the least cardinal such that, for some set F c X Card(F) = A
 

and (
 

(1) (Vg E X)(3i E F)(V~ < K:)0x)(~ < x < K: and g(x) < f(x)) 

If we le~ Jr be the filter generated by the set of sets of the form 

{x I~ < x < K:} for ~ < K: (i. e., '} = {A f; K: ICard(K: - A) < K:} because 

K: is regular), then (1) may be rewritten 

(1' ) (Vg E X)t3:f E F)t3:x~) g(x) < f(x) 

K:
It is clear from the defini tion of A that A.$ 2 . 
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Claim: A- ~ I(~ and A- is regular. 

Proof of claim: Suppose A- < I(-/; so F = {f,s l,s < I(} for an 

appropriate indexing (possibly with repetitions). Define g: K -t K by 

letting g(a) be any element of I( larger than f,s(a) for ail ,s <a ; 

as I( is regular, such an element exists. Then 

g(x) < f(x) => x ..$ 'Y 
'Y 

and from (1 ~) we get 

(3: 'Y < K )(3:x.t) g(x) < f (x)
'Y 

Hence, 

contrary to the definition of J. Therefore A- > I( + 

Now suppose A- were singular, so F - I J F where Card(I) < A­- \...(EI i 

and Card(F.) < A­ By the minimali ty of A-, we can, for each i E I , 
I 

choo se g. E X so that 
I 

(Vf E F. )(Vx'})g. (x) ~ f(x) 
1 1 

Again by minimality of A-, we can choose g E X so that 
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Thus, 

(Vi E I)("If f E :F. )(lfx]) g(x).2: g. (x) .2: f(x)
1 1 

so 

(Iff E F)( vx}) g(x) > f(x) 

contrary to (1"). This proves the clai.m. 

Let --< be a well-ordering of F, of order type A For each 

f E F, the set of its predecessors has cardinality < A, so, by 

minimality of A, choose y f E X such that 

(2) (If g ~ f) (lfxj) y ix) .2: g(x) 

Nd:e that, if one function y were yf for arbitrarily large f's (in 

the ordering ~ ). then (2) would imply 

(If g E F)(lfxJ) y(x).2: g(x) 

contrary to (1"). It follows that each y is of the form y f for only 

a bounded set of fl s. By regularity of A. the set 
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has cardinality >... 

Any ultrafilter of size>.. is isomorphic to a uniform ultrafilter on 

Y so to prove the theorem we must show that no uniform ultrafilter on 

Y omits tC. 

Claim: Any uniform ultrafilter D on Y contains a decreasing 

chain of sets, of length tC, with inter section (/. D . 

Proof of claim: For each f3, TJ < tC, let 

f3 
A = {yEYIY(f3)~TJ} 

TJ 

If we fix f3, then {A~ ITJ < tC} is a decreasing chain, of length K:, 
TJ 

with empty inter section. So, if then the claim is true. 

Suppose, however, that this is not the case. Then, for each f3 < K , 

let h(f3) < tC be such that ~(f3) (/. D. By (1') , we can pick g E F 

such that (3: x])h(x) < g(x). But 

x x
 
h(x) < g(x) => A g(x) S; Ab(x) (/. D
 

Thus, mx'J)B E D Since the B form a decreasing chain, it follows 
x x 
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that	 (Vx E I()B ED. Thus, we have a chain {B Ix E I(} in D of 
x	 x 

order	 type I( and we need only show 1\ B (/. D ButI x!E1(	 x . 

(by definition of ') ) 

(by (2)) 

and this set has cardinality <A. As D is uniform, n B ~ D ,
x EI( x 

and the claim" is proved. 

Let {A lex < I(} be a decreasing chain in D with f1 A ~ D ex I d<1( ex 

As usual, we replace A by A - (] A and henceforth assume ex ex ex::::::1( ex' n A =(/J. Now define, for each
ex<1( ex
 

f(y) = J.Lex(y'l A )

ex 

so f: Y .... I( . 

Claim:	 If A ED, then f(A) is an unbounded subset of 1(. 

Proof of claim: Suppose not. Say, for all yEA, f(y) < ex < I( . 

Then, for all yEA, A S; Af(y) , and, as Thus 
ex 

A and A are disjoint, contradicting the fact that they are in D. 
01. 

Therefore, f(D) is a uniform ultrafilter on I( and D doesJ 

not omit 1(. 0 
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CHAPTER II 

INDUCTIVE CONSTRUCTIONS 

§7. The filter reduction hypothesis. When one tries to prove the 

existence of ultrafilters having certain special properties, one often 

finds that the necessary constructions can be carried out if one assumes 

GCH, but apparently not if one only uses ZFC. Hence, many existence 

theorems in the theory of ultrafilters have GCH, or some special case 

of GCH, as a hypothesis. As typical examples we cite the following 

two well-known theorems. 

+THEOREM 1 (Keisler [7]). If 2K: = K+ then there is a K -good ultra­

filter on K. 

DEFINITION 2. An ultrafilter D of size W is a P-point if and only 

if, for every morphism [f]D of D into a non-principal ultrafilter, 

there is a set A E D such that f ~ A is finite-to-one. 

THEOREM 3 (Rudin [14]). Assuming CH. there is a P-Eoint. 

Unfortunately, there seems to be no convincing reason for believing 

GCH. so it is desirable to find weaker hypotheses ·which suffice to 
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prove these and other theorems. In his thesis [2] , Booth finds it 

possible to replace CH in many theorems by a proposition called 

Martin I S axiom, which we will not state here, because it is complicated 

and we shall not need it. A theorem of Solovay (cited in [2]) asserts that 

Martin I S axiom is strictly weaker than CH. (Since he considers only 

.ultrafilters of size S, w, Booth never needs GCH for larger 

cardinals.) We shall find it convenient to use the following substitute 

for GCH. 

DEFINITION 4. FRH(K:) (= llfilter reduction hypothesis for I( ") is the 

following statement. 1£ a uniform filter F on K: has a basis of 

cardinality <
. 

2 
I( 

, then there is a uniform filter F ' -'-.._ F h aVlng a. 

basis of cardinality S, I( • 

Remark 5. It is obvious that l = K:+ => FRH(K:). One also sees 

easily that FRH(w) is equivalent to the following statement PO: 1£ a 

Wuniform filter F on W has a basis of cardinality < 2 , then the re 

is an infinite B c w such that, for all A E F, B - A is finite. It is 

known (see [2, Theorem 3.5]) that Po follows from Martin's axiom. 

K: +
Thus, at least for K: = W, FRH(K:) is strictly weaker than 2 = K: . 

On the other hand, Kunen has obtained a model of ZFC in which CH 

is false but there is a uniform ultrafilter on w with a basis of cardinality 
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~l' Since no uniform ultrafilter on w can have a countable basis, 

FRH(w) must be false in this model. Thus, FRH(w) is not a 

theorem of ZFC (if ZFC is consistent). 

Most proofs using FRH (or GCH) construct the desired 

ultrafilters by transfinite induction (see for example Keisler I sand 

Rudin's proofs of the theorems quoted above). To avoid repeating the 

same ideas in. many proofs, we will prove one very general theorem 

which isolates these ideas, and then, whenever a proof would require 

the same ideas, we can appeal instead to the general theorem. This 

theorem is perhaps best stCl-ted in topolog{cal language. It then cIo sely 

resembles the Baire category theorem. We therefore turn now to the 

definition of the relevant topologies. 

DEFINITION 6. Let X be any infinite set. We define f3X to be the 

set of all ultrafilters on X, and we consider the following two 

topologies on f3X. The standard topology has as its basic open sets 

all sets of the form 

.... 
A = {D E f3X IA ED} 

where A c X The fine topology has· as its basic open sets all sets of 

the form nEGA where G f; P(X) and Card(G) ~ Card(X). When 

we speak of f3X as a topological space without specifying the topology, 
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we mean the standard topology. Let unif(X) be the set of all uniform 

ultrafilters on X As a subset of f3X, it also has a standard and a 

fine topology, but, when we refer to it as a space without specifying the 

topology, we mean the fine topology. 

Remark 7. f3X is the Stone- Cech compactification of X with the 

discrete topology. It is also the Stone space of the Boolean algebra P(X) 

In particular,. it is a totally disconnected compact Hausdorff space. The 

fine topology is strictly finer than the standard topology, because the set 

of principal ultrafilters is closed in the fine topology but not closed 

(dense, in fact) in the stand.ard topology. When discussing unif(X), 

we shall use A (A S X) to mean A n unif(X) ; this should not cause 

any confusion. Observe that the basic open set nEaA in unif(X) 

is nonempty if and only if every finite subfamily of a has intersection 

of cardinality Card(X). 

THEOREM 8 ("Baire category"). As sume FRH(I{). Then, in unif(K), 

any intersection of 21{ or fewer dense open sets is dense. 

Proof: Let U 
I{ 

(ex < 2 ) be dense open subsets of unif(I{), say 
ex 

" U B 
ex = LJ n " 

iEI BEa . 
ex ex,l 

and let V be any nonempty basic open set in unif(I{), say 
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v = (lA 
AEa 

(Here a . and a are subsets of P( Ie) of cardinality < Ie .) We 
O!,l
 

must show V nn Zle U :/: (/J. Since V:/: (/J, the filter Fa generated
a< a 

by a is uniform on IC and has a basis (consisting of finite intersections 

of sets in a) of cardinality < Ie • 

IC 
By induction of a < Z we define an increasing sequence of uniform 

filters F O! on Ie with bases of cardinality ..:::;; Ie. F 0 is already 

defined. If a is a limit ordinal and is defined for f3 < a, then 

. F = LI<aFf3 is uniform and has a basis (namely the union of the bases of 

Ie
of cardinality < Ie) of cardinality < Card(1C X O!) < Z . By FRH(Ie) , 

F is contained in a uniform filter F' with a basis of cardinality ..:::;; K . 

Let F = F' Now suppose a = f3 + 1 and F f3 is already defined. a
 

~et ef3 be a basis for F f3 of cardinality < K. Then
 

W = n c = n C = {D E unif( Ie) IFf3 S D} 
CE Ff3 CEef3 

is a nonempty basic open set in unif(le) As U f3 is dense, there is a 

As 

U{3
 

there is an i E I~ such that 
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Then the filter F generated by is contained in D, so it 

is uniform, and it has a basis (consisting of sets of the form C n B 

with ~ E B
Q 

.) of cardinality < K • Let 
,., , 1 

F = F 
a 

Now the filter U .... F is uniform, so let D be a uniform
a<2T1. a 

ultrafilter containing it. Then F 0 CD, so CiS D, so 

DEnA = V 
AECi 

Also, for each a < 2
K 

, F cD so, for some i E I B cDa+l- ,	 a, i­a 

(by definition of F 1)' soa+ 

DE n BcD 
BEB . - a 

a,l 

Therefore, 

DEFINITION 9. A subset of unif(K)	 is meager if and only if it is 

K
contained in the union of a family of 2 or fewer nowhere dense closed 

sets. A subset is comeager if 'and only if its complement (in unif(K)) 
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is meager. 

Remark 10. This terminology will not cause any confusion, because 

we shall never us e the words meager and comeager in their 0 rdinary 

sense (with w in place of l in the definition). Clearly, a set is 

comeager if and only if it contains the intersection of a family of l 
or fewer open dense sets. As suming FRH(K:), the "Baire category" 

theorem shows that comeager sets are dense; in particular they are 

nonempty. The comeager sets thus form a (2K:)+- complete filter on 

unif(K:). One should think of comeager sets as being large and meager 

sets as being small. The next proposition, a refinement of the category 

theorem, shows that comeager sets are also large in the sense of 

cardinality . 

PROPOSITION 11. Assume FRH(K:). Every comeager set in unif(K:) 

has cardinality 2 2K:. In fact, the intersection of any comeager set and 

any nonempty open set has cardinality 22K:. 

Proof: We first rernark that a uniform filter F on K: which has a 

basis of cardinality < K: cannot be an ultrafilter. Indeed, let 

a3 = {B. Ii < K:} be such a basis for F, and choose inductively, for 
1 

each i < K:, two distinct elements x., y. E B. such that 
1 1 1 

x.,y. rf. {x.lj < i} u {y.lj < i} 
1 1 J J 
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This is possible because 

Card{x., y.lj < i} < I<: = Card(B.)
J J 1 

Then X = {x. Ii < I<:} and Y = {Yo Ii < I<:} are disjoint sets, each 
1 1 

meeting every B. , hence also eyery set in F. In fact, if we choose 
1 

the enumeration {B. Ii < I<:} so that each B E ~ is B. for I<: 
1 1 

distinct values of i we can arrange that the filters and 

generqted by F U {X} and F U {Y} respectively, are uniform. 

Thus, for all uniform -filters F on I<: with a basis of cardinality 

(1).s 1<:, we have two other such filters F and F(2) , containing F, 

and not both contained in any ultrafilter D Suppo se for each F 

definite and F(2) have been selected. 

I<:
Now let f : 2 .-. {l, 2} be any function. In the proof of the Baire 

category theorem, change the inductive conditions defining F as 
a 

follows. For each a, let G be defined from the F , f3<a a f3 

exactly as F was defined before, but then let F = G(f(a)). Let
 
a a a
 

f
D be the ultrafilter finally obtained in this way. (Whenever any 

choices had to be made, e. g., the choice of F" in the induction at 

limit ordinals, we assume that an appropriate choice function is selected 

f 
once and for all, independently of f.) Then D E V nn 21<: U , and a < a 
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I claim that f I- g => D
f I- n g 

. Suppo se f I- g and suppose a < 2 
K: 

is the first place where they differ; f(a) I- g(a) but f3 < a => f(f3) = g(f3) 

Then, for (3 < a, F f3(f) = F f3(g) , and hence Ga(f) = Ga(g)· But then 

no ultrafilter contains both F a(f) = Ga(f)(f(a)) and F a(g) = Ga(g)(g(a.)) 

f g g
Since n 2 F a(f) and n ~ F a(g) , we conclude nf I- n . Hence, 

card(V n n u ) = 22K: . 0 
cx.< 2K: a 

Remark 12. 1£ we did not as sume FRH(K:), we could still prove 

that the intersection of K+ or fewer dense open sets in unif(K:) is 

dense and, in fact, meets every nonempty open set at least 

times. The proofs are practically identical to the ones we have given. 



+§8. Some comeager sets. THEOREM 1. The setof K -good 

ultrafi1ters on K is comeager. 

Proof: Say that a map g : P (K) P(K) is order-reversing if and only-0 

W 

if, for all F 5:; F' E P W(K) , g(F)::J g(F'); say that g is multiplicative 

if and only if, for all F, g(F U F') = g(F)n g(F'); and 

say that h : P (K) -> P( K) is under g if and only if, for all FEP(K),
w W 

h(F) f; g(F) .. Let 

(\~ 
FEP (K)

w 

in unif(K), and let 

U un{U Ih is multiplicative and under g}
h 

Then U is a basic open set, and V is open in unif(I{). Further-
h g 

more, the main lemma in Keisler's proof of Theorem 7.1 [7, Lemma 4C] 

easily implies that V is dense for all order-reversing g. Hence, 
g 

G = vn
 g
g order- reversing 

is comeager, because there are only 21{ functions P (K) P(I{). Now-0 

w 

let D E G and suppose g is an order- reversing map P (I{) -> D 
w 
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Then, for FE P (I() , so, for some multiplicative h 
W 

under g, D E V (by definition of V). This means h: P (I() .... D
h g W 

(by definition of V ). Therefore, by Section 1, D is 1(+- good. The 
h 

set of I(+-good ultrafilters on I( contains the comeager set G. 0 

COROLLARY 2. If FRH(I(),' then there are 221( I( +- good ultrafilters 

on 1(. 0 

THEOREM 3. The set of uniform ultrafilters D on 1(, such that, 

for every f: I( .... 1(, there is an A E D with either Card(f(A)) < I( 

or f ~ A one-to-one, is comeager. 

Proof: For every f: I( .... 1(, let 

V f = vn{A~ unif(l() ICard f(A) < I( or f ~ A is one-to-one} 

As each A is open, Vf is open. I claim Vf is dense. Let 

V = r)E3B be a nonempty basic open set, where Card(3 )..:s 1(. Let 

F be the filter generated by IS. It has a basis (consisting of finite 

, 
intersections of sets in IS) of cardinality ..:s 1(, say {C. Ii < I(} , 

1 

anditisuniformon I( because Vf:.QJ. Wemustfinda DEV
f 

such that D E U', i. e. 1 such that F ~ D If, for some i < K , 

Card f( C ) < 1(, then any D containing F satisfies D E <\ C Vf ' 
i 

and we are done. So suppose, for all 1, Card f( C.) = I( Choose, 
1 
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by induction on i, elements x. E C. such that 
1 1 

f(x.) fJ. {f(x.) Ij < i} 
1 J 

this is possible because 

Card{f(x.)lj < i}':::; Card(i)·< fC = Cardf(C.)
J 1 

Then, if x = {x. Ii < fC}, f ~ X is obviously one-to-one. Furthermore, 
1 

by choosing the enumeration {c. Ii < K} so that each C. is also C. 
1 1 J 

for fC different values of j, we can ensure that Card(X n C.) = fC 
1 

for all i < fC. Hence, there is a uniform ultrafilter D;2 F U {X} . 

So D E U, and D E X~ Vf . 

Therefore is dense and· 1\ V is comeager. But this
f l:fC-+K: f 

set is precisely the set asserted to be comeager in the theorem. 0 

To show why the ultrafilter s considered in this theorem are of 

interest, we prove the following. (See also Section 10. ) 

PROPOSITION 4. Let D be a uniform ultrafilter on K:. The following 

are equivalent. 

\.. 
(1) For every f: K: -+ f(, there is an A E D such that 

Card(f(A)) < K: or. f ~ A is one-to-one. 
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(2) D is a minimal element of RK(I(). 

Proof: Statement (2) says that, for any map f of I( into any set, 

either f(D) fl. RK(K) or f(D) = D , i. e., either size f(D) < K: or 

f(D) :: D. The former pos sibility means that, for some A E D 

Card f(A) < I( (see Lemma 2.2(1)); the latter pQssibility means that, 

for some A ED, f ~ A is one-to-one (see Corollary 2.6 and 

Proposition 2 .. 7). Since it is clearly no loss of generality to assume 

X = K: (if necessary, compose f with an injection f(I() ..... K: ), (2) is 

equivalent to (1). 0 

Remark 5. We shall sometimes refer to D, rather than D, 

as minimal in RK(I(). We shall. also speak of minimal elements of 

RK; we mean minimal elements of RK - {O}. (Recall that 0 is the 

least element of RK.) A non-principal ultrafilter D is minimal if 

and only if every function on Un(D) is constant or one-to-one on a set 

in D. (The proof is like that of the last proposition.) Notice that, by 

Proposition 4.4, if D IS minimal, it is size(D)-complete, so 

size(D) is either w or a measurable cardinal. Any ultrafilter 

minimal in RK(w) is minimal (clearly), but for measurable K: 

there may exist ultrafilters minimal in RK(I() but not ~l- c~mplete 

(see Corollary 8 below), hence surely not minimal. 



COROLLARY 6. The set of ultrafilters on K minimal in RK(K) is
 

comeager. 0
 

COROLLARY 7. The set of K+-good ultrafilters on I<: which are
 

minimal in RK(I<:) is comeager. 0
 

COROLLARY 8. Assume FRH(I<:). There are 221<: I<:+-good (hence
 

I<: - regular and countably incomplete) ultrafilters on I<: which are
 

minimal in· RK(I<:). RK(I<:) has 221<: distinct (as eguivalence classes)
 

minimal elements consisting of I<: + - good ultrafilters.
 

Proof: For the last as sertion, recall that each equivalence clas s has at
 

most 21<: elements. 0
 

COROLLARY 9. Assume FRH(w). RKlw)has exactly 22
W 

minimal
 

elements. There are 22W P-points on W. 0
 

Proof:· For the last assertion, observe that any ultrafilter minimal in
 

RK(w) is clearly a P-point. 0
 

Note the contrast between the present results, which say that "most 'l 

uniform ultrafilters on I<: are minimal in RK(I<:) , and 5.8(3), 5.10, 

5.11, which say that there are a great many non-minimal (in fact very far 

from minimal) uniform ultrafilters on K. 
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§9. P-points. In the preceding section, the existence of P-points 

was obtained as an inunediate corollary of the existence of minimal 

ultrafilters in RK(w). For all we have shown so far, it might be that 

all P-points are minimal, or perhaps that all uniform ultrafilters on 

countable sets are P-points. The .latter possibility is easily disposed 

. of by means of the following counter- example. On w. X w, the sets 

A(f, n) = {(x, y) Ix > nand y > f(x)} 

for n < wand f: W -t w, form a filterbase ~. If 'IT: W X W -t W 

is projection to the first factor, then any set B on which 'IT is 

constant, say B f;; {a} X w, is disjoint from A(f, a + 1) for arbitrary 

f, and any set B on which 'IT is finite-to-one is disjoint from 

A(f,O) where f(x) = max{y I(x, y) E B}. Hence, no ultrafilter 

containing ~ can be a P-point. (Another proof, using topological 

methods, is in Rudin [14].) The possibility that all P-points are 

minimal has also been disproved, assuming CH, by Booth 

[2, Theorem 1.11]. The ~xistence of non-minimal P-points will also 

follow from the main results of this section. 

We begin wit}:l a proposition whose main purpose is to justify the
 

name P-point; see Gillman-Jerison [6, Exercise 4L].
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PROPOSITION 1. Let D E f3w - w. D is a P-point if and only if, in 

f3w - w, every Go-set containing D is a neighborhood of D. 

Proof: We remind the reader that the use of the notation f3w - w , rather 

than unif(w), means that we are using the standard (Stone- Cech)" 
topology. 

Suppose D is a P-point and A 1S a Go-set, say 

A =0- A., containing D. For each i < w, choose a basic open
I il<w 1 

'" set G. 
1 

G. e w. Let 
1­

f:W-;:'w+1 n ----? lJi{n rt G.) if nrt0 G. 
1 1<W 1 

W if nEn G. 
1<W 1 

As D is a P-point, f is finite-to-one or constant on some BED 

If B ~ f-\i) for some i < w, then B and G. are disjoint sets 
1 

in D, a contradiction. If 

-1 (\
Bef (w) =(} G. 

- 1< W 1 

then 

(1) D E :Be ner. eA 
. 1 
1< W 

and A is a neighborhood of D. If f is finite-to-one on B, then, 
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for each i 

B - G = {n E B In rt. G } S B n f-
l

{O, 1,' .. ,i}
i i 

is finite, so any uniform ultrafilter which contains B also contains 

G. Therefore (1) holds again, and A is a neighborhood of D in 
1 

f3w - w . 

. Conversely, suppose any G -set containing D is a neighborhoodo 
of D, and suppose f: w ... w is not constant on any set of D. Then, 

for each nEw, 

A = {k If( k) > n} E D 
n 

So A and, by assumption, there is a set B ~ w such thatDEn
nEw n 

DEBCnA - n 
nEw 

Thus, BED, and, for each n, every uniform ultrafilter containing 

B also contains A Hence B - A is finite, and f is finite­
n n 

to-one on B. Therefore, D is a P-point. 0 

We now turn to the cpnstruction of P-points with further special 

properties (including non-minimality). These constructions are by 

transfinite induction, but they are a bit more subtle than the construction 
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sUITlInarized by the Baire category theoretn. It is, rf. course, clear 

that we cannot obtain non-tninitnal ultrafilters by a direct application 

of the Baire category theoretn, for the set of non-tninitnal ultrafilters 

on W is tneager. We shall need the following letntna for the 

construction of sp.ecial P-points. 

LEMMA 2. Assutne CH. Suppose C is a nonetnpty closed subset 

of f3w - w \Yith the property that, whenever a G - set tneets C, its 
o 

interior also tneets C. Then C contains a P-point. (It suffices to 

consider Go-sets of the fortn nEIBB with a countable.) 

Proof: The nutnber of Go-sets of the fortn ()EaB with a countable 

is 2
w=w+; let {Xili<W+} be the set of all such Go-sets. We 

define inductively nonetnpty closed sets C. = C n:6. for certain 
1 1 

B. S· w, such that i < j => C :::> C We begin by taking Co = C = C n w 
1 i - j 

1£ O! is a litnit ordinal <w+ and is defined for all 

f3 < O!, then 

because it is a nested intersection 'of nonetnpty cotnpact sets. By hypothesis, 

" there is a basic open set B (B c W) such that a. a. ­

and B" nc=!=(/>
O! 
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" This is closed (because B is), nonempty,We define 
ex 

and S C~ fo r all {3 < ex If ex is a successor, {3 + 1 

.. 
C{3 =C n B is already defined, and X~ n C{3 = (/J let 

13 

But if 

then, by hypothesis, we can find B ew such that cnB f;(/J and ex ex 

C = C n B This completes the definition of the 
ex ex 

decreasing sequence C By compactness, there is a DEn +C ;ex I et<w ex 

obviously DECo = C, and I claim that D is a P-point. If X is 

any Ga-set containing D, then, for some i < w+, D E X. ex. 
1 

(Replace the open sets whose intersection is X by basic open subsets 

containing D.) Thus DEC. n X., and C. 1 was defined as 
1 1 1+ 

" C n ,B. l' where B "- ex Therefore, 
1+ i+l- i 

I 

and X is a neighborhood of D, as claimed. 0 

Restating the lemma in non-topological language, we obtain 

COROLLARY 3. Assume CH Let F be a filter on W containing 

all cofinite sets. Assume that, for every decreasing seguence 

y ::J Y ::J Y ::J... of sets Y. each of which meets every set in F,0- 1- 2- 1 ­



1 
there is a set S, meeting every set in F, and such that S - Y. is 

finite for all i < w Then there is a P-point containing F. o 

Obviously the lemma and its corollary apply to all countable sets, 

not just to w. 

THEOREM 4. Assume CH. For every P-point D, there is a 

P-point E> D 

Proof: Without loss of generality, assume Un(D) =w. Let 

11' : W X W -+ W be the first" projection. For any set AS w X w, define 

fA : W -+ W + 1 by 

-1 
= Card{A n 'IT (n)) = Card{y !(n, y) E A} 

Let F be the family of all sets A~wxw such that f iswxw-A 

bounded by some n < W on some set in D. It is trivial that F is 

a filter on W X W containing all cofinite sets. 

We shall verify that F satisfies the assumptions of Corollary 3. 

Let be a sequence of sets such that each Y. meets 
1 

every set in F. If we let f. = fy ., this assumption means that each 
1 1 

of the f. is not bounded by any n < w on any set of D. Let 
1 

h(k) = {J.ln < k)f (k) < n 
n 
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(For the ",,-notation, see Shoenfield [15, p. 112]; h(k) = k if 

('lfn < k)f (k) > n .) Thus,
n ­

(1) k > 1 => h(k) > 1 and ~(k)-l(k) ~ h(k) - 1 

-1 
Suppose h were constant on a set of D, say h (a) ED. Since 

D is non-principal, 

A ::: {x Ix > a and h(x) = a} E D 

The definition of h shows that, for x E a, f (x) < a, contradicting the fact 
a 

that f is not bounded 'by any finite number on any set of D. So h 
a 

is not constant on any set of D, and, because D is a P-point, 

h is finite-to -one on some set A E D Without loss of generality, 

say 0 r£ A. For each x E A, (1) and the definition of f show 
n 

that there is a set S of cardinality h(x) - 1 such that 
x 

For x r£ A, let S = (/J. Let 
x 

= lJkx} X S ) 
xEA~1 x 

I claim that S has the properties required by the hypothesis of 

Corollary 3. 
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First, for each n, 

Card S 
n

= h(n) - 1 if nEA 

= D if nrtA 

Hence, the set 

-1 IfS {D,1"",k-1}nA = {xEAh(n).:::;k} 

is finite (because h is finite-to-one) and thus not in D. But A ED, 

so 

-1
f {D, ... , k - I} rt D
S 

We have shown that f is not bounded by any k < w on any set ofS 

D. Therefore, S meets every set of F. 

Second, if h(x) > n, then 

{x} X S_ ~ Yh , ) 1 ~ Y 
X 'x - n 

so 

'S - Y c (lAJ {x} X S ) - (hU() {x} X S )n - xtA x x >n x 

= . ~ ({x} X Sx ) 

and h(x),:::;n 
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Since h is finite-to-one on A and each S is finite, S - Y is 
x n 

contained in a finite union of finite sets, hence is finite. 

Thu~, Corollary 3 applies, and there is a P-point E:::> F If 

BED, then f xw _rr- 1(B) is identically zero on B, so w 
-1 

rr (B) E F ~ E Thus rr(E) = D and E ~ D Furthertnore, if 

A ~ w X w is such that rr ~ A is one-to-one, then fA takes only the 

values 0 and 1, so 

wxw-AEF~E 

and A (/. E. Since rr is not one-to-one on any set of E,
 

[rr] E : E .... D is not an isotnorphistn, by Proposition 2. 7. By Corollary 2.6,
 

D fE, so E > D. 0
 

COROLLARY 5 (Booth[2]). Assutne CH. There are non-tninitna1
 

P-points. 0
 

COROLLARY 6. Assutne CH. There are increasing W - sequences of
 

P-points. In fact, every P-point is the first tertn of such a seguence. 0
 

We shall see, in Chapter IV, that the set of P-points is not directed; 

in fact there are two tninitna1 ultrafilters no cotntnon upper bound of 

which is a P-point (as suming FRH(w)). 
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PROPOSITION 7. If D is non-principal, E is a P-point, and 

D.5 E, then D is a P-point. 

Proof: Size(D) =w by Proposition 4.1. Suppose f(D) is non-principal, 

and let D = g(E). Then fg(E) = f(D) is non-principal, so, as E is 

a P-point, fg is finite-to-one on some set A E E. But then f is 

finite-to-one on g(A) ED. 0 

THEOREM 8. Assume CH. There is a set" of P-points which, with 

the Rudin-Keisler ordering, is isomorphic to the real line with its 

. usual ordering. 

Proof: We use the usual notations ill. and (Q for the sets of real and 

rational numbers respectively. We must find, for each ~ E ill. , a 

P-point D ~ such that 

Let X be the set of functions x: 02 -> W such that x( r) = 0 for 

all but finitely many r E (Q Note that Card(X) =w. For each 

~ E ill. , define f ~ : X -> X by 

f~(x)(r) = x(r) if rs:~ 

o if r > ~ 
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Clearly, 

f f = f 0 f = f .0 

~ TJ TJ ~ min(~,TJ) 

Eventually, the required ultrafilters D ~ will be defined to be 

for some particular ultrafilter D on X Observe that, if 

·then 

so 

D --;:> D 
TJ ~ 

Hence D We must choose D so that in fact and. 
TJ 

so that each is a P-point. By Corollary 2.6, the first objectiveD~ 

willbe accomplished if [f~ lDTJ is not an isomorphism, and, by 

Proposition 7, the second objective will be acco:nplished if D itself is 

a P-point. 

We consider first the problem of making sure that f~: DTJ D ~ 

is not an isomorphism. What we want is that, for each g: X X , 

g f~ =1= id mod DT'I. (See Corollary 2.6.) In other words. when S < TJ0 , 

f (D)
TJ 
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or 

ED 

Let 

for any g: X --+ X and any ~ < 1] E JR. We have just seen that, in 

order that whenever ~ < 1], we must have 

B(g, ~, 1]) E D forall g,~,1] 

Hence we will surely want to know 

LEMMA 9. The fami! y 

~<1]E1R-} 

has the finite intersection property. 

Proof: We first observe that, if then 
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For 

x rt B(g,~, 77) 

=> f ,(x) =
 
77
 

Now consider a finite intersection n ~=lB(gi' ~i' 77 ). By the observation
i 

just tnade, this set contains another of the satne fortn but with the 

intervals [~., 77.] disjoint. By renutnbering, we tnay suppose
1 1 

For each i, let r. be a rational nutnber such that ~. < r. < 77.. 
1 1 1 1 

We define a function x: m..... w as follows. First, x(r) = 0 for all 

values of r except x(r. ) is defined by induction on i , 
1 

so suppose x( r.) is already defined for j < i Then isf~i (x)
J 

already detertnined. Choose x( r.) to be any nutnber different frotn 
1 

g.£t.(x)(r.) and. gft.(x) have different values at r., 
I <;1 1 I <;1 1 

so 

n 

x E (',B(g., ~.,77.) 
i=l 1 1 1 

This cotnpletes the proof of the lemma. 0 
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Before continuing with the proof of the theorem, we remark that 

what we have already done suffices to prove (without CH) 

COROLLARY 10. There is a subset of RK(w) order-isomorphic to the. 

real line. D 

. COROLLARY 11. There is a subset of RK(w) , order-isomorphic to 

the real line, above any prescribed element of RK(w). 

Proof: Let E be any prescribed, ultrafilter on w. Adjoin -00 to 

02 with -00 < r for all rational r; call the result 02':~, and let 

ffi.'~ be similarly defined. Define X':~ and B':~(g,~, 77) as before 

(~ may now be -(0). For each A E E, let A' S X':~ be 

{x E Xlx(-oo) E A}. A trivial modification of Lemma 9 shows that 

~ *".X --;:. X and 

has the finite intersection property. If D is an ultrafilter containing 

this family, D ~ = f~(D) gives the required chain above E, for 

. D 

COROLLARY 12. There is a subset of RK(w) , order-isomorphic to
 

the long line, above any prescribed element of RK(w)
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Proof: Use Corollary 11 and Proposition 5.10. 0 

Returning to the theorem, let F be the filter generated by the 

sets B(g,~,tI) It has a basis consisting of finite intersections 

n~ IB(g., ~., tI.) where, as in the proof of the lemma, we may as sume 
1= 1 1 1 

and; if we wish, that the ~. and tI. are rational. To complete the 
1 1 

proof, we must find a P-point D ~ F For this we use Corollary 3, 

whose hypotheses we now intend to verify. F contains all cofinite 

sets, for otherwise we could find a principal D ~ F, but then all the 

D€ are principal, contradicting the fact that no two of them are 

isomorphic. (A more direct proof is clearly also possible. ) 

Now let be subsets of X each of which 

meets every set in F. We must find a set Sf:; X such that S meets 

every set in F and, for all i , S-Y is finite. Let
i 

be an enumeration of all the (countably many) sequences of rationals 

of the form 

P <q <p <q < .. '<p <q
1 1 22m m 

for arbitrary m < w. Let X(i) be half the number of terms of cr. 
1 
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(i. e., m. if cr. is the sequence just exhibited).
1 

Let n be a (tem.porarily) fixed natural num.ber. Let cr be 
n 

p < q < ... < p < q where A = A(n). For each i such that 
1 1 A A 

1 < i < A + 1, we will call certain elem.ents of X i-acceptable. 

The definition of i-acceptability is by downward induction on i. An 

elem.ent xEX is A+ I-acceptable if and only if xEY For 
n 

1.:5 i < A, x E X is i-acceptable if and only if there are two 

i + I-acceptable elements, and such that~, 

1 .:5 i < A + 1, the set Acc(i) of i-acceptable elem.ents of X m.eets 

every set in F. This claim. is true for i =A + 1 because we are 

assum.ing that Y m.eets every set in F. We proceed by downward 
n 

induction on i Suppose Acc(i + 1) m.eets every set in F but 

Acc(i) does not. Say Acc(i) is disjoint from. C E F. By definition 

of i-acceptability, 

x E C =>	 All those i + I-acceptable y's which have the sam.e 

image as x under f have the sam.e im.age under .
pi	 

fqi 

For each	 x E C, let g(x) be the im.age under f of one (hence of
qi 

every) i + I-acceptable y E C such that fpi(y) = fpi(x). Clearly, 

g(x) depends only on fpi(x), so let g(x) =h(fPi(x». Then, for all 
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x,y EX, 

x E C and y E Acc(i + 1) = 

= h(fp.(y)) => 
1 

y f. B(h, p., q.) 
1 1 

In particular, letting y =x, we find that 

Acc(i + 1) n C n B(h, p., q.) = (/J 
1 1 

contrary to the induction hypothesis that Acc(i + 1) ITleets every set 

in F. This proves the claiITl. 

Thus, there is a l-acceptable x EX. By definition of acceptability, 

there are Z-acceptable and 3-acceptable x ' x ' x ' andoo Ol lO 

x ' ... , A + l-acceptable where J is a A-tuple of zeroes and
ll 

ones, such that fpk(x... ) depends only on the first k - 1 cOITlponents 

of ... , but fqk(x... ) depends also on the kth cOITlponent. Let 

5 be the set of ZA(n) eleITlents of Y thus obtained (froITl a 
n n 

specific x E Acc(l)) . 

Now let n no longer be fixed, and define 5 = U 5 . Asn<w n 

5 c Y and the Y forITl a decreasing sequence, 5 - Y. s;V .5 ,
n- n n 1 n<l n 

which is finite. All we still have to prove is that 5 ITleets every set 
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in F. By previous observations, it suffices to show that S meets 

every set of the form n~ lB(g" p., q.) where Pol q. E Q2 and 
1= 1 1 1 1 1 

p. < q. < P'tl Choose n so that (]n is PI < qi < ... < P>.. < q>.. ' 
1 1 1 

so >..(n) = >... With this particular value of n, we may use the 

notation of the preceding two paragraphs where a fixed n was 

·considered. In particular, x is defined, where is any 

sequence of >.. or fewer zeroes and ones. Choose j = 0 or 1 so
1 

that fql(xh) f. glfpl(x); this can be done because fql(x ) f. fql(x )O l 

After jl"'" \-1 have been chosen (for 2 < i < >..), choose j. = 0 . 
1 

or 1 so that fq.(xJ· •••J'') =1= g.fp.(x '·. J'. 1); this can be done 
1 iII 1 J1'·' 1­

because Then 

satisfies, for all i(l < i < >..) , 

= fq.(x... 'J' ) =1= gfp.(x , •• 'J' ) = g.fp.(y)
11 Jl iIIJ i-I 1 

that is, 

>.. 
y E ()B(g., p" q.) 

. 1 1 1 1 
1= 

Also, yES £; S. This completes the proof that the hypotheses of 
n 

Corollary 3 hold and hence also the proof of Theorem 8. 0 
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§IO. Minimal ultrafilters. We have remarked (in 8.5) that ultrafilters 

minimal in RK are characterized by the fact that every function on 

Un(D) is constant or one-to-one on some set of D, and that, for 

minimal D size(D) is either w or a measurable cardinal. In 

this section, we collect various (mostly known) facts giving equivalent 

characterizations of minimality. 

DEFINITION 1. If A IS. a set and n E w, [A]n is the set of all 

subsets of A of cardinality n. If A is linearly ordered, we 

identify [At with the subset of An consisting of those n-tuples 

whose components are in strictly increasing order. If {PI' P 2} is a 

n 
partition of [At (i. e. , P = [A] - P ) a subset X S A is

2 I 

homogeneous for {PI' P 
2 

} if and only if [xt S PI or [xt f;; P
2 

A filter F is a Ramsey filter if and only if it is uniform and every 

partition of [Un Ft (for any n < w) admits a homogeneous set in F. 

DEFINITION 2. A uniform ultrafilter D on fC is normal if and only 

if, for any f: fC -t fC such that (YxD)f(x) < x there is a A < fC such 

that (YxD)f(x) = A. A uniform ultrafilter D on fC is quasi-normal 

if and only if, for every map r: fC -t D, there is an A E D such that 

x, yEA and x < y y E r(x) 



In the definition of Ramsey filter, the case n = 0 is vacuous, and 

the case n =1 yields 

LEMMA 3. Every Ramsey filter is an ultrafilter. 0 

PROPOSITION ·4. Every Ramsey ultrafilter is minimal in RK. 

Proof: Let F be a Ramsey ultrafilter, and let f be any function on 

Un(F). Partition [Un(F)]2 by 

{x,y} E PI <' >f(x) = f(y) 

{x,y} E P < >f(x)· f:. f(y)
2 

Let X E F be homogeneous for {PI' P 2} . Then f is either constant 

on X (if [X] 2 
C PI) or one-to-one on X (if [X] 

2
C P 2)' 0 

PROPOSITION 5. Every quasi-normal ultrafilter D on K is Ramsey. 

Proof: We must show that D contains a homogeneous set for any 

n
partition of [K] • This is clear if n = 0 or 1; we proceed by 

induction on n. Suppose t~e assertion is true for n (> 1), and let 

{PI' P } be a partition of [Kf+l. As discussed above, we view
2 

[r. '" ]n+l as th e set of properly ordered n +1-tuples from K. For each 

xEK define a partition of by setting, for each y< •.• <y EK,
1 n 
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By induction hypothesis, there is a f(x) E D such that 

where i K ----:> 2 

As D is uniform, we may suppose that y E f(x) => y > x. Then . 

Now let A be as in the definition of quasi-normality, and let BED 

be a set on which i is constant. Then A n BED, and 

x < y < ... < yEA n B => Y < ... < Y E r(x) and x E B 
In' 1 n
 

=> (x, Yl' •.• ,y ) E p.

n 1 

where i is the constant value of i(x) for x E B. Therefore, 

A n B is the required homogeneous set. 0 

PROPOSITION 6 (Kunen, see [2]). Every minimal uniform ultrafilter D 

on K i.s quasi-normal. 

Proof: Let r K ..... D; we must find an A E D such that 

x < Y and x, yEA => y E r(x) 



75 

each r(x), we may assume without loss of generality that n r(x) = (/J
xEK 

Then we can define f: K -+ K by 

f(y) = p,x (y.(/. r(x)) 

As each· r(x) ED, f cannot be constant on any set of D; by 

minimality, f is one-to-one on a set BED. For x < 1(, let 

g(x) = sup ( {y E B If(y) < x} U {x + 1}) 

as f is one-to-one on B, the set whose supremum we are taking 

has cardinality ..s x + 2, and, as I( is regular (being w or 

measurable), g(x) < K. Thus g is a well-defined map K -+ K 

Clearly 

(1 ) g(x)	 > x 

(2)	 y E Band y > g(x) => f(y) > x 

=> Y E r(x) 

Define a sequence (k < I() by a = 0 , = g(~) , and 
~ O a k +l 

for limit k. Then a < K by regularity of K , andak =\{<kaj k 

~<Kak = For any y E K , let h(y) be the least k for whichK 



76
 

y .::; O!k' Any set on which h is constant is bounded (by a suitable O!k)' 

hence is not in D. Therefore, h is one-to-one on some C ED. 

Since D is an ultrafilter, it contains a set A c B n C such that no 

two consecutive ordinals are in h(A) Now suppose x, yEA and 

x < y. As h is one-to-one on A and is obviously monotone, 

h(x) < h(y) As no two consecutive ordinals are in h(A) , h(x) + 1 < h(y) . 

By definition of h(x) , 

x <~(x) 

and, as g is monotone, 

By definition of h(y) , h(x) + 1 < h(y) implies 

~(x)+l < Y 

so 

g(x) < y 

By (2), Y E r(x). Thus A has the properties required in the definition 

of quasi-normality. 0 

Summarizing, we have 
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(1) D IS minimal in RK. 

(2) D is Ramsey. 

(3) D is quasi-normal. 

As a corollary, we observe that quasi-normality is invariant under 

isomorphism, which is not clear from the definition, as the ordering of 

K was used there. 

To relate normal ultrafilters to minimal ones, we cite 

PROPOSITION 8. (1) (Scott; see [11]). If D is a uniform I{ -complete 

ultrafilter on I{ > w, then there is a normal ultrafilter < D on I{. 

(2) (see [16]) Normal ultrafilters are Ramsey. 

COROLLARY 9. If K > w, then the list of equivalent conditions In 

Theorem 7 can be extended to include 

(4) D is isomorphic to a normal ultrafilter. 

We remark that, unlike quasi-normality, normality is not invariant 

under isomorphism. In fact at most one ultrafilter in any isomorphism ' 
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class is normal. We remark also that, in contrast to the case K = W , 

when K is a measurable cardinal the existence of minimal ultrafilters 

on K has been proved (Proposition 8) without any special assumptions 

like CH or FRH(w). 

It is easy to see that, if D is a uniform ultrafilter on K, then 

D X D is not an ultrafilter. In fact, each of the three disjoint sets 

A = {(a,,8) [a < ,8} 

B = {(a,,8)la>,8} 

b. = {(a,a)laE K} 

in K X K meets every set of D· X D. Therefore, D X D is 

contained in at least three distinct ultrafilters, namely any ultrafilters 

containing D X D U {A}, D X D U {B} , D X D U {b.}; furthermore, 

every ultrafilter containing D X D must contain one of thes e sets. 

Now D X D U {b.} generates an ultrafilter, namely O(D) , where 

o : K -> K X K is the diagonal map a -> (a, a). If D X D U {A} (and, 

symmetrically, D X D U {B}) generates an ultrafilter too, then there 

will be exactly three ultrafilters containing D X D; that is, D X D 

will be contained in as few ultrafilters as possible. The next proposition 

tells us when thi s happens. 
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PROPOSITION 10. Let D be a uniform ultrafilter on K. D XD is 

contained in at least three ultrafilters on K X K. The number is exactly 

three if and only if D is minimal. 

Proof: In view of the preceding remarks and Theorem 7, it suffi.ces to 

show that D X D U {A} generates an ultrafilter if and only if D is 

minimal. For D X D U {A} to generate an ultrafilter means that, 

2 
given any partition {PI' P 2} of A = [K] , there is a set XED 

2 2 
such that [X] = X n A c PI or P This is just the case n = 2 

2 

of the definition of Ramsey. Hence (Theorem 7), it follows from D 

being minimal. Conversely, it implies minimality, for only this case 

(n = 2) was used in the proof of Proposition 4. 0 

Remark 11. It is known that an uncountable cardinal K is 

inacces sible and weakly compact if and only if every partition of [K] 2 

into two pieces admits a homogeneous set of cardinality K. Although 

this condition on K requires K to be quite large, it is much weaker 

than measurability. For example, if K is measurable and D is a 

normal ultrafilter on K, then 

{>.. < K I>.. inaccessible and weakly compact} 

is in D, hence has cardinality K. The next proposition shows that 
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an apparently mild additional condition on K is, in reality, very 

strong. 

PROPOSITION 12. Let K be an uncountable cardinal, and suppose it 

is possible to assign to each partition of [K]2 a.homogeneous set of 

cardinality K in such a way that the collection of these assigned 

homogeneous sets has the finite intersection property. Then K is 

measurable. In fact, the filter F generated by the assigned homo­

geneous sets is a K-complete ultrafilter isomorphic to a normal 

ultrafilte r on K. 

Proof: First note that, if A ~ K, then A or K - A is in F. For 

we have a partition of [K]2 given by 

{a,~} E ~l <; > min{a,~} E A 

and clearly any homogeneous set for this partition is a subset of A or 

of K - A (except for its last element, but the assigned homogeneous 

sets have no last element). Thus, F is an ultrafilter. Further, if 

Card(A) < K, then the homogeneous set assigned to this partition, 

having cardinality K, cannot be a subs et of A, so K - A E F . 

Thus, F is uniform. Clearly, F satisfies the case n = 2 of the 

definition of Ramsey filters, and, as in the proof of Proposition la, this 

suffices to show that F IS minimal. Therefore, F IS K- complete, 
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and, since K: > W, K: is ITleasurab1e. By Corollary 9, F is 

isoITlorphic to a norITlal ultrafilter on K:. 0 



CHAPTER III.
 

ULTRAPOWERS
 

§ 11. Ultrapowers and rrlOrphisms. 

DEFINITION 1: Let u be any structur~ for any language L. and let 

-'. 
[f]E : E -> D be a morphism in U. We define the induced map. [f]~ 

or f*. from D-prod lui -.!£. E-prod lui -EY {:«[g]D) = [g 0 f] E • for 

any. g: Un(D) -> lui. 

LEMMA 2: (1) [gof]E depends only on [g]D and [f]E' so is 

well-defined. 

(2) l:< is one-to-one. 

(3) idUn(D) =idD_prod luI. 

Proof: (3) and (4) are obvious. (1) and (2) follow from parts (5) and (6) 

of Lemma 2.2. 0 

PROPOSITION 3: f>:< is an elementary embedding of D-prod u into 

E-prod u 

82
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Proof: Let cp (xl' ... ,x ) be a forrrmia of L, all of whose free 
n 

variables are among Xl'.·. , x ' and let [gIJ
D 

,··., [gnJD be n 

arbitrary; elements of D-prod lal = ID-prod al . 

g (i))} ED = f(E) 
n 

, g f(j ))} = r I {i Ia FcP (gl (i), ... , g (i))} E E ¢:;> 
n n 

j ••• 

It is not in general true that every elementary embedding of D-prod~ a 

into E-prod a is of the form (:<. Trivial counterexamples are obtained 

by taking a finite and D f. E. For a less trivial example, assume 

GCH , and let D and E be non-isomorphic K+-good ultrafilters 

minimal inRK(K) (see Corollary 8.8), where K exceeds the cardinalities 

of fa I and L. Then there are no morphisms at all from E to D 

yet D-prod a and E-prod a are isomorphic (see Section 1. ) Roughly, 

elementary embeddings of the form {:< are natural with respect to a, 

while the isomorphisms between saturated structures tend to be unnatural, 

as one sees from the inductive "picking and choosing" argument by which 
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they are obtained. (This heuristic idea can be made precise by defining 

an appropriate category of models, on which flD-prod ll and IIE-prod ll 

are functors. Then the natural transformations from D-prod into 

E-prod are exactly the tl<l s where f: E -- D. ) 

If, however, the structure· G is"sufficiently richll(in comparison 

with D and E) then all elementary embeddings D-prod G -- E-prod a 

are of the form {:'. We proceed now to define certain Il r ich l1 structures. 

DEFINITION 4: Let A be any set. Let L be the language which 

has a predicate or function symbol, R or 1., for every predicate R 

or function f on A. The complete structure on A is the structure 

a for L which has universe A and in which R denotes Rand 

f denotes f for all predicates and functions on A When we speak 

of a set as though it were a structure, we mean the complete structure 

on that set. 

Note that every element a EA has a name a (a 0 -place function 

symbol) in the language of the complete structure on A. Therefore, 

every structure elementarily equivalent to A has an elementary 

submodel isomorphic to A. 
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PROPOSITION 5: Let D and E be ultrafilters, and let A = Un(D) . 

Any elementary embedding 

e : D-prod A -f E-prod A 

is l:< for some f: E -f D. [f] E is unique. 

Proof: The identity map, id: A -.A, of Un(D) determines an 

element [id]D of D-prod A and thus an element 

e([id]D) E E-prod A 

Let that element be [f]E' where f: Un(E) -f A = Un(D) 

For any B c A , 

BED ~ {irA FB (i)} ED 

¢::> {j IA 1= B(f(j))} E E 

so D = f(E) , and [f]E is a morphism from E to D. We now 

show that l:< coincides with e. If [g]D ED-prod A ,then g:A -fA , 

and 
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{i IA ~ g(i) = .& (id(i»} = A En 

so 

As e is an elementary embedding, 

E-prod A F'e( [g]n) = K( [f] E) 

If we let e([g.]n) = [h]E' we obtain 

{i IA ~h(i) = K (f(i»)} E E 

so h = go f mod E , and 

Finally, suppose f I : E -t D were another morphism such that 

Then 

Therefore, [f]E is unique. 0 

It is easy to modify the proof of this proposition to obtain the same 

result when A is any set of cardinality > size (D). Observe that, by 

functoriality of >:<, an isomorphism of ultrafilters induces isom.orphism.s 

of ultraproducts of arbitrary structures. As a partial converse, we 

observe 
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COROLLARY 6: With D, E, A as in the proposition, let g: D -+ E 

-,'.'­
be	 such that g is an isom.orphism. from. E-prod A to D-prod A . 

Then [g]D is an isom.orphism. . 

Proof: By the proposition, (g':')-l is t:, for som.e f: E -tD. Now 

o apply Corollary 2.6. 0 

o Collecting the preceding results, we obtain the following characteri ­

zation of the Rudin-Keisler ordering. 

. PROPOSITION 7: Let D and E be ultrafilters, and let K > size (D) 

(resE., K > size (D) and K> size (E)). The following are equivalent. 

(1)	 D":::; E (resp., D = E). 

(2)	 For all structures G, D-prod G can be e1em.entarily em.bedded 

in (resp., is isom.orphic to) E-prod G. 

(3)	 D-prod K: can be e1em.entari1y em.bedded in (resp., is isom.orphic 

to) E-prod K:. 0 
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§ 12. Ultrapowers of w. In this section, we shall be concerned 

with ultrapowers of (the complete model on) W with respect to ultrafilters 

on w. In defining the complete model on a set, we used Rand f 

as the symbols of the language L which denote Rand f. This 

notation is often inconvenient and sometimes (as when R is the binary 

relation <) confusing, so we will often just use Rand f as symbols 

of L. It is 'also convenient to identify an element a of A - with 

the corresponding element of D-prod A , namely the denotation of ~, 

. which is represented by the function Un(D) -A which is constantly a 

PROPOSITION 1: Let D be a non-principal ultrafilter on w. D is 

minimal if and only if the only proper elementary submodel of D-prod W 

is w. 

Proof: If D is not minimal, say E < D , E non-principal, then, by 

the results of the preceding section, E-prod W is isomorphic to a proper 

elementary submodel of D-prod w. Since E has size w, it cannot 

be ~l- complete, so E-prod W is not isomorphic to w. 

Conversely, suppose D-prod W had a proper elementary submodel 

M different from (hence properly containing) w. Let [f]D EM - w, 

[g]D E (D-prod w) - M ,where f and g are maps w-w. f cannot 

be constant on any set of D, for if it were, [f]D would be in w. 
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Suppose f were one-to-one on some set A ED. Then there would 

-1
be an h (=gof on f(A)) such that on A. But then, in 

D-prod W, 

But [f]D EM, and M is closed under the function denoted by h 

(since M is an elementary submodel), so [g]D EM,> a contradiction. 

Therefore, f is neither constant nor one-to-one on any set of D, 

so D is not minimal. 0 

COROLLARY Z: Assume CH (or only FRH(w). Then the complete 

model on Lt., has a proper elementary extension w' such that no 

proper elementary extension of Cd is a proper elementary submodel 

of W'. (w' is a minimal proper elementary extension of w.) In 

ZW
fact, there are Z pairwise non-isomorphic such extensions u/. 

Proof Us e the preceding proposition, Corollary 8. 9, and Proposition 

11.7. 0 

It is true that every minimal prope r elementary extens ion of W 

is isomorphic to D-prod W for some minimal ultrafilter on Lt.,. This 

fact follows inunediately from the following 
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PROPOSITION 3 : Every proper eleInentary extension of (the cOInplete 

Inodel on) a set A contains an eleInentary subInodel isoInorphic to 

D-prod A for SOIne non-principal D on A. In fact, the extension 

is the union of all such subInodels . 

Proof: Let A I be a proper eleInentary extension of A , and let 

a E. A '; we Inust show that a is in an eleInentary subInodel of A I 

isoInorphic to D-prod A for SOIne D. (If a i A ,then D will clearly 

have to be non-principal.) We let D be defined by 

BED <;::::> A' F~ (a) 

for any B cA. First, we Inust check that D is an ultrafilter. For 

so A' satisfies the saIne sentence, and 

~ BED and B ED
1 2 
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Similarly, 

Next, we must define an elementary embedding 

e : D-prod A ..... A I 

If [f]D' ED-prod A , e{[f]D) is defined to be the unique b E A I 

forwhich A'l=b=i(a). (Intuitively, e (f) is f(a)..) This is well-defined, 

for if f = fl mod D, then 

c = {x If (x) = f '(x)} ED, 

so A I 1= f(a). But 

A I 1= (\fx) (~ (x) ¢:::>i(x) = i '(x)) 

because this sentence is true in A. Therefore, A' 1= i(a) = i'(a) , 

To verify that e is an elementary embedding, let qJ (xl' , x )
n

be a formula, and let [f ]D' ... , [fn]D ED-prod A (f Un(D) A).
l i 

Since 
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we compute (with an obvious "vector notation 11) 

D-prod A f CO ([f]D) ~ {i fA f cp (f(i))} E D 

~ AI f~(a) 

where the third equivalence is because the sentence 

(Vx)(hJA f CO(f(i))} (x) <¢=;> cp(.i(x))) 

is true in A , hence in A I • 

Finally, a is in the image of e ,for a = e([id]D). 0 

PROPOSITION 4: Let D and E be ultrafilters on w, f : E --D 

,'­
a morphism. f "(D-prod w) is cofinal in E-prod W (with respect to 

the natural order) if and only if f is finite-to-one on some set of E. 

Proof: {:«D-prod w) is cofinal in E-prod W if and only if, for every 

g : W -- W ,there is an h: w--w such that 
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in E-prod w. 1£ this is the case for g = id ,we have an h such that 
W 

A = {x Ihf(x) ~ x} E E 

Then, for x E A and yEw, 

f(x) = y => x .s h(y) 

so f takes the value y at most h(y) +1 times on A. Therefore, 

f is finite-to-one on A. Conversely, suppose f is finite-to-one 

on some A E E , and let any g: W -t W be given Define 

h(x) =max {g(y) Iy E A and f(y) =x} 

this is the maximum of a finite set, so h is well-defined. Clearly, 

for yEA, g(y) ~ hf(y) ,so [gJE.s [hofJ as required. 0
E 

From the preceding two propositions, we obtain 

COROLLARY 5: A non-principal ultrafilter D on W is a P-point 

if and only if every elementary submodel of D-prod w, except w 

itself, is cofinal in D-prod W. 0 
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§13. The initial segment ordering. Starting with the characterization 

of the Rudin-Keisler ordering in Proposition 11. 7, we define a 

stronger ordering by requiring one ultraproduct to be not only an 

elementary submodel but also an initial segment of the other. 

DEFINITION 1 : A morphism. [f]D : D ... E III It is an IS (I{) -morphism 

-,­
if and only if C(E-prod K) is an initial segment of D-prod K (~ 

respect to the natural order). If there is such an f, then we write 

Clearly, identity morphisms and composites of IS(K) -morphisms 

are IS(K) -morphisms. Hence ultrafilters and IS(K) -morphisms form 

a subcategory of It, and is (or rather, induces) a partial 

ordering of RK, stronger than the Rudin-Keisler ordering <. 

PROPOSITION 2 : Suppose \ < K and f: D ... E is an .IS(K:) -morphism. 

Then 
-,­

(': E-prod A.... D-prod) is an isomorphism. 

Proof: Since {:': E -prod A'" D-prod A is an elementary embedding, 

we need only check that it is surjective. Let [g]D be any element 

of D-prod A, so g: Un(D) ... A. Let 1. : Un(E) ... K be the constant 

function with value A. Then, for all i E Un(D) , g(i) < A :: 1. f(i) , 
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initial segment, there must be an h: Un(E) -01\ such that 

. £-1 (i Ih(i) < A} :: fi Ih£(i) < A} :::> fi Ih£(i) :: g(i)} ED 

so (i Ih(i) < A} E £(D) :: E. Redefining h on the complement o£ this 

set in E (which does not affect [h]E)' we may suppose h(i) < A for 

all i. Then [h]E E E-prod A ,and /([h]E):: [g]D . 0 

COROLLAR Y 3: If size (D) < 1\, then any IS (1\) -morphism with domain 

D is an isomorphism. 

Proo£: Apply the proposition, with A:: size (D) , and then use 

Corollary 11. 6. 0 

COROLLAR Y 4 : If \ ~ 1\, any IS(K) -morphism is an IS(\) -morphism. 

PROPOSITION 5 : Let £: D -0 E and 
, , 

£: D -> E be IS(K)-morphisms. 

If there is a morphism 
, 

g : E -oE such that 
,

£ :: g 0 £ , the n g is 

also an IS (1\) -morphism. If both E and E' have s ize ~ \( , then 

either there is a unique such g or there is a unique g': E'-0 E such 

that £:: g' 0 I'. (If both g and g 
, 

exist, they are inverse isomorphisms 

by Corollary 2. 6. ) 

0 
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Proof: Assum.e g is given and f' = gf. Then the order-preserving 

~ ~ 

em.bedding (', of E-prod I<: into D-prod I<: ,sends g""(E'-prod 1<:) to 

,
f 
,~~ 

(E-prod 1<:) which is an initial segm.ent of D-prod I<: and a subs et of 

f>:'(E-prod 1<:). Therefore (~g':'(E~prod 1<:) is an initial segm.ent of 

f * (E-prod 1<:), so g * (E ,-prod 1<:) is an initial segm.ent of E-prod I<: • 

This proves the first assertion. 

Now assum.e both E and E' have size < K:. Since {~(E-prod 1<:) 

y:~ ,
and f (E -prod 1<:) are initial segm.ents of D-prod 1<:, one is contained
 

~.. ,. ':~
 
in the other; say f '(E -prod 1<:) ~ f (E -prod 1<:). Then
 

~:;: -1 ...1,
 

f - f"': E '-prod 1<: ..... E-prod I<: is an elem.entary em.bedding (because
t'.\ 

and are elem.entary em.beddings). By Proposition 11. 5, there 

... 1 ..t. .,J'"
 
is a unique g : E -+ E' such that r' - 0 f":' = g'" , i. e. (gf)'~ = f"",
 

i. e. (by Propos ition 11. 5 again) gf = f'. 0 

COROLLAR Y 6 : In the subcategory of u(l<:) whose m.orphism.s are
 

the IS (I<:) -m.orphism.s, there is at m.ost one m.orphism. from. any object
 

to any other .
 

. Proof: Suppose f and f' were m.orphism.s D ..... E in this subcategory. 

By the proposition, we have f' =gf or f =gf' for some g: E -+ E 

But the only such g is the identity, by Theorem. 2. 5, so f = f'. 0 
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The corollary shows that the category of ultrafilters of size I( 

and IS (I() -morphisms, which we denote by IS (I() , is essentially nothing 

more than a partially ordered set (after identification of isomorphic 

ultrafilters), namely RK(I\) with the IS(I\) ordering < Thus, no-I( 

confusion will arIse if we also let IS(I\) denot~ this partially ordered 

set. From the last proposition, we obtain immediately 

COROLLARY 7 : IS(I() is a (not necessarily well-founded) tree; that 

is, the predecessors of any element are linearly ordered. 0 

PROPOSITION 8: Let 1\ be a measurable cardinal, and let P be 

the subset of IS (I() consisting of equivalence classes of I\-complete 

ultrafilters. Then P (with ordering ~ I() is well-founded. 

Proof: If D is a I(-complete ultrafilter, D-prod I( is well-ordered 

. (by its natural ordering; see [15,p. 311].). Let 1. (D) be its order type. 

Clearly, if D < E then 1. (D) < 1. (E) with equality if and only if 
-1\' -

D ~ E (by Corollary 11. 6). Thus 1. maps P to ordinals in a 

strictly monotone manner. Hence, given a nonempty subset of P 

we obtain a minimal element simply by taking one with miriimum possible 

1. • 0 

REMARKS 9 : IS(W) is not well-founded; see Corollary 15. 18 and 

[2, Theorem 2. 12]. 
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It is not obvious that 15(K:) is non-trivial, 1. e. that there exist 

D and. E (of size K:, say) such that D < E. Indeed, we shall later 
K: 

give a heuristic argument showing that D< E is a rather strange
K 

situation unles s K: = W or I( is ITleasurable. Nevertheles s, if I( 

is regular and 21( = 1(+ such D and· E do exist. 

PROPOSITION 10: Let D and E be ultra filters on X and 

X X Y respe·ctively, with D = 7T(E) where ",: X X Y -+ X is the 

projection. ["']E is an IS (K:) -ITlorphisITl if and only if, given any 

function f on X X Y for which- Card (£1' 7f 1 (x)) < K for all x EX 

(or even for all x E B where BED), there is a set A E E on 

which f (x, y) depends only on x, i. e. Card f11 (A n ",-1 (x)) ::. 1 for 

all x. 

Proof: First suppose ", is an IS (I() -ITlorphisITl, and let f be given. 

Cl early, we ITlay replace f by any f' such that 

(VXEX) (Vy, z EY) f(x, y) =: f(x, z) <;::::;>((x, y) = f'(x, z) 

since such a replacement affects neither the hypothesis on f nor 

the property required of A. Thus, we ITlay suppose f II 17'-1 (x) is 

an initial segITlent of I( for each x EX, and let g (x) ~ I( be an 

upper bound for f 11 .".-1 (x). For all x EX, y E Y, f(x, y) ::. g(x) = gn(x, y) , 

so, in E-prod 1(, [f]E::' [g"']E = rr':'[g]D' As 1T is an IS(I()-ITlorphisITl, 
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[f]E Dmst be Tr:'[h]D = [h'IT]E for SOD1e h: X --0 K:. Then the required 

set A is ((x, y) If(x, y) = h(x) = h~x, y)} ED. 

Conversely, suppose every f with Card f"1T-1x < K: for all x 

depends only on the first coordinate on SOD1e set of E. We D1ust show 

f : X X Y --01\ and g: X --01\. Let f': X X Y --0 I( agree with f on 

[(x, y) If(x, y)',:: g(x) = g1T(X, y)} E E , and let f' be 0 elsewhere. 

Then f'= f D10d E , and, for each x, has cardinality 

because it is bounded by g(x). By hypothes is, there is an A E E 

such that f' aSSUD1es at D10st one value on 1T-
1 (x) nA ; let h(x) 

be that value. (h(x) is arbitrary if 'IT -1 (x) nA = ¢.) Then 

f(x,y)lf'(x,y) = h(x) = h,,(x,y)}~ A EE 
. ­

so 

Observe that the restrictions that D and E be on X and 

X X Y and that the D1orphisD1 D --0 E be " are ines sential by 

LeD1D1a 2. 8. 

THEOREM 11 : Let K: be a regular cardinal such that 21\ = 1\+, and 

let. D be a K:+ - good ultrafilter on K:. There is an ultrafilter E 
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on K X I{ such that 7T(E) = D ,[rr]E is an IS(~)-morphism, and [rr]E 

is not an isomorphism. Thus D < E, so the partially ordered setI{ 

IS (I{) is not trivial. 

Proof: Since 21{ = K+, the family J., of functions f: 1\ X I{ -- I{ such 

-1that for all xEI{ Card f"rr x < K, can be well-ordered so that each 

f has at most I{ predecessors; let ~ be such a well-ordering, and 

let f+ be the immediate successor of f in ~ We define, by 

transfinite induction with respect to -< ,filters F f on I{ X I{ such 

that 

(1)	 F f has a basis of cardinality < I{ 

(2)	 Each set A E F f has the property that (V x D) tY I (x, y) E A} 

has cardinality I{ . 

(3)	 If f ~ g then F C F
f - g 

(4)	 F f+ contains a set A such that, for all x, f is constant 

on A nrr -1 (x) . 

If f is the first element of ':f ,let Bf consist of all the sets 

((x, y) Ix >Ci.! for all Ci. < II, and let F f be the filter generated by Bf . 

This satisfies (2) because D, being I{+ - good, must be uniform, and 

(l), (3), (4) are trivial. If f is a limit element of Jr ' let F = U"f Ff g.... g 
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and B
f

=~'<f B g This satisfies (1) since f has at most K 

predecessors, and the other three conditions are trivial. Now suppose 

and are defined; we must define will be 

generated by B + = B U {A} where A is as in (4); thus (1), (3), (4)
f f 

will hold. For (2), we must make sure that, for all X E B ' 
f 

Card {y I (x, y) E A nX} = K for most x with respect to D. Let 

B = (X IO!< K}, by (1). For each x < 1<:, let 
f a 

cP(x) = {G EP (1<:)\Card{yl(x,y) E(\X 1= K}.
~l bEd ~ 

Given any G EP (1<:), nX EF , so, by (2), {xiG E T(X)} ED. 
(Ll 0( € G fY. f 

Since D is 1<:+ -good, there is a function g: K: .... P (I<:) such that 
I.J..I 

{xlg(x)E=e(x)}ED and,forall aEI<:, {xlaEg(x)} ED. If we let 

g' agree with g on {x Ig(x) E <P (x)} and be <p elsewhere, then 

g '(x) E .p(x) for all x E I<: , and,for all a E K, 

{x Ia E g '(x)} = {x Ia E g (x)} n {x Ig (x) E <P (x)} E D 

For each x E K, let Y = (y\ (x, y) E Qx) X } . Thus Card Y = I<: , 
x xa 

but f takes fewer then I<: values on {x} X Y ' Since K is 
x 

regular, {x} X Y has a subset Z of cardinal 1<:, on which f 
x x 

is constant. Let A = U Z . Clearly A is as required in (4). We 
x EI<: x 

must still check that 

(\f x D)Card {yl (x, y) E A n X } = I<: for every a< K 
a 
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Let ex: be given. Card[y r (x, y) E A nX } = Card Z nX for all x. 
(X x O! 

But, for most x (with respect to D) , a E g '(x) , so z c (x} X Y eX 
x- x- a 

so, for most x, Card [y [ (x, y) E A nX 1= Card Z = I( , as required. 
(X" x 

Let F =l{ "1.. F If we adjoin to F all the sets ",,-l(C) for
Ej' f 

C ED and all the sets A c I( X I( such that 17 is one-to-one on 

I( X I( -A(or even fewer-than-I( -to-one) , the resulting set F I has the 

finite intersection property, by (2), so let E be an ultrafilter 

containing F ' . 17(E) = D because, for all C ED, 17- l (C) EF':=E. 

[17]E is not an isomorphism, because if 7T is one-to-one on A, 

then I( X I( -A E F ' ~ E ,and A i E. Finally, ['IT]E is an IS (I() -morphism 

because of (4) and Proposition 10. 0 

REMARK 12 : Since, in this proof, we could include in F' the 

complements of all sets on which 17 is fewer-than-I(-to-one, we could 

require in the theorem that 'IT not be fewer-than-I(-to-one on any set 

of E. 



103 

1) 14. Non-standard ultrafilters In this section we shall develop 

another way of viewing morphisms and IS (K) -morphisms. Apart from 

being interesting in its own right, this viewpoint will provide the 

promised "implausibility argument" for Theorem 13. 11. It will also 

help to motivate the definition of sums of ultrafilters and the Rudin­

Frolik ordering, and it will be useful in the proof that the ordering IS (u.') 

differs from the Rudin-Frolik ordering. 

Th roughout this section, D will be an ultrafilter on a set I, 

and V will be a very large set. Intuitively, we think of V as "the 

universe ", but to avoid technical problems we want V to be a set, 

say Stg (A) (see [15, p. 303]) for some A so large that V contains 

all the sets in which we shall be interested below. We remind the 

reader of our convention that, when a set is treated as a structure, we 

mean the complete structure on the set, so the language has symbols for 

all predicates and functions on that set. We shall use the notation 

Hom(X, Y) for the set of functions from X into Y . 

We consider the "non-standard universe" D-prod V. It has 

as an elementary submodel via the embedding x .... >:'x , where 

is the denotation in D-prod V of the name x of x, namely the 

germ on D of the constant function with value x. An element of 

V 
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,'­
D-prod V is standard if and only if it is 

',' 
x for some x E V. A 

subset S of D-prod V is internal if and only if for some sED-prod V 

eva ED-prod V) a ES ~D-prod V ~ a Es 

then we say that s represents S. (Clearly s is unique.) Subsets 

of D-prod V that are not internal are external. By abuse of language, 

we often use the same symbol to denote corresponding relations or 

functions on V and D-prod V; thus, for a, bED-prod V , we may 

write a E b instead of D-prod V ~ a £ b. Similarly, we may use the 

same symbol for an internal set and its representative. We shall also 

write [f] for [f]D ,since D is fixed. 

If X is a set (tacitly understood to be E V) and A c I X X , we 

obtain A: I - P(X) by A (i) = fx I (i, x) E A 1. Then, in D-prod V , 

[A] E ':'P(X) , and any element of ':'P(X) (i. e. any"internal subset of ,:'X) 

is [A] for some A. Similarly, if f: I X X .... Y, we define 

f: I-Horn (X,Y) by £(i)(x) = f(i,x). Then [I] E':'Hom(X,Y), and 

::l:: :.:' 
all inte rnal functions X - Yare of this form. 

Now suppose E is an ultrafilter on I X X ,and 'IT(E) = D , 

where fT: I X X .... I is the projection. We define E/D s= ':'P(X) by 

DEFINITION 1 [A]EE/D~AEE 
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Observe that, if A = A I mod D , then the complement of the symmetric 

difference of A and A' i5in E,50 AEE<==:>A'EE;therefore 

the definition is legitimate. From trivial identities like [A] n[B] = [.A?i1'3] 

*
 

. fact, any ultrafilter P(X} is E/D for unique ultrafilter E 

and X 
. ­

- [A] = 
~ 

[(I X X) - A] it follows that E/D is an ultrafilter in 

the Boolean algebra *P(X} Note that E/D need not be internal. In 

-',-.'
m a on 

I X X such that 'I7(E} = D ; the required E is defined by Definition l, 

read from right to left. 

.,­
is inte rnal and A c -,. Y is internal, then 

-,­c l (A) ~ >:'X is internal. Thus, if F is an ultrafilter m "'P(X} 

we can define an ultrafilter 

f(F} = (A E ':'P(Y) Ie 1 (A) E F 1 

>:< 
In P(Y} One thus obtains an analog 'lL of the category by

D 

taking as objects all ultrafilters in ':'P(X) for arbitrary X and as 

morphisms germs of internal maps. Note that ttlD is not just ':<'21, 

since the objects of UD may be external~ ':' U is equivalent to the 

full subcategory of CUD whose objects are internal ultrafilters. We 

have seen that the objects of U D correspond to ultrafilters E on 

I X X (for arbitrary X) with ",,(E} = D. If E is such an ultrafilter 

and· g: I X X ..... I X Y is a function commuting with "'" then one 
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~ 
easily computes ['?T'g] (E/D) = g(E)/D ,where TT': I x Y --+ Y is the 

projection. Using Lemma 2.8, one then finds that U is equivalent
D 

to the category of 'Ii -objects over D, whose objects are morphisms in 

U with ~od01Ylain D and whose morphisms are commutative triangles 

E .... E/. 
\, ,f 

D 

Translating Proposition 13. 10 into the present terminology, we 

obtain 

COROLLAR Y 2: Let E be an ultrafilter on I X X with .".(E) = D . 

The following condition is neces sary and sufficient for [ _1
"JE 

to be an 

IS(K:)-morphis::;.- Given any internal function f on X such that 

Card f"':'X < '\ in D-prod V, there is a (neces sarily internal) A E E/D 

such that ftA is constant in D-prod V. 0 

Observe that, when E/D is internal, the condition in the 

corollary says that E/D is ';'K-complete One eas ily checks that 

E/D is principal if and only if "., : E --+ D is an isomorphism. Hence~ 

D < E via 'TT and E/D is internal, if and only if E/D is a non­
K 

principal K:-complete ultrafilter on V is an elementary 

submodel of D-prod V , this condition can hold for some E/D if and 

only if K= W or there is a measurable cardinal X such that 
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K: ~ A~ Card (X). Hence, 

COROLLARY 3: If K: = W or K: is IT1easurable, then the conclusion of 

Theorem. 13. 11 holds without the as sUIT1ptions that 21<: = K: + and D is 

K: +-good. 0 

On the other hand, E/D is uniforIT1 if and only if '" is not 

fewer-than-K:-to-one on any set of E , so we find 

COROLLARY 4: If K: -I w and I{ is not IT1easurable, and if D and 

E satisfy the conclusion of TheoreIT1 13. 11 and the reIT1ark following 

it, then E/D is external. r:J 

Heuristic reIT1ark : Suppose K: is regular but neither IT1easurable nor 

countable, and suppose 21{ = I{+ and D is K: +- good. According to 

a person living in D-prod V , there are no uniforIT1 ':' K::'"' c oIT1plete 

...1... ~:~ 

ultrafilters on "'1<: (i. e. III P(I<:))) because ';'1( is neither IT1easurable 

nor countable. But" looking at his univers e frOIT1 the outside, we can see 

that there is such an ultrafilter; it just doe s not happen to be in his 

world (i. e. to be internal). If the resident of D-prod V is willing to 

believe us when we tell hiIT1 about this ultrafilter, he will say that 

although not IT1easurable, is pseudo-IT1easurable, in the sense that a 

':'1<: -coIT1plete uniforIT1 ultrafilter qexists in another world. If 



CHAPTER IV 

LIMIT CONSTR UCTIONS 

§ 15. Limits, sums, and products of ultrafilters Recall from 

elementary topology that an ultrafilter D on a topological space X 

is said to converge to a point x EX, and x is called a limit of D 

if and only if ,every neighborhood of x is III D. If D has a unique 

limit, we call it lim D; on a compact Hausdorff space, every ultrafilter 

has a unique limit. If D is an ultrafilter on a set I and f is a 

function from I to a topological space X, then we write D-lim f 

or D-lim.f(i) for lim f(D). We shall be concerned mainly with the 
1 

caSe that X is the Stone-~ech compactification of some (discretely 

topologized)set J. (See 7.7) 

LEMMA 1 : Let I and J be sets I D an ultrafilter on I and 

E a function assigning to each i E I an ultrafilter E. on J i. e. 
1 

E 1-> f3J. For any A c J , 

A E D-lim.E. <=::;>(Vi D) A E E. 
111 

Proof A is both open and closed in ~J. Hence 

(1) A EE(D) <=::;>lim E(D) E-A 

108 
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The right side of (1) is equivalent to 

A E lim E(D) = D-lim.E. 
1 1 

The left side is equivalent to 

~ -l~)
. (i IE. 

1 
E A 1 =E (A E D 

which means (Vi D) A E E.. [] 
1 

PROPOSITION 2: Let I, J, D, and E be as in the lemma, and let 

E':I ... [3J be another function. 1£ E =E' mod D, then D-lim E = 
i i 

D-lim.E'o . 
1 1 

Proof Obvious from the lemma or from the fact that E(D) = E '(D). [] 

PROPOSITION 3: Let I, J, D, and E be as in the lemma and let f J --+ J '. 

Then f(D-lim E.) = D-lim.f(Eo) 
ill 1 

Proof Applying the lemma, we compute for any A ~ J', 

A E f (D -lim. E . ) <;:::;> C 1 (A) ED-lim. E 0 

1 1 1 1 

<;:::;> (Vi D) C l (A) E E. 
1 

<;:::;>(Vi D) A E f (Eo)
1 

<;:::;> A ED-lim f (E 00 0 ) 

1 1 
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PROPOSITION 4: Let f: I .... I I ,let D be an ultrafilter on I , let 

D I =f(D) , and let E : I I .... X for any space X. 

D I - l'nn' l 
E 

. I in the sense that, if either limit exists and is unique, so 
1 1 

does the other, and they agree 

Proof Both are lim (E 0 f) (D) o 

DEFINITION 5 ,t;et I be a set and D an ultrafilter on I. For 

each i E I '~ J. be a set and E. an ultrafilter on J.. The 
1 ' 1 1 

disjoint union of the J. is 
1 

II J = {(i,j)li E I , j EJ.1iEI i 1 

there are canonical injections 

J .... J1 J. j I.... (i,j)
i 1i EI 

and a canonical projection 

rr- : 11 J ..... I : (i, j) ~ i 
i EI 1 

The sum of the E. with respect to D is defined to be the ultrafilter 
1 

D - L: .E. = D-lim.<:p. (E.)
1 1 1 1 1 

on J1.J.. If all the J. are the same set J and all the E. are the 
- 1 1 1 1 

same ultrafilter E ,then Jl.J. = I X J ,and D-L;.E will be called 
- 11 - 1 

the product of D and E (in that order) and denoted by D' E. 
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~ 

REMARKS 6: (1) A(i) and f(i) , as defined in Section 14, are, in 

-1 
the present notation, CD. (A) and f 0 ~rI. respectively.

. 1 'l" 1 

(2) Do not confuse the product DoE defined here with the 

cartesian product D X E defined in Section 3. Note that D' E, 

unlike D X E , is always an ultrafilter. 

(3) In much of the literature, D' E. is called E X D . 

LEMMA 7 (1) For all A c II J 
.J..L;. EI i 

A E D - ~.E. <2=:> (ViD)(Vj Eo) (i,j) EA 
1 1 1 

Thus the guantifier (V(i, j) D - ~. E.) is equivalent to (Vi D) (Vj E.)
1 1 1 

( 2 ) Fo r all A s; I X J 

A ED E <:;::::;> (ViD)(Vj E) (i,j) EA0 

(V (i, j) DoE) is equivalent to (Vi D)(Vj E) 

(3) For each (i,j)E~Ji F .. be an ultrafilter on a set
lJ 

K. 0 The natural bijection between
lJ 

Jl (J1 K.o) and

i EI j E J. 1J
 

1 

K .. 
1J 

(namely (i,(j,k» <-;:. ((i,j),k» maps 

D - ~.(E. 
1 1 

- ~. F o '> 
J lJ 

to (D - ~.E.) 
1 1 

~o .F.. 
1, J lJ 
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I 

we usually identify these two via this bijection. In particular, nlUltiplication 

of ultrafilters is associative. 

(4) The projection 'If :Jl. J ..... I maps D - 2::.E. to D. If 
1 1 1 1 

all the J. are the same set J and 'TT' is the projection I X J .... J 
1 

then fT'(D -2::.E.)= D-lini.E... If all the E. are the same E ,then 
1 1 111 

1T'(D . E') = E 

(5) 'rT: D - 2::.E ..... D is an isomorphism if and only if (Vi D) E. 
111 

is principal. ,"': D . E .... E is an isomorphism if and only if D is 

principal. 

(6) (Vi D) E. = E' (i. e. E = E' mod D)~ D - 2::.E. = D - 2::.E.' 
1 ill 1 1 

(7) Suppose, for each i E I £. J ..... J.'. The induced map
111 

f : Jl J ..... Jl J' (i, j) I.... (i, £. (j) )
1 i 1 

i E I i EI 

takes D - 2:: .E. to D - 2::. f (E.) If (Vi D)£. is an isomorphism, 
1 1 1 i 1 1 

then f is an isomorphism. 

(8) Suppose g: I' .... I and suppose D' is an ultrafilter on I' 

with g(D ') = D Then 

g : II J (. ') .... Jl J. (i " j) f.... (g (i ') , j) 
1

i 'E I' g 1 i EI 
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D- L:.E .. If g is an isomorphism, then so 
1 1 

maps 

-is g 

Proof Straightforward verification, omitted. 0 

Acco'rding to (7) of the lemma, we may unambiguously define sums 

of isomorphism classes by 

D - L:. E. = D - L:.E. 
1 1 1 1 

Note however, that (8) does not suffice to permit an analogous definition 

of D - L:.E. since when D is replaced by an isomorphic ultrafilter 
1 1 

the E 's must be re-indexed. Of course, if all the E. are equal,
i 1 

then there is no such difficulty and we define D'E=D'E 

DEFINITION 8: D ::"RF E if and only if, for some ultrafilters 

F. (i E Un(D)), D - 2::. F. = E The relation < is called the Rudin­
1 1 1 -RF 

Frolik ordering. 

Part (8) of the last lemma shows that the relation D '::'RF E 

depends only on the isomorphism classes of D and E , so we get 

an induced relation D '::'RF E on the clas s RK. This relation 

is reflexive by (5) and transitive by (3) of the lemma. By (4) , <
-RF 

implies .::., so it is anti-symmetric. RK with the partial ordering 
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< will be called RF; siITlilarly for RF(K), etc. RF(w) has been
-RF 

studied in detail by Booth [2]. To connect our definition with his, we 

need the following 

PROPOSITION 9: Let D be an ultrafilter on I , E : I ..... 13J. If the 

. points E. E13J have a systeITl 'of pairwise disjoint neighborhoods 
1 

(in 13J), then D-liITl E. ;; D - 2::. E. 
ill 1 

Proof: The pairwise disjoint neighborhoods can be taken to basic open 

A 

sets A. A. EE. ,and
1 1 1 

iii I => A. nA. I = ¢ 
1 1 

Define a function g: J ..... I to have value i on A. (and to have 
1 

arbitrary value On J -lJ. A. ), and let 
1 1 

f J ..... I X J : j I--- (g (j) , j) 

By choice of g , f agrees with CD· on A. , so f(E.) = CD.(E.)
'1 1 1 . 1 1 

Hence, us ing Propos ition 3, 

D - L: .E. = D-liITl. cp. (E.)
1 1 1 1 1 

= D-liITl. f (E.)
1 1 

= f(D-lim E.)
i 1 

Since f is obviously one-to-one, the proof is complete. 0 
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Let us call a family of points in a topological space strongly 

discrete if and only if the points have a system of pairwise disjoint 

neighborhoods (as in the last proposition). This property is, in general,. 

stronger than just discreteness. For example, if X is an uncountable 

set and 2 is the discrete space (0, l} , then, in the product space 

the points precisely one of whose coordinates is 1 (i. e. , the 

standard "uni.t vectors 11) form a dis crete but not strongly discrete 

collection. (Indeed, any family of pairwise disjoint open sets is countable. ) 

Discreteness is often'an easier property to deal with than strong discretenc 

because the former is an intrinsic property while the latter depends on the 

ambient space. Thus, the following simple result is often useful. 

PROPOSITION lO: In a regular (i. e. T land T 3 ) space X, ~ 

discrete countable set is strongly dis crete. 

Proof Let (x. Ii < w}
1 

be a countable discrete set; thus each x. 
1 

has an open neighborhood N. 
1 

containing no other x.. 
J 

Define 

inductively closed neighborhoods C. c 
1 -

N. 
1 

of xi as follows. If C. 
J 

has been defined for j < i and C. eN. 
J ­ J 

, then 

V<,. C. c
J1J­

L/<. N.
J1J 

is a closed set not containing x.. By regularity. the neighborhood
1 
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N. - U.<. C. of x. contains a closed neighborhood C. of x .. 
1 J1 J 1 1 1 

,. 
Then the C. are pairwise disjoint, so [x. Ii < w} is strongly

1 1 

discrete. 0 

Taken together, the last two propositions show that our definition 

of < agrees with Booth's. ' We continue with two propositions which
-RF 

show that (roughly speaking) when dealing with P-points we need never 

worry about discreteness. 

PROPOSITION 11 : Any countable fam.i1yof (distinct) P-points is discrete 

(hence, strongly discrete) in f3W' 

Proof: Let the P-points in question be E. (i < w) Tem.porarily
1 

consider a fixed 1. For each j Ii, let G. be a neighborhood of 
J 

E. m f3 W not containing E .. By Proposition 9. 1 n. l . G. 
1 J J 1 J 

contains a set N which is a neighborhood of E. m f3w-w. 
1 

Clearly N contains no E. (j I i). Thus, [E. Ii < w1 is discrete 
J 1 . 

(in f3l'~-W, hence in f3w, because discreteness is intrinsid. 0 

PROPOSITION 12: A convergent P-point on a regular space contains 

a strongly discrete set. 

Proof: Let D be a P-point on the regular space X , and let p E X 

be the limit of D. Since D has size W (by definition of P-point), 
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there is an A ED with Card(A) = wand p rJ. A ; let A = fa In < w 1 
n 

Since X is regular, let G be an open neighborhood of p not 
n 

containing a ,and let C be a closed neighborhood of p contained 
n n 

in G By choosing G and C inductively rather than all at once, 
n n n 

we can arrange G e C For 'each n, let g(a ) be the least
n+l n n 

k such that an i Gk ; g(a ) exists because a i G . Define gn n n 

arbitrarily o~ X - A. If g is constant on a set Be X , say 

g(B) '=- [k} , then B is disjoint from. A n G
k 

which is in D (as G
k 

is a neighborhood of lim. D), so B rJ. D. As D is a P-point, g 

m.ust be finite one-to-one on som.e BED since D is an ultrafilte r, 

we m.ay choose B so that B e A and g takes only even or only 

odd values on B, say even values. The finitely m.any points of B 

where g takes the value Zk are, by definition of g on A in 

G but not in G ' so they lie m . Zk-l Zk 

Since G + ~ C ' the various sets G _ - C (k < w) are
Zk l Zk Zk l Zk 

pairwise disjoint open sets which cover B , and only finitely m.any 

points of B lie in each of those sets. Using the fact that X is 

Hausdorff, we easily conclude that B is strongly dis crete. 0 

REMARK 13 : The hypothesis of convergence is not needed in the 

proposition. The proof of this proceeds by first observing that it suffices 



118
 

to prove discreteness (by Proposition 10) which is intrinsic, so, without 

loss of generality, the space X m.ay be replaced by a countable subspace, 

and we m.ay as well assum.e that X itself is countable. But any 

v 
countable' regular space is com.pletely regu)ar, so X has a Stone-Cech 

com.pactification f3 X , and in f3 X the, proposition can be applied 

because any ultrafilter converges. We om.it the details of this proof, 

because in practice we shall only need the case where the given ultrafilter 

converges~ in fact, the space X will be com.pact in applications. 

By Propositions 9 and 12, we get 

COROLLARY 14 : If D is a P-point on I , and if E I ..... f3J is 

one-to-one on a set of D, then D-lim..E. = D-2:E.. 0 
1 1 1 1 

If E is not one -to -one' on any set of D, then let f I ..... I' 

be a surjection such that 

f(i) = f(j) ~ E. = E. 
1 J 

(e. g. let I' be obtained from. I by dividing by an appropriate 

equivalence), let D '= f(D) , and let so 

By Propos ition 9. 7, D' is a P-point or principal, and clearly the 

F., are all distinct. Hence, using the corollary and Proposition 4, 

D-lim..E. = D-lim..F (.) = D '-lim.. ,F. ,
1 1 1 f 1 1 1 

=D'-L:.,F.,
1 1 

1 
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Thus, in any case, 

COROLLARY 15 : If D is a P-point, then any ultrafilter of the form 

D-lim,E, is isomorphic to one of the form D '-I:, ,F., ,where D' < D 
1 1 1 1 

and the F., IS are among the E. 's 
1 - 1 

We conclude this section by examining the connection between sums 

of ultrafilters and the non-standard ultrafilters considered in Section 14 . 

PROPOSITION 16 Let D be an ultrafilter on a set I , and let 

E : I .... ~ J. The n (D-I:.E,)/D is the internal ultrafilter (represented
1 1 

Ell [E]
D
 

- -1
 
Proof If A ~ I X J , we compute (using A (i) =(Pi (A)) 

~ (ViD) AEco,(E,)
1 1 

~ A E D-limil:P, (E,) = D-2:.E. 
1 1 1 1 

~[A]E (D-I:,E.)/D 0 
1 1 

Since an ultrafilter F on I X J with fr (F) = D is completely 

determined by F /n ( 
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COROLLAR y 17 : If F is an ultrafilter on I X J such that 'IT(F) = D 

and F/D is internal, then F = D-I:.E. for certain maps E:I ..... I3J, 
1 1 

namely, just those E for which [E] = F/D . 0 
D 

As another corollary, we obtain again the "if11 part of Lemma 7(6). 

By Corollary 14. 2, 

COROLLARY 18 The projection 

'IT: D-I:.E ...... D 
1 1 

is an IS(w)-morphism. Hence < implies o-RF 
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9 16. Successors in RK(W) In this section we make a first 

application of the ideas of sum and product of ultrafilters to the study of 

the Rudin-Keisler ordering. 

THEOREM 1 : Assume FRH(W). For each uniform ultrafilter D on 

W , there are an ultrafilter E on W and a morphism f: E ~ D 

such that any morphism with domain E either is an isomorphism or 

factors through f ,but f itself is not an isomorphism. In fact, there 

2 W 
are 2 pairwise non-isomorphic such E' s . 

Proof: Let E. (i < W) be pairwise non-isomorphic minimal ultrafilters 
1 

on w; such E. exist by Corollary 8. 9. Let E = D-l:.E. on W X w. 
1 1 1 

We shall show that the projection ",: E ~ D is not an isomorphism, 

and any morphism with domain E either is an isomorphism or factors 

through .".. (An E as required in the theorem can then be obtained 

by taking any ultrafilter on W isomorphic to the E we have defined. ) 

First, by Lemma 15.7(5), 'IT is not an isonlOrphism , for none of the 

E. are principal. Now let g be any function WX w~ w. Recall that 
1 

-

g : w~ Horn (W, w) is defined by g (i) (n) = g (i, n). Since each E. 

1 

is minimal, g (i) is constant or one-to-one on some set A. E E .. 
1 1 

Case 1 (i Ig(i) is constant on A.} = BED 
1 
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Then 

A = ((i, n) liE B , n E A.} E E 
1 

and, if we let h(i) be the value of g (i) on A. when i E B (h(i)
1 

arbitrary when i i B ), then 

(i, n) E A => g(i, n) = g (i)(n) = h(i) = h7T(i, n) 

Therefore, g = h". mod E . 

Case 2: (ilg(i) is one-to-one on A.}= C ED . 
1 

Now, using Proposition 15. 3 

g(E) = g(D-lim.cp.(E.))
1 1 1 

= D -lim. gcp. (E.)
1 1 1 

= D-lim. g(i) (E.)
1 1 

But, as is one-to-one on A. for D-most i we have--­
1 

(lfiD) g(i)(E.) - E. 
1 1 

Furthermore, the ultrafilters g(i)(E.) for i E C are distinct (for the 
1 

various E. were chosen to be non-isomorphic) ; hence' they form a 
1 

strongly discrete set, by Proposition 15.11. Therefore, we have 
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g(E) = D-lim. g(i)(E.)
1 1 

- D-L:.g(i)(E.)
1 1 

-= D-l:.E. 
1 1 

-= E 

By Corollary 2. 6, g is an is omorphism. 

Since D is an ultrafilter, one of the two cases considered must 

occur, so the main assertion of the theorem is proved. 

2u.1
By Corollary 8. 9 , we can choose 2 sequences E. as above, 

1 

in such a way that no ultrafilter appears in two distinct sequences. F-rom 

2W 
each sequence, we obtain an E as above, and these 2 E's are 

distinct by Lemma 15.7(6). Since only 2W ultrafilters on WX W can 

2w 
be in anyone isomorphism clas s, we obtain 2 pairwise non-isomorphic 

E's as required. 0 

DEFINITION 2: An element a of a partially ordered set P is an 

immediate succes sor of b E P if and only if b < a and 

(Vx E P) x < a => x < b 

Note that this definition requires not only that a is above b 

with nothing in between, but also that no element incomparable with b 
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lies below a. The theorem immediately implies 

W
2COROLLARY 3: Every element of RK(w) has 2 immediate 

successors I assuming FRH(w)· 0 

2w 
Of course o I also has 2 immediate succes sors in RK« W), 

namely the minimal ultrafilters. 0, its immediate succes sors, their 

2w 
immediate succes sors I etc. form a tree, of height w, with 2 -fold 

ramification at each node. Using Proposition 5. 10, the tree can be extended 

until it has height ~ 1. Thus, 

COROLLAR Y 4: Assume FRH(w). Let P be the partially ordered 

2w 
set of maps p from arbitrary countable ordinals into 2 , ordered' 

by inclusion (i. e. p ~ q if and only if p is the restriction of qI 

!£. Do(p)). Thus, P is the l1 s tandard1l tree of height ~l with 

22
W

_fold branching from every from every node. Then P can be 

isomorphically imbedded into RK( ~ W) 0 

Observe that the image of P is by no means all of RK( < w), 

because the former is a tree while the latter is directed upward (in a. 

very strong way; see Proposition 5. 10) and is not a chain (by 8. 9 if 

FRH(w) ; by [12] in general). Observe also that the isomorphic embedding 

of P into RK(~W) can be taken to map the least element, ¢, of 

P to any prescribed element of RK(w). 
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§ 17 Goodnes s, sum.s, and m.inim.ality As sum.ing FRH(K), there 

are a great m.any ultrafilters on K which are both K+-good and 

m.inim.al in RK(K). (See Corollary 8. 8) The question naturally arises 

whether there is any neces sary connection between K: +- goodnes sand 

m.inim.ality in RK(K). Doe s one im.ply the other? Or does the negation 

of one im.ply the other? Keisler has proved 

THEOREM I : Assum.ing D is countably incom.plete, D-L.E. is 
1 1 

K+ - good if and only if D is K+ -good. 

Proof See [9]. 0 

In particular, for countably incom.plete D, D· E is K+ - good 

if and only if D is K+- good. Given any ultrafilter E on K> W , 

we can obtain both K+ - good ultrafilters and non-I(+ - good ultrafilters 

> E on K by choosing D to be K+ - good in the first case (using 

Corollary 8. 8) and non-I(+ - good in the second case (e. g. , let size (D) = w). 

If K= W then all ultrafilters of size I( are K+ -good (see [7]). 

The only pos sible im.plication not ruled out by these considerations 

is"m.inim.al => good". Keisler has asked whether this im.plication holds 

(for K> w, assum.ing ZK = 1(+ if neceS sary) , and also whether every 

K-regular ultrafilter is > som.e K+-good one (An affirm.ative 
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answer to the latter question would imply that, for any two elementarily 

equivalent structures G. and a of cardinality < I( for a language 

with ~ K symbols, and for any K: - regular ultrafilter D on 1<:. 

D-prod G. and D-prod a are isomorphic. See [1].) We shall answer 

both questions negatively, assuming 21<: = 1<:+ , or even just FRH(K:), 

by constructing an ultrafilter on K: which is minimal in RK(K:) 

I<: - regular , but not I(+- good, provided I<: is not cofinal with w 

Note that, if I<: is measurable, a normal I<:-complete ultrafilter on 

I<: is a counterexample for the first question, but not for the se~ond. 

LEMMA 2 If all the E. are I<:-regular, then so is D- L: .E. 
1 1 1 

Proof Let Un(D) = I Un(E.) = J. (i EI ). Suppose that, for 
1 1 

each i , f J. --. P (I<:) is as in the definition of 1<:- regular Theni 1 w 
one trivially checks that 

f : lL J. --. P (I<:) (i, j) --. f. (j) 
1 W 1 

i EI 

also satisfie s that definition, so D-L:.E. is I<:-regular. 0 
1 1 

fTHEOREM 3: Let I<: be a cardinal of cofinality > W and as sume 

FRH(I\). Then there is an ultrafilter E on WX I<: which is K-regular 

(hence uniform), minimal in RK(K) , but not I<:+-good. 
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Proof: Begin by letting D be any uniforlll ultrafilter on w We 

shall define certain K-regular ultrafilters E. on K (i < w) , and then 
1 

we shall let E be D-2:.E.. By the lelllllla, E will be K-regular;
1 1 

by Keisler I s theorelll (and the facts in Section 1 ), E will not be 

+K: -good. Most of the following proof is therefore concerned with 

ensuring the lllinilllality of E In RK( K) . 

LEMMA 4 :' In unif(l\) ,let e be any cOllleager set. Assullle FRH(K) 

Then e contains a countable sequence E. (i < w) of ultrafilters 
1 

with the following property. 1£ f i : 1\ ..... K: (i < w) are lllaps such that 

f. is one -to -one on a set of E. ,then the set of ultrafilters 
1 1 

[f.(E.) Ii < w} is strongly discrete in 131\. 
1 1 

Proof of lelllllla: Suppose e ~ 0<2'.\ ea where each ea is open 

Kand dense in unif (1\) (with the fine topology). There are 2 systellls 

{f. : K: ..... 1\1 i < w} of countably lllany sel£-lllaps of K:; well-order thelll 
1 

thwith order type 21\, and let the a systelll be {rl i < w}. We 
1 

define uniforlll filters 'J. ~ (i < w) on K , silllultaneously for all 
1 

i , by induction on a , so that 

(2) J c: has a basis of cardinality < K: 
1 
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(3) Any ultrafilter containing J ~+l is in dl! 
1 

(4) If, for each i , takes I( distinct values on each set 

of '] ~+.l then there are pairwise disjoint sets A. C I( such that 
1 1­

Begin by setting Jr ~ = [I{}. If Y is a limit ordinal < 21( and 

~~ is defined for all a< y , then U J.Ci. has a basis of cardinality 
1 «<y i 

< Car d (I( xy ) < 2
I( 

, so by FRH(I{), it can be extended to a filter with 

a basis of cardinality < I( • Let that filter be:} ~ 
1 

Now suppose y =a+ 1 and c:; ~ is already defined. By (2) , 
1 

the set V. of uniform ultrafilters containing 'J. ~ is open and 
1 1 

nonempty (as 'J ~ is uniform) in unif(K). Since c(X is dense, V. 
1 1 

meets C'Y. , so V. meets some basic open set 
1 

n A C CCi. 
A EG. 

1 

where be the filter generated by e:;tc: U G .. 
1 1 

~ has a basis of cardinality ::: K, say [G. I IJ.< K}. If, for some 
1, IJ.
 

i fa does not take K values on each G. ,then we may set
 
1 1, U 

r-tfiJ.+1
--"<J., as From' now suppose, for..;J1 $Yi (4) will hold vacuously. on, 

each i fa takes K values on every G. Well-order the 
i 1,1J
 

triples (i, /l, v) E w X K X K with order type K. Inductively choose
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a(i"u,lJ) E G. so that 
1, Po 

for all earlier triples (i I, fJ.' , v~. This can be done because lX takes 
1 

K: values on G. 
1, ~ 

and there are fewer than K: earlier (i/,/J." v') . 

Let 

B = (a(i,/J.,v)l,u, v E K:}
i 

Since B. meets G. K: times (at least once for each v ), the 
1 1, /J. 

filter 'J.rx.+ l generated by ~i U (B } is unifo rm. Conditions (1)
i

i 
and (2) are obviously satisfied, and (3) holds because G. c ~ cCj~l . 

, 1 -o'i -.7' 1 

For (4), let A. = ~(B.) By choice of a(i,/J. ,v) , the A. are 
1 1 1 1 

pairwise disjoint, and 

B. vc:+ l 
1 1 

Now if we let E. be any uniform ultr afilter containing 
1

If< 2K:J; , condition (3) implies 

E. E fl< K: C
a c C 

1 ~< ~ ­

If f.: K: --+ K: are maps, say f. = f.rx. , and each f. is one-to-one 
1 1 1 1 

on a set of E., then f. must take at least K: values on each set 
1 1 

of C"1 rx.. +1J ' for otherwise E. contains a set on which f. is one-to-one 
1 1 1 

and takes fewer than K: values, contrary to the fact that E. is 
1 
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~ 

uniform. Then, by (4), we have disjoint neighborhoods A. of 
1 

f. (E.) III f3 K. Thus, the lemma is prove d. 0 
1 1 

REMARK 5 : We could have obtained as many as K E. 's in C 
1 

whose images under any one-to-one maps f. (i< K) are strongly
1 

discrete, by the same proof. 

Returning to the proof of the theorem, use the lemma with C = 

the set of K+ -good ultrafilters on K minimal in RK(K). C is comeager 

by Corollary 8. 7. Since the E. provided by the lemma are K+- good, 
1 

they are K-regular, so, as remarked above, E = D-L;.E. is 
1 1 

K-regular but not K+ -good. We now show that E is minimal in 

RK(K) . 

Let g: WX K..... K be any function. We must show that g is 

one-to-one or takes fewer than K values on some set of E 

Since the E. are minimal in RK(K) , we have sets A E E. such 
1 i 1 

that g (i) = g cpo takes fewer than K values or is one -to -one on 
1 

A .. 
1 

Case 1 (i Ig(i) takes fewer than K values on A.) = C ED. 
1 

Then REC Ai E E , and 

A.) = U g (i) (A,) 
1 1

iEC 
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has cardinality < I<: because I<: is not cofinal with Card (C) = w. 

Case 2 : filg(i) is one-to-one on A.} ED. Modifying g on 
. 1 

the complement of this set (which doesn It affect [g]E)' we may assume 

that all the g(i) are one-to-one on A.. Hence, by the choice of E. 
1 1 

according to the lemma, is strongly discrete. Using 

15.3,15.9, and 15.7(7), 

g(E) = g(D-lim.cp.(E)) 
1 1 

= D-lim. g(i) (E,) 
. 1 1 

;; D-2:. g(i) (E.) 
1 1 

~ D- 2:.E. 
1 1 

=E 

so, by Corollary 2. 6, [g]E is an isomorphism g is one- to-one 

on a set of E. 

Since D is an ultrafilter, one of the two cases happens, and the 

theorem is proved. 0 

REMARK 6 : If we are willing to assume FRH(w) in addition to 

FRH(I<:) , then the preceding proof can be greatly simplified. The lemma 

may be omitted altogether. Choose the E. to be 1<:+ -good, minimal 
1 
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in RK(K), and pairwise non-isom.orphic, and choose D to be a 

P-point. The rest of the proof rem.ains the s am.e, except that in Cas e 

2 the strong dis cretenes s of [g (i) (E.) liE A} for som.e A E D is 
1 

established by citing Proposition 15. 12~ rather than the lem.rna. 



133 

§ 18. Ultrafilters on singular cardinals Keisler has raised the 

question whether, assmuing GCH, every eleInent of RK(II:) lies 

above a IniniInal eleInent. In this section, we shall obtain a negative 

answer to this question in the case II: =~ We shall also consider 
W 

a quite unrelated question whose solution uses the saIne idea as the 

solution of Keisler's probleIn. We now digress for a InOInent to Inotivate 

and present this question. 

We know that there are different isoInorphisIn classes of 

uniforIn ultrafilters on 11:, and we know various properties (e. g. K­

cOInpletenes s , K+- goodnes s, IniniInality in RK(K)) which Inay distinguish 

sOIne isoInorphisIn classes froIn others. However, for each such 

property considered so far, it apparently cannot be proved in ZFC 

alone that SOIne uniforIn ultrafilters on K have the property and 

others do not. Thus, unless K is Ineasurable, we cannot have both 

K-complete and K-incoInplete uniforIn ultrafilters on K. And we 

have not been able to prove the existence of K+ - good ultrafilters (for 

II: > w) or IniniInal ultrafilters in RK(I() without SOIne special hypo­

thesis such as GCH or FRH. Therefore, one Inight conjecture that 

no isomorphism-invariant property of ultrafilters ,definable by a 

forInula of L(ZF) , can be proved in ZFC to apply to SOIne but not 

all uniforIn ultrafilters of size K. Put another way, one Inight think 
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that ZFC remains consistent upon addition of the axiom schema 

(~:~) (3: D)(size (D) = K and q:l(D» => (VD)(size (D) = K => (3E) E = D and cp(E» 

where qj(D) is any formula whose only free variable is D (ranging 

over ultrafilters.) This restriction on cp is clearly needed, for otherwise, 

we could take cp (D) to be D = F and get a trivial contradiction. The 

preceding remarks show that the schema (~:<) contradicts the existence of 

measurable cardinals and every instance of GCH. We shall show that 

(~:~) is in fact inconsistent. It may, however, be of some interest to 

consider weakened forms of (~:~) , e. g. by requiring K to be regular 

or even by taking only the single case K = w. Intuitively (~:<) says that 

all ultrafilters of a given size look alike. 

We proceed to the construction of a counterexample to (~:~) . 

THEOREM 1: Let K be the limit of the w- sequence of cardinals 

defined by <X = z<Xn . Then 
n +1 

(1) There are uniform ultrafilters on K of the form D-lim.E. 
1 1 

where Un(D) = W and, for i < W , size (E.) = <X. 
1 1 

(2) There are uniform ultrafilters on K not of that form. 

Proof:; (1) Let D be any uniform ultrafilter on wand E. any
1 

ultrafilter on K of size <X. If A E D-lim.E. then for infinitely 
1 1 1 
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ITlany i (alli in a set of D) A E E, , so 
1 

Card (A) .:::. size E, = Ct, 
1 1 

Therefore, Card (A) .:::. 1(, and D-liITl,E, is uniforITl. 
1 1 

(Z) We count how many ultrafilters can have the form in (1). There 

are ZZW = Ct choices for D. For each i , there are (at ITlost) Z'(z 
choices of a set A C I( of cardinality (X. , and then (at ITlost)

1 

choices of an ultrafilter uniforITl on A (whose iITlage under the inclusion 

into K is to be E,). Thus, the total nUITlber of ultrafilters of the 
1 

ZK:form in (1) is no more than (ZK') W= ZI( But there are Z uniform 

ultrafilters on I( altogether. 0 

Since being of the form in (1) is evidently an isomorphism-invariant 

property expressible in L(ZF) , the theoreITl disproves (':') . 

THEOREM Z: AssuITle GCH. There are uniforITl ultrafilters on ~ 
Ul 

which are not ::> any ITlinimal eleITlent of RK(~ ) 
W 

Proof: Choose, once and for all, a miniITlal ultrafilter D on W 

(using CH). Let S be the set of all uniforITl ultrafilters on 

which are of the form D-lim.E. where all the E, have size < ~ 
1 1 1 W 

As in the proof of part (1) of the preceding theorem, we see that 

S -I ¢. We shall show that any uniform ultrafilter on which lies 
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below an eleITlent of S is itself in S, and that S contains no 

minimal element of RK( ~ ) This clearly will suffice to prove the 
W 

theorem. 

Firs~ suppose F is uniform on ~U.l and F < E for some 

E	 = D-liITl.E. E S 
1	 1 

(size (E.) < ~ ) Then, for some 
1 .W 

F	 = f(E)
 

= f(D-lim. E.)

1	 1 

=	 D-liITl. f(E.)
1 1 

and 

size (f(E.)) < size (E.) < ~ 
1	 - 1 W 

so F E S . 

Now suppose D-lim.E. = E E S were minimal in RK(~) 1£ 
1	 1 W 

the function 

1 -> size (E.) 
1 

were bounded, say by ~n ,on a set A ED, then we could choose, 

for each E A , a set X. EE. of cardinality < ~ . Then E would 
1 1	 - n 

contain the set U Xi of cardinality < ~ , contrary to the fact that
"'niEA	 ­

S	 contains only uniform ultrafilters . Hence, size (E.) must be 
1 
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an unbounded (in ~ ) function of 1 on each set of D. Since D is 
W 

m.inim.al , the function i - E m.ust be one-to-one on a set of D , and
i 

Corollary 15.14 now shows that 

E' = D-L;.E. = E 
1 1 

so E' is m.inim.al in RK(~ ) 
(..c.l 

Define f : lJJ X ~ ...; ~ as follows . If size (E.) :: w, then I (i) is 
~ {J.I 1 

id~ . If size (E. ) = , then I (i) is such a m.ap ~ that 
1 ~n+l -~ 

f.J..' (J.' w 
f (i)(E.) has size ~ ; such m.aps exist by GCH and Chang's Theorem. 

1 n 

6. 3. Since size (E ) is unbounded in l)itw on every set of D, so is
i 

size (f (i)(E.)). Hence, as in the proof of Theorem. 1(1) , 
1 

f(E ') = f(D-L; .E. )
1 1 

= f(D -lim.. cpo (E.))
1 1 1 

-
= D-lim.. f (i) (E.) 

1 1 

is uniform.. It is obviously < E', so by m.inirnality of E', f m.ust 

-
be one-to-one on som.e A E E'. For D-m.ost i A (i) E E. (by definition 

1 

of E ') and f (1')'IS one- t o-one on A(')1, so I (i)(E.) ~ E.. Since 
1 1 

isom.orphic ultrafilters have the sam.e size, we see from. the definition 

of f that, for D-most i , size (E.) = w. This contradicts the fact 
1 

that size (E.) is unbounded in ~ on every set of D. Hence no 
1 W 

elem.ent of S is m.inim.al. 0 
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Q 19. IsoITlOrphisITls between SUITlS In this section, we shall 

derive a result, essentially due to Rudin [13] , which says, roughly, 

that if D-L:.E. and D '- L:.E.' are isoITlorphic then they are isoITlorphic
1 1 1 1 

for a trivial reason. Apart froITl the pos sibility D = D' , E. = E: (for
1 1 

ITlost i , up to a perITlutation)., the only trivial reason is LeITlITla 15. 7 (3). 

LEMMA 1 : In f3 w , any two disjoint countable sets whose union is 

discrete hav'e dis joint closures 

Proof Let the sets be {Dol i < w} and {Eo Ii < w}. By Proposition
1 1 

15. lOwe can find A. ED. , B. E E. so that all the A IS and 
1 1 1 1 i 

B's are pairwise disjoint. Let A = U< A. and B = V< B ..i . 1 W 1 1 W 1 

Then A n B =¢. By LeITlITla 15. 1 , any D ECl{Do} contains A 
1 

and any E E Cl{E.} contains B. Therefore, these two closures 
1 

are disjoint. 0 

Now suppose D, D', E. , and E.' (i < w) are ultrafilters on w , 
1 1 

and suppose f: wX W -+ wX w is an isoITlorphisITl froITl D-L:.E. to 
1 1 

D '- L:.E '., Modifying f on the cOITlpleITlent of a set in D- L:.E. , 
1 1 1 1 

we ITlay suppose that f is a bijection. Recall that cpo is the ITlap
1 

W-+ W X W ITlapping j to (ij). Define functions A, B : W -+ 8(w X w) 

by 

A. = fcp.(E.) = f (i)(E.)
1 1 1 1 
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and 

. /
B. = cp.(E.)

1 1 1 

Clearly, A and B are one-to-one and have discrete ranges. 

We have 

D'-lill1.B. = D'-lill1.cp. (E.')
1 1 1 1 1 

= D'- L:.E.' 
1 1 

= f(D- L:.E.)
1 1 

= D-lill1.A. 
1 . 1 

By the lell1n1a (with WXw in place of w, which obviously ll1akes no 

difference) the sets A(X) and B(Y) ,for any X F D , Y ED' , 

either are not disjoint or have non-discrete union, for their closures 

ll1eet. 

Consider first the case that, for all XED and all Y ED' , 

A(X) and B(Y) ll1eet. Then the ultrafilters A(D) and B(D') are 

identical, for each set in one ll1eets each set in the other. Let [g]
D 

be the COll1posite isoll1orphisll1 

-1 
D rA~ A(D) = B(D') [BJ~ D' 

For D-ll1ost 1 
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It follows that for D-most i Furthermore, as 

{g( i)} X wEep (.) (E' (.». gIg 1 

we have 

~ 

(ViD)(VjE.) f(i,j) = f(i)(j) E {g(i)} XW 
1 

so 

(Vi D)(Vj E ) 111 f(i, j) = g(i)
i 

If we let \0) = 11
2 

f(i, j) , then we have shown 

f(i,j) = (g(i), h.(j» 
1 

for most (i, j) with respect to D- k. E.. By construction, g is one-to-one 
1 1 

on a set of D, and, because f is one-to-one, h. is one-to-one on 
1 

a set of E. 
1 

for D-most i. By inessential changes in g and h., 
1 

we may assume that g and all the h. are bijections. Then [f]
1 

is a composition of isomorphisms of the sort given by Lemma 15. 7( 7) 

and (8). Up to permutations, D is D' and E. is E.' for most 
1 1 

i f consists of the relevant permutations 

Now we turn to the other case, A(X) nB(Y) = (/.) for some XED 

Y ED'. Redefining E. and f(i) for i rf. X (which does not affect 
1 

D-k.E. or the germ of f) , we may as well suppose A(w) nB(w) = (/.)
1 1 
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Let 

x = {i IA. E CIB(W)} ; Y = {i IB. E Cl A(f.Ll)} . 
1 1 

Clearly, A(w- X) and B(w - Y) have discrete union and are disjoint; 

hence we cannot have both w- XED and w- Y ED'. Say XED. 

(The case Y ED' is handled analogously, interchanging primed and 

unprimed, and rep1acing £ by £-1). For i EX, A. E C 1 B ()w but 
1 

A. i. B(w) (si~ce 
1 

A(w) n B(w) = ¢) , so there is a non-principal ultrafilter 

F. on W such that 
1 

f (i)(E.) = A. =F. -lim..B. 
1 1 1 J J 

= F . -lim. cp. (E:) 
1 J J J 

= F.-r.E: 
1 J J 

Let F. be arbitrary if i i. X. We have 
1 

D '-2::.E.' = £(D-2::.E.)
1 1 1 1 

= D-lim.f (i) (E.)
1 1 

= D -lim. (F. - 2:: .E .~ 
1 1 J J 

On the other hand, using Lemma 15. 7 (8), (3), and (4), 
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(1I'2(D-~.F.))-L:.E.'= "2 ((D-L: .F.)-L:..£" (..))
1 1 J J 1 1 1,J 77'21,J 

= fT2 (D-I;.(F.-I;.E.')) 
1 1 J J 

= D-lim. (F. -L:.E!) 
1 1 J J 

where 77'2: (i, j) .... j ,and "2 is as in 15.7 (8) Therefore, 

D'-L:.E.' = (77'2 (D-r.F.))-I:.E!
1 1 1 1 J J 

Applying 77' 1 to both side s , 

D' = ""2 (D-l;.F.) = D-lim.F.
1 1 1 1 

Because {F.\ i E X} is discrete (as {A. Ii E X} is discrete) , 
1 1 

we obtain 

D'; D-L:.F. 
1. 1 

Thus, up to isomorphism, D' is D-L:.F. and E. is F.-l;.E'. 
1 1 1 1 J J 

for most D-most 1 The isomorphism f corresponds to the 

equality 

(D-r.F.)-L:.E: = D-L:. (F.-L:.E:)
11 JJ 11JJ 

Summarizing, and omitting the dehils of the various isomorphisms, 

we have 
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THEOREM 2 For ultrafilters of s ize ~ w, Ji. 

D - L: .E. = D' - t. E.' 
1 1 1 1 

then one of the following happens. 

(1) g D = D' , and,for D-most i, E = E~(i)
i 

. (2) For some non-principal ultrafilters F. , D' ;; D-t.F. 
1 1 1 

and,for D-most i , E. ;;; F.-t.E! 
1 1 J J 

(3) For some non-principal ultrafilters F. , D;; D'-t.F. 
1 1 1 

and, for D~most 1 , E.' =F.-t.E. D 
1 1 J J 

COROLLARY 3 If D' E = D'· E (where D,D',E have size w), 

then D ~ D' . 

Proof: Apply the theorem with all E = E' = E. In case (1), the 
i i 

required conclusion is immediate. In case (2), E ~ F . E . By
i 

Lemma 15. 7 (5) and Corollary 2. 6, F. is principal, contrary to the 
1 

as sertion of the theorem in case (2) Case (3) is the same. 0 

COROLLARY 4 : lL D· E;; D'· E' (D,D',E,E' of size < w) then 

one of the following happens. 
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(2) For some non-principal F, D l = D' F and E ~ F· E' 

(3) For some non-principal F, D - D'· F and E';: F' E 

Proof: Apply the theorem with all E. = E and all E ' = E' In 
1 i 

case (1) of the theorem, we immediately get conclusion (1) of the 

corollary. In case (2) we have, for some non-principal F. 
1 

D';D-2;.F .. and E~F ·E' for all i in a certain set XED 
IIi 

If i,j EX , then F. ~ F. because of Corollary 3 let F be F. 
1 J 1 

for any i EX. Then 

D';: D-2;.F. = D' F 
1 1 

and 

so we have conclus ion (2) of the corollary. Case (3) is analogous. 0 

Corollary 4 says that any isomorphism between products of 

ultrafilters on W is either trivial (i. e. ,corresponding factors agree) 

or an instance of the associative law. 

COROLLAR Y 5 : RF (::: W) is a tree i. e. , the predeces sors of anL 

element are linearly ordered. 

Proof Immediate from the theorem. 0 
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~ 20. Cartesian products of ultrafilters on w Consider two 

uniform ultrafilters, D and E ,on W. We know(by Corollary 3. 10) 

that D XE is not an ultrafilter on WX W. We can explicitly exhibit 

two distinct ultrafilters containing it. First, by Lemmas 15.7(4) and 

3.2, D· E:::> DXE. Secondly, if we let 

t : WXw .... wxu..,: (x,y) .... (y,x) 

then t(E· D) :::> Dx E for the same reasons. D' E and t(E' D) are 

distinct, because the former contains A = {(x, y) Ix < y} while the 

latter contains t(A) which is disjoint from A. It is natural to ask 

whether there are any further ultrafilters containing D X E. The 

case D = E was considered in Section 10, where we saw that D x D 

is also contained in 0 (D) where /5 is the diagonal map x.... (x, x) 

(whose range, (wx w)- (A IJ tA), we call 6), and that D X D is 

contained in only three ultrafilters if and only if D is minimal. Thus, 

we have 

COROLLARY 1 : 0 (D) , D' D , and t(D' D) are, for uniform D on 

w , distinct ultrafilters containing D X D. There are no others if and 

only if D is minimal. 0 

We now turn to the case DIE . 
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THEOREM 2: Assume FRH(w). There are uniform ultrafilters 

D and E • <2E... w such that D' E and t(E· D) are the only 

u1trafilters containing D X E . 

Proof The two sets 

and t(A ') cover wX w • so any ultrafilter on ((.1 X W contains one of 

them. Thus. we need only arrange that (D X E) U {A '} and (Dx E) U 

{t(A')} generate ultrafilters, for then any ultrafilter containing 

D X E is one of these two. Consider·the set r of all pairs (R,8), 

where R is a binary relation on w(R s:: wX w) and 8 = 0 or I We 

shall so construct D and E that, for each (R,8) Er, there are 

sets X ED, YR E E with the property that
R , 8 , 8 

(l) 8 = 0 (resp. ,1) and xE X and y E YR and x::. y
R , 8 , 8 

(resp. ,x:::. y) => (x,y) ER 
8 

where R iseither R or wxw-R. Then (XR,OxYR,O)nA'
8 

is a set in the filter generated by (D X E) U {A '} and is contained 

in R or in WX w-R , so this filter is an ultrafilter., Similarly, 

using 8 = 1, (D X E) U {t(A ~} generates an ultrafilter. 
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We proceed to the construction of D and E. Let 

p : 2w r--t 

be a bijection. (Clearly r has cardinality 2w.) We define filter s' 

D and E on w for a < 2w inductively, so that 
a a 

(2) For {3<y, D cD and E cE
8 - 'Y B- Y 

(3) D and E have countable bases. 
a a 

(4 ) D and E are uniform. 
fY. a 

(5) D contains an and E contains a YXp(~ ,a+ 1 a+ 1 p(a) 

such that (1) holds for (R, e) = p(fY.) 

Begin by letting DO and EO consist of all cofinite subsets 

of w; then (4) will hold for all a provided (2) holds. If aO is a 

limit ordinal, obtain D and E by applying FRH(W) to 
a a 

U D and V E respectively. Now suppose D and
B< a {3 f3< a (3 a
 

E are defined; we will let D and Ea+l be generated by

a a+ l
 

D U {x} and E U {Y} ,where X and Y will serve as
 
Ci Ci
 

and respectively. Let p(Ci) = (R, e), and suppose € = 0 .
 

(The other case is analagous.) We want 

x ~ y , x EX, y E Y => (x, y) E R 
O 
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where is R or its complement. Let {B. r i < c.J 
1 

be a base for 

D ,and let F be any ultrafilter containing E (so F is uniform, 
~ ~ 

by choice of EO)' Let 

w = {x < w r R (x) = {y I(x, y) E R} E F}
 

Suppose W meets everyone 'of the B , and set R = R (Otherwise,

i	 O 

w- W meets every B , we set R = (wx w)-R , and the rest of the proof
i O 

is exactly the same. ) Let {C. Ii < w} C F be a countable base for 
1 ­

E	 . Inductively choose b. E B n Wand c. E C as follows. 
~ 1 iIi 

Choose b to be any element of B n W , and choose Co to be any
O	 p 

element of R (bO)n Co E F. Suppose b and c. are chosen for
O	 j J 

j < i. Let b. be any element of B. n W which is > all c. (j < i), 
1	 1 J 

such a b. exists, for B. n W must be infinite because W meets 
1	 1 

all B and every finite set is disjoint from some B by choice of
k	 k 

DO" Then let C. be a ny element of 
1 

Let X = {b. r i < w} and Y = {c. r i < W } Clearly X meets every 
1	 1 

'. 
B (at \) , hence every set of D • and Y meets every set of 

i ~ 

E Suppose x::' y • x EX, and y E Y. Say x=b and y = c .. 
~ i . J 

Since b. < c .• and b. was defined to be > c if j < i , we 
1 - J 1 j 

must have j':::' i. But then c was chosen to be in R (b ) Hence 
j	 O i
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(x, y) E R • This com.pletes the inductive definition of D and E
O Ol a 

Ii we let D and E be any ultrafilters containing lI.< 2~DO! 

and l{ < 2(1.) EO! respectively, then (1) holds, and the theorem. is 

proved. (Actually the two unions which we extended to form. D and 

E were ultrafilters already.) 0 

COROLLARY 3 : As sum.e FRH( w). The D and E of the 

theorem. m.ay be taken to be m.inim.al. 

Proof Let {f 1(1< 2(J-} be the set.of all m.aps w..... w. In the definition
O! 

of D in the proof of the theorem., replace X by a subset, still 
a+ l 

m.eeting each B. , on which f is one-to-one or constant, and 
1 (X 

sim.ilarly for E . Then D and E will be m.inim.al. 0
fY.+ 1 

For any perm.utation er of n ,let t : wn ..... wn be defined by 
a 

(t (x)). = x_I (. ) that is 1T.t
1 (j 

= fTa-1 (.)
C1 1 C1 1 1 

n-l
Hence, for any ultrafilters DO, ... , D on w, 

so 

t (D a (0) 
C1 
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Generalizing the theoxem, we have 

COROLLARY 4 : Assume FRH( w). There exist uniform ultrafilters 

i o n-ln on. W (0 < i < n) such that all ultrafilters containing D X '" xD 

are of the form for some permutation (j of 

n. 

Proof: The proof is es sentially the same as that of the theorem. The 

major modification. will be illustrated sufficiently by the case n = 3 . 

In constructing D~ I (j =:= 0, 1 , 2) , we h a v e D~ with countable bases 

j .{B~ I i < w} , and we 'Arant to find X ,.!TIeetlng every B~ , and such 
1 1 

that 

o 1 2 
x EX, y EX, .z E X => (x, y, z) E R

O 

where R
O 

is R or w3 -R for a given R . (There are five other 

cases, depending on the order of x, y, z, but they are analogous. ) 

2 
F be ultrafilters containing respectively 

Suppose 

1 2 
W = {xlrV'yF )(\fzF ) (x,y,z) ER} 

meets every set in and set (Otherwise, R =w3 -Ro ' 
and the rest is analogous.) Then choose, by induction on i 
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o 0 
b. E B. nw ,

1 1 

and 

in such a way that each chosen number is larger than all those chosen 

previously. Then set xj = {b~ I i < w} . 0 
1 . 

COROLLAR Y 5 : As sume FRH(w). The re are 2w minimal ultrafilters 

nj(j < 2 0.1) such that,· for any finite subset {aD, , a
n

_
l 

} c 2W , 

aO ~-l every ultrafilter containing D x ... xD is to' (DO!(J" (0) . . . DO!(J' (n - 1 )) 

for some permutation (J' of n . 

Proof: Combine the techniques of the theorem and the previous two 

corollaries. The induction is with respect to triples ({O! 0" .. , O!n_l}' R , (1) 

. n 
where R ~ wand 0' is a permutation of n . o 

REMARK 6 : In the situation of Corollary 4. if F is an ultrafilter 

o n-l 
containing D x ... X D , the permutation (J' is determined by the 

fact that, in F-prod 0..', 
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To see this, note first that 

Then compute that, in any D· E-prod w, ['lTl ] < ['17'2] , and use the fact 

that t is an elementary embedding (in fact, an isomorphism). 
cr 

Our next goal is to give two equivalent conditions, one model-

theoretic and the other topological, for a pair of ultra-filters to satisfy 

the conclusion of the theorem. 

DEFINITION 7 : Let D be an 'ultrafilter on w, and let a be an 

elementary extension of (the complete model on) w. An element 

a E la I has type D if and only if, for all SSw, 

SED ~ a Fe. (a) 

It is clear that every element of IaI has a unique type (see 

also Proposition 12. 3), and every ultrafilter is the type of an element 

in some a (by the compactnes s theorem). Indeed, the type of [f]D 

in D-prod w is exactly f(D) , so D is the type of [id]D. 

PROPOSITION 8: Let D and E be uniform ultrafilters on w. 

The following are equivalent. 
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(1)	 The only ultrafilter containing (D x E) U {A} , where 

A = {(x, y) [x < y} , ~ D' E . 

(2) Let a and a' be elementary extensions of (C, let a E lal , 

a' E la'l have type D, let b E lal , b"' E la'i have type E, and 

let a < b , a' < b' (in G and G '). Then there is an isomorphism, 

from an elementary submodel 3 of a containing a and b, ~ 

an elementary submodel a' of a' containing a' and b', mapping 

a to a ' and b to b'. 

(3)	 W1"th "', "",u a, a', b, b' In"(2)"f ~ ( ).1S anyu as ,1 x, Y 

formula (of the language of the complete merlel on w) with just x and 

y free, then 

a F~ (a, b) ~ a' FcP (a' ,b ') 

-1
Proof Let J: w X w..... w be a bijection, and let J (x) = (K(x), L(x)) . 

Assume (1), and let a, a', a, a', b, b' be as in (2). Let 

c = J(a, b) m a (i. e. a Fc =.1 (a, b)) and c' = J(a', b ') in a'. 

Since a and a' have type D and band b' have type E , 

one easily computes that the types of c and c' include J(D X E) . 
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Theyalsocontain J(A) because a<b and a/<b / . By (1), they 

.must both be J(D· E). Thus, for any formula ~(x), 

G F ~ (c) ~ G1 Fj,(c I) 

if we let t/J (x) be cp(.!S-(x), !.-(x)) we get (3) , 

Obviously (2) implies (3). Assuming (3), we prove (2) by letting
 

Ial be the set of all eEl GI such that GFe =i (a, b) for some
 

f : wX W-1 w, and a' similarly. The only non-trivial thing to check is 

that IB is an elementary submod.el of G. Let e.p(x, e.) be a formula 
1 

with one free variable x and various parameters e. = £. (a,b) E lal 
1 1 

Suppose for some Cl E IGI , G F cp(Cl, e.) ; then we must find ~ E IIBI 
1 

such that G F cp(B, e.). (It is well-known that then IB is an elementary
1 

submodel of G.) Define g: u.' X w~ w by 

g(x, y) = the least z such that ~z, £. (x, y)), if there is such a z , 
1 

= 0 otherwise . 

Then
 

('fx)(Vy) ((3:z)cp(z,£.(x,y))=>cp(g(x,y), f. (x,y)))
 
, - 1 - 1 

is true in w, hence in G. Therefore, Q F cP (R (a, b), e.) , and we 
1 

may take f3 = g(a, b) . 
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Finally we prove that (3) implies (1). Suppose F and G are 

ultrafilters contain,ing (D X E) U {A} , and suppos eRE F. We shall 

show REG, so F = G , and (1) follows. Take 

Q = F-prod w Q' = G-prod w 

b = ['T ] b/=[fr]
2F 2G 

Then a and a I have type '"I (F) = '"1 (G) = D ,and band b I 

have type E, because D xEs: F, G. a < b and a ,< b I because 

AEF,G. Also,as REF, QFR(a,b). By(3), Q' FR(a,b), 

which means that REG. 0 

REMARK 9 : In (2) of the proposition, the models iB and iB ' obtained 

in the above proof are isomorphic to D' E-'prod w, with f(a, b) and 

f(a/,b') corresponding to [f]
D' E' 

Using Theorem 2, and (1)~3) of the last proposition, we find 

COROLLARY 10: Assuming FRH(w) , there are uniform ultrafilters 

D and E on w such that all first-order properties of any two elements 

a, b of any elementary extension of w are completely determined by 

the following information a has type D, b has type E, and the 
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the relative order of a and b. 0 

REMARK 11 : Of course all first-order properties of a single elem.ent 

are determ.ined by its type. The types of two elem.ents determ.ine all their 

first-order properties only if one of the types is principal, for otherwise 

the relative order of the two elem.ents is not determ.ined. (This follows 

easily from. the com.pactness theorem..) Corollary 10 then says that, 

in certain cases, this relative order is the only additional inform.ation 

needed to determ.ine everything. Extensions to m.ore than two elem.ents 

can be obtained by appealing to Corollary 4 • 

Now we consider the topological interpretation of the statem.ent 

that D· E and E· D are the only ultrafilters containing D X E . 

The natural inclusion of w X w into the com.pact space f3w X f3w 

factors uniquely through f3(wx w) (by definition of Stone-~ech com.pacti ­

fication). One can easily com.pute that the m.ap 

p 8 ( u.' X w) -> Bw x Bw 

m.aps an ultrafilter F to ("1 (F) , 17'2(F)). Thus, for D, E E {3w, 

p-l {(D, E)} consists of all ultrafilters F containing D X E (by 

Lem.m.a 3.2). From. what we already know, we can imm.ediately 

deduce 
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COROLLARY 12; (1) p-l(D,E) has only one eleITlent if and only if 

D or E is principal. 

(2) P-1 (D, D) has at least three eleITlents unles s D is principal; 

it has exactly thr ee eleITlent s if and only. if D is ITliniITlal. 

(3) AssuITling FRH(w), there are points of f3w xf3w whose 

inverse iITlage under the ITlap p consists of exactly two points. 0 

REMARK 13; The first part of (2) can be slightly strengthened. If 

-1
Card p-l (D, D) is finite, then it is odd, for the ITlap t takes P (D, D) 

to itself, has order 2 , and fixes the single eleITlent 6 (D) . 

The question naturally arises of deterITlining all possible 

-1
cardinalities for P (D, E). We know that 1,2, and 3 are possible 

if FRHkd. In fact, 

COROLLAR Y 14 : If FRH(w), then, given n < (JJ, n I 0 , there is 

a point of f3 w X Bw which is the iITlage of exactly n points of 

o n-l o 
Proof: Let D , ... D be as in Corollary 4, and set D=D 

1 n-l
E = D ... D 
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1 n-l
Since E cD X ••• X D ,any ultrafilter F::J D X E contains 

o n-l 
D X .. · xD so Using Remark 6 and 

the fact that F projects to E, we find that cr must leave the 

numbers 1,2 ,n-l in their correct order; the only freedom in the 

choice of a is where to insert the 0 Thus, there are n choices 

for (J, hence n possible F 1 s. 0 

It is also possible for p-l (D, E) to be infinite. To obtain an 

example, start with any uniform ultrafilter D on w. Let X be 

the set of functions w~ w which have the value 0 at all but finitely 

many arguments and which do not take the same non-zero value twice. 

Let e : X ~ w be evaluation at n. It is easy to see that the family 
n 

of sets 

-1 I{e (A) A ED, n < w} 
n 

has the finite intersection property, so it is contained in an ultrafilter 

F As X is countable, F is isomorphic to an ultrafilter E on 

w. Further, all the [e n]F are distinct (for 

-1 -1 rA
{x EX I e (x) = e (x) }ne (w-{O}) ne (w-{O}) =)U 

n m n m 

when n ,m) and map F to D ,so E has infinitely many 

morphisms f to D Let 
n 
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g : W"" W x w: x .... (f (x), x) 
n . n 

Then 

"lg (E) = f (E) = D 
n n 

and 

so 

g (E) ~ D X E 
n -

As the gn are all one -to-one and distinct modulo E, the g (E) 
n 

are all distinct by Corollary 2. 6 . 

It is known that any closed infinite subset of Bw (or the homeomorphic 

2Wf3 (WXW)) has cardinality 2 . (See [6,p.134].) Hence, 

COROLLARY 15 : Assume FRH(w). The inverse images of points 

under the natural mapping B(wx w) .... 8w X f3w can have the following 

2w 
cardinalities and no others: All finite numbers except 0, and 2 . 0 

Corollary 3 told us that the D and E of Theorem 2 can be 

taken to the minimal. The following proposition implies that they 

are necessarily P-points. 
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PROPOSITION 16 ; Let D and E be uniform ultrafilters on w. 

The following are equivalent. 

(1) E is a P-point. 

(2) For any f : f.JJ-+ W, let. 

A = {(x, Y) If(x) <y}
f 

(D X E) U {A If: w-+ w} generates an ultrafilter F. (F must be D· E,
f 

for all A are in D' E . )
f 

Proof: First, suppose E is a P-point, and let R ~ u'X W. We 

shall show that, if RED' E ,then R is in the filter F generated 

by (D' E) U {A If; w -+ w} ; this clearly implies F = D· E and
f 

-
thereby proves (2) As RED' E , we have R(i) E E for all 1 in 

some set XED. As E is a P-point it contai.n~ a set Y such 

that, for all i EX, Y -R (i) is finite. (See Proposition 9. 1.) For 

i EX, let 

f(i) = max (Y -R (i) ) 

for i rf. X ,let f(i) = O. Then, if (x, y) E (X X Y) nA ' we have
f 

x EX, y E Y, Y > f(x) =max (Y -R(x)) , 
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Conversely, suppose (2) holds, and let f: w-+ w. Let 

R = {(i,j) [f(j) > i} 

If RiD' E , then, for some i (in fact for D-rnost i) 

R(i) = {j If(j) > i} i E 

so f is bounded on a set of E (namely w-R(i)) and therefore f 

is constant on a set of E. 0 n the other hand, suppose RED' E = F . 

Then there exist XED, Y E E ,and g: w-+ w such that (X X y)n A cR. 
g-

Given any nEw, choose i EX, i > n ( a s D is uniform). Then, 

for j E Y , (i, j) E X X Y. So 

(i, j) E A => (i, j) E R 
g 

that is, 

j > g (i) => f (j) > i > n 

So f assumes the value n at most g(i) + 1 times on Y. 

Therefore, f is either constant or finite-to-one on a set of E , so 

E is a P-point. 0 
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§ 21. Products of minimal ultrafilters In this section we shall 

use minimal ultrafilters and their products to get new information 

about the structure (or lack thereof) of RK« w) • 

THEOREM 1 : Let D ,'" ,D be minimal ultrafilters on w. Any
1 n 

is isomorphic to ... D. for some 
1 
s 

1 < i < i <., .. < is < n , provided we agree that the empty product
l 2 

(s = 0) is a principal ultrafilter 

... 
Proof: The case n = 1 is true by definition of minimality , and we 

proceed by induction on n. So let D l' .,. ,D be given (n 2: 2) 
n 

and as sume the theorem for n-l. Suppose f: wn --- CL\ maps 

F . For simplicity, let E==D and 
n 

so f: D' E ---F. For each 
n-l 

i E u.l 
-

,f (i) : w--- w is one -to -one or 

constant on a set of E, as E is minimal. If, for D-most i , 

f(i) is constant on a set of E, then f is equal modulo D' E to 

n n-l 
a map that factors through 'TT : W --- CD ,the first projection. But 

then F ~ 'TT (D· E) = D , and the required conclusion follows from the 

induction hypothesis. So suppose, from now on, that, for D-most i , 

f (i) is one-to-one on a set of E; replacing f by a map equal to 

it modulo D' E , we may suppose that f (i) is one - to - one on all of 
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n-1 
w for all i. Let g : 1.0 -+ W be a function such that 

g(i) = g(j) ~ £(i)(E) = £(j)(E) 

(~£ (i) = f (j) mod E by Corollary 2.6) 

Let G =f (i)(E) for any i with g(i) =n. Then 
n
 

F = f(D· E)
 

= D-lim,f (i) (E)
 
1 

= D-lim.G (')
1 g 1
 

= g(D)-lim G
 
n n
 

As the G are distinct P-points (being minimal), Propositions
 
n 

15.	 9 and 15, 11 give that
 

F ;;; g(D)- I; G ;; g(D)' E
 
n n
 

Applying the induction hypothesis to g(D) , we get the required
 

conclusion. 0
 

LEMMA 2: (1) 1£,	 for D-most i, F, is non-principal, then 
1 

D < D - L, F. 
·11 

(2) ~ D and· F, are non-principal for D-most i , then 
1 

D-I;,F. is neither	 principal nor minimal. 
1 1 



164 

(3) lL D and E are non-principal, then D· E is neither 

principal nor minimal. 

(4)..!!.. D-r.E. 
1 1 

= D-I;.F. 
1 1 

with D, E., 
1 

F. 
1 

of size w, then 

-for D - mo s t i , E. = 
1 

F. 
1 

(5) If D· E ;; D '. E' , where D, D',E,E' have size w, and 

if either E and E' are minimal or D and D' are minimal, 

then D == D' and E;; E' . 

Proof: (1) follows from Lemma 15.7(5) and Corollary 2.6. (2) and (3) 

follow from (1). (4) follows from Theorem 19. 2 and (1). (5) follows from 

Corollary 19. 4 and (2). 0 

THEOREM 3 : Let D ,···, D , D ', ... ,D:n be minimal ultrafilters
l n l

on w· ..!!.. D1 ... Dn - D I' . . . D:n then m = n , and, for 1 S. i < n 

D. ;; D.' 
1 1 

Proof: If n = 1 , then then m = 1 by (3) of the lemma, and the 

assertion of the theorem holds. Proceeding by induction on n , 

suppose that n > 2 , that the assertion holds for n-l and that 

D D ;; D{ ... D:n By (5) of the lemma, D ;;; D I ,and
l n n m 

D D _ ;; D{ ... D:n_I By induction hypothesis, the assertion 
I n I 

of the theorem follows. 0 
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As an application, we have 

PROPOSITION 4: If FRH(w), then RK« w) is neither an upper nor 

a lower' semi-lattice. 

Proof: By Corollary 20. 3 ,let D and E be minimal ultrafilters 

on w such that D· E and t(E' D) are the only ultrafilters containing 

D X E. First, we shall show that D f E. If g: D -+ E, then the 

map 

f : W ~ WXw : x -+ (x,g(x)) 

takes D to an ultrafilter which contains D X E (by direct computation 

using Lemma 3. 2) but which, being isomorphic to D (via f) cannot be 

D· E or t(E' D)" by Lemma 2(1). This contradicts the choice of 

D and E , so there can be no g D -+ E . 

Now, by Theorem 1, the only elements of RK(::;'w) below 

D· E are D' E , E, D, and O. By Lemma 2(3) , none of these except 

possibly D' E can equal E' D. But D' E ~ E' D implies D ~ E 

(by Lemma 2(5)) which is not the cas e. Hence E' DiD' E , and 

symmetrically D' E iE' D . 

Hence, the only common lower bounds of D· E and E· Dare 

D ~ E ,and 0 , As none of these is ~ the others, D· E and 
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E· D . have no greatest lower bound. 

By Proposition 3. 3, any common upper bound of D and E is 

above either D· E or E' D. As these two products are incomparable, 

D and E have no least upper bound. 0 

REMARKS 5 : With D and E as in the preceding proof, D' E 

and E' D have no least upper bound either. For, the only elements 

of RK that are below both of the upper bounds D· E' D and 

E' D' E are 0, D , E , D· E, and E' D , none of which is an uppe r 

bound of D' E and E· D. Thus, as promised in Section 5, we have 

two elements of RK(w) which have neither a least upper bound nor a 

greatest lower bound in RK. 

Combining the ideas. in the proofs of Proposition 4 and Corollary 

20. 14, we can obtain two ultrafilters D and E such that the set 

of upper bounds of D and E has exactly n minimal elements 

and every common upper bound is above one of these n , for any 

prescribed n I 0 (n < w). (Proposition 4 was the case n = 2 . ) 

LEMMA 6: Let D be a minimal ultrafilter on w, E and F. 
1 

(i < W) arbitrary ultrafilters on w. If D' E ~ D-L.F. 
1 1 

, then, for 

D-most i , E < F. 
1 
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Proof Let f: WX w .... wX W map D-I:.F. to D' E. The function 
1 1 

i .... [(i)(F.) is one-to-one or constant on a set A of D. 
1 

Case 1 All f(i) (F.) for i E A are the same F. Then 
1 

E < D\E = f(D-LF.)
1 1 

= D-lim. f (i) (F.) 
1 1 

= F 

< F. 
1 

for all i EA ED. 

Case 2: All f h)(F.) for i E A are distinct. Then, by
1 

minimality: of D and Propositions 15.3 and 15. 14, 

D'E = D-lim.f(i)(F.)
1 1 

= D-L f(i)(F.)
1 1 

By Theorem 19. 2 , for D-most i 

E - f(i)(F.) < F. 
1 1 

cases (2) and (3) of that theorem being ruled out by Lemma 2(1). 0 
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THEOREM 7 : Assume FRH(w). Then Pkd, partially ordered by 

inclusion, can be order-isomorphically embedded into RK« w) . 

Proof .us ing Corollary 8. 9 ,let D and E (n < w) be countably 
n 

many pairwise non-isomorphic minimal ultrafilters on w. For any 

A ~ wand any i < w, let F ~ be an ultrafilter on w isomorphic
1 

to E where the n. are the elements of Ani in increasing
n l J 

B
order. If A c B , then, for any i, FA < F because the producti - i J 

of E I S for n E Ani is the image of the corresponding product 
n 

for B under a prqjection map. Define 

G
A 

= D- L .0 
1 1 

By Lemma 15. 7 (7) ,if As; B, then GA S. G B . Thus, P(w) is 

A
mapped into RK« w) in an order-preserving way by A ..... G . 

A B
We must still show that G < G implies A c B. Suppose 

not; let GA ~ G
B 

but Ai B. Let PEA - B. As {p} c A , 

G{p} ~ G
A s. G B . For D-most i (namely, all i> p) , F~P} ;; E 

1 P 

so Hence, 

B 
= D-L.F. 

1 1 
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B B
By the 1 emma. E .:$ F. for n':'most 1 By definition of F. and<p 1 1 

Theorem 1 • E is isomorphic to a product of certain E 's with 
P m 

~ 

nEB. By Theorem 3. • E = E for some nEB, which is 
P n 

impossible because p rt. B and the various E 's are non-isomorphic. 0 
n 

Notice that Corollary 9.10 is an immediate consequence of Theorem 

7( except that FRH(w) is used), for IR can be isomorphically embedded 

into P(w). . 
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§ 22. "External ultrafilters We have three partial orderings, 

on RK(w). (If K> w, then < is trivial on RK(w)~ , <w' and < RF 
K 

by Corollary 13. 3) We have seen (Corollary 15. 18) that implies 

~ • which in turn implies ~' The latter implication is not reversible, 
W 

for ~ is directed upward (Proposition 5. 10). while ~ is a tree ordering 
w
 

(Corollary 13. 8). A tree is directed only if it is linearly ordered, which
 

RK(w is not "by a result of Kunen [12J (or of we assume FRH(w), by
 

Corollary 8. 9). The possibility that < and S. agree seems more
 
~F W 

plausible ; at least they are both trees. But we shall show in this
 

section that they do not agree. In fact, we prove
 

/" 

THEOREM 1 : Let D be any uniform ultrafilter on w. There is an
 

E on W such that D S. 
w 

E but D i 
RF 

E , as surning CH.
 

The proof is quite long and involves several intermediate propositions. 

We begin by observing that the content of the theorem is unchanged if 

we require E to be on WX ClJ rather than wand if we assume that 

the IS(w)-morphism from E to D is the projection to the first 

"factor .".: wX w.... w· E will be obtained by constructing the non- standard 

ultrafilter F = E/D in ':'P(w) in D-prod V. By Corollary 14. 2 

the requirement that '" be an IS(w) -morphism means 

, I 
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(1) If ~ f . is an internal function on ':'LtJ such that 

in D-prod V , Card fll *w< ;:'w, then there is an internal 

A ~ >:<"-' such that A E F and f t A is constant in D-prod V. 

(In other words, given an internal partition of ,""w into 'I' -finitely many 

internal pieces, one of the pieces lies in F. )In order that E not be 

D-LiG (which would imply D ~RF' E), we must have, by Corollary 15. 17,
i 

(2) F is external. 

A priori , it appears that we must require more, for D f E means
RF 

not only that E cannot equal D-L:.G. but also that they cannot even 
1 1 

be isomorphic. Hence we prove 

LEMMA 2: If 17' is an IS(w)-morphism from E on WX (t.l.!9 D 

on Lt.l, and if E is not of the form D- L G. then E is not isomorphic 
i 1 

to any E' of that form. 

Proof: Suppose f : D-L.G. = E' -- E is an isomorphism. Without loss 
1 1 

of generality, suppose the G. are on W, so E' is on (tlX 0)' Both 
1 

", and ." 0 f are IS kd -morphisms from E' to D (see Corollary 15.18). 

By Corollary 13.6, 17' ='17'1"' f mod E I. By modifying f on the complement 

of a set of E', we may as sume ", ="0 f. But then 
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E = f(D-l: .GJ = D-L:. '7"f(i)(G.)
1 1 -1 1 

where .,,': wX W ~ W is the second projection, by Lemma 15. 7 (7), 

contrary to the hypothesis 0 

Thus, to prove Theorem 1, all we need to do is construct an 

ultrafilter F in >:'P(w) satisfying (1) and (2). The following proposition, 

besides being an important step in that construction, is of interest 

in its own right. 

PROPOSITION 3: Let D be a uniform ultrafilter on w. There 

is an external subset A ~ ,:<~ such that, for each x E >« ~ 1 ' 

A n x is internal. 

Proof: If x:s. y , then, for any A A n x = (A n y) n x ,so A n x 

will be internal provided Any is. Thus, it will suffice to check 

that A is internal for cofinally many Since D is on uJ, 

,, ­
anythe standard ordinals are cofinal in -"'U ,. 

~'l 

where f : UJ~ ~1 ' is majorized by 
::.~ 

ex, where ex = Un(Ra(f)) E ~1 

So we need only make sure that An ':'ex is internal for all (standard) 
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We shall define functions Aa: w-+ P(a) , one for each countable 

ordinal a, so that, for a< 8 < ~ ; , l' 

, 
Then [Aa.!D = [A8]D n >:<a in D -prod V: We shall let 

A= 

Then A n >:'a = [Aa ] is internal. We shall also make the AfY. sufficiently 

complicated that A itself will not be internal. This Will prove the 

proposition. 

We define AI' by induction on . 'Y' For finite y, set A'Y(n) = ¢ 

for all n; clearly (3) holds. Now suppose 'Y 2:. W, A(X is defined for 

a< 'Y, and (3) holds for (X< f3 < y.. Let g: w-+ y be a bijection. For 

n < w, let 

H(n) = (w- n) n. n C{g(i),g(j)} ED 
1, J n 

and let h (k) be the first n such that k r/. H(n) ; h(k) exists 

because k l. H(k + l). Among the ordinals g (i) for i < h(k) , let 

g (k) be the largest; by definition of h, H, and C ) 

Ag(i)(k) = As(k)(k) n g(i) for all i < h(k) 
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Thus, (3) will continue to hold for {3 =y, provided we choose A'Y so 

that, for all k < W, 

for, given any (X = g(i) < 'Y, we have 

k EH(i+ 1) => i < h(k) 

and H(i + 1) ED. 

We must still make sure that A is external; all we have said 

so far does not rule out the possibility that a 11 A Q!(k) are ¢ , 

which we clearly do not want. Every ordinal (X,::: u.l can be uniquely 

written in the form A+ n where \ is a limit ordinal and n < w; 

let us write >.. ((X) and n(f)!) for the \ and n whose sum is (X. 

Let R: ~l ...... P(u..l) be a function such that, if (XI f3 ,then R((X) 

and RCB) have infinite syrn.metric difference. (For example, let R I 

be any one-to:-one map ~l ...... P(u.') ,let f: w ...... WX uJ be a bijection 

-1 -1 I)" eand let R(a,) =f ", (R ((X .) Dehne, for any < y , 
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and SEA~(k)(k) • or 

and n(S) E R(y) 

The first clause of (5) gives (4); the second will give .that A is external. 

The functions g. H, h, and' ~ are all dependent on y; when
 

necessary, we shall write theITl with y as a subscript.
 

TeITlporarily fix k < w , and suppose X is a set of countable 

. liITlit ordinals such that 

a < f3 and a, f3 E X => k E C {a, f3 } 

I claiITl that no eleITlent of X can be the liITlit of a sequence of sITlaller
 

eleITlents of X. Suppose not; say a < a < . .. is a sequence ~ X

l Z
 

wi th liITlit f3 EX. As ~f3 (k) < f3 , we ITlust have ~(3(k) les s than one
 

of the a's; oITlitting an initial segITlent of the a-sequence, we ITlay
 

suppose ~ f3 (k) < a = a · Let y be the larger of ~f3 (k) and ~ (k),

l a 

so y < a. If C is an ordinal such that i' < C < a , then the 

definitions of Aa and Af3, together with the fact that Aa(k) = Af3(k) na , 

give 
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<;::::> n(C ) E R(f3) 

Applying this to C= y, y'+ 1 , y + 2 , ..." , all of which are < Cl 

because Cl is a limit ordinal, we find that the symmetric difference 

of R(Cl) and R(f3) contains only numbers less than n(y) , contrary 

to the definition of R. This proves that X contains none of its own 

limit points. 

Now, let B: w~ P(~l) be any function. For each k, let X
k 

be the set of limit ordinals Cl such that ACl(k) = B(k) nCl. By the 

preceding paragraph, X contains none of its limit points. Let 
k 

L = {k E w I X is countable}
k 

and 

M =w - L = {kEwl X is cofinal in ~l}
k 

Let be an ordinal < ~l ' but greater than all elements of X 
k 

for all k E L Define Cl by induction on n as follows. If 
n 

a 
n = 2 (2b + 1) , let Cl be any ordinal in X which is >Cl l' 

n a n-

provided a E M so such an Cl exists ; if a E L • let Cl > Cl 
n n n-l 
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be arbitrary but <~1' Let fJ be the limit of the increasing sequence 

O!n Thus, fJ < ~1 ' and, by choice of O!O' fJ ~ X
k 

for k E L. On 

the other hand, if k EM, then fJ is the limit of the subsequence 

b=1,2, ... <w 

all of whose members are in X ; as X contains none of its own
k k 

limit points, fJ ~ X · Thus fJ~ X for any k Since fJ is clearly
k k 

a limit ordinal, we conclude from the definition of X that 
k 

{k IAfJ(k) = B (k) nfJ} = (/J , 

so 

and, a fortiori, A';' [B]. As B was arbitrary, A is external, and 

the proposition is proved. 0 

Before we complete the proof of Theorem 1 by constructing the required 

F , we make a few heuristic remarks to clarify the idea behind the 

construction. Recall the standard method of constructing ultrafilters (see 

Tarski [17]). You well-order all subsets of w, and, starting with any 

family ~ P(w) with the finite intersection property, you consider in 

turn each subset of w, throwing it into the family if this can be done 
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without destroying the finite intersection property; otherwise you throw 

in its complement. This method gives preferential treatment to the set 

under consideration as opposed to its complement; you could just as 

well throw in the complement whenever possible. More generally, if 

W \
A ~ Z ,you can use the following procedure. The ath time you have 

to make a choice (i. e., either the set or its complement can safely be 

thrown in), choose the set if aEA, the complement if art A. The 

ultrafilter you get will "encode" A (unless you get an ultrafilter with a 

basis of cardinality < ZW ; in the theorem, we are assuming CH, so 

this is no problem). The idea is, in the non-standard world, to get F 

to encode the A of the proposition. F cannot be constructed in the 

non-standard world, for A doesn't exist there; indeed, we want F 

to be external. But F cannot be constructed directly in the real 

world either, for here >:<~l is not well-ordered. The solution of this 

difficulty is a division of labor between the two worlds. The residents 

of D-prod V can construct approximations F to the required F 
Ci. 

using the internal sets A n >:<a. (Each F is internal, but the sequence
a 

of all of them is not. ) Then we, in the real world, use these approxima­

tions to define F. 

Using CH, let S t{l ..... P(w) be a bijection. Let B C ~l . 
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B
Inductively define a nested sequence of filters G (a) and a non-decreasing 

sequence of ordinals yB(a) (a < ~l) as follows. GB(O) consists of the 

cofinite subsets of w, and yB(O) = O. If A is a limit, 

GB(A) = V< A GB(od and yB (A) = sup \ yB(a) • "For succes sors, let 
(X a<A 

GB(a+l) be 

(b)	 The fil ter generated by GB(a) U {S(a)} if case (a) doesn't apply 

B 
and y (a)	 EB 

(c) The filter generated by	 otherwise 

in case (a)	 set yB(a + 1) = yB(a) , and in the other cases set 

B B
Y (a + 1) = Y (a) + 1 • 

:J..et 

One sees (by induction on (3) that if some ordinal f3 < ~l were not of 

B
the form Y (a), then the sequence would eventually become 

constant. This is impossible, because" GB(a) has a countable base, 

while F 
B 

, being an ultrafilter, does not. Hence yB maps onto ~l' 

Let OB(f3) be the first Ol such that 0 B(a) = f3 + 1 ; thus oB is 

a strictly increasing map ~l .... ~l ' and 0 B(f3) > f3 • 
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If Bf:.C and {3 IS the fir st ordinal in their symmetric differ"ence, 

B B C
then ()B(~) = ()C(~) for all ~ oS {3, and, for a < () ((3), G (a) = G (a) 

and yB(Cd = Y C(a ) OB({3) is the successor 7J + 1 of an ordinal 7J, 

B C
and G (7J + 1) f:. G (7J + 1) , for one of these contains S(7J) while the other 

\ B C B C 
contains w-S(7J). Thus, F f:. F . For a < 7J, S(a) E F ~ S(a) E F . 

As 7J L {3, this holds in particular for all a < (3 • 

B
If F is any uniform ultrafilter on w, then F = F for some 

B c ~1. For we can l~t 

G(a) =	 the filter generated by all cofinite sets plus those 

sets in F of the form S({:n or W - S(fJ) with 

(3<a. , 

B
and then	 the inductive conditions used to define and aboveY 

B 
can be used Ilin reverse" to define and B given G.Y 

Hence, we have a bijection q, : P(~l) .... unif (w). With A 
-
c *~ 

1 

as in the proposition, let 

~I< 

(Actually we mean (:'q,HB) , where BE' P(~l) represents 
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:::.:
Thus, F is an internal uniform. ultrafilter on w. If a < fJ ' then 

a 

An *a and agree on ordinals so, by the rem.arks two 

paragraphs ago, F and F f3 agree as far as the sets 
a 

are concerned. Thus, we m.ay define F to be the set of those ):~S(x) 

which are in Fa for one, hence for every, a < ~l with x < ):~a • 

~-

If X E):~P(w) , there are x, y E ):~~l wi th X = -"S(x) and 

...1.. ...1....

*w- X = -·'S(y).. ('S is a bijection because S is one.) Choose an 

so that x, y, < 
~~ a. Then, as F is an ultrafilter on 

a 

XE F <;::::;> X E Fa 

...' <;::;> 
~-

w- Xr!. F 
a 

-,­
<;::;> '.'

w- X~ F 

Sim.ilarly, F is closed under intersection, so F is an ultrafilter 

in >:~P(w) We now verify that it has properties (1) and (2) . 

There is a function f as signing to each function g on W an 

upper bound f(g) < ~l for the countable set of ordinals of the form 

S-l(g-l{n}) , n E g"w. Let f be an internal function on w such 

-,­
that Card f"):~w< ""w in D-prod V. Let a be an ordinal 

with Then, by definition of f, for all lJ E f 11 :(~w , 
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It is true in V, hence in D-prod V , that 

A function taking fewer than W values is constant on SOITle 

set of any given ultrafilter on its dOITlain. 

Hence, there is a V E f II >:<w with rl{v} E F Ci.' Therefore rl{v} E F , 

and (1) is proved. 

If F were internal, it would be ('<4» (B) for SOITle B E >:<P(~l)' 

As A is external, it cannot be represented by B , so choose an 

Xo E B 6. A ~ >:<~l ,where 6. denotes sYITlITletric difference. Choose 

Ci. < ~l with >:<a> (>:<0 )B(x ) > X The internal set (An >:<0:) 6. B is 
O o 

noneITlpty, so let x be its least eleITlent. As x < X ' o 

(*o)B(x) ~ (:<o)B(x ) < >:<0:. As 0 ITlaps to successor ordinals, there is
O

a y < >:<0: such that >:<oB(x)::: y+l By the discussion following the 

defini ti6n of 0, 

contradicting the definition of F. Therefore (2) holds, and TheoreITl 1 

is proved. 0 
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B
The theoreITl can be iITlproved as follows. In defining F , change 

B B
the inductive conditions on G so that G (a +1) contains, in addition 

to S(a) or w- S(od , SOITle canonically selected (i. e. , . depending only 

B 
on G (a), not on B directly) set on which Q(a) is constant or 

one-to-one, where Q is a. fixed bijectio.n froITl to Ho ITl( w, w) ;~l 

call that set in GB(a+l) If B and C fir st differ at f3 

and a < fJ ,en .....R th TB(N) Let F then be defined as in the 

proof just given, and consider any internal 

-,- ,t.-.'for SOITle xE , and w~ choose a so that x < "'a For f3 > a ,~l 
,,­,'­An "'a and An "'f3 first differ at a or later, so F and 

a 

contain the saITle set on· which f is constant or 

one-to-one; therefore T E F . 
x 

Let E be the ultrafilter on W X W deterITlined by F; F = E/ D 

Then, as in the theoreITl, 17: E .... D is an IS(W)-ITlorphisITl, and 

D i E. (F is external because it still codes A; the proof of this is 
RF 

a bit ITlore cOITlplicated than the corresponding part of the proof of the 

theoreITl. ) FurtherITlore, if f: WX w.... w, then, by what has just been 

shown, the internal ITlap [f]D is constant or one-to-one on a set of F. 

Thus there is an A EE such that 

D-prod V 1= [f]D is one-to-one or constant on [A]D 
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which means that, for D-most i, I (i) is one-to-one or constant on 

-A(i) Replacing f be a map equal to it mod E, we may suppose that 

either f factors through Iff or £(i) is one-to-one for all 1. 

Until now, D has peen quite arbitrary. Let us now consider 

the special case that D is minimal. I claim that then any IS(r..d-morphism 

f with domain E (where E is as in the preceding discussion) is 

either an isomorphism, or '" followed by an isomorphism, or a 

constant map. If f factors through 1T, then we have one of the last 

poss ibilities, because D is minimal. So as sume that 1 (i) is 

one-to-one for all i. By Proposition 13. 5 applied to f and ,", we 

find that one factors through the other. Since we have disposed of the 

case that f factors through '!1. we as surne '" factors through f. 

This. together with the fact that all f (i) are one-to-one. implies 

that f is one -to-one on a set of E • hence is an isomorphism. This 

proves the claim. 

PROPOSITION 4 There is an E on w which is minimal in RF(CL') 

but not in IS (CL') • 

Proof: Let D and E be as in the preceding discussion. As 

D < E is not minimal in IS (u.1) Now suppose that G < RF E ; say 
uJ 
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Apply the preceding discussion to f = 1T 0 g. In the first case, 7Tg is 

an isomorphism, so G = E . In the second case G = D which is 

impossible because D 1:.. R~ E In the last case, G = o. Thus, no 

element of RF( w) is <RF E 0 

Since all P--points are IS( w) -minimal, we have as a corollary 

the theorem of Kunen (quoted in [2]; also see [12] ) that minimality in the 

.RF-ordering is a strictly weaker condition "than being a P-point. 
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