ORDERINGS OF ULTRAFILTERS

A thesis presen.ted
by
Andreas Raphael Blass
to

The Department of Mathematics

in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy
in the subject of

Mathematics

Harvard University
Cambridge, Massachusetts
May, 1970



TABLE OF CONTENTS

Acknowledgments

Introduction

81.
82.
83.
§4.
§5.
§6.

§7.

88.

§9.

§10.

§11.
§12.
§13.
§14.

§15.
§16.
§17.
§18.

Chapter I. The Category of Ultrafilters.

Notation and preliminaries.

The category of ultrafilters.

Cartesian products of filters.

Size, regularity, and completeness of ultrafilters in u .
The Rudin-Keisler ordering.

Ultrafilters omitting cardinals.
Chapter II. Inductive Constructions.

The filter reduction hypothesis.
Some comeager sets.
P-points.

Minimal ultrafilters.
Chapter III. Ultrapowers

Ultrapowers and morphisms.
Ultrapowers of w .
The initial segment ordering.

Non-standard ultrafilters.
Chapter IV. Limit Constructions.

Limits, sums, and products of ultrafilters.
Successors in  RK(w) .
Goodness, sums, and minimality.

Ultrafilters on singular cardinals.

i

10
19
25
28
34

40
49
54

103

108
121
125
133



§19. Isomorphisms between sums.
§20. Cartesian products of ultrafilters on
§21. Products of minimal ultrafilters.

§22. External ultrafilters.

Bibliography

138
145
162
170

186



ACKNOWLEDGEMENTS

I would like to express my gratitude to H. Jerome Keisler and
especially to Frank Wattenberg for their helpful advice and encouragement.
Thanks a;lso to David Booth for providing a copy of his thesis, to
Martha Begnoche and Judi Moore for typing this manuscript, and to the

National Science Foundation for financial support.




INTRODUCTION

The research leading to this thesis was originally motivated by
the follo:wing considerations. Intuitively, all non-principal ultrafilters
on the set @ of natural numbers look pretty much alike. If one
attempts to formalize this intuitive feeling, one might conjecture that
any two such ultrafilters are isomorphic (i. e., correspond to each
other under a suitable permutation of ), but such a conjecture is
quickly destroyed by a simple cardinality argument: There are too
many ultrafilters and not enough permutations. Knowing that there are
non-isomorphic (i.e., "essentially different'') non-principal ultrafilters
on (, one naturally asks what is the difference between them. What
properties, invarinat under isomorphism, are possessed by some, but
not all, non-principal ultrafilters on w? Or are there perhaps no such
properties (expressible in the usual language of set theory)? The
questions can be generalized to refer to uniform ultrafilters on set.s of
arbitrary cardinality. A partial answer was known, for Rudin had
shown [14] that some, but not all, non-principal ultrafilters on
are P-points (see Definition 7.2) provided the continuum hypothesis is
true, and Keisler had shown [7] that some, but not all, uniform
ultrafilters on a set of cardinality K > @ are K+-good (see Section 1)
K

.I.
provided =K . If one does not assume any instances of the

ii
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generalized continuum hypothesis, the problem appears to be much
more difficult. We shall show (Theorem 18,1) that a certain property
applies to some but not all uniform ultrafilters on sets of certain
cardinalities, but I know of no set theoretically definable properties
which can be shown, without using the continuum hypothesis or some
.other special assumption, to apialy to some, but not all, non-principal

ultrafilters on (.

In considering this problem, I was led to consider the weak
partial ordering of ultrafilters which places one ultrafilter below another
if and only if the former is the image of the latter under some function
(Definition 2.1). The first results I obtained about this ordering
(existence of minimal elements, directedness, and Corollary 9.10)
convinced me that it deserved further study. That study is the
principal subject of this thesis. It turned out that this ordering and its
simpler properties (Sections 5 and 11), as well as Corollary 8.8
(with GCH 1in place of FRH), had been known to Keisler and others,
though nothing had been published on the subject. (As mentioned in
Section 9, Corollary 9.10 also follows from work of Booth [2].)
However, Keisler suggested three open questions about this ordering
(all are answered negatively in Sections 17 and 18) and other questions

suggested themselves (e. g., is the ordering an upper semi-lattice),
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The results obtained indicate that the étructure of the ordering is quite
irregular. For example, if we assume the generalized continuum
hypothesis and restrict our attention to non-principal ultrafilters on

W, the bartially ordered set RK(w) , obtained by identifying isomorphic
ultrafilters, has the following propertiesT 1t has cardinality RZ . Every
element has RZ immediate successors (in a strong sense; see

Definition 16. 2) but at most X, predecessors. The long line and the

1
Boolean algebra of all subsets of ¢ can both be order-isomorphically
embedded in RK(w) . There are RZ distinct minimal elements.

There are two elements which have no least upper bound but have exactly

n minimal upper bounds, for any given natural number n > 2.

In addition to the ordering described above, certain other (stronger)
orderings of ultrafilters (see Definitions 18.1 and 15. 8) and related

properties of ultrafilters are considered.

The thesis is divided into four chapters as follows. Chapter 1
consists of basic definitions and fundamental theorems, almost all of
which were known in some form or another but many of which are not
4in the literature. In particular, Theorem 2.5, which is perhaps the
most basic result in the field, has been discovered independently by
nearly everyone who has worked in the subject, but no complete and

general proof seems to have been published. Chapter II consists of



results obta'}ned with essentially one tooi -- construction of ultrafilters
by trans\finite induction. This tool, in conjunction with the (generalized)
continuum hypothesis, had been used by Keisler and Rudin to obtain

the theorems mentioned above. We show that, in some cases, itis
possible to replace the continuum hypothesis by a weaker hypothesis,

and we prove some results about the arrangement of the P-points in

our ordering. Chapter III concerns ultrapowers and the connection
between their model-theoretic properties and the ordering-theoretic
properties of the ultrafilters used to create them. Finally, Chapter IV
consists of results depending on the ideas of limit, sum, and product

of ultrafilters.

The thesis is also divided into sections, whichare numbered
consecutively without reference to the chapters containing them.
Definitions, lemmas, propositions, theorems, corollaries, and remarks
are numbered in a single éequence within each section, starting over
at the beginning of each section. The seventh numbered item of
Section 15, being a lemma, is called Lemma 7 within that section and
Lemma 15. 7 elsewhere; the third of its eight parts is Lemma 7(3) or

Lemma 15. 7(3).



CHAPTER I.

THE CATEGORY OF ULTRAFILTERS.

§1. Notation and preliminaries.  For any notation which we use

~and which is not standard, see Shoenfield [15], especially Chapter 9,
Problems 28 and 29 of Chapter 5, and Section 2.5. The common
notation f(a), where f{ 1is a function, is ambiguous, denoting either
fra [15, p. 245] or {f'x|x€ an Dol(f)} =f'a. We shall usually

. write f(a) , as it will be clear which meaning is intenaed, but if

confusion seems likely we will use the precise notations f'a and

f'"a . The letter K will always denote an infinite cardinal, and K?+
is the least cardinal >K. (G)CH 1is the (generalized) continuum

hypothesis. We use the usual symbol ‘: for satisfaction; thus, if

L. is a (first-order) langu'age, G a structurefor L, and o a
sentence of L(G), then ¢ "-'cp if and only if G(Sp) =T. If D 1is
an ultrafilteron I and fé€ WiG[Ai , we use the notation [{] or

D
sometimes just [f] (rather than Shoenfield's ¢(f)) for

feeTa, lteria=gt))e p}
i€l -

we call [f]D the germof f on D. If g€ [f]D , we shall say that

f and g are equal modulo D (f = g mod D). The set of germs is



called D-prod_Ai , with a similar notation for ultraproducts of structures.
1

qu. any set X, P(X) is the set of all subsets of X , and PK(X)

is the set of those subsets of X whose cardinalis < K. In particular,

Pw(X) is the set of finite subsets of X .

We assume the set theory ZFC , -Zermelo-Frankel set theory
including the axiom of choice. For convenience, we shall occasionally

speak of specific proper classes.

A filter in a Boolean algeBra ® 1is amt Fc® such that, for
all A, BE€E@® , ADBEF'<:>A,BEF , and 0¢ F . Anultrafilter
in ® is a maximal filterin ® . A basis for a‘ filter F 1is a set
G<c F such that F = {AI(HB €EG)BcA}. A subset G of ® has

the finite intersection property if and only if no finite meet of elements

of G is 0. By Zorn's lemma, every such G 1is contained in an
ultrafilter. G is said to generate, or to be a sub-basis for, the
smallest filter containing it. Every filter is the intersection of the
ultrafilters that conéain it. A filter (or ultrafilter) on a set I is a

filter (or ultrafilter) in the Boolean algebra P(I).

Let F Dbe a filter ona set I. We say that F-most elements
i€l (ormost i withrespectto F) have a property ¢ , and we

write (ViFkp (i) , if andonly if {i €I|@(i)} € F. We say that



F-many i have ¢, and we write (diF)p(i), if and only if, for all

AcF, An{ilpii)} # @ . We then have

(ViF)@(1) and p(i)) <> (ViF)@i) and (FIFWGE)
@F)eGE) v ogli) < @FpE) v @egE)

(viF)Sa(i) <= ~ (giF) ~ i)
If F is the principal filter generatedby {J} with Jg I, then

(ViFpp (i) <= (vi € TR (i)
and

@iFp i) < (@i € Jp()
In particular, if D is the principal ultrafilter containing {j} then
(ViD) (i) <= {iDKp(i) <= @(j)
For any filter F ,
F is an ultrafilter < [For arbitrary ® , (ViF)@(i) <> (EiF)CP(i)]
> [For abritrary ©,~ (ViF)P() <> (ViF)§CP(i)]

If (vi)(e(i) »y(i)) and (ViF)Q(i) , then (VIiF}(i) .



Warning: The ""quantifiers'" (ViF) do not commute with each
other. If F consists of the cofinite subsets of (, then

(VxF)(VyF)x <y, butnot (VyF)(VxF)x<y. t

The fundamental theorem on ultraproducts is, in this notation,

[D_Prod G, ,:q;([fl],. £ ] (¥iD)G, hp(f ..,fn(i))

The size of a filter F ona set I 1is the least of the cardinalities
of the setsin F . F 1is uniform if and only if size(F) = Card Un(F) ,
i.e., all the setsin F have the same cardinal. F is K-complete
if and only if it is closed under formation of intersections of fewer than

K elements at a time. Thus, all filters are @ complete. Those that

are Rl-complete are also called éountably complete. An ultrafilter D
onaset I is K-regular if an& only if there is a function

f: Un(D) — Pw(K:) such that (Vo € K)(ViD)x € (i) . D is regular if and
only if itis size(D)-regular . D is K+—good if and only if, given any
map & : Un(D) - P(Pw(K)) satisfying (¥x € Pw(K))(ViD)x € &i) , there
exists an f: Un(D) -—va(K) such that (V&€ K)(ViD)ex € f(i) and

(ViD)f(i) € ®(i) . D is good if and only if itis size(D)¥-good.

We now list a number of facts which we shall need. Since most of

these are standard, we give references or brief hints rather than proofs




for them.

1. Any set on which there is a non-principal countably complete
ultrafilter must be very large. It is (relatively) consistent with ZFC
to suppose that there is no such set. (See Shoenfield [15, Section 9.10

and Problem 9.14] and Keisler-Tarski [11].)

2. If D 1is K-regular, then size(D)>K. (Forany A€D ,

UiEAf(i) =K .)

3. If D 1is K-regular, then it is countably incomplete. (The

sets
A = {ilCard(f(‘i))Zn}
arein D and have empty intersection.)

4, If D is K+—good,~ then it is K-regular. (In the definition of

kt-good, set () = P (k) forall i.)

5. Thereis a K-regular ultrafil‘cezE on Pw(K) , hence on any set
of cardinality K . (The collection {Ad la €K}, where
Aa = {x¢ Pw(K) o € x}, has the finite intersection property. Any
ultrafilter containing it is K—regular,’ for we may take f =id in the

definition of regular.)



6. Any uniform filter on an infinite set is contained in a uniform
ultrafilter. (Adjoin to the filter all sets whose complement has smaller
cardinality than the sets of the filter. Extend the resulting family to an

ultrafilter.)

7. An ultrafilter is K+-good if and only if if is countably incomplete

‘and satisfies the following condition. Given any g : Pw(K) - D such that
FSF €P (k) =>gF)2g(F")

there is an h: Pw(K) - D such that, forall F , F € PUSK) s

hFUF’) =h(F)N h(F’) and h(F)< g(F). (Proof postponed.)

8. If 2" = K+ , then there is a K+-good ultrafilter on any set of

cardinality Kk . (Keisler [7].)

9. Every countably incomplete ultrafilter is No-regular and

le-good. (Keisler [7].)

Let L be alanguage and (G a structure for L . G is
K-saturated if and only if, given any set T of formulas of L(Q),
with a single free variable, such that Card(l) <Kk and every finite
subset of ' 1s simultaneously satisfiable in G, the whole set T

is simultaneously satisfiable in @ .



10. D is K+—good if and only if for every language L and
every family of structures Gi(i € Un(D)) for L, D-prodi@i is
K+-sati1rated. (Proof postponed.)

11. Any two elementarily equivalent K-saturated structures of
power K , for a language with fewer than K symbols, are isomorphic.

(The proof is like the proof that all countable dense linear orderings

without endpoints are isomorphic. See also [15, Problem 5. 26].)

We now prove (7) and (10). In Keisler [8], goodness was defined
by (essentially) the conditi.on in (7) and proved equivalent to the condition
in (10), so we need only prove (10). First suppose D is K+-good,
let G = D-prod G,i , and let T" be as in the definition of K+—sa1:urated.
In particular, Card(T) <K . For each [a]€ |Q[ , choose a representing

function a” € 'Ii,Gi|' Interpret L(@ in G,i by letting [a] denote

a’(i). For i€ Un(D), let
&(i) = {x € Pw(l") |x is simultaneously satisfiable in Gi} ,

and, for x€ ®(i), let b(i,x) be an element of |Gi| satisfying all

SoG x . Thus

?E x € &(i) = b(i, x) satisfies ? in G’i

Any finite subset of [ 1is, by hypothesis on T and the fundamental



theorem on ultraproducts, satisfiable in D-most of the G’i . (For the
satisfiability of a finite set can be expressed by a single sentence, the

existential quantification of the conjunction.) Hence,
(¥x € Pw(l'?)(ViD)x € ®(i)

~Using the K+-goodness of D ,. .we can obtain f : Un(D) - Pw(l“) such
that (ViD)f(i) € ®(i) and (Vo€ I'}(ViD)p € f(i) . If we let b(i) = b(i, £(i))
(when £(i) € ®(i) ; b(i) arbitrary otherwise), then the properties of

f and the implication displayed above show that (Vo € I')(ViD)b(i)

- satisfies ¢ 1in G, - Hence [b] satisfies every @€' in G . Thus,

G 1s K+-saturated.

For the converse, let L have two binary predicate symbols,
€ and <€ . Let @ have universe Pw(K) U P(Pw(K)) , and interpret
€ and £ in the obvious way. Let i:(G - D-prod (@ be the canonicall
embedding (taking a to the germ of the function constantly a). Let
® be as in the definition of K+—good. For €K, let cpa be the
formula: i({#}) c x and x€[®]. Theset T = {CpalaEK} has
cardinality < K+ , and any finite subset {Cpaloz € mHm € Pw(K)) is
satisfied by i(m) . So, as we are assuming D-prod Qg K+—saturated,
choose an [f] satisfying T . Itis trivial to verify that f (or a

function equal to it modulo D) has the properties required in the



definition of K+—good .
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§2. The category of ultrafilters. DEFINITION 1. Let D be an

ultrafilter, and let f: Un(D) =Y be a function. The image of D

under f is defined to be the ultrafilter

fio) = {Bc Y (f'l(B) € D}
The following lemma is obvious.

LEMMA 2. (1) If ® is a basis for D, then {f(A)|A€®} is

a basis for f(D) .

(2) If g:Y—-2Z, then (g o £)(D)= g(f(D)) .

(3) If id is the identity map of Un(D), then id(D)=D.

(4) f(D) 1is principal (with basis {{y}}) if and only if f is

constant (with value y) on some setin D . In particular, if D is

principal (with basis {{x}}), then £(D) is principal (with basis

{{f=)}}) .

For the remainder of the lemma, let f,f°: Un(D) Y, and let

(5) If f=f'modD then gof=gof'modD.

(6) g = g”mod £f(D) if and only if gof=g’ofmodD.
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(7) If f=f"modD, then £(D)=£(D). O

In view of part (7) of this lemmma, it makes sense to speak of the

image of D wunder a germ |[f]_ ; we shall also say that |[f maps -
g D ,

D
D to {(D).

Example 3. We note that the converse of (5) is false; take f
and f° to be different constant maps and take g to be any constant
map. The cénv;erse of (7) is also false, as shown by the following
example. Let E be a non-principal ultrafilter on @ . The sets
(AXA)-A, where AE€EE and A = {(x,x)|x€w} , form a
filterbaseon wXx w. If D 1is any ultrafilter containing this
filterbase, andif w, ,7w_ : W X W —~w are the projections, then

1" 2

(D) =7 (D) =E, but Trlr/zTrzmodD'.

We define a category U of ultrafilters as follows. The objects
of U are all ultrafilters (on arbitrary sets). A morphism from D
to E 1is a germ [f]D which maps D to E. If [f]D :D-E
and [g]E :E-F are morphisms (so £(D) = E and g(E) = F) then,
according to the lemma, [g o f]D is a morphism from D to F,
depending only on [f]D and [g]E (not on the choice of representatives
f and g ), and we define the composite [g]E 0 [f]D to be [g o f]D .

It is clear that composition is associative and that [id is an

Un(D)]D
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identity‘morphism for D, so U 1is a category. To simplify the
notation, we shall sometimes refer to a map f: Un(D) - Un(E) as a
morphism, when we really mean that [f]D is a morphism. This

practice should cause no confusion.

PROPOSITION 4. In u, every morphism is an epimorphism

(in the category-theoretic sense).

Proof. This proposition just restates the "if' part of statement (6)

of the lemma. []

THEOREM 5. The only morphism from an ultrafilter to itself is

the identity.

Proof. Let [f]D :D-D where D is an ultrafilter on
X=Un(D) and f:X~-X. Wehave f(D)=D, and we must show

that f = idX mod D .

0
Let f bethe nth iterateof f (n>0); f =id,
n+l ( . . .
f =fof . For x,y € X, define x~y if and only if for some
n and m(> 0) fn(x) =f (y) . Clearly this is an equivalence relation,
and f(x)~x . Say that x 1is periodic if and only if, for some

k>1 , fk(x) =x. Let AC X bea choice set for the partition of X

into equivalence classes (i.e., for each equivalence class E,



Card(A N E) = ]), and arrange that, if an equivalence class E
contains a periodic element, then the element of AN E ‘s periodic.

(Clearly, suchan A exists, by the axiom of choice.)

- Let us temporarily confine our attention to one (arbitrary) equivalence
class E, andlet a be the elementof AN E. For each x€ E,
m
let m(x) be the least m such that for some n fn(x) =f (a),
and let n(x). be the least n such that f (x)=f (a) . (These

exist because x~a.) Let d(x)=m(x)- n(x). I claim that

d(f(x)) = d(x) +1 or x=a (or both).

Let y = f(x). Then
1) fn(y)+1(x) - fn(y)(y) - fm(y)(a)
By definition of m(x), we conclude m(x)< m(y) .

Casel: m(x) <m(y). If n(x)>1, then

(2) R N O S TV
contrary to the definition of m(y) . So in fact n(x) =0, and
X = fm(x)(a) . Then vy ={(x)-= fm(x)+1(a) , so m(y) < m(x)+1 A. As

m(y) > m(x) , we concludé first that m(y) = m(x) +1, and second

(by definition of n(y) ) that n(y)=0. So n(x)=n(y)=0 and
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m(x) +1 = m(y). Therefore d(y)=d(x)+1, as claimed.

Case 2: m'.(x) =m(y)=m. Let b= £

(a) . Equation (1) now
shows that n({x) <n(y) +1. If equality holds, then d(y)=d(x)+1 as
claimed. So suppose now that n(x)<n(y). If n(x)>1, }:hen we
have (2) which now contradicts the fact that n(x) -1 <n(y), soin
fact n(x)=0 , x=fa)=b. Since £IMm =Wy, b is

periodic; by definition of A, a is also periodic, say fk(a) =a (k>1).

Choose p so that pk>m, and observe

fpk-rn(x) _ fpk-mfm(a) - fpk

(a) = a

By definition of m(x), m

0, and x=b=a, as claimed.

Since the equivalence class E was arbitrary, we have in fact
defined d on all of X and proved that d(f(x))= d(x)+1 wunless

x €A . Let
Xi = {xEde(x)E i(mod 2)} i= 0,1

Thus, Xi N f—l(Xi) c A. As D 1is an ultrafilter on X = XO U X1 ,
AXi €D for 1=0 br for i=1. As {(D)=D, we also have

-1 -1
f (Xi) € D, and therefore A €D . Again, f (A)ED, so

AN f'l(A) €ED.
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Butif x€ AN f—l(A), then x and f(x) arebothin A and

both in the same equivalence class. By definition of A, this implies

x = f(x) . Therefore, {x[x =f(x)} €D, and f= ideod D. O

COROLLARY 6. If there are morphisms f: D-E and g:E-D,

then D and E are isomorphic; indeed, f and g are inverse

isomorphisms. Furthermore, under these circumstances, f is the

only morphism from D to E (and g is the only morphism from

E to D).

Proof: For the first statement, apply the theorem to the morphisms

gf: DD and fg: E~- E. For the second statement, observe that
any f’:D - E would, like f, be an inverse for g, but g can

have only one inverse. O

The second statement of the corollary provides a partial converse

_for part (7) of Lemma 2.

PROPOSITION 7. [f]D :D -+ E is an isomorphism if and only if, for

some AE€D, f f‘A is one-to-one.

Proof: Suppose A €D and £ PA is one-to-one. Extend its inverse
f(A) - A arbitrarily toa map g : Un(E)-Un(D). Then g °f=id modD,

so g(E)=g(f(D))=D (by Lemma 2), and [g]E : E-D. Therefore
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[f]D is an isomorphism by Corollary 6. Conversely, suppose [f]D

is an'isomorphism with inverse [g]E . Then ge° f=id mod D, i.e.,
A = {xlgf) = x}eD |
and clearly f |\ A is one-to-one. [J

The following lemma often permits simplification of notation. In
effect, it says that any morphism might as well be the projection of a

product of two sets to one of the factors.

" LEMMA 8. Let [f]D :D - E beany morphism, and let K be the

cardinal of Un(D) or Uﬁ(E) , whichever- is larger, Then there are

ultrafilters D’ on Kk xk and E’ on 'K, isomorphic to D and

E respectively, such that the diagram

~

D > D

[f]D [W]D'
v ~
E - > £

commutes, where w:K XK ~K is projection to the first factor,

Proof: Let fB:Un(E)-K be an injection, and set E’ = B(E) . By

Proposition 7, [B]E : E- E’ is an isomorphism. Now map
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Un(D) a, K xKk by olx)=(Bf(x),\) where x isthe Xth element
of f_l(f(x))» in some (fixed) well-ordering of Un{(D) of order type

<K . Then wa=pff so the diagram commutes, and ¢ is one-to-one

—
rd

SO [oz]D': D-D’ = D) is an isomorphism. J ‘
Essentially ‘the same proof gives the following corollary.

COROLLARY 9. In the situation of the lemma, let Klz size(E) , and

suppose that, on some setof D, f is at—most-KZ-to-one. Then there

exist D’ on K1XK2 and E’ on Kl such that all conclusions of

the lemma hold. O

PROPOSITION 10, In u , every monomorphism is an isomorphism.

Proof: In view of Lemma 8, we may begin By supposing that D is an
ultrafilter on K xK , E is an ultrafilteron K , w 1is the projection
to the first factor K xK -2K , E=n(D), and [w]D is not an isomorphism.

We must show that [-rr]D is not a monomorphism.

Let p:K XK XK =K XK Dbe the projection to the first two factors
and q :K XK XK ~-K XK be projection to the first and third factors.
Let

6 = {y,y)xyex} = {ter xk xk|plt) = q(t)}

Forany A €D, let
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I claim the sets A’(A € D) form a filterbase. Clearly (AN B)"=A'NB",
so we need only prove A” % @. Suppose the contrary, namely A € D

and A’ = @. By definition of A’ , we find

(x,y)€ A and (x,z)€ A =y =z

Then ™ 1is one-to-one on A, which, by Proposition 7 , contradicts
the assumption that [TT]D is no isomorphism. Therefore, thereis an
ultrafilter F gontaining A’ for every A € D. It immediately
follows that p(F)=q(F)=D . Thus [p]F and [q]F are morphisms
F - D ; they are distinct because A ¢ F (since A 1is disjoint from
A’). But [11']D[p]F = ['n']D[q]F because wp =mq . Therefore, [TT]D

is not a monomorphism. [
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§3. Cartesian products of filters. There are two ways of defining

the product of two filters. One definition will be considered in Chapter IV,
It has the property that the product of two ultrafilters is always an
ultrafilter. In this section, we consider the other definition, which we
call the cartesian product. In most cases the cartesian product D x E
of two ultrafilters D and E will not be an ultrafilter. It turns out

that D x E is an ultrafilter if and only if D and E havea

product in ¢ (in the category-theoretic sense of product), and then

D x E 1is this product.

DEFINITION 1. Let {Fi |i €I} be an indexed family of filters on sets

= ) = with projection ma X - .
X, = Un(F,) . Let X Tl_iﬂxi proj ps T X =X,

-1
The sets ™ (A) (i€l ; Ac€ Fi) form a sub-basis of a filter which

we call the cartesian product HiEIFi of the filters Fi . We use the

notations Fl X F2 s Fl X e+ X Fn with the obvious meaning.

LEMMA 2. An ultrafilter D on X contains if and only if,

HiEIFi
for each i€1 , F,6 c wi(D) .

Proof: Both conditions say that, for each i €1 and each A € Fi s

ni'l(A) ED. 0O

PROPOSITION 3. Let {Di Ii <n} be a finite family of ultrafilters on

sets XizUn(Di). Let F = |i<nDi on X = li<nxi' For any
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ultrafilter E and any family of morphisms [fi]E : E - Di (i <n),

there are a unique ultrafilter E’ on X and a unique morphism

[flg:E~ E® such that

[£)g = [mlge - [fg G <m)

. Furthermore, FC E’.

Proof: Existence: Let Y = Un(E). Let f :Y -X be the (unique)
map whose coordinates are the fi (i. e., fi = wif) , andlet E’ = f(E).

Fc E by Lemma 2, and the other conclusions are clear.

Uniqueness: Suppose f and f were two maps satisfying all

~

the conditions, with E’ = f(E), E’=7f(E). Then mf = f mod E
1

and wi'f = fi mod E. By Section 1, (VxE)

Trof(x) = fo(x) and + + «and ﬂn_lf(x) = fn_l(x)
and 1r0~(x) = fo(x) and -+ - -and Trn_lf(x) = fn_l(x)

ol
>
O

Therefore (VxE)f(x)zf(x) , so f = fmodE and E’ =
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In the language of category theory, the last proposition says

| Hom (E,D)2 || Hom (E,E") ,
i<n ' EDF

where _u_ means disjoint union, and the bijection is natural with

respect to E . As an immediate consequence, we have

COROLLARY 4. If, in the situation of Proposition 3, F 1is an ultra-

filter, then F (together with the morphisms [ﬁi]F tF - Di )is a

product of the Di's in the category-theoretic sense. [J

Conversely, we have

PROPOSITION 5. With the notation of Proposition 3, suppose that the

Di have a product in the category-theoretic sense., Then F 1is an

ultrafilter, and F 1is isomorphic to the category-product of the D,
i

(with the [11-i]F corresponding to the projections of the category-

product).

Proof: Let the category-product be E with projections [fi]E :E - Di ,

and let f,E’ be as given by Proposition 3. Let E” be any
ultrafilter containing F . By Lemma 2, [Tr,]E" : E¥ - D,, so, by
1 1

definition of category-products, there is a morphism [g]E" :E” - E

such that ™, = fig mod E** . Since Tl'if = fi mod E and E = g(E") ,
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we conclude (using Lemma 2. 2)
_ . tLd
nifg ._ fig = . mod E

As in thé proof of Proposition 3, we obtain fg = id mod E* , and, in
particular', E’ = fg(Ef') = f(E) = E* . Thus E' is the only
ultrafilter containing F . By Section1, | F is an ultrafilter. The
remainder of the proposition may now be proved either by direct
verification or by.appealing to Corollary 4 and the uniqueness of

category-products. [

THEOREM 6. For any two ultrafilters D and E, the following are

equivalent.

(1).D and E have a cateégory-product (in u) .

(2) Dx E 1is an ultrafilter.

(3) For every function T : Un(D) - Ej, there is a set A € D, with

n T'x) e E.

x€A

Proof: (1) <> (2) has just been proved.
(2) =>(3): Given T, let

Z = {(x,y) € Un(D) x Un(E) |y € T'(x)}



If A€D and BE€E, chooseany x€ A andany yE€Nx)NB.
(A+G and T(x)NB+# @ because A€D and T(x)NBEE.)
Then (x,y)€ (A xB)Nn Z. Thus, every setof DX E meets Z.
As Dx E is an ultrafilter, Z € D x E . Thus, there exist A € D,
BEE suchthat‘AngZ. Then, for any x € A and y€ B,

y ET(x), so BQQEAT(X). As BEE,QeAT(x)EE.

(3) = (2): Let Zgc Un(D) x Un(E) be given. We must show that
Z or its complement isin D x E . Since the quantifiers (VxD) and

(YyE) commute with negation (see Section 1), either
(4) (VxDNVYE) (x,y) € Z

or the same statement holcis when Z 1is replaced by its complement.
Considering the corpplement rather than Z if necessary, we may
assume that (4) holds. Let TI'(x)= {y|(x,y) € Z} if this setisin E
(which happens for D-most x, by (4)), and T(x) = Un(E) otherwise.
Thus T : Un(D)- E. By (3) there is a set A1 € D with

QEAII"(X) €E. Let A, = {x|(YyE)x,y) € Z} €D, so that, for

x€A,, T(x)={y|t,y)€2}, andlet A=A NA ED. Then let

oz
1

{y [(vx € A)x,y) € 2} =Q€A{y|<x,y) €z}

f\é I"(x)_?m I'x) € E
XEA

xEA1

I}
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Then AXBEDXE, and AXxBC Z, so Z€DxE. O

COROLLARY 7. If D is principal and E is arbitrary, then E is

1

a category-productof D and E. [

COROLLARY 8. If E is size (D) -complete, then D x E is an

‘ultrafilter. O

COROLLARY_ 9. Condition (3) of the theorem is, despite its appearance,

symmetricalin D and E. O

- COROLLARY 10. If D and E are countably incomplete, then they

have no category-product in u .

Proof: Let Al,AZ,--- € D; Q<wAi ¢D ; Bl’BZ’”' € E,
[i\<wBi ¢ E. Replacing Ai by Ai _—Q<wAi , We may suppose

i<wAi = @ . For each x € Un(D), let n(x) be the least i such

that x ¢ Ai . Observe that n(x) 1is not bounded on any setof D,

N—lA

for if n(x) <N for all x€ A then A 1is disjoint fromﬂ ;=1

whichisin D . Let I‘(x)=m B.€E. Then, if A€ D,

i<n(x)
@r(x) = QBi ¢ E ,

so condition (3) of the proposition fails. O
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§4. Size, regularity, and completeness of ultrafilters in %

In this section we investigate the correlation between the existence or
non-existence of a morphism in ?,( from D to E and various

properties of D and E.

PROPOSITION 1. If D 1is an ultrafilter and f 1is any function on

Un(D) , then size(f(D)) < size(D). If D= E, then size(D) = size(E) .

Every ultrafilter D is isomorphic to a uniform ultrafilter on the

cardinal size(D) .

Proof: The first assertion is immediate from the definition of size,
and the second follows from the first. For the third assertion, let

K = size(D) = Card(A) with A € D. Take a bijection A - K and
extend it arbitrarily to a map f : Un(D) - K . By Proposition 3.7, D
is isomorphic (via f) to (D), and, by the second assertion, £(D) 1is

uniformon Kk . [

This proposition shows that we may, without loss of generality,
restrict our attention to uniform ultrafilters on cardinals. To be precise,
the inclusion, into ‘ZZ , of the full subcategory whose objects are
uniform ultrafilters on cardinals, is an equivalence of categories.
Observe that, although all the ultrafilters isomorphic to a given D

form a proper class, those that are on size(D) form a set (of
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size(D))

cardinality at most 2

DEFINITION Z.W(K) s u(<K) s ‘Z[(SK) are the full subcategories of

\

u whose objects are the ultrafilters of size K , size <K , and

——————

size <K , respectively.

PROPOSITION 3. If [g]D :D~-E is a morphism and E is

K-regular, then D is K-regular.

Proof: If f: Un(E)~- Pw(K) is as in the definition of K-regular, then

fog:Un(D)- Pw(K) shows that D 1is K-regular. O

PROPOSITION 4. D 1is K-complete if and only if, whenever

[g]D :D~-E is a morphism and size(E) <k , E is principal.

Proof: Suppose D 1is K-complete, [g]D :D-E, and size(E) <k .
Let A€ E be such that Card(A) = size(E) <K . Then

. -1 .
(Y, a-t6h=0, o (), e a-G6h-=0¢D. as D is
K-complete, thereis an a € A such that g_l(A -{a})¢ D, so
A-{a}dgD)=E. But (A-{ahu{a}€eE, so {a}€E, and E

is principal.

For the converse, suppose D 1is not K-complete. Then, for

some X <K , we have a family {Aabz<)\}g D with Q<XA05 g¢D.
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As usual, we may replace Aa by Aa - QQAQ and thus assume

Q(an =@ . Let

g : Un(D)—> ) :XH(MM(XEAQ) ’ )

and let E = g(D). Then [g]D :D-E and size(E) <X <K . To
complete the proof, we shall show that E is non-principal. Otherwise,
we would have ‘{oz} € E for some « <)X . By Lemma 2.2(4), there

isan AE€ D' such that
Xx€A—=g(x)=«

By definition of g, it follows that A N 'Aa = @, contrary to the fact

that both A and AO! arein D. O
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§5. The Rudin-Keisler ordering, DEFINITION1l. Let D and E

be ultrafilters. D < E if and only if there is a morphism from E to

D in CM . The relation 577 is called the Rudin-Keisler ordering.

PROPOSITION 2. (1) < 1is reflexive and transitive.

(2) DEE<>D<E and E<D.

Proof: (1) follows from the fact that % is a category, as does half of

(2). The remaining implication (right to left) follows from Corollary 2.6. O

Intuitively speaking, the relation < induces a partial ordering of
isomorphism classes of ultrafilters. Unfortunately, too many things

here are proper classes, so we define instead

DEFINITION 3. D is the set of (uniform) ultrafilters on size(D)

which are isomorphicto D. D< E ifandonlyif D< E. RK is

the class of all sets of the form D , partially ordered by <. —

Remark 4. By Proposition 2, the relation < on RK has all the

properties of a partial order (except that it isn't a set). Obviously, - —

D=E ifand only if D= E, so D 1is '"as good as the isomorphism

class of D ." We shall sometimes act as though the ultrafilters

themselves, rather than the sets D, were elements of RK.
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Translating the results of the preceding section, we get

PROPOSITION 5. Size is a well-defined order preserving map of RK

to the class of cardinals. If Bsf and D 1is K-regular, then so is

E ; in particular, it makes sense to say that an element of RK is

k-regular. D is K-complete if and only if the only E <D +ith

size(E) < K is E - {{{0}}}. ‘Henc':e, if 5'5 D and D is

K -complete, then so is D’ , and it makes sense to say that an element

of RK is K-complete. O

.Remark 6. E 1is principal if and only if E = {{{0}}}. We sometimes

write 0 for {{{0}}} . 0 is the least element of RK .

~

DEFINITION 7. RK(K) , RK(<k) , RK(<k) are the sets of all D

where D 1is an ultrafilter of sizeK , size <K , size <K ,

respectively. (Note that these are really sets.)

We now begin an investigation of the structure of the partially

ordered class RK.
' : K
PROPOSITION 8. (1) For any o€ RK(< k), Card{8€ RK|B<a}<2 .
ZK
(2) Card RK(< k) = 2¢ .

(3) For any « € RK(< k), Card {,3 € RK(< K)IBZ o} = ZZK .
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(4) Card RK(k) = 22" .

Proof: (1) Any o€ RK(< ) is D for some D on K, andany

B<oa is {£(D) for some f:K =K . Since there are only 2K functions

from K to ¥, (1) follows.

(2) It is well-known that there are ZZK ultrafilters on K (see,
e.g., Cech [3]) . The argument given for part (1) shows that each
isomorphism class contains at most ZK ultrafilters. Therefore,

" _
there must be 22 isomorphism classes.

— K
(3) Let =D where Un(D)=K . For each of the 22 ul tra-

filters E on ¥k, let E’ be anultrafilter on K X K such that

E°2DxE. Then E-=q1,(E’) (by Lemma 3.2;; m and w, are

2 1 2
the projections Kk X k = k), so distinct E's give distinct E’' s,
N
K —
and there are 22 E’"s. E° > because m(E’)=D. As there

1

K
are at most 2 E’'s in any isomorphism class, (3) follows.

(4) This is immediate from (3) and the fact that
B=>a= size(B) > size(q) (and the fact that there is a uniform

ultrafilter on k). D

COROLILARY 9. RXK(kx) has no maximal elements.
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Proof: Clear from (3) of the proposition. [J

PROPOSITION 10. Eveg subset of RK has an upper bound. In

RK(< k), any subset of cardinality < K has an upper bound.

Proof: Let {Di |i €1} be a family of ultrafilters. By Lemma 3. 2,

any ultrafilter containing F = HiCIDi is " > Di for every 1i€1.
This proves the first assertion. For the second, we may suppose

’ I
Un(Di) =K and Card(I)< K, so F 1is a filteron K . A basis for

F 1is given by finite intersections of sets of the form -n'i_l(A) with

A€ Di . It follows that the set
B = {f € KZI lfi = 0 for all but finitely many i€ I}

meets every setin F, so there is an ultrafilter ED2 F U {B}. As

before, E > Di for all i€1, and ‘size(E)<Card(B)=kK . O

COROLLARY 1I. RK(<K) contains a chain of order type K+ . In fact,

any element of RK(< k) is the first element of such a chain.

Proof: Let o€ RK(< k). Define a strictly increasing function

f: K+ - RK(K) as follows. f(0)=a . If f is already defined for all
£ < n< K+) , use the proposition to get an upper bound B for f{''7.

In view of Corollary 9, there is an element of RK(< k) whichis >§8.
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Let f'n be such an element. Then clearly f"K+ is a chain of

the required type whose first element is « . O

Hav‘ing shown the existence of upper bounds in RK , we might
naturally ask whether least upper bounds exist in RK . This question
also arises from the following consideration. As we shall see, the"
structure of RK, or even RK(w), is rather wild. When confronted
with a wild partially ordered set one naturally tries to compare it with
. others of its kind, and the first one that comes to mind is the ordering
of the degrees of recursive unsolvabili.ty (Turing degrees). This
ordering has the one pleasant property of'being an upper semi-lattice,

and one might hope that RK shares this property.

It is clear that, if two ultrafilters D and E have a category-
product‘ D x E, then DxE isa legst upper bound for D and E ;
unfortunately, by Corollary 3.10, this only happeng if D or E is
countably complete. It is also obvious thatif D and E are
comparable, then the larger of the two serves as a least upper bound;
unfortunately, Kunen has shown [12] that RK(w) contains Zw
i)airvvise incomparable elements, and we shall show in Chapter II that,

assuming GCH (or certain weaker hypotheses) there are 22

pairwise incomparable (in fact minimal) elements of RK(K), for all K .
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Thus, the trivial ways of obtaining least upper bounds do not suffice
to make RK an upper semi-lattice. We shall show in Chapter IV that,
assuming CH , RK is in fact not an upper semi-lattice, and it is not
a lower semi-lattice either. We shall obtain two elements of RK(w)
which have neither a least upper bound nor a greatest lower bouna in

RK.
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§6. Ultrafilters omitting cardinals. DEFINITION 1. An ultrafilter

D omits an infinite cardinal ¥ if and only if, for every E < D,

size(E) £ K .

PROPOSITION 2. (1) If D<D’ and D’ omits K then D . omits

K .

(2) D does not omit size(D).

(3) D omits all cardinals > size(D).

(4) D is K-complete if and only if D omits all infinite ca;‘dinals
<K .

(5) If D 1is a uniform ultrafilteron K and E 1is a )L-regu.lar'

K
ultrafilter with X\ > 2K , then D < E. Inparticular, a 2 -regular

ultrafilter does not omit K .

Proof: (1) and (2) are obvious, (3) is contained in Proposition 4.1,
and (4) is Proposition 4.4. For (5), let f: Un(E)~ Pw(k) be such
that, for all o€ ), {xla € f(x)} € E (as in the definition of X-regular),
and let h: P(K) =X Dbe an injection. For each x € Un(E), let g(x)
be an arbitrary element of

a €D,

h(A)ef(x)
and A €D
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Then, if AE€D,

g (A) = {x|gx)€ A} {x|h(A) € f(x)} €E

The following theorem is a slight generalization of a theorem of

'Chang [4].

THEOREM.3. Let k be a regular cardinal. There is a cardinal )\ such

that K+§7t < ZK and no ultrafilter of size X omits K . (The proof

*will yield an explicit definition of X .)

: K
Proof: Let X be the setof allmaps K -K, so Card(X)=2 . Let
A be the least cardinal such that, for some set Fc X, Card(F)=)\

and (
(1) (Vg € X’)(Ef € FUVE <Wx)(f <x <K and g(x) <{(x))

If we let SZ, be the filter generated by the set of sets of the form
{xlg <x <K} for £ <k (i.e., f} = {A§K|Card(K - A)< K} because

K 1is regular), then (1) may be rewritten

(1) (Vg € X)Ef € F)IxP) glx) < f(x)

It is clear from the definition of X that X < ZK .
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Claim: )\ > K'*; and )X 1is regular.

Proof of claim: Suppose A < k% so F = {fﬁ |8 <k} for an
appropriate indexing (possibly with repetitions). Define g :K =K by

letting g() be any element of K larger than f_ (&) {for all B <« ;

B

as K is regular, such an element exists. Then
g(x) < f,y'(x) = x<v
and from (1%) we get
@y <) @Pgkx) <1 (x)
Hence,
@y<m)@xH x<y :
contrary to the definition of 9‘ . Therefore X > K + .

Now suppose X were singular, so F =k4€IFi where Card(I) <X
and Card(Fi) < X . By the minimality of X, we can, for each i€1,

choose g € X ' so that
(vi € F)(vxPlg, (x) 2 x)

Again by minimality of X, we can choose g€ X so that
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(Vi € D(vxFg(x) > gi(x)
Thus,
(vi € I)vf€ Fi)(VXJ) g(x) > gi(X) > f(x) .,
SO |
(V€ F)(¥xP glx)>f(x)
contrary to (1°). This proves the claim,

Let = be a well-ordering of F, of order type X . For each
fe F, the set of its predecessors has cardinality < X, so, by

minimali’cy of )X, choose V¢ € X such that
(2) (Vg3 D(¥xF) ylx) > g(x)

Ncte that, if one function y were V¢ for arbitrarily large f{'s (in

the ordering <) , then (2) would imply

(Vg € F)¥xP) y(x)> glx)

contrary to (1”) . It follows that each y is of the form V¢ for only

a bounded set of f's . By regularity of X , the set

Y = {yflfé F} .
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has cardinality X .

Any ultrafilter of size A is isomorphic to a uniform ultrafilter on

Y , so to prove the theorem we must show that no uniform ultrafilter on

Y omits K .

Claim: Any uniform ultrafilter D on Y contains a decreasing

chain of sets, of length K , with intersection ¢ D .

Proof of claim: For each B, n <K, let
AP - yexiypzm

If we fix B, then {Af)l‘n < K} 1is a decreasing chain, of length « ,
with empty intersection. So, if E[ﬁVnATB) € D, then the claim is true.

Suppose, however, that this is not the case. Then, for each B < kK,

let h(B) < K be such that A_ﬁ(ﬁ) ¢ D. By (1’) , we can pick g€ F

such that (I x})h(x) < g(x) . But

x x
h(x) < g(x) = Ag(x) c I&h(x) ¢ D

_=>{yeyjy(x)<g(x)}=Y-A €D

=B_ = {yeY|@t2 0yiE) <g&)} €D

Thus, C*[x})BX € D. Since the Bx form a decreasing chain, it follows
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that (¥x € K)Bx € D. Thus, we have a chain {Bx|x €K} in D, of
order type K , and we need only show QQKB ¢ D. But
X

N

x€EK

{y €Y |@EPy(E) < g(g)} (by definition of )

c {ylreF ana 1Lg}  my@n .

and this set has cardinality <X . As D is uniform, €KB ¢D,
. X X

.and' the claim’'is proved.

Let {Aala < K} be a decreasing chain in D with Q<KA01 ¢ D.

As usual, we replace A by A —ﬂ A , and henceforth assume
o o o<K o

A = . |
Q<K o @ . Now define, for each y €Y,

fly) = pa(y ¢ Aa)
so f:Y-=K.
Claim: If A€D, then f(A) is an unbounded subset of K .

Proof of claim: Suppose not. Say, for all y€ A, fly)<a<kK.

Then, for all y € A, AagA and, as y £ A y&Aa. Thus

fly) ’ fly)’
A and Aa are disjoint, contradicting the fact that they arein D.

Therefore, £f(D) 1is a uniform ultrafilteron K, and D does

not omit K . O
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CHAPTER II

INDUCTIVE CONSTRUCTIONS

§7. The filter reduction hypothesis. When one tries to prove the
existence of ultre;filters having certain special properties, one often
finds that the necessary constructions can be carried out if one assumes
GCH , but ap.parently' not if one only uses ZF¥FC . Hence, many existence
theorems in the theory of ultrafilters have GCH , or some special case
of GCH , as a hypothesis. As typical examples we cite the following

two well-known theorems.

THEOREM 1 (Keisler [7]). If 2" k% then thereis a K+-good ultra-

filter on K .

DEFINITION 2. An ultrafilter D of sizew is a P-point if and only

if, for every morphism [f]D of D into a non-principal ultrafilter,

there is a set A € D such that fPA is finite-to-one.

N

THEOREM 3 (Rudin [14]). Assuming CH, there is a P-point.

Unfortunately, there seems to be no convincing reason for believing

GCH, soitis desirable to find weaker hypotheses which suffice to
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prove these and other theorems. In his thesis [2], Booth' finds it
possible to replace CH in many theorems by a proposition called
Martin's axiom, which we will not state here, because it is complicated
and we shall not need it. A theorem of Solovay (cited in [2]) asserts that.
Martin's axiom is strtictly weaker than CH . (Since he considers only
ultrafilters of size < w , BooAth never needs GCH for larger
cardinals.) We shall find it convenient to use the following substitute

for GCH.

DEFINITION 4. FRH(x) (= 'filter reduction hypothesis for K '') is the

following statement. If a uniform filter F on K has a basis of

. K '
cardinality <2 , then there is a uniform filter F'oF having a

basis of cardinality < K .

Remark 5. It is obvious that 2K = K+ = FRH(K) . One also sees

easily that FRH(w) is equivalent to the following statement PO : If a

uniform filter F on w has a basis of cardinality < 2% , then there

is an infinite B C «w such that, forall A€ F, B - A is finite. Itis

known (see [2, Theorem 3.5]) that P0 follows from Martin's axiom.

Thus, at least for K =@ , FRH(K) 1is strictly weaker than 2K = K+ .

On the othger hand, Kunen has obtained a model of ZFC in which CH

is false but there is a uniform ultrafilter on « with a basis of cardinality
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Rl . Since no uniform ultrafilter on @ can have a countable basis,
FRH(w) must be false in this model. Thus, FRH(w) 1is not a

theorem of ZFC (if ZFC 1is consistent).

Most proofs using FRH (or GCH) vconstruct the desired
ultrafilters by transfinite induction (see for example Keisler's and
Rutiin's proofs of the theorems quoted above). To avoid repeating the
same ideas in many proofs, we will prove one very general theorem
which isolates these ideas, and then, whenever a proof would require
the same ideas, we can appeal instead to the general theorem. This
theorem is perhaps best stated in topological language. It then closely
resembles the Baire category theorem. We therefore turn now to the

definition of the relevant topologiés.

DEFINITION 6. Let X be any infinite set. We define BX to be the

set of all ultrafilters on X , and we consider the following two

topologies on BX . The standard topology has as its basic open sets

all sets of the form

N

A = {D€EBX|Ac D)

where AC X . The fine topologyhas as its basic open sets all sets of

the form where (G C P(X) and Card(@) < Card(X). When

AEGA

we speak of BX as a topological space without specifying the topology,
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we mean the standard topology. Let unif(X) be the set of all uniform

ultrafilters on X . As a subset of BX, it also has a standard and a

fine topology, but, when we refer to it as a space without specifying the

topology, we mean the fine topology.

Remark 7. BX 1is the Stone-Cech compacﬁﬁc.aﬁon of X with the
discrete topology. It is also the Stone space of the Boolean algebra P(X) .
In particular, it is a totally disco.nnected compact Hausdorff space. The
fine topology is strictly finer than the standard topology, because the set
of principal ultr-afilters is closed in the fine topology but not closed
(dense, in fact) in the standard topology. When discussing unif(X) ,
we shall use A (AC X) to mean An unif(X) ; this should not cause

any confusion. Observe that the basic open set in  unif(X)

Aec®
is nonempty if and only if every finite subfamily of (¢ has intersection

of cardinality Card(X) .

THEOREM 8 (''Baire category''). Assume FRH(K). Then, in unif(K),

. . K .
any intersection of 2 or fewer dense open sets is dense.

~

K
Proof: Let Ua (0 < 2) be dense open subsets of unif(k), say

U /) s,

1€I BEB

, 1

and let V be any nonempty basic open set in wunif(K), say
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V=AA

Ac€Q

(Here [Boz' and G are subsets of P(K) of cardinality <K .) We

’

must show VN U 4@ . Since V# @, thefilter F_, generated

a<ef o 0

by (G is uniform on K and has a basis (consisting of finite intersections

of sets in Q@) of cardinality < K .

. . K - - . .
By induction of & < 2  we define an increasing sequence of uniform

filters Fa on K with bases of cardinality < K . Fo is already

defined. If ¢ is a limitordinal and F_ 1is defined for B8 < a, then

B
'F o= %<C¥FB is uniform and has a basis (namely the union of the bases of

Fﬁ of cardinality < K) of cardinality < Card(k X o) < ZK . By FRH(k)

F 1is contained in a uniform filter F° with a basis of cardinality < K .

’

Let F =F’. Now suppose @=f8+1 and F_ is already defined.

B

a
Let GB be a basis for F, of cardinality < k . Then

B

W = ﬂ C = m C = {D € unif(k)|F, c D}
CEFy ce(,’B B

is a nonempty basic open setin unif(k). As U_ 1is dense, thereis a

. B

DEWDUB. As

thereis an 1 €1, such that

P
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DEWﬂ/\ B

BEﬁﬁ,i

Then the filter ¥ generatedby F_URB i is contained in D, soit

B~ B,

is uniform, and it has a basis (consisting of sets of the form CN B

B

with C Ecﬁ , BERB i) of cardinality < K . Let

F = = F
o FB+1

Now the filter % is uniform, so let D be a uniform

F
<2f" o

ultrafilter containing it. Then FO €D, so gD, so

DE{\A:V
AcQ i
Also, for each a<2K, F €D, so, forsome i€l , 8 CD
o+l o o,1

(by definition of Fa+1) , SO

Def\ BcuU
BEB «

i
Therefore,

Vﬂ[\U +0¢ .0
, a<2K o

DEFINITION 9. A subset of unif(k) is meager if and only ifitis

K
contained in the union of a family of 2 or fewer nowhere dense closed

sets. A subset is comeager if and only if its complement (in unif(k))
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is meager.

Remark 10. This terminology will not cause any confusion, because
we shall never use the words meager and comeager in their ordinary
sense (with @ in place of 2K in the definition). Clearly, a setis
comeager if and o'nly if it contains the intersection of a family of ZK
or fewer open dense sets. Assuming FRH(K), the '""Baire category"
theorem shows that corﬁeager sets are dense; in particular they are
nonempty. The comeager sets thus form a (ZK)+-comp1ete filter on
‘unif(K) . One should think of comeager sets as being large and meager
sets as being small. The next proposition, a refinement of the category
theorem, shows that comeager se£s are also large in the sense of

cardinality.

PROPOSITION 11. Assume FRH(K). Every comeager setin unif(k)

‘ K . )
has cardinality 22 . In fact, the intersection of any comeager set and

any nonempty open set has cardinality 22K .

Proof: We first remark that a uniform filter F on K which has a
basis of cardinality < K cannot be an ultrafilter. Indeed, let
B = {Bi |i <k} be such a basis for F, and choose inductively, for

each 1 <K, two distinct elements xi,yi € Bi such that

x,y, ¢ {XJ. I3 <i}u {YJ- lj < i}
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This is possible because
Card{xj,yj li<i} <k = Card(B,)

Then X = {xili <K} and Y = {yi li < k} are disjoint sets, each
meeting every Bi , hence also every setin F . In fact, if we choose

the enumeration {Bi li <k} sothateach BEB is Bi for ¥

1
distinct values of i, we can arrange that the filters F( and F(z) )

generated by "Fuy {X} and F U {Y} respectively, are uniform.

Thus, for all uniform filters F on K with a basis of cardinality

(1)

< K, wehave two other such filters F and F(z) , containing F,

and not both contained in any ultrafilter D . Suppose for each F

0y 2)

definite F and F( have been selected.

Now let f: 2" - {1,2} be any function. In the proof of the Baire
category theorem, change the inductive conditions defining Fa as

follows. For each o, let Ga be defined from the FB , B<a

= G(f(a)) . Let

exactly as Fa was defined before, but then let Fa
f

D be the ultrafilter finally obtained in this way. (Whenever any

choices had to be made, e.g., the choice of F’ in the induction at

limit ordinals, we assume that an appropriate choice function is selected

. f
once and for all, independently of f.) Then D €V a<2KUa , and
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I claim that f# g = Df 4 D& . Suppose f# g and suppose « < 2"

is the first place where they differ; fla) # g‘(a) but B < a=>1f(B) = g(B) .
Then, for B < «a, FB(f) = Fﬁ(g) , and hence Ga(f) = Ga(g) . But then
no ultrafilter contains both Fa(f) = Ga(f)(f(a)) and Fa(g) = Ga(g)(g(a')) .

Since ng Fa(f) and D& - Fa(g\) , we conclude Df # D¢ . Hence,

Card(Vﬂm v) =22 O
a<2f @
Remark 12. If we did not assume FRH(K), we could still prove
that the intersection of K+ or fewer dense open sets in unif(K) is
+
Z(K )

dense and, in fact, meets every nonempty open set at least

times. The proofs are practically identical to the ones we have given.
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§8. Some comeager sets. THEOREM 1. The set of K+—good

ultrafilters on K 1is comeager.

Proof: Say that a map g: Pw(K) - P(K) 1is érder-reversing if and only
if, for all FcF’¢€ Pw(K) , g(F)Dg(F’); say that g 1is multiplicative
if and only if, for all F, F’¢ P“U(K) , g(FUF") =g(F)ng(F"); and
say that h : Pw(K) - P(K) 1is unéler g if and only if, for all F € Pw(K) ,
h(F) c g(F) . . Let

FEPw(K)

in wunif(k) , and let o
v, = Un{m/-g,(\FSlF € Pw(K)}
U Un‘[Uh b is multiplicative and under g}

Then Uh is a basic open set, and Vg is open in unif(Kk) . Further-
more, the main lemma in Keisler's proof of Theorem 7.1 [7, Lemma 4C]
easily implies that Vg is dense for all order-reversing g . Hence,

G = Vv

g order-reversing g

is comeager, because there are only 2K functions Pw(K.) - P(k) . Now

let D& G and suppose g 1is an order-reversing map Pw(K) -D.
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Then, for F € Pw(K) , D Q@ , 8o, for some multiplicative h
under g, DE€ Uh (by definition of Vg). This means h: Pw(K) - D
(by definition of Uh) . Therefore, by Section1l, D is K+—good. The

set of K*-good ultrafilters on K contains the comeager set G . O

COROLLARY 2. If FRH(k), -then there are ZZK K+-good ultrafilters

on K. O

THEOREM 3. The set of uniform ultrafilters D on K, such that,

for every f: K - K, thereis an A €D with either Card(f(A)) <K

or fPA one-to-one, is comeager.

Proof: For every f:K —-K , let

vV, = Un{Ag unif(K) 'Card f(A) < K or fr‘A is one—to-one}

"N

As each A is open, Vf is open. I claim Vf is dense. Let

U = QEBé be a nonempty basic open set, where Card®)< Kk . Let
F Dbe the filter generated by § . It has a basis (consisting of finite
intersections of sets in h’;}) of cardinality < K , say {Ci li <k},
and it is uniform on K because U # @ . We must finda D€ Vf
such that D€ U, i.e., suchthat FC D . If, for some i<K,
Card f(Ci) <K, thenany D containing F satisfies D € 61 < Vf s

and we are done. So suppose, for all i, Card f(Ci) =K . Choose,
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by induction on i, elements Xi € Ci such that
f(x,) ¢ {f(xj) i <i}
this is pc'>ssib1e because
Card{f(xj) <)< C‘Jard.(i) <k = Card £(C,)

Then, if X = {xi |i <K}, f[‘X is obviously one-to-one. Furthermore,
by choosing tﬁe enumeration {Ci li < k} so that each Ci is also Cj
for K different values of j » we can ensure that Card(Xn Ci) =K

for all i < ¥ . Hence, there is a uniform ultrafilter D2 F U {X} .

So DEU, and Def(gvf.

Therefore Vf is dense and Q'K*va is comeager. But this

set is precisely the set asserted to be comeager in the theorem. O

To show why the ultrafilters considered in this theorem are of

interest, we prove the following. (See also Section 10.)

PROPOSITION 4. Let D be a uniform ultrafilter on K . The following

are equivalent.

A\
(1) For every f:K - K , thereisan A € D such that

Card(f(A)) < K or ( f(‘A is one-to-one.
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(2) D is a minimal element of RK(k) .

Proof: Statement (2) says that, for any map f of K into any set,
either -f(_D) ¢ RK(K) or T-) =D , i.e., either size f(D)< K or
(D) = D' . The former possibility means that, for some A €D,
Card f(A) < K (see Lemma 2. 2(1)) ;‘ the. latter possibility means that,
for some A €D, fPA is one‘-to-one (see Corollary 2.6 and
Proposition 2.7). Since it is clearly no loss of generality to assume

X =K (if necessary, compose { with an injection f{(K) -k), (2) is

equivalent to (1) . [

Remark 5. We shall sometimes refer to D, rather than D,
as minimal in RK(K) . We shall also speak of minimal elements of
RK ; we mean minimal elements of RK - {6} . (Recall that 0 is the
least element of RK .) A non-principal ultrafilter D is minimal if
and only if every function on Un(D) is constant or one-to-one on a set
in D . (The proof is like that of the last proposition. ) Notice that, by
Proposition 4.4, if D is minimal, itis size(D)-complete, so
size(D) 1is either w or a measurable cardinal. Any ultrafilter
fninimal in RK(w) 1is minimal (clearly), but for measurable K

there may exist ultrafilters minimal in RK(K) but not Nl—cqmplete

(see Corollary 8 below), hence surely not minimal.
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COROLLARY 6. The set of ultrafilters on K minimal in RK(K) 1is

comeager. []

COROLLARY 7. The set of kK*-good ultrafilters on Kk which are

minimal in RK(K) is comeager. O

COROLLARY 8. Assume FRH(K). There are ZZK K+-good (hence

K-regular and countably incomplete) ultrafilters on K which are

K

minimal in - RK(k) . RK(k) has 22 distinct (as equivalence classes)

minimal elements consisting of K+-good ultrafilters.

Proof: For the last assertion, recall that‘ each equivalence class has at

most 2K elements. O

COROLLARY 9. Assume FRH(w) . RK(whas exactly Zzw minimal

elements. There are Zzw

P-points on w . O

Proof: For the last assertion, observe that any ultrafilter minimal in

RK(w) 1is clearly a P-point. O

Note the contrast between the present results, which say that '"most"
uniform ultrafilters on Kk are minimal in RK(K), and 5.8(3), 5.10,
5.11, which say that there are a great many non-minimal (in fact very far

from minimal) uniform ultrafilters on ¥ .
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§9. P-points. In the preceding section, the existence of P-points
was obtained as an immediate corollary of the existence of minimal
ultrafilters in RKl(w) . For all we have shown so far, it might be that
all P-points are minimal, or perhapé that all uniform ultrafilters on
countable sets are P-points. The latter possibility is easily disposed

_of by means of the following coﬁnter-example. On w Xw , the sets
Af,n) = {oy)[x2n and y>fx)}

for n<w and f:w-w, :foxlmafilterbase B. If m:wxw-"w

* is projection to the first factor, then any set B on which 7 is
constant, say B c {a} xw , is disjoint from A(f,a +1) for arbitrary
f, and any set B on which = is finite-to-one is disjoint from
A(f,0) where f£(x)= max{y|(x,y) € B}. Hence, no ultrafilter
containing ® «can be a P-point. (Another proof, using topological
methods, is in Rudin [14].) The possibility that all P-points are
minimal has also been disproved, assuming. CH, by Booth

[2, Theorem 1.11]. The existence of non-minimal P-points will also

follow from the main results of this section.

We begin with a proposition whose main purpose is to justify the

name P-point; see Gillman-Jerison [6, Exercise 4L].
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PROPOSITION 1. Let DE€PBw -w . D is a P-point if and only if, in

pw - W, every Ga-set containing D 1is a neighborhood of D .

Proof: We remind the reader that the use of the notation fw - w , rather
, : v
than unif(w), means that we are using the standard (Stone-Cech)

topology.

Suppose D is a P-pointand A 1is a Ga-set, say
A :Q<wAi , containing D ., For each i< w , choose a basic open

set G. such that DeéigAi; Gigw. Let
i

f: —_ : —> Ui 1
w w+l:n pi(n ¢ Gi) }f nQQ@Gi
w ' if nem G,
1<@W 1

As D is a P-point, f 1is finité—to-one or constant on some B &€ D,

If Bgf—l(i) for some i< w, them B and Gi are disjoint sets

in D, a contradiction. If
-1
then
(1) ' DeBC m f}i cA

i< w

and A is a neighborhoodof D . If { is finite-to-one on B, then,
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for each 1,
B-Gi = {nEBlneGi}anf'l{o,l,- .. ,i)

1is finite, so any uniform ultrafilter which contains B also contains
Gi. Therefore (1) holds again, and A 1is a neighborhoodof D in

Bw - w.

- Conversely, suppose any Ga—set containing D 1is a neighborhood
of D, and suppose f:w = w is not constant on any setof D . Then,

for each n€w ,

A = {k]f(k) > n} €D

So pDef EwAn , and, by assumption, there is a set B Cw such that
n
DEBC ﬂ.&
n
n€w
Thus, B € D, and, for each n, every uniform ultrafilter containing
B also contains An . Hence B - An is finite, and f 1is finite-

to-one on B . Therefore, D 1isa P-point. 0O

We now turn to the construction of P-points with further special
properties (including non-minimality). These constructions are by

transfinite induction, but they are a bit more subtle than the construction
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summarized by the Baire category theorem. Itis, € course, clear
that we cannot obtain non-minimal ultrafilters by a direct application
of the Baire category theorem, for the set of non-minimal ultrafilters
on w is I‘neager. We shall need the following lemma for the

construction of special P-points.

LEMMA 2. Assume CH . Suppose C 1is a nonempty closed subset

of Bw - w with the property that, whenever a Ga—set meets C, its

interior also meets C . Then C contains a P-point. (It suffices to

consider Gé-sets of the form Qéﬁﬁ with B countable.)

Proof: The number of Ga-sets of the form QEﬁﬁ with B8 countable

is 2%z wt; let {Xi' i < wt} be the set of all such Gg-sets. We

define inductively nonempty closed sets Ci =Ch ﬁi for certain

B. S w, such that i<j=>Ci;3Cj. We begin by taking c0=c=cna3.

if o 1is a limit ordinal <wt and C_,=Cn 1% is defined for all

B

B <o, then
cn ﬂﬁB - ﬂ Cy + @
B<a B<«a
because it is a nested intersection of nonempty compact sets. By hypothesis,

A

there is a basic open set Ba (Bag w) such that

BagﬂBB and B.NC+a
B<a
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We define Ca =Cn ﬁa . This is closed (because ﬁa' is), nonempty,

and € C forall B<a. If o 1is a successor, B +1,

B

CB =Cn ]%B is already deﬁnéd, and X

But if

BnCB=@, let Ca=CB.

c,=Ccn@B,n: ,
X N n(BBnXB)qECD

then, by hypothesis, we can find BaC:w such that Cn f%a #@ and

f’:ag B,NX,; lee C =CAn ﬁa . This completes the definition of the

B B o

decreasing sequence C . By compactness, thereis a D CcC
g seq o y P € <wT «

obviously D & C0 =C, énd I claim that' D is a P-point. If X is
any Gﬁ—set containing D, then, for some i< wt, D€ Xig X .
(Replace the open sets whose intersectionn is X by basic open subsets
containing D .) Thus D& Ci N Xi , and Ci-l—l was defined as

B B, . c X. . £
cn Bi+1 , Wwhere Bi+1" Xi Therefore,

and X 1is a neighborhood of D, as claimed. O

Restating the lemma in non-topological language, we obtain

COROLLARY 3. Assume CH . Let F be a filter on @ containing

all cofinite sets. Assume that, for every decreasing sequence

Y DY, DY

0 1 2 2 - of sets Yi each of which meets every setin F ,
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there is a set S, meeting every setin F , and suchthat S -Y, is
g =

finite for all i <w . Then there is a P-point containing F . [

Obviously the lemma and its corollary apply to all countable sets,

not just to w .

THEOREM 4. Assume CH . For every P-point D, thereisa

P-p_oint E>D.

Proof: Without loss of generality, assume Un(D)=w . Let
T:W XW=-w bethe first projection. For any set ACw X w, define

f tw~w+1 by

A
-1
fA(n) = Card(ANw (n)) = Card{y|(n,y) € A}
Let F be the family of all sets A Cw Xw such that f is
. WXW-A
bounded by some n < @ on some setin D . Itis trivial that F is

a filter on w X w containing all cofinite sets.

We shall verify that F satisfies the assumptions of Corollary 3.
Let Y, 2Y 2--- bea sequence of sets such that each Yi meets
every setin F . If we let fi = in , this assumption means that each

of the fi is not bounded by any n < w on any setof D . Let

h(k) = ‘(;m < K (k) <n
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(For the p-notation, see Shoenfield [15, p. 112]; h(k) = k if

(¥n < k)fn(k) >n .) Thus,
(1) . k21=>h(21 and £ (k) 2h(k) - ]

-1 .
Suppose h were constanton a setof D, say h (a)€ D. Since

D is non-principal,
A = {x,x>a and h(x) = a}GD

The definition of h shows that, for x€a, fa(x) < a, contradictingthe fact
that fa is not bounded by any finite number on any setof D. So h

is not constant on any set of D, and, because D 1is a P-point,

h 1is finite-to-one on some set A € D . Without loss of generality,

say 0¢ A. For each x€ A, (1) and the definition of fn show

that-thel;e is a set Sx of cardinality h(x) -1 such that

{x} x Sx c Yh(x)-—l

For x€¢ A, let S =@ . Let

S = {(x,y)lyESx} =le€{&({x}xS)

X

I claim that S has the properties required by the hypothesis of

Corollary 3.
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First, for each n

fi(n) = Card S = h(n) 1 if nea
= 0 if ngA
Hence, the set
£{0,1, k- 13N A = (x€ Alh(n) <k}

is finite (because h is finite-to-one) and thus notin D . But A €D,

SO

-1
fS{O,---,Ak-l}QD

We have shown that fS is not bounded by any k < w on any set of

D . Therefore, S meets every set of F .
Second, if h{x)>n, then

{x}XngY cY ,

hix)-1— "n

50
S-Y ¢ (M{X} XS ) - (h(Lx)/m{x} XS )

- % (=} xs_)

and h{(x)<n
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Since h is finite-to-oneon A and each S is finite, S - Y is
X n

contained in a finite union of finite sets, hence is finite.

Thus, Corollary 3 applies, and there is a P-point EDF . If

BeD th f
€D, en wxw-1-YB)

v_l(B) €EFCE. Thus mwE)=D and E > D . Furthermore, if

is identically zeroon B, so

ACw Xxw is such that = PA is one-to-one, then fA takes only the

values 0 and 1, so
wXxXxw-A€eFCE s

and A¢ E. Since m is not one-to-one on any setof E,
['n']E : E~D 1is not an isomorphism, by Proposition 2. 7. By Corollary 2.6,

D#¥E, so E>D. O

COROLLARY 5 (Booth[2]). Assume CH . There are non-minimal

P-points. O

COROLLARY 6. Assume CH . There are increasing w-sequences of

P-points. In fact, every P-point is the first term of such a sequence. [

We shall see, in Chapter IV, that the set of P-points is not directed;
in fact there are two minimal ultrafilters no common upper bound of

which is a P-point (assuming FRH(w)).
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PROPOSITION 7. If D is non-principal, E is a P-point, and

D<<E, then D is a P-point.

Proof: Size(D) = w by Proposition 4.1. Suppose {(D) is non-principal,
and let D = g(E) . Then fg(E) = f(D) 1is non-principal, so, as E is
a P-point, fg is finite-to-one on some set A € E. Butthen f is

finite-to-one on g(A)€ D . O

THEOREM 8. Assume CH . There is a set of P-points which, with

the Rudin-Keisler ordering, is isomorphic to the real line with its

‘usual ordering.

Proof: We use the usual notations R and @ for the sets of real and
rational numbers respectively. We must find, for each £ €R, a

P-point Dg such that

<n=D, <D
E<mn n

£

Let X Dbe the set of functions x: M —w such that x(r)=0 for
all but finitely many r € @ . Note that Card(X)=w . For each

£ € IR, define fgzx—'X by

f’g(x)(r) = x(r) if r<t¢

v
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Clearly,

f of = f of = f |, :
£E M n & min(§, )

Eventually, the required ultraﬁlters D will be defined to be fE(D)

£

for some particular ultrafilter D on X . Observe that, if & <7,

‘then
f(D) = f{f(D) = £ (D) = D )
£ £€n £ ¢k
so
f :D —>D
felp #Pp 7 Py
n
Hence DES D”) . We must choose D so that in fact DE < Dn and
so that each DE is a P-point. By Corollary 2.6, the first objective

- willbe accomplished if is not an isomorphism, and, by

%1,

Proposition 7, the second objective will be accomplished if D itselfis

a P-point.

We consider first the problem of making sure that fE : Dn - DE

is not an isomorphism. What we want is that, for each g: X - X,

g ° fE =#+ id mod D77 . (See Corollary 2.6.) In other words, when £ <1,

{x¢ X |gfyx) + x} € D = £D)
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or
{x € X‘lgfg(x) + _fn(x)} - {x € Xlgfg(fn(x)) £ fn(x)}
-1
= fTI {x € Xlgfg(x) + x}
€D

Let

Blg £ = {x€X[af,tx) # 1 (0}

for any g: X —-+X and aﬁy £ <n€IR. Wehave just seen that, in

order that D, < DTI whenever £ < 17, we must have

3
B(g,g,ﬁ)é D for all g,£&,1m
Hence we will surely want to know
LEMMA 9. The family
{B(g,g,n)lg : X—->X s E<nE IR}

has the finite intersection property.

Proof: We first observe that, if ¢ < £ <n’ <7, then

B(f ,gf.,t’,n") < Blg, ¢,
(ng€€ n)c (gEn).
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For

xQB(g,E,T).) => fn(k) =; gfg(X)

—> f P X - f 'f X _— f 'gf X -_— f 'gf f P X

Now consider a finite intersection m n B(g.,£.,m.) . By the observation
. ) i=1 i7”17
just made, this set contains another of the same form but with the ,.

intervals [gi,ni] disjoint. By renumbering, we may suppose
< < < <. - .< <
fem<ém & < My

For each 1, let ri be a rational number such that .‘;’i < ri < ni .
We define a function x: @ —w as follows. First, x(r)= 0 for all

values of r except r .-, rn . x(ri) is defined by induction on i,

I
so suppose x(rj) is already defined for j <i. Then fgi(x) is
already determined. Choose x( ri) to be any number different from

gifgi(x)(ri). Then fni(x) and gifgi(x) have different values at ri,

SO

n
x € QB(gi'gi’"i’
1=

This completes the proof of the lemma. U
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Before continuing with the proof of the theorem, we remark that

what we have already done suffices to prove (without CH)

COROLLARY 10. There is a subset of RK(w) order-isomorphic to the

real line. O

.COROLLARY 11. There is a subset of RK(w), order-isomorphic to

the real line, above any prescribed element of RK(w) .

Proof: Let E be any prescribed‘ultrafilter on w . Adjoin -0 to
@ with - < r for all _rationé.l r ; call the result @*, and let

IR* be similarly defined. Define X* and B¥(g,£,m) as before

(¢ maynowbe -m). Foreach A€ E, let A°c X* be

{x €X lx(—oo) € A} . A trivial modification of Lemma 9 shows that
sk . * * 1 sk ’
B*(g, &, g : X*—>X" and g <neR*}U{a"|ac E}

has the finite intersection property. If D is an ultrafilter containing

this family, D, ={_(D) gives the required chain above E, for

£ ¢

COROLLARY 12. There is a subset of RK(w), order-isomorphic to

the long line, above any prescribed element of RK(w) .
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Proof: Use Corollary 11 and Proposition 5.10. [

Returning to the theorem, let ¥ Dbe the filter generated by the
sets B(g,£,m) . It has a basis consisting of finite intersections

/‘\n 1B(g,, gi’ ni) where, as in the proof of the lemma, we may assume
i= i )
... < <
£, <M < £E,.<M,

and; if we wish, that the Ei and n, are rational. To complete the
proof, we must find a P-point DD ¥ . For this we use Corollary 3,
whose hypotheses we now intend to verify. F contains all cofinite
sets, for otherwise we could find a principal D> ¥, but then all the
D are principal, contradicting the fact that no two of them are

£

isomorphic. (A more direct prodf is clearly also possible.)

Now let YO =) YIQ Y2 D -:-- be subsets of X each of which

meets every setin F . We must find a set SE X such that S meets
every setin ¥ and, forall i, S - Yi is finite. Let 0'0,0'1,0'2, T

be an enumeration of all the (countably many) sequences of rationals

of the form

< < < < e <
Py <9 SP; 59, < P9

for arbitrary m < w . Let A(i) be half the number of terms of o,
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(i.e., m if o is the sequence just exhibited).

Let n bea (fernporarily) fixed natural number. Let o be
P, < q < <p>\ < EN where X =A(n). For each i such that
1<i<X+1, we will call certain elements of X 1i-acceptable.
The definition of i-acceptability is by downward induction on i . An
.elernent x€X 'is A+ 1~accep1;ab1eV if and only if x € Yn . For
1<i<Xx, x€X 1is i-acceptable if and only if there are two
i + 1-acceptable elements, X, and X such that fqi(xo) # fqi(xl)
'but fPi(XO) = fPi(xl) = fpi(x) . I claim that, for each i such that
1<i<X+1, the set Acc(i) of i-acceptable elements of X meets
every setin F . This claim is true for i =X +1 because we are
assuming that Yn meets every setin F . We proceed by downward
induction on i . Suppose Acc(i +1) meets every setin F but
Acc(i) does not. Say Acc(i) 1is disjoint from C € F . By definition

of i-acceptability,

x € C => All those i + l-acceptable y's which have the same

image as x under fp' have the same image under fqi .
i
For each x€ C, let g(x) be the image under fq- of one (hence of
i

every) i + l-acceptable y € C such that fPi(Y) = fPi(x) . Clearly,

g(x) depends only on fpi(x) , solet g(x)= h(fpi(x)) . Then, for all
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xy€X,

x€C and y € Acc(i +1) and fp.(y) = fp(x) =
fq.(y) = g(x) = h(fp.(x) = hifp(y) =

B(h
y € B(h,p,.q,)
In particular, letting y =x, we find that
Acc(i+1)n Cn B(h,pi,qi) = @ ,

contrary to the induction hypothesis that Acc(i +1) meets every set

in ¥ . This proves the claim.

Thus, there is a l-acceptable x € X . By definition of acceptability,

there are 2-acceptable x, and x 3-acceptable x

0 1 and

00’ “o1’ *10°

X..,***, X +1l-acceptable

1’ where J 1is a )X-tuple of zeroes and

X1
ones, such that fpk(x. ..) depends only on the first k - 1 components

of -+-, but qu(x.“) depends also on the kth component. Let

Sn be the set of 2)\(n) elements Xg of Yn thus obtained (from a

specific x € Acc(l)) .

Now let n no longer be fixed, and define S = quSn . As

S cY and the Y form a decreasing sequence, S - Y, _(;U S,
n n n 1 n<i n

which is finite. All we still have to prove is that S meets every set
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in F . By previous observations, it suffices to show that S meets
every set of the formmx B(g.,p.,q.) where p.,q. €@ and
, 0 s Sl R | i T

< < . . i < <o <L <
P, <q P. 1 Choose n so that o, is p <aq p>t q>L ,
so A(n) =X . With this particular value of n, we may use the
notation of the preceding two paragraphs where a fixed n was
-considered. In particular, x °  is defined, where --- is any

sequence of ) or fewer zeroes and ones. Choose =0 or 1 so

Ul

that fql(le) # glfpl(x) ; this can be done because fql(xo) # fql(xl) .

After jl, ... have been chosen (for 2 < i <)), choose ji =0

i

) ; this can be done

or 1 so that fqi(xji' . 'ji) + gifpi(xji- --Ji

because fqi(le' .. 31-10) # fqi(le' .. ji-ll) . Then vy = Xj1e - - j)t

satisfies, for all i(l <i <)),

éhat is,

A
y € ﬂB(gi,pi,qi)

i=1

Also, vy E€ Sn € S. This completes the proof that the hypotheses of

Corollary 3 hold and hence also the proof of Theorem 8. [
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§10. Minimal ultrafilters. We have remarked (in 8.5) that ultrafilters

minimal in RK are characterized by the fact that every function on
Un(D) 1is constant or one-to-one on some setof D, e;nd that, for
minimal D, size(D) -is either w or a measurable cardinal. In
this section, we colléct.various (mostly known) facts giving equivalent

characterizations of minimality.

DEFINITION 1. If A isasetand n€w, [A]" is the setof all

subsets of A of cardinality n. If A is linearly ordered, we

identify [A]n with the subset of A" consisting of those n-tuples

whose components are in strictly increasing order. If {Pl, PZ} is a

partition of [A]" (i.e., P, = [A]" - P), asubset XCA is

homogeneous for {Pl’ PZ} if and only if [X]"cP or [X]n cP

1 2

A filter F is a Ramsey filter if and only if it is uniform and every

partition of [Un F]n (for any n < ) admits a homogeneous setin F .

DEFINITION 2. A uniform ultrafilter D on K 1is normal if and only

if, for any f: K - K such that (¥xD)f(x) < x, thereisa )X <K such

that (¥xD)f(x) =\ . ‘A uniform ultrafilter D on K 1is quasi-normal

if and only if, for every map T' : K # D, thereisan A € D such that

X,y €A and x<y = y € T'(x)
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In the definition of Ramsey filter, the case n =0 1is vacuous, and

the case n =1 vyields

LEMMA 3. " Every Rafnsey filter is an ultrafilter. O

PROPOSITION 4. Every Ramsey ultrafilter is minimal in RK.

Proof: Let F be a Ramsey ultrafilter, and let f be any function on

Un(F) . Partition [Un(F)]° by

{xy} € P = f(x) = fly)
bry) € P, <= fx) 4 (y)

Let X € F behomogeneous for {Pl, PZ} . Then f 1is either constant

on X (if [X]ZSPI) or one-to-one on X (if [X]ZEPZ). O

PROPOSITION 5. Every quasi-normal ultrafilter D on K is Ramsey.

Proof: We must show that D contains a homogeneous set for any

partition of [K]n . This is clearif n=0 or 1; we proceed by

induction on n . Suppose the assertion is true for n (> 1), and let

. 1
{Pl, PZ} be a partition of [K]n+ . As discussed above, we view

[K]ndl_1 as the set of properly ordered n + 1-tuples from K . For each

x € K define a partition of [K]r1 by setting, for each Yy <<y €K,
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(yl,---,yn) € Pl(x) = x < ) and (x,yl,---,yn) € P1

“os == > ces
By induction hypothesis, thereis a TI'(x) € D such that

| [I‘(x)]n c Pi (x) , where i:K—>2

(x)

As D 1is uniform, we may suppose that y € '(x) =>y >x . Then

Y1.<"'< ynep(x) = (x,Yly..-,yn)E Pi(x)

Now let A be as in the definition of quasi-normality, and let B € D

be a set on which 1 1is constant. Then AN B € D, and
< < e =" < ewo
x <y <yn€A|']B v, ‘ <yn€1"(x) and x€B
—__.> e o 8
(X, Y1, :Yn) E Pl

where 1 is the constant value of i(x) for x€ B . Therefore,

AN B is the required homogeneous set. U

PROPOSITION 6 (Kunen, see [2]). Every minimal uniform ultrafilter D

on K is quasi-normal.

Proof: Let T : K =D ; we must findan A € D such that

x<y and x,y€A #>y€1"(x)
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If QEKI‘(X) €D, the_n this intersection can serve as A . So assume
from now on that QEKF(X) ¢ D. By subtracting the intersection from
each T(x), we may assume without loss of generality that QEKF(X) =Q.

Then we can define f:K - K by

fy) = px(y £ T(x)

As each " T(x) € D, f cannotbe constant on any setof D ; by

minimality, f is one-to-oneonaset B€D. For x< Kk, let

gx) = sup({y € Blfty) < x}u fx+1})

as f 1is one-to-one on B, the set whose supremum we are taking
has cardinality < x+ 2, and, as K is regular (being @ or

measurable), g(x) < k. Thus g 1is a well-defined map K - K .

Clearly
(1) g{x) > x
(2) y€B and vy > g(x) = f(y) > x

= y € I'(x)

Define a sequence o (k < k) by o, = 0, ozk+1 = g(ak) , and

o «. for limit k. Then «a < K Dby regularity of K and

k - <k k ‘

J
k% T K. Forany vy €K, let h(y) be the least k for which
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vy« k),

K Any set on which h is constant is bounded (by a suitable «
hence is notin D . Therefore, h 1is one-to-one on some CE€ D.
Since D is an ultrafil_ter, it contains a set A c BN C such thatno
two consecutive ordinals are in h(A). Now suppose x,y € A and
x<y. As h 1is one-to-oneon A andis obviously monotone,

h(x) < h(y) . As no two consecutive ordinals are in h(A), h(x) +1 < h(y).

By definition of h(x) ,

and, as g 1is monotone,

glx) < g(OLh(x)) = ah(x)-i-l

By definition of h(y), h(x) +1 < h(y) implies

C)/’h(x)+1 <Y ’

SO

glx) <y

By (2), y€T(x). Thus A has the properties required in the definition

of quasi-normality. O

Summarizing, we have
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THEOREM 7. Let D be a uniform ultrafilter on K . The following

are equivalent.

(1) ‘D is minimal in RK .

(2) D is Ramsey.

(3) D 1is quasi-normal.

As a corollary, we observe that quasi-normality is invariant under
isomorphism, which is not clear from the definition, as the ordering of

K was used there.

To relate normal ultrafilters to minimal ones, we cite

PROPOSITION 8. (1) (Scott; see {11]). If D 1is a uniform K -complete

ultrafilter on K > @, then there is a normal ultrafilter < D on K.

(2) (see [16]) Normal ultrafilters are Ramsey.

COROLLARY 9. If K> w, then the list of equivalent conditions in

Theorem 7 can be extended to include

(4) D is isomorphic to a normal ultrafilter.

We remark that, unlike quasi-normality, normality is not invariant

under isomorphism. In fact at most one ultrafilter in any isomorphism
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class is normal. We remark also that, in contrast to the case K = w ,
when K isa measurable cardinal the existence of minimal ultrafilters
on K has been proved (Proposition 8) without any special assumptions

like CH or FRH(w).

It is easy to see that, if D 1is a uniform ultrafilter on K , then

D x D 1is not an ultrafilter. In fact, each of the three disjoint sets

A = {(a,B)|a< B}
B = {(aB)|a> 8}
A = {(a,‘a)!aé K}

in K xK meets every set of D.x D. Therefore, D x D is
contained in at least three distinct ultrafilters, namely any ultrafilters
containing Dx DU {A}, DxDU{B} , DxDU {a}; furthermore,
every ultrafilter containing D X D must contain one of these sets.

Now Dx DU {A} generates an ultrafilter, namely ©6(D), where

6:% +K xK is the diagonalmap oa-(o,a). If DxDU {A} (and,
symmetrically, D x DU {B}) generates an ultrafilter too, then there
will be exactly three ultrafilters containing D x D; thatis, D x D
will be contained in as few ultrafilters as possible. The next proposition

tells us when this happens.
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PROPOSITION 10. Let D be a uniform ultrafilteron K . D XD is

- contained in at least three ultrafilters on K X K . The number is exactly

three if and only if D is minimal.

;Iil‘t:)_of:f In view of the preceding remarks and Theorem 7, it suffices to
show that D x DU {A} generates an ultrafilter if and only if D is
minimal. For Dx DU {A} tc; genérate an ultrafilter means that,
given any partition {Pl’ PZ} of A= [K]2 , thereis aset X€D
such that [X]2 = X2 N A_gP1 or P2 . This is just the case n = 2
of the definition of Ramsey. Hence (Theorem 7), it follows from D

being minimal. Conversely, it implies minimality, for only this case

(n=2) was used in the proof of Proposition 4. O

Remark 11. It is known that an uncountable cardinal K is
inaccessible and weakly compact if and only if every partition of [K]2
into two pieces admits a homogeneous set of cardinality K . Although
this condition on K requires K to be quite large, it is much weaker
than measurability. For example, if K is measurable and D 1is a

normal ultrafilter on K , then
{A < k|x inaccessible and weakly compact}

isin D, hence has cardinality K . The next proposition shows that
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an apparently mild additional condition on K 1is, in reality, very

strong.

PROPOSITION 12. Let ¥ be an uncountable cardinal, and suppose it

« . i o 2
is possible to assign to each partition of [K] a homogeneous set of

cardinality K in such a way that the collection of these assigned

homogeneous sets has the finite intersection property. Then K is

measurable. In fact, the filter F generated by the assigned homo-

geneous sets is a K-complete ultrafilter isomorphic to a normal

ultrafilter on K .

Proof: First note that, if ACK, then A or K -A isin F . For

we have a partition of [K:]2 ~given by
{a,ﬁ}€P1<:>min{a,ﬁ}€A ,

and clearly any hofno'geneous set for this partition is a subset of A or
of K - A (except for its last element, but the assigned homogeneous
sets have no last element). Thus, F is an ultrafilter. Further, if
Card(A) < K, then the homogeneous set assigned to this partition,‘
having cardinality K , cannot be a subset ‘of A, so K-A€EF,.
Thus, F is uniform. Clearly, F satisfies the case n =2 of the
definition of Ramsey filters, and, as in the proof of Proposition 10, this

suffices to show that F 1is minimal. Therefore, F 1is K-complete,



and, since K > w , K 1is measurable.

isomorphic to a normal ultrafilter on

K.

By Corollary 9,

O

F

is
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CHAPTER III.

ULTRAPOWERS

§ 11. Ultrapowers and morphisms.

DEFINITION1: Let (G be any structure for any language L , and let

[f]E :E- D bea morphism in CZ,Z . We define the induced map, [f]E

or f , from D-prod |G| to E-prod |G| by f*([g]D) = [g of]E , for

any g : Un(D) - gl -

LEMMA 2 : (1) [gof]E depends only on [g]D and [f]E, so is

well-defined.,

(2) f* is one-to-one .

ats

(3) idUn(D) :idD-prod IG[ :

ale
bd

(4) Ifalso [f'].:F ~E, then (fof) =1%ot

Proof : (3)'and (4) are obvious. (1) and (2) follow from parts (5) and (6)

of Lemma 2.2. O

PROPOSITION 3 : f* is an elementary embedding of D-prod G into

E-prod G

82
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Proof : Let qo(xl, e xn) be a formula of L , all of whose free

variables are among x;, ..., x_, and let [gl]D y eee [gn]D be

arbitrary elements of D-prod |G| = |D-prod G| .

D-prod G o ([gl]D" .. ,[gn]D) .<=>
{ila Folgli), ..., g (1)} €D = {(E) <=
Glo bole ), oo s g G0 = £ ila kolg (..., g () €E =

E-prod G *=Cp([g1f]'E s eee s [gnf]E) =
E-prod @ ko (f([g]y) . -- » £ilg]) . D

It is not in general true that .every elementary embedding of D-prod: G
into E-prod G 1is of the form £, Trivial counterexamples are obtained
by taking G finite and D # E . For a less trivial example, assume
GCH, andlet D and E be non-isomorphic K+—good ultrafilters
minimal in RK(k) (see Corollary 8.8), where K exceeds the cardinalities
of |[G] and L. Then there are no morphisms at all from E to D,
yet D-prod (G and E-prod ¢ are isomorphic (see Section 1. ) Roughly,
elementary embeddings of the form f*  are natural with respectto G,
while the isomorphisms between saturated structures tend to be unnatural,

as one sees from the inductive ""picking and choosing' argument by which
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they are obtained. (This heuristic idea can be made precise by defining
an appropriate category of models, on which "D-prod' and "E-prod"
are functors. Then the natural transformations from D-prod into

E-prod are exactly the f*'s where f: E -D.)

If, however, the structure G is''sufficiently rich''(in comparison
with D and E) then all elementary embeddings D-prod G- E-prod G

are of the form f°. We proceed now to define certain '"'rich'' structures.

DEFINITION 4 : Let A beany set. Let L e the language which

has a predicate or function symbol , R or f , for every predicate R

or function f on A . The complete structure on A is the structure

G for L which has universe A and in which R denotes R and

f denotes f for all predicates and functions on A . When we speak

of a set as though it were a structure, we mean the complete structure

on that set .

Note that every element a € A has a name a (a 0-place function
symbol) in the languageé of the complete structure on A . Therefore,

every structure elementarily equivalent to A has an elementary

submodel isomorphic to A .
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PROPOSITION 5: Let D and E be ultrafilters, and let A = Un(D).

Any elementary embedding

e : D-prod A - E-prod A

3

is f° for some f:E-D., [f]E is unique .

Proof : The identity map, id: A -A , of Un(D) determines an
element [id]D of D-prod A and thus an element
e([id]D) € E-prod A

Let that element be [f]E , where f: Un(E) - A = Un(D)
Forany BC A,

B€ED <> {i_.[A EB(i)} €D
<= D-prod A £ B ([id] )
<> E-prod A {=§([£]E)
<> {j|A BN} €E
=tlB)eE ,

so D=f(E), and [f]E is a morphism from E to D. We now
show that f© coincides with e . If [g]D €D-prod A, then g:A -A,

and
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(i|A kg(i) = g (idi))} =A €D ,
80
D-prod A k[g]y = g ([id])
As e is an elementary embedding,
E-prod A F’e([g]D> = g([f])
If we let e([g‘]D) = [h]E , we obtain
{ilA kh(i)=g (i)} € E ,

'so h=gofmod E, and

ellgly) = [l = [gof], = £ ([g]y)

Finally, suppose f’: E~ D were another morphism such that

£ = e. Then
_ . IRy _ /
(€] = e(lialy) = €41l = €]
Therefore, [f]E is unique. [J

It is easy to modify the proof of this proposition to obtain the same
result when A 1is any set of cardinality > size (D). Observe that, by
functoriality of * , an isomorphism of ultrafilters induces isomorphisms
of ultraproducts of arbitrary structures. As a partial converse, we

observe
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COROLLARY 6 : With D,E,A as in the proposition, let g:D - E

be such that g;"< is an isomorphism from E-prod A to D-prod A .

Then [g]D is an isomorphism .

Proof: By the proposition, (g*)"1 is f* for some f:E-D. Now

-apply Corollary 2.6. O

Collecting the preceding results, we obtain the following characteri-

zation of the Rudin-Keisler ordering,

"PROPOSITION 7: Let D and E be ultrafilters, and let K> size (D)

(resp., K> size (D) and K> size (E)). The following are equivalent.

(1) D<E (resp., D= E).

(2) For all structures G, D-prod (G can be elementarily embedded

in (resp., is isomorphic to) E-prod G .

(3) D-prod K can be elementarily embedded in (resp.,is isomorphic

to) E-prod k. O
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§ 12. Ultrapowers of (. In this section, we shall be concerned

with ultrapowers of (the complete model on) @ with respect to ultrafilters
on . In defining the complete model on a set, we used R and f

as the symbols of the language L which denote R and f. This
'notation is often inconvenient and sometimes (as when R 1is the binary
relation <) confusing, so we will often justuse R and f as symbols
of L . Itis-also convenient to identify an element a of A - with
the corresponding element of D-prod A, namely the denotation of a ,

. which is represented by the function Un(D) -A which is constantly a .

PROPOSITION1: Let D be a non-principal ultrafilteron w. D is

minimal if and only if the only proper elementary submodel of D-prod w

is W .

Proof: If D 1is not minimal, say E <D, E non-principal, then, by
the results of the preceding section, E-prod w is isomorphic to a proper
elementary submodel of D-prod . Since E has size w, it cannot

be Rl-complete, so E-prod w is not isomorphic to w.

Conversely, suppose D-prod w had a proper elementary submodel
M different from (hence properly containing) w. Let [f]D EM - w,
[g]D € (D—prod w)-M, where f and g are maps w—-w. f cannot

be constant on any set of D, for if it were, [f]D would be in .
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Suppose { were one-to-one on some set A €D . Then there would
be an h (=gof-1 on f(A)) suchthat g=hnrf on A . Butthen, in

D-prod g,

[el = [hof] = b ([£] )

But [f]D €M, and M is closed under the function denoted by h
(since M is an elementary submodel), so [g]D € M , a contradiction.
Therefore, f is neither constant nor one-to-one on any set of D ,

so D 1is not minimal.

COROLILARY 2 : Assume CH (or only FRH(y) . Then the complete

model on (3 has a proper elementary extension (y’ such that no

proper elementary extension of (3 is a proper elementary submodel

7

of w' . (w

is a minimal proper elementary extension of (y.) In

2(.0

fact, there are 2 pairwise non-isomorphic such extensions (/.

Proof : Usethe preceding proposition, Corollary 8. 9, and Proposition

11.7. O

It is true that every minimal proper elementary extension of
is isomorphic to D-prod gy for some minimal ultrafilter on (. This

fact follows immediately from the following
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PROPOSITION 3 : Every proper elementary extension of (the complete

model on) a set A contains an elementary submodel isomorphic to

D-prod .A for some non-principal D on A . In fact, the extension

is the union of all such submodels .

Proof : ILet A’ be a proper elementary extension of A , and let
a €A’; we must show that a is in an elementary submodel of A’

isomorphic to D-prod A for some D. (If a g A, then D will clearly

have to be non-principal. ) We let D be defined by
BeD <= A’ kB (a)

for any B c A. First, we must check that D is an ultrafilter. For

any Bl,BZEA ,

A Fyx (B)NB,(x) <> B (x) and Bz(x)),

so A’ satisfies the same sentence, and
> /
B, NB, cD<=> A E B, NB,(a)
<> A’ E B, (a) and A’ E B,(a)

@BIED and BZED
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Similarly,
BeD<>A-B¢D
Next, we must define an elementary embedding
e : D-prod A- A’

If [f]D'e D-prod A , e([f]D) is defined to be the unique b ¢ A’
for which A’ I: b =f(a). (Intuitively, e(f) is f(a).) This is well-defined,

for if f ={’mod D, then '
C = {x|f(x) = f(x)} €D,
so A’ FC(a). But
A’ E(yx) (C (x) <=>f(x) = f'(x))

because this sentence is true in A . Therefore, A’ |= f(a) = f'{a) ,

and e ([f]D) = e([f ’]D) .

To verify that e is an elementary embedding, let CP(xl' ..
be a formula, and let [fl]D, e, [fn]D € D-prod A (fi : Un(D) - A).

Since

A Ee(f]) =1 (a)
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we compute (with an obvious ''vector notation'')
D-prod A f o([fly) <> {ilA ko ()N} €D

<= A’ F{i[A Fo(f(i)} (a)

<= A" Eolf(a))
<> Al Fole(fly)
where the third equivalence is because the sentence

(vx)({i]A Eo(fi))]} (x) <> o(f(x)))

is truein A , hencein A /.

Finally, a 1is in the imageof e , for a = e([id]D) . O

PROPOSITION 4 : 1.Let D and E be ultrafilterson ¢ , f: E -»D

a morphism . f*(D-prod w) is cofinal in E-prod w (with respect to

the natural order) if and only if f 1is finite-to-one on some set of E.

Proof : f*(D-prod @) is cofinal in E-prod w if and only if, for every

g:w~w , thereisan h: w—w such that

(8] < £ ([B] ) = [hof]
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in E-prod . If this is the case for g = idw , we have an h such that
A = {x|hf(x) > x} €E
Then, for x €A and vy € W,
flx) =y = x<h(y) ,

so f takes the value y atmost h(y)+1 times on A . Therefore,
f 1is finite-to-one on A . Conversely, suppose f 1is finite-to-one

on some A€ E, andletany g: w-w be given. Define
h(x) = max {g(y) |y € A and f(y) = x} ;

this is the maximum of a finite set, so h is well-defined. Clearly,

for y €A, gly) < hi(y), so [g]E < [hof]E as required . O
From the preceding two propositions, we obtain

COROLLARY 5 : A non-principal ultrafilter D on ¢ is a P-point

if and only if every elementary submodel of D-prod w, except w

itself, is cofinal in D-prod w. 0O




94

813. The initial segment ordering. Starting with the characterization

of the Rudin-Keisler ordering in Proposition 11. 7, we define a
stronger ordering by requiring one ultraproduct to be not only an

elementary submodel but also an initial segment of the other.

DEFINITION 1 : A morphism [f]D :D-E in u is an IS(x¥)-morphism

if and only if f*(E-prod K} is an initial segment of D-prod x (with

respect to the natural order). If there is such an f , then we write

E< D.
—K

Clearly, identity morphisms and composites of IS(k)-morphisms
are IS(K)-morphisms. Hence ultrafilters and IS(k)-morphisms form
a subcategory of U, and ik‘ is (or rather, induces) a partial

ordering of RK , stronger than the Rudin-Keisler ordering <.

- PROPOSITION 2 : Suppose X\ <Kk and f:D- E is an IS(k)-morphism.

Al
b

Then f : E-prod ) » D-prod) is an isomorphism.

Proof : Since f* : E-prod \=» D-prod X 1is an elementary embedding,
we need only check that it is surjective. Let [g]D be any element
of D-prod)x, so g :Un(D)-)Xx. Let £ : Un(E)-k be the constant
function with value X. Then, for all i€ Un(D), g(i) <A = £ (i) ,

< - sk . _ R sk _ .
so [g]D [£ f]D £7([2 ]E) in D-prod k. Since { (E-prod k) is an
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initial segment, there must be an h : Un(E) -k such that

[g]D = f*([h]E) = [hf]D . Because g maés into X,
Ll na) <) = fG]RE@) <) o filhiG) = g()}eD

50 [ilh(i) <)} ¢f(D) = E. Redefining h on the complement of this
set in E (which does not affect [h]E), we may suppose h(i) <) for

all i. Then [h], €E-prod), and f*([h]E) =lely- O

COROLLARY 3 : If size (D) < ¢, then any IS(x)-morphism with domain

D is an isomorphism.

Proof : Apply the proposition, with X = size (D) , and then use

Corollary 11. 6. O

COROLLARY 4 : If X<y, any IS(k)-morphism is an IS(}))-morphism. 0O

PROPOSITION 5 : Let f:D—-E and f:D-E" be IS(k)-morphisms.

If there is a morphism g : E -E’ such that f'= gof, then g is

also an IS(k)-morphism. If both E and E ° have size <, then

either there is a unique such g or there is a2 unique g’: E’~E such

that f=g'of. (If both g and g’ exist, they are inverse isomorphisms

by Corollary 2. 6.)
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Proof : Assume g 1is givenand £{“= gf. Then the order-preserving

embedding f'ﬁ, of E-prod k into D-prodk , sends g

*

E’-prod k) to
f'*(E'-prod k) which is an initial segment of D-prod k and a subset of
f*(E-pr.od ¥). Therefore f*g*(E'-prod K _ is an initial segment of
f*(E-prod ), so g*(E'-prod k) is an initial segment of E-prod « .

This proves the first assertion.

Now assume both E and E’ have size <. Since ¥ (E-prod k)
and fﬁ(E'-prod K) are initial segments of D-prod K, one is contained

in the other; say f'*(E'—I')rod K < f*(E-prod k). Then

>}:_-1 e
£, f7 : E%-prod k~ E-prod ¥ is an elementary embedding (because
3

% and f are elementary embeddings). By Proposition 11.5, there

Al

» >{="1 2k 3 . S » 3%
is a unique g : E-»E suchthat f of " =g ,ie (g =17,

4

i. e. (by Proposition 11. 5 again) gf = f . O

COROLLARY 6 : In the subcategory of u(k) whose morphisms are

the IS(k)-morphisms, there is at most one morphism from any object

to any other.

" Proof : Suppose f and f° were morphisms D-=E in this subcategory.

By the proposition, we have f"=gf or f=gf’ for some g:E-E

4

But the only such g is the identity, by Theorem 2.5, so f=1f . [
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The corollary shows that the category of ultrafilters of size k
_and IS(x)-morphisms, which we denote by 1IS(x) , is essentially nothing
more than a partially ordered set (after identification of isomorphic
ultrafilters), namely RK(x) with the IS(K) ordering iK' Thus, no
confusion will arise if wé also'let IS(x) denote this partially ordered

set. From the last proposition, we obtain immediately

COROLLARY 7 : IS(x) 1is a (not necessarily well-founded)tree; that

is, the predecessors of any element are linearly ordered. [J

PROPOSITION 8 : Let k be a measurable cardinal, andlet P be

the subset of IS(x) consisting of equivalence classes of k-complete

ultrafilters. Then P (with ordering < K) is well-founded.

Proof : If D is a k-complete ultrafilter, D-prod is well-ordered
" (by its natural orderiné; see [15,p. 311].). Let £ (D) be its order type.
Clearly, if D< c E , then £ (D) <£(E) with equality if and only if

D = E (by Corollary 11.6). Thus £ maps P to ordinals ina
strictly monotone manner. Hence, given a' nonempty subset of P,

we obtain a minimal element simply by taking one with minimum possible
1.0

REMARKS 9 : IS(Q) is not well-founded; see Corollary 15. 18 and

[2, Theorem 2. 12].
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It is not obvious that IS(x) is non-trivial, i. e. that there exist
D and E (of size K, say) such that D < ¢ E . Indeed, we shall later
give a hfeuristic argument showing that D < ‘ E 1is a rather strange
situation unless K= or ¥ is measurable. Nevertheless, if

is regular and 2K =t | such D and . E do exist.

PROPOSITION 10 : Let D and E Dbe ultrafilters on X and

X XY respe'ctively, with D = g(E) where g: X xY X is the

projection. [71]E is an IS(k)-morphism if and only if, given any

function f on X XY for which Card{f" n‘l(x))< k for all xeX

(or even for all x¢B where B D), there is aset AcE on

——

which f(x,y) depends only on X, i.e. Card f''"(A N ﬂ-l(X)) <1 for

all =x.

Proof : First suppose g is an IS(k)-morphism, and let f be given.
Cl early, we may replace f by any f° such that
(xeX) (Vy,z€eY) f(x,y) = {(x,2z) <:>f'(x,y) = fi(x,2) ,
since such a replacement affects neither the hypothesis on f nor
‘the property required of A . Thus, we may suppose e l(x) s
an initial segment of K for each =x¢X, and let g(x) €k be an
upper bound for f" 71l(x). Forall xe¢X, yeY, f(x,y) < gx) = gnx,y) ,

so, in E-prod k , [f]E g[gﬂ]E = ,T*[g]D. As g is an IS(k)-morphism,
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[f]E must be f’z[h]D = [hq-r]E for some h : X -k. Then the required

set A is {(x,y)|f(x,y) = h(x) = he{x,y)} €D.

Conversely, suppose every f with Card f”ﬂ'lx <k forall x

depends only on the first coordinate on some set of E . We must show
7 is an IS(k)-morphism, so let [f]l. < [g]. = [gn]~ , where
: E — D E
f:XXxY~-k and g:X-kx. Let f’:XxY-K agreewith f on
{5, y) | f(x,y)'< g(x) = gn(x,y)}€E, andlet f’ be 0 elsewhere.
Then f’= fmodE , and, for each x, g 1 (x) has cardinality <k
because it is bounded by g(x). By hypothesis, there is an A ¢E
-1

such that f/ assumes at most one value on g "(x) NA ; let h(x)

be that value. (h(x) is arbitrary if 7 '(x)NA = @.) Then
f(x,y)|f4x,y) = h(x) = by (x,y)}2 A€E

SO

(€], = [£] = [l = w (0] ) en (D-prod k). 0O

Observe that the restrictions that D and E be on X and
X X Y and that the morphism D-E be & are inessential by

Lemma 2. 8.

THEOREM 11 : Let k be a regular cardinal such that 2K=¢*  and

let. D be a K+—good ultrafilter on K. There is an ultrafilter E
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on Kkxk suchthat g(E)=D, ["]E is an IS(x)-morphism, and ["]E

is not an isomorphism. Thus D < ¢ E , so the partially ordered set

IS(x) 1is not trivial.

Proof : Since 2% = K+, the family g , of functions f : kXx-% such

that for all xe€x Card f"-rr—lx < g, can be well-ordered so that each

f has at most ¥ predecessors ; let ‘< be such a well-ordering, and
let ft be the immediate successor of f in < . We define, by
transfinite induction with respect to < , filters F¢ on kXK such

that

(1) Ff has a basis of cardinality < .

(2) Eachset Ac¢F has the property that (vx D) {y ] (x,y) € A}

f

has cardinality k.

(3) 1f f<Lg then FfEFg

(4) Ff+ contains a set A such that, for all x, f 1is constant

on Anal(x).

If f 1is the first element of :} , let Bf consist of all the sets

{(x,7)|x >} for all o <«, and let F_ be the filter generated by B

f f°

This satisfies (2) because D , being K+-good, must be uniform, and

(1), (3), (4) are trivial. If { 1is a limit element of g' , let Ff = k{_« F

g
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and Bf :kjg{f Bg This satisfies (1) since f has at most K
predecessors, and the other three conditions are trivial. Now suppose
Ff and Bf are defined; we must define Ff+ . Ff+ will be
generated by Bf+ = BfU {Al where A is as in (4); thus (1), (3), (4) .
will hold. For (2), we must make sure that, for all X er ,
Card fy|(x,y) €EANX}=k for most x with respectto D. Let

Bf: {X |a< K:} ’ bY (1) For each x < K, let
o

&(x) = {Ge Pw(K) |cardfy|(x,y) E@ Xa) = «} .

Givenany G ¢P (K),mx €F_, so, by (2), {X|G€’-§‘(X)}ED'
o <€ f
Since D is k1t-good, there is a function g :k—P (x) such that
a\
{x|g(x) €#4(x)} €D and, for all g€ k, {xla €gx)} €D. If we let
g’ agree with g on {x|g(x) €®(x)} and be ¢ elsewhere, then

g'(x) €P(x) for all x €k, and,for all ¢ €K,
xla€g(x}= xlacg®)}n xlgx) €ca(x)}eD

For each x ¢k, let Yx= {y|(x,y)e @) on} . Thus Card YX: K,

but f takes fewer then K values on {x}xYX. Since K is

regular, {x}x Y  has a subset Z_ of cardinal « , on which f
X X
is constant. Let A :xLéjK Z . Clearly A 1is as required in (4). We
X

must still check that

(vxD)Card {y| (x,y) €AnN XOt} =K , forevery g<k.
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Let ¢ be given. Cardfy|(x,y) €A mxa} =CardZ NX forall x
> S
But, for most x (with respectto D), q€eg’(x), so Zx c {x} )<YX X
= ~

so, for most x, Card {y[(x,y) €eANX }= Card ZX = K , as required .
, . , o

Let F =\U/

f_E}Ff )
C ¢D and all the sets A ckxk suchthat g is one-to-one on -

If we adjointo F all the sets =-1(C) for

Kk XK -A(or even fewer-than-g -to-one) , the resulting set F’ has the
finite intersection property , by (2), so let E be an ultrafilter
containing F'’. g(E)=D because, forall C¢D, Tr'l(C) €EF'cCE.
. [-,7]E is not an isomorphism, because if % is one-to-one on A,

then «xk-AeF’'CcE, and A  E. Finally [q-r]E is an IS(k)-morphism

because of (4) and Proposition 10. [J

REMARK 12 : Since, in this proof, we could include in F '’ the
complements of all sets on which g 1is fewer-than-k-to-one, we could
require in the theorem that & not be fewer-than-k-to-one on any set

of E.
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514. Non-standard ultrafilters In this section we shall develop
another way of viewing morphisms and IS(k)-morphisms. Apart from
being interesting in its own right, this viewpoint will provide the
promised ';implausibility argument' for Theorem 13.11. It will also
help to motivate the definition of sums of ultrafilters and the Rudin-
Frolik ordering, and it will be useful in the proof that the ordering IS(w)

differs from the Rudin-Frolik ordering.

Throughout this section, D will be an ultrafilter on a set I,
and V will be a very large set. Intuitively, we think of V as '"the
universe'', but to avoid technical problems we want V to be a set,

say Stg (V) (see [15,p. 303]) for some )\ so large that V contains
all the sets in which we shall be interested below. We remind the
reader of our convention that, when a set is treated as a structure, we
mean the complete structure on the set, so the language has symbols for

all predicates and functions on that set. We shall use the notation

Hom(X,Y) for the set of functions from X into Y

We consider the '""non-standard universe' D-prod V. Ithas V

0
R

as an elementary submodel via the embedding x - *x , where x

is the denotation in D-prod V of the name x of x, namely the

germ on D of the constant function with value x. An element of
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e

D-prod V is standard if and only if it is "x for some x€eV. A

subset S of D-prod V is internal if and only if for some s € D-prod V
(Va € D-prod V) a €S<=D-prod V |: agcs ;

then we say that s represents S. (Clearly s is unique.) Subsets
of D-prod V that are not internal are ext.ernal. By abuse of language,
we often use the same symbol to denote corresponding relations or
functions on V and D-prod V; thus, for a,b ¢D-prod V , we may
write a €b instead of D-prod V f a € b. Similarly, we may use the
same symbol for an inter‘n‘al set and its representative. We shall also

write [f] for [f]D , since D is fixed.

If X is a set (tacitly unde‘rstood tobe eV)and AcCIxX , we

obtain A :I-P(X) by A()= fx|(i,x) €A}. Then, in D-prod V ,

[A] € *P(X) , and any element of >kP(X) (i. e. any’internal subset of *X)
is [A] for some A. Similarly, if f:IxX-Y , we define

f . 1-Hom (X,Y) by F(i)(x)=£(i,x). Then [f] ¢ "Hom(X,Y), and

all internal functions ":X ~Y are of this form.

Now suppose E is an ultrafilter on IxXxX , and #(E)=D

2

where q:IxX -1 is the projection. We define E/D c acP(X) by

DEFINITION 1 : [A] €E/D <A cE



105

Observe that, if A = A’mod D, then the complement of the symmetric
difference of A and A’ isin E, so A¢cE<>A’¢E ; therefore
the definition is legitimate. From trivial identities like [A] N [§]= [m]
*, g oo, . : :

and "X - [A]=[(I xX) - A] it follows that E/D is an ultrafilter in
the Boolean algebra 'PP(X) . Note that E/D need not be internal. In
fact, any ultrafilter in >‘:P(X) is E/D for a unique ultrafilter E on

I xX suchthat q(E) =D ; the required E is defined by Definition 1,

read from right to left.

If f: X- Y is internal and A c Y s internal, then

x 5
£1(A)c "X is internal. Thus, if F is an ultrafilter in  P(X)

we can define an ultrafilter
b -1
f(F) = {Aec P(Y)|f " (A) eF}

in >PP(Y) . One thus obtains an analog WD of the category ZZ by

taking as objects all ultrafilters in >‘:P(X) for arbitrary X and as

e

since the objects of ?'{D may be external; U is equivalent to the

morphisms germs of internal maps. Note that Q/{D is not just

full subcategory of Q/{D whose objects are internal ultrafilters. We
have seen that the objects of ?/[D correspond to ultrafilters E on
I xX (for arbitrary X) with «(E)=D. I E is such an ultrafilter

and- g : IXX-1IXxY is afunction commuting with # , then one
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) ~
easily computes [#’g](E/D) = g(E)/D , where q’:IxY~Y is the
projection. Using Lemma 2. 8, one then finds that %D is equivalent
to the category of ?,{—objects over D, whose objects are morphisms in

?/( with codomain D and whose morphisms are commutative triangles

E - E’.
Yoy
D

Translating Proposition 13. 10 into the present terminology, we

obtain

COROLILARY 2 : Let E Dbe an ultrafilter on IxX with #(E)=D.

The following condition is necessary and sufficient for [qr]E to be an

pUY
b

IS(k)-morphism. Given any internal function f on "X such that
: on such that

Card f“*X < *K in D-prod V, there is a (necessarily internal) A ¢ E/D

such that f['A is constant in D-prod V. O

Observe that, when E/D is internal, the condition in the
corollary says that E/D is *K-complete . One easily checks that
E/D is principal if and only if #»:E D is an isomorphism. Hence,
D< E via o« and E/D is internal, if and only if E/D is a non-
prinpipal >k}{—complete ultrafilter on X . Since V is an elementary
submodel of D-prod V , this condition can hold for some E/D if and

only if K= (¢ or there is a measurable cardinal ) such that
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k< X< Card (X) . Hence,

COROLLARY 3 : If k=@ Or Kk is measurable, then the conclusion of

Theorem 13. 11 holds without the assumptions that 2% = K+ and D is

K+-good . O

On the other hand, E/D is uniform if and only if = 1is not

fewer-than-¢-to-one on any set of E , so we find

COROLLARY 4 : If k#¢w and « is not measurable, andif D and

E satisfy the conclusion of Theorem 13.11 and the remark following

it, then E/D is external. 0O

—

Heuristic remark : Suppose K is regular but neither measurable nor

countable, and suppose 2¥= 4T and D is K+-good. According to
a person living in D-prod V , there are no uniform >'<K_-comp1ete

e
>

ultrafilters on *K (i- e. in =::P(K) ), because ¥ 1is neither measurable
nor countable. But, looking at his universe from the outside, we can see
that there is such an ultrafilter; it just does not happen to be in his

world (i. e. to be internal). If the resident of D-prod V is willing to
believe us when we tell him about this ultrafilter, he will say that *K

although not measurable, is pseudo-measurable, in the sense that a

g -complete uniform ultrafilter "exists in another world. "



CHAPTER IV

LIMIT CONSTRUCTIONS

§ 15. Limits, sums, and products of ultrafilters Recall from

elementary topology that an ultr'afilter D . on a topological space X
is said to converge to a point x €X , and x is called a limitof D ,
if and only if every neighborhood of x isin D. If D has a unique
limit, we call it lim D; on a compact Hausdorff space, every ultrafilter
_has 'aunique limit. If D is an ultrafilter onaset I and f 1is a
function from I to a topological space X , then we write D-lim f
or D—lim_lf(i) for lim f(D). We shall be concerned mainly with the

case that X is the Stone-&ech compactification of some (discretely

topologized)set J. (See 7.7)

LEMMA 1 :Let I and J be sets, D an ultrafilter on I , and

E a function assigning to each 1 €1 an ultrafilter Ei on J, i.e.
E:I-pfJ. Forany AcJ ,
Ac D-limiEi<:>(Vi D) Ac Ei

-~

Proof : A 1is both open and closed in 8J. Hence

(1) A € E(D) «lim E(D) € .A

108
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The right side of (1) is equivalent to
A ¢lim E(D) = D-limiEi
The left side is equivalent to
Gle e b= (AkD

‘which means (viD) A ¢ Ei . rj

PROPOSITION 2 : Let I,J,D, and E be as in the lemma, and let

E’:I-03J be another function. If E = E’mod D, then D-lirniEi =

- D-lim E’ .
i i

Proof : Obvious from the lemma or from the fact that E(D) = E/(D). O

PROPOSITION 3 : Let I,J,D,and E be as in the lemma and let f{: J-J"

Then f{(D-lim E,) = D-lim f(E.) .
— ! i

Proof : Applying the lemma, we compute for any A cC J’,

A €f(D-lim E ) <=> 1A e D-lim E,

<> (viD) £ 1(a) ¢ E,

<>(V¥iD) A€f (Ei)

<T>A€D—limif(E,1) . OO0
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PROPOSITION 4 : Let f:I1-I’", let D be an ultrafilter on I , let

D’=f(D) , andlet E :1I’-X for any space X . Then D-lim,Ef(.) =
I _— i f(i

D’-lirni ’Ei’ , in the sense that, if either limit exists and is unique, so

does the other, and they agree .

Proof : Both are lim (Eo¢ £)(D). O

DEFINITION 5 : liet 1 be a set and D an ultrafilter on 1. For

————

each 1€l , let Ji be a set and Ei an ultrafilter on Ji. The

disjoint union of the Ji is

i og=talier,jesd
there are canonical injections

@ Ji—‘ o1 Ji:_] |—‘ (i, )
and a canonical projection
me 1l I~ 1:(,)) i
iel

The sum of the Ei with respect to D is defined to be the ultrafilter

- = -13
D -5.E, = D-imq(E))

on -J-I-iJi' If all the Ji are the same set J and allthe E  are the
e S ———— e ———————tear 1 —————————

same ultrafilter E , then J'IiJi =1xJ , and D—}jiE will be called

the product of D and E (in that order) and denotedby D" E.
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REMARKS 6 : (1) NA(i) and }(i) , as defined in Section 14, are, in

-1
the present notation , o, (A) and f o P respectively .

(2) Do not confuse the product D - E defined here with the
cartesian product D X E defined in Section 3. Note that D - E,

unlike D X E , is always an ultrafilter.
(3) In much of the literature, D -+ E  is called ExD.

LEMMA 7 : (1) Forall Agc —“—161 I

A€ D- EiEi <> (¥iD)Vj Ei) (i,j) €A

Thus the quantifier (V(i,j) D - ZiEi) is equivalent to (ViD)(Vj Ei)
(2) Forall AcIxJ s

A€ED- E <> (VYiD)(VjE) (i,j) €A ;

(Y(i,j) D+ E) is equivalentto (ViD)(VjE)

(3) For each (i,]) 6_“_1.'!1 , let Fij be an ultrafilter on a set

Kij . The natural bijection between

_J_[ _U. K.. and _l_L K..
iGI(jEJi ”> — wiell 7 1

(namely (i, (j,k)) <= ((i,j),k)) maps

D-Z(E -X.F..) to (D-ZXZE)-2Z .F.. ;
11 J 1 11 i,] 1j
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we usually identify these two via this bijection. In particular, multiplication

of ultrafilters is associative.

(4) The projection w:J_l_iJi—»I maps D -pE to D. If

all the Ji are the same set J and g’ is the projection IxJ - 7T,

then ¢/(D —ziEi) = D-linh.iEi . If all the Ei are the same E ,then

7(D* E) = E

() #:D - ZiEi - D is an isomorphism if and only if (¥iD) Ei

is principal . #’: D* E-E is an isomorphism if and only if D is

ErinciEal.

(6) (YiD)E =E’, (iie. E=E’modD)<<>D-v E =D-y.E/
i i i1 i i

. (7) Suppose, for each 1ice¢l

s fi : Ji - Ji’ . The induced map

el g -l 3w b GG
iel iel

takes D-ZiEi to D_Zif'(Ei)' If (’\ﬁD)fi is an isomorphism,
i

then f 1is an isomorphism .

(8) Suppose g :1’-1 and suppose D’ is an ultrafilter on I’

with g(D’) =D . Then

E J_I_ Jg(i’) _'._J_l_ Ji : (i ,J) |"" (g(i,),j)
g1 iel
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maps D'_zi, Eg(i ) to D- EiEi . If g is?. an isomorphism, then so

is g.

Proof : Straightforward verification, omitted. 0O

According to (7) of the lemma, we may unambiguously define sums

of isomorphism classes by

D-y.E = D-3.E.
1 1

11

Note however, that (§) does not suffice to permit an analogous definition

of D- ZiE_ , Since when D is replaced by an isomorphic ultrafilter
i

the E.'s must be re-indexed. Of course, if all the Ei are equal,
i

then there is no such difficulty and we define D-E=D'E

DEFINITION 8 : D iRF E if and only if, for some ultrafilters

~

Fi (ieUn(D)), D- Zi Fi E . The relation < is called the Rudin-

RF

Frolik ordering.

Part (8) of the last lemma shows that the relation D < E

RF
depends only on the isomorphism classes of D and E , so we get
an induced relation D S-RF E onthe class RK. This relation

is reflexive by (5) and transitive by (3) of the lemma. By (4), < RF

implies <, so it is anti-symmetric. RK with the partial ordering

’
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iRF will be called RF ; similarly for RF(x), etc. RF(w) has been
studied in detail by Booth [2] . To connect our definition with his , we

need the following

PROPOSITION 9 : Let D Dbe an ultrafilteron I , E :I-BJ. If the

~points E, €¢BJ have a system of pairwise disjoin;c neighborhoods
i

(in BJ), then D-lim E = D-7y E,
1 1 1 1

Proof : The pairwise disjoint neighborhoods can be taken to basic open

sets -7-\ i A . eE, , and
1 1 1

i1 = AinAy=96

Define a function g : J-1I to have value i on Ai (and to have

arbitrary value on J -UiAi ), and let

£:T7-1xJ:jb (g(3),i)

By choice of g , f agrees with @, on Ai , SO f(Ei):cpi(Ei)

Hence, using Proposition 3,

D-».E = D-llmicpi(Ei)

1 1

= D-lim, f (E.)
i i

= f(D-l1m E,)
i 1

Since f is obviously one-to-one, the proof is complete . [



Let us call a family of points in a topological space strongly
discrete if and only if the points have a system of pairwise disjoint
neighborhoods (as in the last proposition). This property is, in general,
stronger than just discreteness. For example, if X 1is an uncountable
set and 2 is thé discrete space {0,1} , then, in the product space
ZX , the points precisely one of whose coordinates is 1 (i. e., the
standard "unit vectors') form a discrete but not strongly discrete
collection. (Indeed, any family of pairwise disjoint open sets is countable.)
Discreteness is often'an easier property to deal with than strong discretenc:
because the former is an intrinsic property while the latter depends on the

ambient space. Thus, the following simple result is often useful.

PROPOSITION 10 : In a regular (i. e. T1 and T3 ) space X, any

discrete countable set is strongly discrete .

Proof : lLet {xili < w} be a countable discrete set ; thus each X,
has an open neighborhood Ni containing no other xj . Define
inductively lclosed neighborhoods Ci c Ni of x; as follows. If Cj
has been defined for j<1i and Cj c Nj , then

i € € U ..~

- <1

is a closed set not containing X, - By regularity, the neighborhood
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N, —U. .C. of x, contains a closed neighborhood C. of x, .
i i

Then the Ci are pairwise disjoint, so {Xili < w} 1is strongly

discrete. [J

Taken together, the last two propositiOns show that our definition

of iRF agrees with Booth's. . We continue with two propositions which
show that (roughly speaking) when dealing with P-points we need never

worry about discreteness.

PROPOSITION 11 : Any countable family of (distinct) P-points is discrete

(hence, strongly discrete) in Pe-

Proof : Let the P-points in question be Ei (i <@ . Temporarily

consider a fixed i. For each j#i, let G, be a neighborhood of
J

Ei in B not containing Ej . By Proposition 9.1 , ﬂj%i Gj

contains a set N which is a neighborhood of Ei in Bw- w-

Clearly N contains no E; (j £ i) . Thus, {Ei|i<w} is discrete

(in B¢o-w, hence in Py, because discreteness is intrinsic). O

PROPOSITION 12 : A convergent P-point on a regular space contains

a strongly discrete set .

Proof : Let D be a P-point on the regular space X , and let p¢ X

be the limit of D . Since D has size (y(by definition of P-point),
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there is an A ¢D with Card(A)=¢ and pg A;let A={a |n<gy}.
n

Since X 1is regular, let G be an open neighborhood of p not
n

containing a_ ., and let Cn be a closed neighborhood of p contained

in Gn . By choosing G1r1 and Cn inductively rather than all at once,

we can arrange G c C . Foreach n

let b
atl = “n T ,» let g(a ) be the least

t ; i . i
k such tha a_ ¢ Gk g(an) exists because a_ ¢ Grl Define g
arbitrarily on X - A. If g 1is constantonaset Bc X, say

g(B) c {k}, then B is disjoint from ANG, whichisin D (as G

k k

is a neighborhood of lim D), so B¢ D. As D is a P-point, g
must be finite one-to-one on some B €D ; since D 1is an ultrafilter,
we may choose B sothat BcC A and g takes only even or only

odd values on B, say even values. The finitely many points of B

where g takes the value 2k are, by definitionof g on A in

2

G but not in G , so they liein G -C.,, (as C ).

Sok-1 2k 2k-1 2k 21 = Yok

i s - <
G2k+l c CZk , the various sets GZk-l C2k (k <) are

pairwise disjoint open sets which cover B , and only finitely many

Since

points of B lie in each of those sets. Using the fact that X 1is

Hausdorff , we easily conclude that B 1is strongly discrete . [J

REMARK 13 : The hypothesis of convergence is not needed in the

proposition. The proof of this proceeds by first observing that it suffices



118

to prove discreteness (by Proposition 10)(which is intrinsic, so, without
loss of generality, the space X may be replaced by a countable subspace,
and we may as well assume that X itself is countable. But any

countable regular space is completely regular, so X has a Stone-(\llech
compactification B X , andin B X the proposition can be applied
because any ultrafilter converges. We omit the; details of this proof,
because in prlactice we shall only need the case where the given ultrafilter

converges; in fact, the space X will be compact in applications.
By Propositions 9 and 12, we get

COROLLARY 14 : If D is a P-pointon I , andif E :I-BJ is

one-to-one on a set of D , then D-limiE, = D-5_‘,1E, . O

1 1

If E is not one-to-one on any set of D, thenlet f :I-1’

be a surjection such that

(e.g. let I’ be obtained from 1 by dividing by an appropriate

equivalence), let D’= {(D) , and let Ff(i) = Ei , so F :1'-87J.

By Proposition 9.7, D’ is a P-point or principal, and clearly the

F,, are all distinct. Hence, using the corollary and Proposition 4,
i

D-lim.E, = D-lim F = D’-lim_ F_,
11 i i1

(i)

1

D'-r,,F

i/
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Thus, in any case,

COROLLARY 15: If D is a P-point, then any ultrafilter of the form

D-lirniEi is isomorphic to one of the form D’-7, ’Fi’ , where D’< D
i waere =

and the F,,6's are among the Ei 's

1[

We conclude this section by examining the connection between sums

of ultrafilters and the non-standard ultrafilters considered in Section 14 .

PROPOSITION 16 : Let D be an ultrafilter on a set 1 , and let

-E :1I-B8J. Then (D—}:iEi)/D is the internal ultrafilter (represented
b E
by) [Elg

~ -1
Proof : If AcIxJ , we compute (using A (i) = ®; (A))
<> (Vi A (i
[A]l, €[E], <> (viD) A() € E,
<> (ViD) A€o, (E)
<> A€ D-llmicpi (El) = D-—ZiEi
<=>[Z\]€(D-ziE.1)/D . 0O
Since an ultrafilter F on I xJ with ﬁ(F) = D is completely

determined by F/D,
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COROLLARY 17 : If F is an ultrafilter on I xJ suchthat (F) =D

and F/D is internal, then F = D—z:iEi for certain maps E:1-8J,

namely, just those E for which [E]DzF/D .0

As another corollary, we obtain again the "if" part of Lemma 7(6).

By Corollary 14. 2,

COROLILARY 18 : The projection

ow#: D-.E, - D
i1

is an IS(w)-morphism . Hence _<_RF implies < . 0O
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§ 16. Successors in RK(g In this section we make a first

application of the ideas of sum and product of ultrafilters to the study of

the Rudin-Keisler ordering.

THEOREM 1 : Assume FRH(®W) . For each uniform ultrafilter D on

w , there are an ultrafilter E on ( and a morphism f:E-D

such that any morphism with domain E either is an isomorphism or

factors through f , but f itself is not an isomorphism. In fact, there

2w - : .
are 2 pairwise non-isomorphic such E 's .

Proof : Let Ei(i < @) Dbe pairwise non-isomorphic minimal ultrafilters
on ¢ ; such Ei exist by Corollary 8. 9. Let E = D—)jiEi on (X e
We shall show that the projection #: E-D is not an isomorphism,

and any morphism with domain E either is an isomorphism or factors
through #. (An E as required in the theorem can then be obtained

by taking any ultrafilter on ¢y isomorphic to the E we have defined.)
First, by Lemma 15. 7(5), 7 is not an isomorphism , for none of the

Ei are principal. Now let g be any function (yXw—-w-.- Recall that

g : w~ Hom (), w) 1is defined by é (i) (n) = g(i,n). Since each E,

1

is minimal, g (i) is constant or one-to-one on some set A, eEi .
i

Case 1: {ilg(i) is constant on Ai} =B¢D
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Then
A= {(i,n)]ieB, ncAleE

and, if we let h(i) be the value of g(i) on Ai when 1¢B (h(i)

arbitrary when i¢ B ), then
(i,n) €A =>g(i,n) = g(i)(n) = h(i) = hp(i,n)
Therefore, g =hrmod E.

Case 2 : {i|g(i) is one-to-one on Ai} =C¢D

Now, using Proposition 15. 3 ,
= -1
g(E) g(D 1micpi(Ei) )
= 11
D im. gy, (Ei)
- _1. ~ .
D im, g(i) (Ei)

~

But, as g(i) 1is one-to-one on Ai for D-most i, we have

(viD) g (N(E,) = E.

Furthermore, the ultrafilters fg(i)(Ei) for 1€C are distinct (for the
various E., were chosen to be non-isomorphic) ; hence they form a
i

strongly discrete set, by Proposition 15.11. Therefore, we have
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g(E) = D-lim, g(i)(E))
1 1

11

D-zié(i)(Ei)

n
7
o

=

iR
o

By Corollary 2.6, g is an isomorphism.

Since D 1is an ultrafilter, one of the two cases considered must

occur, so the main assertion of the theorem is proved.

\
i

By Corollary 8.9 , we can choose 22 sequences K. as above,
i
in such a way that no ultrafilter appears in two distinct sequences. From
. ) 2
each sequence, we obtain an E as above, and these 2 E's are
distinct by Lemma 15. 7(6). Since only 2% ultrafilters on WX can
w

be in any one isomorphism class, we obtain 2 pairwise non-isomorphic

E's as required. [

DEFINITION 2 : An element a of a partially ordered set P is an

immediate successor of b€ P if and only if b < a and

(fxeP) x<a=x<b

Note that this definition requires not only that a is above b

with nothing in between, but also that no element incomparable with b
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lies below a . The theorem immediately implies

43
COROLLARY 3 : Every element of RK(w has 2% immediate

successors, assuming FRH(yw) . O

— w
Of course 0 , also has 22 immediate successors in RK(<w),

namely the minimal ultrafilters. 0 , its immediate successors, their

. C1- 2W
immediate successors, etc. form a tree, of height ¢y, with 27 -fold
ramification at each node. Using Proposition 5. 10, the tree can be extended

until it has height R Thus,

1
COROLLARY 4 : Assume FRH(yw . Let P be the partially ordered

w
set of maps p from arbitrary countable ordinals into 22 , ordered

by inclusion (i. e. , p<q if and only if p is the restriction of g

to Do(p)). Thus, P is the "'standard’ tree of height Rl with

22%_told branching from every from every node. Then P can be

isomorphically imbedded into RK(< @) . O

Observe that the image of P is by no means all of RK( <),
because the former is a tree while the latter is directed upward (in a
very strong way ; see Proposition 5. 10) and is not a chain (by 8.9 if
FRH(y) ; by [12] in general). Observe also that the isomorphic embedding
of P into RK(Xw) c;.n be taken to map the least element, ¢ , of

P to any prescribed element of RK(w) .
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§ 17 Goodness, sums, and minimality = Assuming FRH(k), there

2

are a great many ultrafilters on k which are both K+-good and
minimal in RK(k). (See Corollary 8. 8) The question naturally arises
whether there is‘any necessary connection between K+—goodness and
minimality in RK(x). Does one imply the other ? Or does the negation

of one imply the other? Keisler has proved

THEOREM I : Assuming D is countably incomplete, D-3.E, is

K:+—good if and only if D is K+-good.

Proof : See [9]. O

In particular, for countably incomplete D, D-E is ¢t-good
if and only if D is Kj+—good. Given any ultrafilter E on K> ¢ ,
we can obtain both K+—good ultrafilters and non—}c+—good ultrafilters
>E on K by choosing D to be K+-good in the first case (using
Corollary 8. 8) and non—}c+—good in the second case (e. g. , let size(D) = (.

If k= then all ultrafilters of size K are K+-good (see [7])-

The only possible implication not ruled out by these considerations
is''minimal => good''. Keisler has asked whether this implication holds
(for k> w, assuming 2% = K+ if necessary) , and also whether every

k-regular ultrafilter is > some K+—good one . (An affirmative
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answer to the latter question would imply that, for any two elementarily
equivalent structures @ and B of cardinality < for a language

with <k symbols, and for any y -regular ultrafilter D on g

>

D-prod G and D-prod # are isomorphic. See [1].) We shall answer

K

both questions negatively, assuming 2" = K+ , or even just FRH(K) ,

by constructing an ultrafilter on K which is minimal in RK(k) ,
K-regular , but not K+-good, provided ¥ 1is not cofinal with ¢ .

Note that, if ¥ is measurable, a normal x-complete ultrafilter on

Kk 1is a counterexample for the first question, but not for the second.

LEMMA 2 : If all the Ei are K-regular, then so is D-Z:iEi

Proof : Let Un(D) =1, Un(E) = Ji (i €l). Suppose that, for
each i , fi : Ji—*P (¥} is as in the definition of g-regular. Then
w

one trivially checks that

NIRRT RN IR AC)
iel

also satisfiesthat definition, so D-’giEi is k-regular . [J

THEOREM 3 : let Kk be a cardinal of cofinality > ¢, and assume

FRH(K) . Then there is an ultrafilter E on (yxk whichis g-regular

(hence uniform), minimal in RK(K) , but not K+-good .
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Proof : Begin by letting D be any uniform ultrafilter on ¢ . We
shall define certain g-regular ultrafilters Ei on K (1<y), and then
we shall let E be D-ziEi . By the lemma, E will be -regular; »
by Keisler's theorem (and the facts in Section 1), E will not be
K+-good . Most of the followipg proof is therefore concerned with

ensuring the minimality of E in RK(K) .

LEMMA 4 : In unif(x) , let C be any comeager set. Assume FRH(x) .

Then C contains a countable sequence E, (i <) of ultrafilters
_— i

with the following property . If f; :k-k (i <) are maps such that

fi is one-to-one on a set of Ei , then the set of ultrafilters

{fi(Ei) |i< w} is strongly discrete in Px.

Proof of lemma : Suppose C QQ<2K C% where each C% 1is open
and dense in unif (k) (with the fine topology) . There are 2K systems
{fi : k-k|i< ] of countably many self-maps of ¥ ; well-order them
with order type 2K, and let the ath system be {f'ly|1 <w}. We
define uniform filters 3"? (1<w on K , simultaneously for all

i

by induction on ¢ , so that

b

mF ¢ g]f for a<B

(2)3‘? has a basis of cardinality <k
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(3) Any ultrafilter containing} ia+l is in c%

. o -
(4) If, for each i , f.1 takes K distinct values on each set

+1 . o
of 3“11 ., then there are pairwise disjoint sets A,1 € k such that

(f‘?‘)‘l(Ai) e?‘fl

i
. . 0 . . . K
Begin by setting ?i = {k}. If y is a limit ordinal <2~ and
'}? is defined for all < % , then %ng(.‘x has a basis of cardinality
: i
< Card (k xy ) < 2" , so by FRH(x) , it can be extended to a filter with

a basis of cardinality < . Let that filter beg'}; .

Now suppose %= q+ 1l and S;Ot is already defined. By (2) ,
i
. . . a .
the set V_, of uniform ultrafilters containing f;z . 1is open and
i , i
o . . . . . o .
nonempty (as? ;18 uniform) in unif(K) . Since C~ 1is dense , Vi
meets some basic open set

v

1
() Acc®
A eG

i

meets C%, so

where Card (G.) < K. Letj be the filter generated by ya uag. -
i - i i i
‘ji has a basis of cardinality <, say {Gi ul u<k}. If, for some

i,

f* does not take ¥ values on each G, , then we may set
i

’

:;ly Ciﬁl:ji , as (4) will hold vacuously . From -now on, suppose, for

o

each i , fi takes kK values on every Gi " Well-order the

b

triples (i,u,y) € wxK xKk with order type k. Inductively choose
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a(i,u,v) €G. so that
! i,u
i o 2/ [ /
f?(a(l’;u’v))% f1/ (a(i s b ,U))

for all earlier triples (i’,/,v"). This can be done because f{* takes
1

k wvalues on Gi and there are fewer than K earlier (i’,y’,v’) .

s U

Let

Bl = {a(l:l-l:v)| au’ v E K}

Since B, meets G, Kk times (at least once for eachV ), the

i i,
filter ;{a+1 generated by j U{B.} is uniform. Conditions (1)
. 1 1
- 1
and (2) are obviously satisfied, and (3) holds because G . Ci C;Oﬁ_ .
A=di=v i
For (4), let Ai = fci!(Bi) . By choice of a(i,u,v), the Ai are

pairwise disjoint, and

o -1 atl
(%) () 2 B, Ji

Now if we let E, be any uniform ultrafilter containing
1

o
.7' , condition (3) implies

o < 2K 4
(84
C
EiEQK cC

If f :K—- K are maps, say fi:fq

, and each f, 1is one-to-one
i i

on a set of Ei , then fi must take at least K values on each set
1 . .
of:; (,11+ , for otherwise Ei contains a set on which fi is one-to-one

and takes fewer than K values , contrary to the fact that E,  is
i
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-~

uniform . Then, by (4), we have disjoint neighborhoods Ai of

fi(Ei) in Pk. Thus, the lemma is proved. O

REMARK 5 : We could have obtained as many as k E 's in C
i
whose images under any one-to-one maps fi (i<k) are strongly

discrete, by the same proof.

Returning to the proof of the theorem, use the lemma with C =
the set of K+—good ultrafilters on ¥ minimal in RK(k). C is comeager
by Corollary 8. 7. Since the Ei provided by the lemma are K+—good,
they are k-regular, so, as remarked above,\ E = D—)jiEi is
k-regular but not K+-good . We now show that E is minimal in

RK(K) .

Let g :wXKk—K be any function. We must show that g is

. one-to-one or takes fewer than K values on some set of E.

Since the E, are minimal in RK(X) , we have sets A EEi such
1 i

that g(i) =g ¢, takes fewer than K values or is one-to-one on

A, .
i

Case 1 : {i|g(i) takes fewer than k values on Ai} =Ce¢D.

Then J-Liec A €E , and

a1l ar= U sw (a))

1

ieC ieC
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has cardinality < g because K 1is not cofinal with Card (C) = .

Case 2 : {i|g(@) is one-to-one on Ai} € D. Modifying é on

the complement of this set (which doesn't affect [g]E),We may assume
that all the é(i) are one-to-one on Ai . Hence, by the choice of Ei
according to the lemma, {g(i) (Ei) |i < )} is strongly discrete. Using
15.3,15. 9, and 15. 7(7),

g(E) = g(D-lirnicpi (E))

= D-lim_ g(i) (E)

D-z, g(i) (E,)

i
W)

1
™
=

so, by Corollary 2.6, [g]E is an isomorphism ; g 1is one-to-one

on a set of E.

Since D 1is an ultrafilter, one of the two cases happens, and the

theorem is proved. [

REMARK 6 : If we are willing to assume FRH(y) in addition to

FRH(k) , then the preceding proof can be greatly simplified. The lemma

may be omitted altogether. Choose the E. to be K+—good , minimal
i
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in RK(k), and pairwise non-isomorphic, and choose D tobe a
P-point. The rest of the proof remains the same, except that in Case
2 the strong discreteness of {é (1) (Ei)[ iecA} for some A€D is

established by citing Proposition 15. 12, rather than the lemma.
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§ 18. Ultrafilters on singular cardinals Keisler has raised the

question whether, assuming GCH , every element of RK(K) lies
above a minimal element. In this section, we shall obtain a negative
answer to this question in the case K= Rw . We shall also consider
a quite unrelated question whose solution uses the same idea as the

solution of Keisler's problem . We now digress for a moment to motivate

and present this question.

We know that there are 22K different isomorphism classes of
uniform ultrafilters on ¢, and we know various properties (e. g. K-
completeness , K+—goodness, minimality in *RK(x)) which may distinguish
some isomorphism classes from others. However, for each such
property considered so far, it apparently cannot be proved in ZFC
alone that some uniform ultrafilters on ¥ have the property and
- others do not. Thus, unless Kk 1is measurable, we cannot have both
k-complete and g-incomplete uniform ultrafilters on k. And we
have not been able to prove the existence of K+—good ultrafilters (for
K > ) or minimal ultrafilters in REK(x) without some special hypo-
thesis such as GCH or FRH . Therefore, one might conjecture that
no isomorphism-invariant property of ultrafilters definable by a
formula of L{(ZF) , can be proved in ZFC to apply to some but not

all uniform ultrafilters of size . Put another way, one might think
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that ZFC remains consistent upon addition of the axiom schema

(*) (d D)(size (D) = kK and (D)) => (VD)(size (D) = Kk = (HE) E = D and o(E))

where (D) is any formula whose only free variable is D (ranging

over ultrafilters.) This restriction on ¢ is clearly needed, for otherwise,
we could take (D) tobe D ZF and gét a trivial contradiction . The
preceding remarks show that the schema (#*) contradicts the existence of
measurable cardinals and every instance of GCH . We shall show that

(*) is in fact inconsistent . It may, however, be of some interest to
consider weakened forms olf (*), e.g. by ;‘equiring K to be regular ,

or even by taking only the singlé case K = w. Intuitively (*) says that

all ultrafilters of a given size look alike .
We proceed to the construction of a counterexample to (*) .

THEOREM 1 : Let Kk be the limit of the (-sequence of cardinals

. _ _ 5%
defined by ao—w, ozn+1—2 . Then

(1) There are uniform ultrafilters on K of the form D-lirniEi

where Un(D) = ¢ and, for i<y , size (Ei) = o,
- - 1

(2) There are uniform ultrafilters on K not of that form .

Proof:; (1) Let D be any uniform ultrafilter on @ and Ei any

ultrafilter on K of size ai . If A ED-limiEi , then for infinitely
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many i (alliinaset of D) AcE,

SO
i .

Card (A) > size E. = ai
- 1

Therefore, Card (A) > ¢, and D-lim E  is uniform.
- i1

(2) We count how many ultrafilters can have the form in (1). There

w
are 22 =0, choices for D . For each 1i , there are (at most) 2

choices of a.set AcC x of cardinality o and then (at most) 220{i LT
choices of an ultrafilter uniform on A (whose image under the inclusion
into Kk 1is to be E,1 ). .Thus, the total number of ultrafilters of the

22¢

form in (1) is no more than (Zw)wz 2¥ . But there are uniform

ultrafilters on K altogether . O -

Since being of the form in (1) is evidently an isomorphism-invariant

property expressible in IL.(ZF) , the theorem disproves (*) .

THEOREM 2 : Assume GCH . There are uniform ultrafilters on R

W

which are not 2 any minimal element of RK(N ).
W

Proof : Choose, once and for all, a minimal ultrafilter D on

(using CH) . ILet S be the set of all uniform ultrafilters on R
W
which are of the form D-limiEi where all the E,1 have size <X -
(4}

- As in the proof of part (1) of the preceding theorem, we see that

S# @ . We shall show that any uniform ultrafilter on Rw which lies
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below an element of S 1is itself in S, andthat S contains no

minimal element of RK(®X ). This clearly will suffice to prove the
w

theorem.

First suppose F 1is uniform on Rw and F < E for some

E=D-lim.E., €8
i1
(size (E,) <X ). Then, for some f:& =R |,
P w W

F = {(E)

f(D-1lim E )
i

D-lim, f(E.) ,
i i
and

size (f(E.)) < size (E,) <8 ,
1 - 1 (D3]

so F ¢S

Now suppose D-linniEi = E €S were minimal in RK(Rw) . I

the function

w= R,

i- size (Ei)
were bounded, say by &n , onaset A ¢ D, then we could choose,
for each i€ A, a set Xi EEi of cardinality < Rn. Then E would

contain the set . X. of cardinalit <w contrary to the fact that
1I€A i Y Z%n> Y

S contains only uniform ultrafilters . Hence, size (Ei) must be
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an unbounded (in ¥ ) function of i on each setof D. Since D is
w .

minimal , the function i-»Ei must be one-to-one on a set of D, and

2

Corollary 15.14 now shows that
E’'=D-$.E, = E
i

so E’ is minimal in RK(X ’) .
a

Define f : (X ;{a—a Nas follows . If size (Ei) = w, then f (i) 1is
. b w
idNo:‘ If size (Ei) =R o4 then f (i) 1is such a map Rw-a thhat
f (i)(Ei) has size !«!n; such maps exist by GCH and Chang's Theorem

6. 3. Since size (Ei) is unbounded in &w on every set of D, so is

size (f(i)(Ei)). Hence, as in the proof of Theorem 1(1) ,

/ = -—
f(EY) = {(D ZiEi)
= =14
f(D im. o, (Ei))
= D-lim, f (i)(E,)
i i
is uniform . It is obviously < E’, so by minimality of E’, f must

be one-to-one on some A €E’. For D-mosti, A(i) EEi (by definition

~ -~

of E’) and f (i) is one-to-one on A(i), so f(i)(Ei) = E. . Since

isomorphic ultrafilters have the same size, we see from the definition
of f that, for D-most i, size (Ei) = (9o This contradicts the fact
that size (Ei) is unbounded in N on every set of D . Hence no

w

element of S is minimal. [
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$19. Isomorphisms between sums In this section, we shall

derive a result, essentially due to Rudin [13] , which says, roughly,
that if D-):}iEi and D'~ ZiEi’ are isomorphic then they are isomorphic
for a trivial reason. Apart from the possibility D = D’ , Ei = El’ {(for

most i, up to a permutation) , the only trivial reason is Lemma 15. 7(3).

LEMMA 1l : In Bw , any two disjoint countable sets whose union is

discrete have disjointclosures .

Proof : Let the sets be {Di|i <w} and {Ei|i <w} . By Proposition
15.10 , we can find Ai € Di R Bi € Ei so that all the Ai's and

\ N s _ -
Bi s are pairwise disjoint . Let A = L1/<w Ai and B = i< 0w Bi .
Then ANB=¢ . By Lemmal5.1, any D¢ Cl{Di} contains A

and any E € Cl{Ei} contains B . Therefore, these two closures

are disjoint. []

Now suppose D, D', Ei , and El’ (i<qw) are ultrafilters on ¢y ,
and suppose f : (@Xw “wXw 15 an isomorphism from D-ZiEi to
D’- ZiE /i . Modifying f on the complement of a set in D- ZiEi ,
we may suppose that f is a bijection. Recall that ¢, 1is the map
w-wXw mapping j to (ij). Define functions A,B : - 8(wX w)
by

A =g (E) = f()(E,)
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and

. /
B; = o, (E)

Clearly, A and B are one-to-one and have discrete ranges.
We have
D’-lim,B, = D’-lim, e, (E/)
1 1 11 1
= D-3E!
ii
= {(D-%.E.)
ii
= D-lim. A,
i

By the lemma (with (X in place of ¢y , which obviously makes no
difference) the sets A(X) and B(Y) , forany XeD , YED' ,
either are not disjoint or have non-discrete union, for their closures

meet.

Consider first the case that, for all X €D andall Y ¢ D’ ,
A(X) and B(Y) meet. Then the ultrafilters A(D) and B(D’) are
identical, for each set in one meets each set in the other. Let [g]D

be the composite isomorphism
-1
p 2L Ay - Bdy [BL b

For D-most i ,

fE)(E,) = A, )
i i

Bewy = ®g) Fgu
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It follows that E. = E’ for D-most i . Furthermore, as

i g(i)
) X w5 By
we have
(EDNVE) 16, = T610) € (g0} xo
5o
(FiD)ViE,) 1, ]) = ghi)
If we let B(j) =7, i, 5) , then we have shown

£(i, j) = (g(i), h_(j))

i
for most (i, j) with respect to D—Z}iEi . By construction, g is one-to-one
on a setof D, and, because f 1is one-to-one, hi is one-to-one on
a set of Ei ‘for D-most i . By inessential changesin g and hi ,
we may assume that g and all the hi are bijections. Then [f]
is a composition of isomorphisms of the sort given by Lemma 15. 7(7)
and (8) . Up to permutations, D is D’ and Ei is Ei’ for most

i; f consists of the relevant permutations .

Now we turn to the other case, A(X)NB(Y)=¢@ for some X €D,
Y € D’. Redefining Ei and f(i) for 1i ¢ X (which does not affect

D-ZiEi or the germ of f), we may as well suppose A(w)NB(w =0 .
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Let
X = {i|A, €CIB(w} ; Y ={i|B, €ClA(w)}

Clearly, A(w-X) and B(wy-Y) have dis;rete union and are disjoint;
hence we cannot have both (- X € D and -Y €D’. Say Xe¢D.

. (The case Y €D’ is handled é.nalogously, interchanging primed and
unprimed, and replacing f by fl.) For ieX, A, €CLB(w) but
Ai Z B(w) (since A(w) NB(w = P) , so there is a non-principal ultrafilter

Fi on ¢ such that

fUNE.) = A, = F.-lim.B.
1 1 1

J

1 JCPJ( J

F -y E!
175

Let Fi be arbitrary if i Z X. We have

D’-v.E/=f(D-%.E.)
1 1 1 1

1 1 J ]

On the other hand, using Lemma 15. 7 (8),(3), and (4),
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- _ ’ - ~ - ;
(vrz(D s“.iFi)) ZJ.EJ. "z((D ZiFi) . .E

i, i, G, )

m 2 (D—Zi(Fi—ZjEJ’,))

D-lim (F . -y.E/) ,
iTi%

where LN (i,j)=»j , and " is. as in 15.7 (8) . Therefore,

2
/_ /_ - - ’
D’-z.ES= (m, (D-7.F.)) ZJ.EJ.
Applying m to both sides,
D'=#a, (D-3.F.) = D-1im F,
2 i i ii
Because {Fili € X} 1is discrete (as {Ai|i € X} is discrete) ,

we obtain

-~

D’=D-y.F,
1 1
Thus, up to isomorphism, D’ is D-ziFi , and Ei is F.-3.E

175

for most D-most 1 . The isomorphism { corresponds to the

equality
(D-y.F.)-v.E! = D-3 (F,-v.E/)
i1 73] i1y ]

* Summarizing, and omitting the details of the various isomorphisms,

we have
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THEOREM 2 : For ultrafilters of size S, if

D-3.E. =D’- . E/ ,
1 1 1 1

then one of the following happens.

1

(1) g:D=D’, and,for D-most i

—_ H E.

i Eg(i)

.(2) For some non-principal ultrafilters Fi , D’= D—ZiF, ,
i

and,for D-most i, E, = F -g.E/
—_— i i7) ]

(3) For some non-principal ultrafilters F,, D= D’—ZiFi ,
i

and, for Dtmost i, E/=F. -v.E. . [
i i 73]

_— T

COROLLARY 3: If D E = D’*E (where D,D’,E have size ¢,

then D =D'.

Proof : Apply the theorem with all E = E’=E. In case (1), the
root ; i
required conclusion is immediate. In case (2), E = Fi' E . By

Lemma 15. 7(5) and Corollary 2.6, Fi is principal, contrary to the

assertion of the theorem in case (2) . Case (3) is the same. []

COROLLARY 4 : If D'E=D’E’ (D,D',E,E’ of size <y , then

one of the following happens.

() DD’ and EZ E’
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(2) For some non-principal F, D’= D‘F and E:ZF-E’

(3) For some non-principal ¥, D=D*F and E’/ZF-E

Proof : Apply the theorem with all Ei = E and all El’ =E’ . In
case (1) of the theorem, we immediately get conclusion (1) of the

corollary. 1In case (2) we have,. for some non-principal Fi ,
D’= D-3.F, and E z F, - E’ forall i 1in a certainset X ¢eD

If i,j€X , then Fi = Fj because of Corollary 3 ; let F be Fi

for any i€X. Then

e
o
Hy

D’= D-3.F.
11

and
E=ZF-E’ ,

so we have conclusion (2) of the corollary. Case (3) is analogous. [J

Corollary 4 says that any isomorphism between products of
ultrafilters on ¢y is either trivial (i. e. ,corresponding factors agree)

or an instance of the associative law.

COROLLARY 5 : RF(< W) 1is atree; i.e., the predecessors of any

element are linearly ordered.

Proof : Immediate from the theorem. 1]
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4 20. Cartesian products of ultrafilters on ¢y Consider two

uniform ultrafilters, D and E , on (. We know(by Corollary 3.10)
that D X E 1is not an ultrafilter on (yX¢y . We can explicitly exhibit
two distinct ultrafilters containing it. First, by Lemmas 15. 7(4) and

3.2, D‘E> DxE. Secondly, if we let

twXw ~wXw: (x,7) - (y,x)

then t(E- D) > DxE for the same reasons. D°*E and ¢t(E*D) are
distinct, because the former con£ains A= {(x,y)[x<y} while the
latter contains t(A) which is disjoint from A . It is natural to ask
whether there are any further ultrafilters containing D x E. The

case D =E was considered in Section 10, where we saw that D xD
is also contained in 6 (D) where 6 1is the diagonal map x - (x,x)
(whose range, (wxw)- (AJtA), we call A), andthat D x D is
contained in only three ultrafilters if and only if D is minimal. Thus,

we have

COROLLARY 1 : §(D), DD, and t(D+ D) are, for uniform D on

2

w , distinct ultrafilters containing D xD . There are no others if and

only if D is minimal. 0O

We now turn to the case D £ E
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THEOREM 2 : Assume FRH(yw). There are uniform ultrafilters

D and E , on such‘that D*E and ¢t(E-D) are the only

ultrafilters containing D x E .

Proof : The two sets
A'=Ayunr= {(x,y)|x<y)

and t(A’) cover (yXw , SO any ultrafilter on (yX¢ contains one of
them. Thus, we need only arrange that " (DxE)y{A’} and (DxE) U
{t(A)} generate ultrafilters, for then any ultrafilter containing

D xE 1is one of these two. Consider-the set T of all pairs (R,¢),
where R is a binary relationon @R C@wxw) and e¢=0orl. We
shall so construct D and E thﬁt, for each (R,¢) €T, there are

sets X €D

R, ¢ , YR, . € E with the property that

(1) ¢=0(resp.,l) and x¢&X and yEYR€ and x<y

R,e¢
(resp. ,x>y)=> (x,Vy) ERe

where R 1is either R or X @w-R. Then (X

. \ /
. R,OXYR,OmA

is a set in the filter generated by (D xE) y{A’} and is contained

in R orin pXw-R , so this filter is an ultrafilter. Similarly,

using e¢=1, (DXE)y {t(A)} generates an ultrafilter.
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We proceed to the construction of D and E. Let
P: 2% -T

be a bijection. (Clearly T has cardinality Zw.) We define filters’

D and E on ¢ for < 2% inductively, so that
o o .

(2) For <+, D _cD and E cCcE .
Sy B— v. 8= v
(3) D and E have countable bases .
o o ’

(4) D and E are uniform.
o (4

5) D contains an X , and E contains a Y
B Py p(o) o+ 1 p()

such that (1) holds for (R, ¢) = pla) -

Begin by letting D0 and EO consist of all cofinite subsets

of ¢(y; then (4) will hold for all g provide.d (2) holds . If ¢ is a
limit ordinal, obtain DO! and Ea by applying FRH(w) to

D and u E respectively. Now suppose D and

i ; i1l let | X
Ea are defined ; we will le Da+1 and Log+l be generated by B
D y{X} and E U{Y}, where X and Y will serveas X
o o Plo) —_—
and Yp( ) respectively . Let pla) = (R,¢e), and suppose ¢e¢= 0.
o

(The other case is analagous.) We want
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where R, is R or its complement . Let {B1[1 < uw} Dbe abase for

D , andlet F be any ultrafilter containing E (so F is uniform,
o o .

by choice of EO). Let

W= {x <y R(x ={y|(x,y) €R} ¢F}
Suppose W meets every oneof the B , and set R0 =R . (Otherwise,
i
w- W meets every Bi,we set R0= (wxw)-R , and the rest of the proof

is exactly the same.) Let {C, Ii <w} cF be acountable base for
i =

E . Inductively choose bieB NW and c:i €C as follows .
o i i

Choose b0 to be any element of B0 NW , and choose o to be any

element of f{O (bo)n C0 €F . Suppose bj and Cj are chosen- for

j<i. Let bi be any element of Bi NW whichis > all Cj (j <1);
such a bi exists, for Bi N'W must be infinite because W meets
all Bk and every finite set is disjoint from some Bk by choice of

. D0 .- Then let c; be any element of

Ro(bo) N... N RO(bi) ﬂCiEF

Let X=1{b |i<gw} and Y= {ci|i <w}. Clearly X meets every
i
B, (at bi) , hence every setof D , and Y meets every set of
1 o
E . Suppose x<y,x€X, and y€Y. Say x:bi and y:cj.
a v

Since bi <c¢,, and b, was definedtobe >c, if j <i, we
- i

J

must have j>i. Butthen ¢, was chosen to be in fio (bi) . Hence

2
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(x,y) €R

0" This completes the inductive definition of Da and EO: .

If we let D and E Dbe any ultrafilters containing U D

< 2W ¢y
and \/(! < 2 Ea

proved. (Actualiy the two unions which we extended to form D and

respectively, then (1) holds, and the theorem is

E were ultrafilters already. ) O

COROLLARY 3 : Assume FRH(y) . The D and E of the

theorem may be taken to be minimal.

Proof : Let {fa|a< 24} be the set of all maps (y—~¢- In the definition

of D +1 in the proof of the theorem, replace X by a subset, still
o

meeting each Bi , on which fa is one-to-one or constant, and

similarly for E(y+1 . Then D and E will be minimal.
For any permutation g of n , let t : w? = u” be defined by
o)
t . = ., » thati .t = -\
(c(x))l " Teol(i) M T Toal (1)
. 0 n-1
Hence, for any ultrafilters D”,... , D on ¢,
a(0) o(n-1) c(0) a(n-1)
R = D ce
mt (D D ) =m 1 ¢ D )
= D1
so
0 -1 -1
¢ (po @ . poly S p0 i p®



Generalizing the theorem, we have

COROLLARY 4 : Assume FRH(g) - There exist uniform ultrafilters

. 0 -
D1 on, w (0 £i<n) such that all ultrafilters containing D X ... xD" 1
are of the form te (DG(O) c D’ﬁ(n-l)) for some permutation g of

n.

Proof : The proof is essentially the same as that of the theorem. The
major modification will be illustrated sufficiently by the case n = 3.

In constructing D’

(j =0,1,2) , we have D’  with countable bases
otl : o

{Bq1 | i <w}, and we want to find X, ‘meeting every Bi , and such

that

x<y<z, xe’Xo, yEXl,z€X2=> (x,y,z)eRO

where R is R or w?’—R for a given R . (There are five other
cases, depending on the order of x,y,z, but they are analogous. )

2 2
lLet ¥ , F be ultrafilters containing I); Da respectively .

W = {x’(VyFl)(VzFZ) (x,y,2z) €R}

0
meets every setin D a and set RO =R . (Otherwise, R0 = w-R

and the rest is analogous) Then choose, by induction on i
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0 0
b, €eB. NW ,
i i

Il 2,,.0 1
by € B; 0/ ) ylrzFA),y,2) R} eF'
and
2 .2 (M) 0o .1 2
by €B. N poids {zl(bk,bj,z)eRo}eF ,

in such a way that each chosen number is larger than all those chosen

previously. Then set X = {bi |li<w} . O

COROLLARY 5 : Assume FRH(y) . There are 2% minimal ultrafilters

DJ(j < 2%)  such that, for any finite subset {ao, cee an-l} c 2%,

o - 144 o
every ultrafilter containing D OX cen ><DO&1 1 is tG (D a(0) ...D o'(n-l))

for some permutation g of n

Proof : Combine the techniques of the theorem and the previous two
corollaries. The induction is with respect to triples ({ao, Y 1},R ,0
where R Ewn and ¢ 1is a permutationof n . [J

REMARK 6 : In the situation of Corollary 4, if F 1is an ultrafilter
n-1

containing D x...xD , the permutation g is determined by the

fact that, in F-prod ¢,

[r o) <Dy I <o <lm iy
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To see this, note first that

po(®  po@-1)

t ¥ ln_ylp = [n] -prod

Then compute that, in any D- E-prod ), [11-1] < ["2] , and use the fact

E3 .
that t is an elementary embedding (in fact, an isomorphism).
ag )

Our next goal is to give two equivalent conditions, one model-
theoretic and the other topological, for a pair of ultrafilters to satisfy

the conclusion of the theorem.

DEFINITION 7 : Let D be an'ultrafilter on ¢y, andlet (G be an

elementary extension of (the complete model on} (3. An element

ac¢ [G| has type D if and only if, for all S c,,

SeD<>G F S (a)

It is clear that every element of | G[ has a unique type (see
also Proposition 12. 3), and every ultrafilter is the type of an element
in some (@ (by the compactness theorem). Indeed, the type of [f]D

in D-prod ¢ is exactly (D), so D is the type of [id]D. :

PROPOSITION 8 : Let D and E be uniform ultrafilters on ¢y .

The following are equivalent.




153

(1) The only ultrafilter containing (D xE) U {A} , where

A={(xy)|x<y},is D'E

(2) Let G and @' be elementary extensions of ¢, leta€ |G| s

a’ela’l have type D, let belal, b’€ |G’| have type E,_@ﬂl

let a<b, a’<b’ (ing and Q). Then there is an isomorphism,

from an elementary submodel @# of (G containing a and b, to

an elementary submodel @' of @’ containing a’ and b’, mapping

a to a’ and b to b’ .

(3) With ¢, qg’', a, a’, b, b’ as in(Z),_i_f @ (x,y) is any

formula (of the language of the complete model on () with just x and

y free, then

G Eola,b)e>g" kFola’,b) .

Proof : Let J:wXw-w be a bijection, and let J-l(x) = (K{x), L{x)) .

Assume (1), andlet G, G’, a, a’, b, b’ be as in (2). Let
c=J@a,b) in G (i.e. G Fc=J(a,b)) and c¢’=J(a’,b’) in @ .
Since a and a’ havetype D and b and b’ have type E

3

one easily computes that the types of ¢ and ¢’ include J(D XxE).
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They also contain J(A) because a<bhb and a’<b’. By (1), they

.must both be J(D-:E). Thus, for any formula $(x),
G kpler=a kplc) ;
if we let g(x) be @(X(x), L{x)) we get(3),

Obviously (2) implies (3). Assuming (3), we prove (2) by letting
Iﬁ?,l be the set of all e € ]Ql such that (g I:e =f (a,’b) for some
f:wXw-w, and B’ similarly. The only non-trivial thing to check is
that @ is an elementary submodel of (g. Let Cp(}.{’ei) be a formula
with one free variable x and various parameters ei = fi (a,b) ¢ [aal .
Suppose for some g€ IGI , (1 }:cp(a, ei) ; then we must find B¢ |f]3|
such that G }:cp(B,ei) . (It is well-known that then # 1is an elementary

submodel of (G.) Define g :@wXxw~w by

g(x,y) = the least z such that :p(z,fi(x', v)), if there is such a z ,

0 otherwise

Then

(7x)(vy) ((Fz)p(z, I, (x,y) }=>0(g (x,¥), £ (x,y))

2

is true in ¢y, hence in (G. Therefore, @ ‘:q;(g_(a,b), ei) , and we

may take A= g(a,b)
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Finally we prove that (3) implies (1). Suppose F and G are
ultrafilters containing (D xE) y {A} , and suppoée R eF . We shall

show R e€G, so F =G, and (1) follows . Take

G= F-prod w , G’ = G-prod ¢ ,
a = [m]; ,al=[mlg ,
b = ‘ /I =

[HZ]F . s b [VZ]G

Then a and a’ have type ﬂl(F)znl(G)=D ,and b and b’
have type E , because DXECF,G. a<b and a’<b’ because
A€F,G. Also, as Re¢F, G FER(a,b). By(3), @ FR(a,b),

which means that Re€G. O

REMARK 9 : In (2) of the proposition, the models ® and @’ obtained
in the above proof are isomorphic to D- E-prod g, with f(a,b) and

f(a’,b") corresponding to [f]D_ E

Using Theorem 2, and (1)==X3) of the last proposition, we find

COROLLARY 10 : Assuming FRH(yw) , there are uniform ultrafilters

D and E on ¢ such that all first-order properties of any two elements

a,b of any elementary extension of (y are completely determined by

the following information : a has type D, b has type E , and the
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the relative order of a and b. (]

REMARK 11 : Of course all first-order properties of a single element
are determined by its type. The types of two elements determine all their
first-order prop'erties only if one of the types is principal, for otherwise
the relative order of the two elements is not determined. (This follows
easily from the compactness theorem.) Corollary 10 then says that,

in certain cases, this relative order is the only additional information
needed to determine everything. Extensions to more than two elements

can be obtained by appealing to Corollary 4.

Now we consider the topological interpretation of the statement
that D-E and E-D are the only ultrafilters containing D x E.
The natural inclusion of (yX¢ into the co;npact space BwXfBw
factors uniquely through B(wx ) (by definition of Stone-éech compacti-

fication). One can easily compute that the map

P B(wXw ~ Bwx 8w

maps an ultrafilter ¥ to (nl (F) , ﬂZ(F))- Thus, for D, E €8w,
p'l{(D,E)} consists of all ultrafilters F containing D xE (by

Lemma 3. 2). From what we already know, we can immediately

deduce
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COROLLARY 12 : (1) p_l(D, E) has only one element if and only if

D or E 1is principal.

(2) p-1 (D,D) has at least three elements unless D 1is principal;

it has exactly three elements if and only.if D 1is minimal.

(3) Assuming FRH(w) , there are points of B XxBw whose

inverse image under the map p consists of exactly two points. [

REMARK 13 : The first part of (2) can be slightly strengthened. If
Card p'l(D,D) is finite , then it is odd, for the map t takes p-l(D, D)

to itself, has order 2 , and fixes the single element § (D) .

The question naturally arises of determining all possible

cardinalities for p_l(D,E). We know that 1,2, and 3 are possible

if FRH(w . In fact,

COROLLARY 14 : If FRH(wW , then, given n<(, n# 0, there is

a point of Bw XxBw which is the image of exactly n points of

BlwXw) -

- 0
Proof : Let DO, ...D" ! be as in Corollary 4, and set D =D ,
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Since E ¢ p'x ... x D" ', any ultrafilter F SDD XE contains
0 -1 0 -1
Dg... an , so F = tc(DO( ). .. D"'(n )). Using Remark 6 and

the fact that ¥ projects to E , we find that g must leave the
numbers 1,2 ... ,n-1 in their correct order; the only freedom in the
choice of g is where to insertthe 0. Thus, there are n choices

for g, hence n possible F's. [J

It is aiso possible for p'l(D, E) to be infinite. Todbtain an
example, start with any uniform ultrafilter D on ¢. Let X Dbe
the set of functions (y— ¢y which have the value 0 at all but finitely
many arguments and which do not take the same non-zero value twice.
Let e X - be evaluation at n. It is easy to see that the family
of sets

L a)AaeD, n<w

"
{ n
has the finite intersection property, so it is contained in an ultrafilter

F . As X is countable, F is isomorphic to an ultrafilter E on

w. Further, all the [en]F are distinct (for
-1 -1
(xex|e (x)=e_ (x }nen (@-{0} ne_ (w-{0}) =9

when nfm)andmap F to D , so E has infinitely many

morphisms fn to D . Let
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Then

me (E)=f (E) =D
and

8 (E).“ E
SO

g (E) D DxE
n

As the g = are all one-to-one and distinct modulo E , the gn(E)

are all distinct by Corollary 2.6 .

It is known that any closed infinite subset of B¢ (or the homeomorphic

W
B (wxw)) has cardinality 22", (See [6,p- 134].) Hence,

COROLLARY 15 : Assume FRH(y) . The inverse images of points

under the natural mapping B(wXw~Bw XBw can have the following

: w
cardinalities and no others : All finite numbers except 0, and 22 .0

Corollary 3 told us that the D and E  of Theorem 2 can be
taken to the minimal. The following proposition implies that they

are necessarily P-points.
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PROPOSITION 16 : Let D and E be uniform ultrafilters on .

The following are equivalent.

(1) E is a P-point.

(2) For any f : p-w, let.

A= {(x,y)[f(x) <y}

(D xE) Y {Aflf :w~w} generates an ultrafilter F . (F mustbe D-E,

for all Af arein D' E.)

Proof : First, suppose E 1is a P-point, andlet R CwXw . We
shall show that, if R €¢D*E , then R 1is in the filter F generated
by (D-E)y {Af|f : w-w]} ; this clearly implies F = D-E “and
thereby proves (2). As R ¢D:E, we have }?{(i) G_E for all i in
.some set X¢D. As E is a P-point, it contains a set Y such
that, for all i¢X , Y-R (i) is finite. (See Proposition 9.1.) For

ieX, let

f(i) = max (Y-R (1)) ;

for i¢ X, let f(i)=0. Then, if (x,y)e(XxY)ﬂAf,

we have

x€X,yeY, y>f(x)=max (Y-R(x)) ,
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so y gf{(x) , and (x,y) €R. As (X xY) nAf €EF, ReF.
Conversely, suppose (2) holds, and let f : (y-¢y. Let

R = {(i,j)[{() > 1}
¥ R { D+ E , then, for some i (in fact for D-most i)

Ri) = {jlfG) > i} € E

so f 1is bounded on a set of E (namely w-ﬁ(i)) , and therefore f

is constant on a set of E . On the other hand, suppose R €D-E =F.

Then there exist X e¢D, Y cE ', and g : (-~ suchthat (X xY)NA <R.
. g

Given any n €¢, choose ieX ,1i>n(as D is uniform). Then,

for jeY , (i, eX xY . So

(i,J) EAg = (i,j) eR

that is,
i>gh) = f(G)>i>n

So f assumes the value n at most g(i)+1 timeson Y.
Therefore, f is either constant or finite-to-one on a set of E , so

E 1is a P-point. O
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8 21. Products of minimal ultrafilters In this section we shall

use minimal ultrafilters and their products to get new information

about the structure (or lack thereof) of RK(< () .

THEOREM 1 : Let D Dn be minimal ultrafilters on (. Any

TR
FL<D *D_...D is isomorphic to D, ...D. for some
1 2 n : i i —_—
1 s
1< il < 12 <...< is <n , provided we agree that the empty product

(s = 0) is a principal ultrafilter .

*
Proof : The case n =1 is true by definition of minimality , and we

proceed by induction on n. So let Dl’ ... ,D be given (n > 2)
n
and assume the theorem for n-1. Suppose f :(® - maps
. e . i lici 1 = = ...
Dl D2 Dn to F For simplicity, let E Dn and D D1 Dn—l ,
-1 =
so f:DE-F. Foreach i Ewn , (i) : w~w 1is one-to-one or

constant ona setof E , as E 1is minimal. If, for D-mosti

3

f(i) is constant on a set of E , then f 1is equal modulo D-'E to

-1 ‘
n , the first projection. But

a map that factors through n: @™ -~ w
then F £ 4(D-:E) = D, and the required conclusion follows from the
induction hypothesis. So suppose, from now on, that, for D-mosti ,

f(i) is one-to-one on a set of E ; replacing f by a map equal to

it modulo D+ E , we may suppose that f(i) is one-to-one on all of
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-1
w forall i. Let g: wn —¢w be a function such that .

gli) = glj) = f(H)(E) = £ ()(E)
(@f(i) =lf(j) mod E , by Corollary 2. 6)
Let Gn = f(i)(E) for any i with g(i) =n. Then

¥ f(D- E)

D-limif(i) (E)
= D-lim .G .

i g(i)

= =14
g(D) lmnGn
As the Gn are distinct P-points (being minimal), Propositions
15. 9 and 15. 11 give that
F = g(D)- Z‘nGn = g(D)' E

Applying the induction hypothesis to g(D) , we get the required

conclusion. M

LEMMA 2 : (1) If, for D-most i, Fi is non-principal, then

D<D-3.F,
1 1

(2) }f_ D and F‘i are non-principal for D-most i , then

D—z;iFi is neither principal nor minimal.
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(3) ¥ D and E are non-principal , then D-E is neither

principal nor minimal .

(4) If D-yv.E,
— ii

D-ZiFi with D, Ei’ F. of size ¢y, then
with g L =12ze then

F

for D-most i i

, E.
’ 1

(5) ¥ D*E=D'-E’, where D, D/,E,E’ have size ¢, and

if either E and E’ are minimalor D and D’ are minimal,

then DD’ and E=E’.

Proof : (1) follows from Lemma 15. 7(5) and Corollary 2. 6. (2) and (3)
follow from (1). (4) follows from Theorem 19. 2 and (1). (5) follows from

Corollary 19.4 and (2). O

THEOREM 3 : Let Dl’ co ’Dn’ Dl’,. e, Dr/n be minimal ultrafilters
on w- _]_f_D1 ...DnEDl’...Dr’n , then m=n, and, for 1<i<n,
D, = D/
i
Proof : If n=1, then then m =1 by (3) of the lemma, and the

assertion of the theorem holds. Proceeding by inductionon n

b

suppose that n > 2 , that the assertion holds for n-1 , and that

D,...D =D D’ . By (5) of the lemma, D =D’ , and
m ~Tn m

, . s o
1 n 1

; / .. 7 . . . . .
D1 cee Dn_1 Dl Dm-l By induction hypothesis, the assertion

of the theorem follows.
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As an application, we have

PROPOSITION 4 : If FRH(yw), then RK(< () 1is neither an upper nor

a lower semi-lattice .

Proof : By Corollary 20.3 , let D and E be minimal ultrafilters

on ¢y such that D-E and t(E‘D) are the only ultrafilters containing
D xE. First, we shall show that D ZE. If g:D-E, then the
map

frw= wXw:x - (x,g(x))

takes D to an ultrafilter which contains D X E (by direct computation
using Lemma 3. 2) but which, being isomorphic to D (via f) cannot be
D-E or t(E-D). by Lemma 2(1). This contradicts the choice of

D and E , sotherecanbeno g:D-E.

Now, by Theorem 1, the only elements of RK(<(y) below

D-E are D'E, —E—), 5, and 0 . By Lemma 2(3) , none of these except

possibly D'E canequal E-D. But D-E3E-D implies DZE
(by Lemma 2(5)) which is not the case. Hence E-'D £ D'E, and

symmetrically D-E{ E'D.

Hence, the only common lower bounds of D:E and E-D are

B,, E , and 0 . As none of these is > the others, D-E and
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"E-D- have no greatest lower bound .

By Propoéition 3. 3, any common upper bound of D and E is

above either D-E or E-D. As these two products are incomparabie,

D and E have no least upper bound. [

REMARKS 5 : With D and 'E as in the preceding proof , D-E

and E'D ' have no least upper bound either. For, the only elements
of RK that are below both of the upper bounds D-E*D and
E-D-E are 0 ,'—13 , E , ﬁ, and E-D , none of which is an upper
bound of D-E and E-D. Thus, as promised in Section 5, we have

two elements of RK(yw which have neither a least upper bound nor a

greatest lower bound in RK.

Combining the ideas in the proofs of Préposition 4 and Corollary
© 20, 14, we can obtain two ultrafilters D and E such that the set
of upper bounds of D and E has exactly n minimal elements

and every common upper bound is above one of these n , for any

prescribed n # 0 (n < (). (Proposition 4 was the case n = 2.)

LEMMA 6 : Let D be a minimal ultrafilter on ¢, E and Fi

(i < @) arbitrary ultrafilters on ¢ . If D-EX D-ZiF,1 , then, for

—_—r

D-most i , ESFi
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Proof : Let f :@wXw—wXxw map D—ZiFi to D-E . The function

i = f(i) (Fi) is one-to-one or constant on aset A of D.

Case 1 : All f(i)(Fi) for i€A are the same F . Then

E < DLE f(D-Z.F.)

D-lim, f(i)(F.)
1 1

= F

forall icAeD.

Case 2 : All f\(i)(Fi) for 1i€A are distinct. Then, by

minimality of D and Propositions 15. 3 and 15. 14,

D-E = D-lim. f (i)(F.)
1 1

1

D-3, f(i)(F.)
1 1

By Theorem 19.2 , for D-mosti,

E = f(i)(Fi) <F,

cases (2) and (3) of that theorem being ruled out by Lemma 2(1). [J
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THEOREM 7 : Assume FRH(w - Then P(u) , partially ordered by

inclusion, can be order-isomorphically embedded into RK(L ¢) .

Proof : Using Corollary 8.9, let D and En (n <) be countably

many pairwise non-isomorphic minimal ultrafilters on ¢y. For any

AcCw and any i<y, let Ff‘ be an ultrafilter on ¢y isomorphic

to E ... E where the n, are the elements of AN i inincreasing
ny T ng j

order. If AcC B, then, for any i, F? < F? , because the product

of En 's for n€ANi is the image of the corresponding product

for B under a projection map . Define
A
G" = D-3,F}

By Lemma 15.7(7) , if ACB, then GA<GP®. Thus, Pw) is

mapped into RK(£¢) in an order-preserving way by A - GA.

We must still show that GA < GB implies A cCc B . Suppose

not ; let GAS_GB but AZB. Let pcA-B. As {p}c A ,
G{p} < GA < GB . For D-most i (namely, all 1> p), F{1p} = Ep ,
so G{p} = D Ep . Hence,

D'E .<_GB=D—Z.F?3
P i i
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By the lemma, EP < F:?) for D-most i . By definition of FiB and
Theorem 1 , Ep is isomorphic to a product of certain Em's with
n € B. By Theorem 3, Ep = En for some n € B, which is

impossible because p ¢ B and the various En's are non-isomorphic. O

s

Notice that Corollary 9.10 is an immediate consequence of Theorem
7(except that FRH(w) is used), for IR can be isomorphically embedded

into P(w).
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§ 22. . External ultrafilters We have three partial orderings,

£,< , and £ on RK(w - (If k>, then £ is trivial on RK(y)
w RF K

by Corollary 13. 3) We have seen (Corollary 15. 18) that SRF implies

< , which in turn implies <. The latter implication is not reversible,
w .

for < is directed upward (Proposition 5'. 10}. while < is a tree ordering
W

(Corollary 13. 8). A tree is directed only if it is linearly ordered, which
RK(y) is not by a result of Kunen [12] (or of we assume FRH(w), by

Corollary 8. 9). The possibility that < and < agree seems more
“RF w

plausible ; at least they are both trees. But we shall show in this

section that they do not agree. In fact, we prove

-
THEOREM 1 : Let D be any uniform ultrafilter on (. There is an

E on ¢ suchthat D< E but DﬁRFE,assumin CH .
on such that JE bt assuming

The proof is quite long and involves several intermediate propositions.
We begin by observing that the content of the theorem is unchanged if
we require E to be on (9X¢y rather than ¢ and if We assume that
the IS(w)-morphism from E to D is the projection to the first
“factor g:wXw—w.- E will be obtained by constructing the non-standard
ultrafilter F = E/D in *P(w) in D-prod V. By Corollary 14.2

the requirement that g be an IS{y)-morphism means
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(1) If- £ 'is an internal function on #y such that
in D-prod V , Card f”*w< *w, then there is an internal

A C *w such that A¢ F and f[\A is constant in D-prod V.

(In other words, given an internal partition of *w into *-finitely many
internal pieces, one of the pieces lies in F .)In order that E not be

D-ZiGi (which would imply D <

RF E), we must have, by Corollary 15.17,

(2) F is external.

A priori , it aﬁpears that we must require more, for D ’{’RF E means
not only that E cannot equal D—Zi(}i but also that they cannot even

be isomorphic. Hence we prove

LEMMA 2 : If g5 is an IS(w)-morphism from E on (xw to D

on ¢, and if E is not of the form D-z G, , then E 1is not isomorphic
i 1

to any E’ of that form.

E_I;%f_ : Suppose f : D-ZiGi = E'-E 1is an isomorphism . Without loss
of generality, suppose the G.1 are on ¢y, so E’ 1is on 4(0><w. Both
w# and «°f are IS(y)-morphisms from E’ to D (see Corollary 15.18).
By Corollary 13.6, #=mnf mod E’/. By modifying f on the complement

of a set of E’, we may assume #=#0f. Butthen

Hd
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- _ - _ 183
E =f{(D ,ZiGi) D ):i " f(l)(Gi) s

where @' : wxXw-w 1is the second projection, by Lemma 15. 7(7),

contrary to the hypothesis . [J

Thus, to prove Theorem 1, all we need to do is construct an
ultrafilter F in >.=P(w) satisfying (1) and (2) . The following proposition,
besides being an important step in that construction, is of interest

in its own right.

PROPOSITION 3 : Let D be a uniform ultrafilter on (3. There

P

is an external subset A of *Rl such that, for each x¢€ "%

1 2

ANx 1is internal.

Proof : If x<y, then, forany A, ANx=(ANy)nx, so AnNx
will be internal provided ANy is . Thus, it will suffice to check

that A is internal for cofinally many x ¢ z':xl . Since D 1ison ),

the standard ordinals *a(aekl) are cofinal in 'P&I ; any [f]D € '&1 ,

where f: - N is majorized by *a, where ¢ = Un{(Raf(f)) 6\‘1 .

1 H

So we need only make sure that AN *a is internal for all (standard)

aE&I .
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We shall define functions A%®: -~ P(g) , one for each countable

ordinal ¢ , so that, for g<g< &l ,
(3) C{a, 8} = {n]a% = A% ney €D
Then [AY_ = [AB]D N*q in D-prod V. We shall let

_ ‘ ’ o sk
A= o< ¥ [A7] SRy

Then A% y=[A%®] is internal. We shall also make the A% sufficiently
complicated that A itself will not be internal. This will prove the

proposition.

We define AY by induction on * 5. For finite 5 , set AY(n) =0
for all n ; clearly (3) holds . Now suppose 52>, A% is defined for
a<vy, and (3) holds for < B<y. Let g: -y be abijection. For

n < ¢, let
H(n) = (w- n) N i,Qn C{gli), g} eD ,

and let h(k) be the first n suchthat k ¢ H(n) ; h(k) exists
because k ¢ H(k+1). Among the ordinals g(i) for i<h(k), let
€ (k) be the largest ; by definition of h,H,and C ,

g (k)

ABWag = aARM g ng() for all i< h(k)
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Thus, (3) will continue to hold for B=1v, provided we choose A”  so

that, for all k <,

g(k)

(4) A% ek = A (k)

{

for, given any ¢= g(i) <+, we have

k €H(i+1) = i< h(k)

= A%K) = A8 g

AE)

(k) Nng(i)

A” (k) ng(i)

2

and H(i+1) €D.

We must still make sure that A is external ; all we have said
so far does not rule out the possibility that all Aa(k) are @,
which we clearly do not want. Every ordinal 2> (y can be uniquely
written in the form )+ n where ) 1is a limit ordinal and n < y;
let us write Ma) and n(n) forthe )\ and n whose sum is ¢.
Let R :Rl -+ P(y) be a functionVsuch that, if 0{7{[3 , then R{g)
and R(B) have infinite symmetric difference. (For example, let R’
be any one-to-one map Rl =P, let f: w-wXx¢y be a bijection

-1

and let R(g) = £ "'1 (R(q)-) Define, for any 6< v,
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(5) 8 € AY(k) <> 8 < £(k) and 0 €ASK(K), or

6> £(k) and n(@) € R(y)

The first clause of (5) gives (4); the second will give that A 1is external.

L

The functions g,H,h,and' ¢ are all dependent on ¥ ; when

necessary, we shall write them with ¢y as a subscript.

Temporarily fix k < , and suppose X 1is a set of countable

. limit ordinals such that

a<B and aBEX = keC {a,B}

(<=> A%K) = AP n o)

I claim that no element of X can be the limit of a sequence of smaller

elements of X . Suppose not ; say oy <q, <

5 S is a sequence C X

with limit 8¢ X . As gB(k) <B , we must have gB (k) 1less than one
of the 's ; omitting an initial segment of the @-sequence, we may
suppose gﬁ(k) <Q= al . Let ¥ be thelarger of gB (k) and ga(k) s

so y<a. If € 1is an ordinal such that 5 < <a, then the

definitions of A® and AB, together with the fact that A%k) = AB(k) No s

give
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n(f) € R(q) <> L A% (k)

<> re AB(k)

<> n(f) €R(B)

Applying this to {=17y, y\+ 1,v+2,... , all of which are <«
because ¢ 1is a limit ordinal, we find that the symmetric difference
of R{w) and R(B) contains only numbers iess than n(y), contrary
to the definition of R . This proves that X contains none of its own

limit points.

Now, let B : w—~P(X;) be any function. For each k, let Xk

be the set of limit ordinals ¢ such that A%k) = B(k)Na. By the

preceding paragraph, X contains none of its limit points. Let

k
L={k€w)| X, is countable }
and
M=g-L= {kewl X, is cofinal in xl} :
Let « be an ordinal < Rl , but greater than all elements of X

0 k

for all k €¢lL.. Define o by induction on n as follows. If

n= Za(Zb +1), let « be any ordinal in X which is > ,
' n a n-1
provided a € M so such an @ exists ; if a € L, let o > &
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be arbitrary but <R1 . Let B Dbe the limit of the increasing sequence
o - Thus, B< Nl , and, by choice of oy - B¢ Xk for k€L . On

the other hand, if k€M, then B is the limit of the subsequence

b=12,... <

%k(2b +1)
all of whose members are in Xk ; as Xk contains none of its own
limit points, B¢ Xk. Thus B¢ Xk for any k. Since B is clearly
a limit ordinal, we conclude from the definition of Xk that

k|af) =B npy=9 ,
S0

[BIn*g# [aP1=An"p ,
"and, a fortiori, A #[B]. As B was arbitrary, A 1is external, and

the proposition is proved . O

Before we complete the proof of Theorem 1 by constructing the required

F , we make a few heuristic remarks to clarify the idea behind the
construction. Recall the standard method of constructing ultrafilters (see
Tarski [17]). You well-order all subsets of ), and, starting with any
family < P(w) with the finite intersection property, you consider in

turn each subset of (@ , throwing it into the family if this can be done
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without destroying the finite intersection property ; otherwise you throw
in its complement. This method gives preferential treatment to the set
under consideration as opposed to its complement ; you could just as
well throw in the complement whenever possible. More generally, if

Ac 2% , you can use the foilo“dng procedure . The oth time you have

to make a choice (i. e., either the set or its complement can safely be
thrown in), choose the set if @€ A , the complement if «¢ A . The
ultrafilter you get will '"encode'" A (unless you get an ultrafilter with a
basis of cardinality <2w~; in the theorem, we are assuming CH, so
this is no problem). The idea is, in the non-standard world, to get F
to encode the A of the proposition. F (;annot be constructed in the
non-standafd world, for A doesn't exist there ; indeed, we want F
to be external. But F cannot be constructed directly in the real

world either, for here 'PRI is not well-ordered. The solution of this
difficulty is a division of labor between the two worlds. The residents

of D-prod V can construct approximations Fa to the required F

using the internal sets AN “a. (Each Fa is internal, but the sequence

of all of them is not.) Then we, in the real world, use these approxima-

tions to define F .

Using CH, let S: Rl—'P(w) be a bijection . Let B C Rl .
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B
Inductively define a nested sequence of filters G (o) and a non-decreasing
. B B .
sequence of ordinals ¥y (x) (a<R1) as follows. G (0) consists of the
cofinite subsets of ¢y , and 'yB(O) =0, If X is a limit,
G (A) = %<>\ GB(oz) and 'yB()\) = supa<>\'yB(o<) . "For successors, let
GB(atl) be : &
' B . L B
(a) G (o) if S(a) or w Sla) isin G (a) ,

(b) The fil tez.‘ generated by GB(a) U{S(a)} if case (a) doesn't apply

B
and y (a) €B ,

' B
(c) The filter generated by G (o) U {w- S(a)} otherwise ;

B

in case {(a) set 'yB(a+ 1) =¥ (&) , and in the other cases set

Let
: B B
FB- L{ B

One sees (by induction on g) that if some ordinal B8 < Rl were not of
B
the form ¥ (&), then the sequence GB(a) would eventually become
' B
constant. This is impossible, because G (g) has a countable base,

B B
while F , being an ultrafilter, does not. Hence ¥ maps onto N

1
B ] B ) B .
Let &6 (B) be the first o suchthat § (¢)=zpB+1; thus § is

a strictly increasing map Rl ~R and GB(B) >B.
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If B#C and B is the first ordinal in their symmetric difference,

then § (¢) = Gc(g) for all ¢ < B, and, for a<6B(B) , GB(a) = Gc(a)

B
and 7B(a) = yc(a) . 8§ (B) 1is the successor 7 +1 of an ordinal 7,
and GB(‘n+ 1) # Gc(n +‘1) , for one of these contains S(7)) while the other
‘ C
contains w-S(n) . Thus, FB #F . For o<7m, S(o)c€ FB<-_:> S(o) € FC

As mn =8, this holds in particular for all o<§.

If F 1is any uniform ultrafilter on  , then F = FB for some

Bc X For we can let

K
G(a) = the filter generated by all cofinite sets plus those
sets in F of the form S(8) or w- S(f with

B<a ,

and then the inductive conditions used to define GB and 'yB above

can be used "in reverse'' to define Yy B and B given G.

Hence, we have a bijection &: P(Rl) - unif (w) . With Ac ’PRI

as in the proposition, let

r = (®)AN )

sk

(Actually we mean (*®)(B), where B € P(R,) represents A o)
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Thus, F is an internal uniform ultrafilter on *w . If a<pg , then
x
An*a and AN */3 agree on ordinals <¥q, so, by the remarks two
paragraphs ago, Fa and F3 agree as far as the sets S(x), x < “a ,
b4

are concerned. Thus, we may define F to be the set of those S(x)

which are in Fa for one, hence for every, < &1 with x < *a .

If X €*P(w), there are x,y € *xl with X = 'S(x) and
*w- X =*S(y) . (*S is a bijection because S 1is one.) Choose an ¢ < }i

so that x,y, < “o. Then, as FOL is an ultrafilter on *P(w) ,

X€F<-‘—->X€Fa
<=>'*w—X.¢F
o

= Tp-X¢F

Similarly, F 1is closed under intersection, so F 1is an ultrafilter

in P(w) . We now verify that it has properties (1) and (2) .

There is a function T assigning to each function g on ( an

upper bound T(g) < Rl for the countable set of ordinals of the form

ot

S'l(g'l{n}) , n€g"w. Let f be an internal function on ¢ such

that Card f"%p< " in D-prod V. Let ¢ be an ordinal <R

e

with ( T)(f) < *q . Then, by definition of T , for all v € f" ¥y ,
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£-1{y} is *S(x) for some x < ‘T(f) < *@, so f_l{v}€F<:> f'l{y} €F,-

It is true in V , hence in D-prod V, that :

A function taking fewer than @ values is constant on some
set of any given ultrafilter on its domain.
Hence, thereisa pé&f ”*w with f—l{v} EFa. Therefore f'l{y} €EF,

and (1) is proved.

If F were internal, it would be (*&) (B) for some B € *P(xl).
As A is external, it cannot berepresented by B , so choose an

Xq €EBAAC *R where A denotes symmetric difference . Choose

1 3

a <X, with *a> (*6 )B(xo) >x_. The internal set (AN *a) AB is

1 0

nonempty, so let x be its least element. As x < Xy
(*G)B(x) = (*G)B(XO) <*y. As b maps to successor ordinals, there is
a y <*y such that >k(SB(x) =y+l. By the discussion following the

definition of & ,

*s(y) € F = (*&)(B) <> "S(y) ¢ (@A NTw) = F

H

o
contradicting the definition of ¥ . Therefore (2) holds, and Theorem 1

is proved ., [
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The theorem can be improved as follows. In defining FB , change

. . .1 B B . .
the inductive conditions on G so that G (o+1) contains, in addition

. to S(o) or w- S(a), some canonically selected (i. e., depending only

B
on G (o), noton B directly) set on which Q) is constant or

one-to-one, where Q 1is a fixed bijection from Rl to Homiw, w) ;
] B B . .
call that setin G (a+l) T (). If B and C first differ at 8
B C . .
and o<B8, then T (@)=T (a). Let F then be defined as in the

proof just given, and consider any internal f: *gy— ¥w. f is *Q(x)

for some x € “\Rl , and we choose @ so that x < *og . For B8 >qa,

AN and AN *B first differ at ¢ ‘or later, so FOt and F
*_ A
)& ey

contain the same set TX =("T

B

x) onwhich f 1is constant or

one-to-one ; therefore T €F .
< _

Let E be the ultrafilter on ¢ Xxw determinedby F ; F=E/D
Then, as in the theorem, g : E -D 1is an IS(w)-morphism, and
D ‘éRF E . (F is external because it still codes A ; the proof of this is
a bit more complicated than the corresponding part of the proof of the
theorem. ) Furthermore, if f: X w~ w, then, by what has just been
shown, the internal map [E]D 'is constant or one-to-one on a set of F .

Thus thereis an A €E such that

D-prod V |= [;]D is one-to-one or constant on [A]D ,
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which means that, for D-most i, f (i) is one-to-one or constant on
I\(i) ." Replacing f be a map equal to it mod E, we may suppose that

either f{ factors through g or f(i) is one-to-one for all i.

Until now, D has })een quite arbitrary. Let us now consider
the special case that D is minimal. I claim that then any IS(;)-morphism
f with domain E (where E 1is as in the preceding discussion) is
either an isofnorphism , or g followed by an isomorphism, or a
constant map. If f factors through # , then we have one of the last
possibilities, because D is minimal. So assume that (i) is
one-to-one for al} i. By Proposition 13.5 appliedto f and g , we
find that one factors through the other. Since we have disposed of the
case that f factors through #, we assume g factors through f.
This, together with the fact that all f(i) are one-to-one, implies
that f 1is one-to-one on a set of E , hence is an isomorphism. This

proves the claim.

PROPOSITION 4 : There is an E on which is minimal in RF(y)

but not in  IS(y)

Proof : Let D and E be as in the preceding discussion. As

D< E, is not minimal in IS(v) . Now suppose that G SRF E; say
w
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g E == G - ZiHi-

Apply the preceding discussion to f = g0 g . In the first'case, gg is
an isomorphism, so G=E. In the second case G=D , which is
impossible becauée D {_RFTE .. In the last case, Er - 0. Thus, no

element of RF(w) is <RFE . O

Since all P-points are IS(w)-minimal, we have as a corollary
 the theorem of Kunen (quoted in [2]; also see [12]) that minimality in the

"RF-ordering is a strictly weaker condition than being a P-point.
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