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ABSTRACT

This paper explores orbits in extendedmass distributions and develops an analytic approximation scheme based on
epicycloids (spirograph patterns). We focus on the Hernquist potential  ¼ 1/(1þ � ), which provides a good model
for many astrophysical systems, including elliptical galaxies (with an R1/4 law), dark matter halos (where N-body
simulations indicate a nearly universal density profile), and young embedded star clusters (with gas density � � ��1).
For a given potential, one can readily calculate orbital solutions as a function of energy and angular momentum using
numerical methods. In contrast, this paper presents a number of analytic results for the Hernquist potential and proves
a series of general constraints showing that orbits have similar properties for any extended mass distribution (in-
cluding, e.g., the NFW profile). We discuss circular orbits, radial orbits, zero-energy orbits, different definitions of
eccentricity, analogs of Kepler’s law, the definition of orbital elements, and the relation of these orbits to spirograph
patterns (epicycloids). Over a large portion of parameter space, the orbits can be adequately described (with accuracy
better than 10%) using the parametric equations of epicycloids, thereby providing an analytic description of the orbits.
As an application of this formal development, we find a solution for the orbit of the Large Magellanic Cloud in the
potential of our Galaxy.

Subject headinggs: galaxies: halos — galaxies: kinematics and dynamics — methods: analytical —
stars: formation — stellar dynamics

1. INTRODUCTION

Orbits are a fundamental component of dynamical astrophys-
ical systems, including dark matter halos, galaxies, star clusters,
and solar systems. For a single point mass, the source term for
a Keplerian potential, orbits are well-known conic sections and
have been the cornerstone of solar system dynamics for centuries
(starting with Newton 1687; for a modern treatment, see Murray
& Dermott 1999). Many astrophysical systems have extended
mass distributions, which give rise to more complex potentials
and more complicated orbits (Binney & Tremaine 1987). Al-
though an enormous amount of work has been done on under-
standing the dynamics of such extended mass distributions, the
orbits themselves are not as well studied. In this paper we cal-
culate the orbits for a class of extended mass distributions that
provide good working models for dark matter halos, elliptical
galaxies, and embedded young star clusters, albeit in rather dif-
ferent regimes of parameter space (see also van den Bosch et al.
1999 for a consideration of orbits in an isothermal potential).
Along with our improved characterization of the orbits, we de-
velop an effective analytic approximation scheme that describes
the orbits in terms of epicycloids (spirograph patterns) and thereby
obtain a set of parametric equations for the orbits. In addition to
making dynamical calculations easier, this analytic approximation
scheme adds to our conceptual understanding of the orbits—in
much the same way that knowing Keplerian orbits are conic sec-
tions provides increased perception.

In this paper we focus on the Hernquist potential, which arises
from a density profile of the form

� ¼ �0

�(1þ � )3
; ð1Þ

where the dimensionless radius � ¼ r/rs and rs is the length scale
of the potential. This density profile has a corresponding analytic
form for its distribution function (Hernquist 1990). One goal of
this paper is to characterize the orbits for bodies traveling within
this extended density distribution. The motivation for this effort
is that particular subclasses of these orbits describe the motion
of bodies in many astrophysical systems. The original applica-
tion of this potential (Hernquist 1990) was to approximate the
R1/4 law for elliptical galaxies (de Vaucouleurs 1948). In addi-
tion, density profiles of this form appear in dark matter halos of
galaxies and galaxy clusters, and in the molecular cloud cores
that form stellar groups and clusters. Both of these latter applica-
tions require some explanation.
Over the past decade (starting with Navarro et al. 1997, here-

after NFW), numerical simulations of cosmic structure forma-
tion have shown that the density distributions of darkmatter halos
approach a nearly universal form (see also Crone et al. 1996;
Moore et al. 1998; Bullock et al. 2001). Although the original
form for this universal profile (NFW) is not as steep as that of
equation (1) at large radii, subsequent work indicates that the
Hernquist density profile provides a good description of the as-
ymptotic structure of darkmatter halos (Busha et al. 2003, 2004).
One advantage of using equation (1) is that the total mass of the
system is finite (whereas the integral of the original NFW density
profile diverges). One long-term goal of structure formation stud-
ies is to understand the dynamics of these halo systems, including
both the origin of the universal profile and its consequences. To-
ward that end, we must describe the orbital motions of test parti-
cles moving in the gravitational potential created by the universal
density profile (where the ‘‘test particles’’ can range from indi-
vidual dark matter particles with mass mW � 100 GeV to small
satellite galaxies with mass Msat � 109 M�).
Molecular cloud cores that form stellar clusters provide an-

other application. They are inferred to have equations of state
softer than isothermal (e.g., Larson 1985; Jijina et al. 1999) and
hence density profiles of the approximate form � � 1/r, which
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coincides with the Hernquist density profile at small radii. The
orbits found for the inner limit of the density profile (1) are thus
applicable to star-forming regions. Most stars form in groups/
clusters (Lada & Lada 2003; Porras et al. 2003), and subsequent
stellar orbital motions determine the degree to which the envi-
ronment affects star and planet formation (e.g., Adams & Myers
2001; Adams & Laughlin 2001).

Since the potentials considered here are spherically symmet-
ric, motion is confined to a plane (in the absence of perturbations)
and the orbits can be calculated to high accuracy using numerical
methods. This paper takes a complementary approach and de-
termines the nature of the orbits using analytic methods as far as
possible and develops an analytic approximation scheme based
on spirograph patterns. Our goal is to understand the orbits at the
same level that we now understand Keplerian orbits, in spite of
the greater mathematical complexity. Several subtleties arise that
cannot be captured through numerical solutions alone. The or-
bital eccentricity can be defined in several ways, and each defi-
nition agrees with the Keplerian result in different aspects. The
orbits do not close and their turning angles satisfy �� < � (for a
half-orbit) and this angular deficit remains even in the circular
limit.Themaximumangularmomentum,maximum turning angle,
and radius of the circular orbit can all be determined analytically
as a function of energy. These results allow for many properties of
these orbits to be found analytically and add to our understanding
of how the orbits depend on the underlying potential (see x 2).

Although a large number of results can be obtained analyti-
cally, a complete description of the orbital shapes requires nu-
merical evaluation. Nonetheless, the orbit shapes are similar to
the familiar form of epicycloids, often known as spirograph pat-
terns (and not to be confused with epicycles; see below). This
paper takes this analogy one step further (x 3) and shows that for
a large fraction of the relevant parameter space, the orbits in the
Hernquist potential can be modeled with high accuracy (bet-
ter than 10%) using the parametric equations of epicycloids. The
resulting spirographic approximation provides an analytic de-
scription of the orbital shape. This analytic description, in turn,
allows for other orbital quantities to be calculated analytically.
For example, we show the effects of geometry on orbital decay by
integrating� j/j over an orbit (x 3.3), and we use the spirographic
approximation to model the orbit of the Large Magellanic Cloud
(LMC) in the potential of the Galaxy (x 4).

In addition to the applications presented in this paper, the
analytic approximations developed here can be used in a wide
variety of other contexts. For example, an analytic description of
the orbits can be useful in galactic stability theory (e.g., Evans &
Read 1998), where the perturbed distribution function is given
as an integral over the equilibrium orbit. Another application of
analytic orbits is to find steady state distribution functions, which
depend on the isolating integrals of motion (or the constants in
the spirographic approximation developed here). This analytic
description of orbits is also useful in assessing the effects of clus-
ter environments on the star formation process. In this context,
the orbits of newly formed stars determine how much radiation
impinges on their circumstellar disks and their probability of ex-
periencing scattering interactions; this physical process, in turn,
determines how the cluster environment can compromise planet
formation.

Although extended mass distributions do not always have
the form of equation (1), we argue that the orbits found here pro-
vide good baseline models for orbital behavior in more general
potentials. In particular, generic orbits in extended mass distri-
butions will be more like those of the Hernquist model than the
conic sections resulting from a Keplerian potential. Further, such

generic orbits can be described through the spirographic ap-
proximation developed in this paper. Orbits in general extended
mass distributions share a number of traits. For mass distribu-
tions of physical interest, the topology of the manifold of or-
bital solutions is simple (the same as the S1 ; S1 structure of the
Kepler problem; see Smale 1970a, 1970b), although the geom-
etry of the orbits is more complicated. One defining character-
istic of these orbits—turning angles for a half-orbit bounded by
�/2 < �� < �—holds for general extended mass distributions
(Contopoulos 1954). This paper proves additional results con-
cerning generic orbits in extended mass distributions (x 5). We
show that the eccentricity can be defined in multiple ways, with
the definitions coincident only for a Keplerian potential. We also
show that orbital shapes in generalized extended mass distribu-
tions are confined to be relatively close to those of epicycloids
(spirograph patterns). We validate this claim by finding a set of
bounds on orbital shapes that apply to all physical potentials, and
by explicit construction of orbits—and comparison with the spiro-
graphic approximation—for a collection ofwell-knownpotentials.

2. ORBIT SOLUTIONS

In this section we calculate orbits for bodies moving in the
potential of the Hernquist profile (with the density distribution of
eq. [1]). We define the total depth of the gravitational potential
well �0 � 2�G�0r

2
s and the total mass M1 � 2�r 3s�0, so that

the corresponding mass profile, force profile, and gravitational
potential take the forms

M (� ) ¼ M1
�2

(1þ � )2
; F(� ) ¼ �0=rs

(1þ � )2
; �(� ) ¼ �0

1þ �
:

ð2Þ

All quantities are taken to be positive (with the proper signs
inserted as necessary).

2.1. General Orbits

The basic formulation for orbits in spherical mass distri-
butions is well known (Binney & Tremaine 1987); this section
defines notation and presents analytic results for orbits in the
Hernquist potential. An orbit in any potential V(r) can be de-
termined from the differential equation

d�

dr
¼ 1

r

2(E � V )r 2

j2
�1

� ��1=2

; ð3Þ

where E is the energy and j is the specific angular momentum.
This paper focuses on bound orbits with negative energy. We
define dimensionless variables for the energy (�) and angular
momentum (q) according to

� � jEj=�0; q � j2=2�0r
2
s : ð4Þ

The differential form of the orbit equation can then be written
�d�/d� ¼ ½q/f (� )�1=2, so that much of the dynamics is deter-
mined by the properties of the cubic equation

f (� ) ¼ ��� 2 þ � 2

1þ �
� q: ð5Þ

For a given energy � and angular momentum parameter q, the
orbit exists within the range of � for which f (� ) is positive. The
two positive zeros of f (� ) thus correspond to the radial turning
points of the orbit and are denoted here as �1 and �2. The third
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zero of the cubic is always negative for the physical range of
parameter space, and we denote this root as a � ��0 > 0. Find-
ing the roots of the equation (5) is straightforward but cumber-
some (e.g., Beyer 1980). However, the inverse relations can be
found simply:

� ¼ �1 þ �2 þ �1�2
(�1 þ �2)(1þ �1 þ �2 þ �1�2)

;

q ¼ (�1�2)
2

(�1 þ �2)(1þ �1 þ �2 þ �1�2)
;

a ¼ ��0 ¼
�1�2

�1 þ �2 þ �1�2
: ð6Þ

One quantity of interest for a given orbit is the angle ��
through which the orbit turns over one half-cycle, e.g., as the
orbit moves from �1 to �2 . This angle is given by

�� ¼ ffiffiffi
q

p Z �2

�1

d�

�

�
f (�)

��1=2
: ð7Þ

A related quantity of interest is the orbital half-period, denoted
here as �1/2. The natural timescale of this potential is �0 �
rs(2�0)

�1=2. The dimensionless timescale �̃1=2 � �1=2 /�0 can be
written in integral form:

�̃1=2 ¼
Z �2

�1

� d�
�
f (� )

��1=2
: ð8Þ

For a given dimensionless energy �, orbits can have a maxi-
mum specific angular momentum and hence a maximum value
of q. This maximum value takes the form

qmax ¼
1

8�

(1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8�

p
� 4�)3

(1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8�

p
)2

: ð9Þ

In the limit of low energy �! 0, we recover the Keplerian re-
sult 4�qmax ¼ 1. In the opposite limit of �! 1, we write � ¼
1� � and find the limiting form qmax ¼ 4�3/27.

For a given energy �, the minimum of the cubic function f (� )
is independent of the angular momentum variable q. The loca-
tion of this minimum, denoted here by ��, where df /d�(��) ¼ 0,
is given by

�� ¼
1� 4�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8�

p

4�
: ð10Þ

In the limit of low energy �! 0, we recover the Keplerian
form �� ¼ 1/2�. As a result, we can identify �� as playing the
same role that the semimajor axis plays for bound orbits in
Keplerian potentials (although these orbits are not ellipses).
Note also that �� is the radius of the circular orbit for a given
energy �.
For given values of energy and angular momentum (�, q), the

orbit takes a specified form. One such orbit is shown in Figure 1
for the case � ¼ 0:10 and q ¼ qmax/2. For each half-oscillation
in the radial direction, as � ranges from �2 down to �1, the or-
bit sweeps through an angle ��, which lies in the range �/2 �
�� � �. In the Keplerian limit (�! 0),��! �. In the limit of
radial orbits (q ! 0), the angle ��! �/2. Between these lim-
its, the angular displacement takes on intermediate values that
depend on energy and angular momentum. These results are il-
lustrated in Figure 2, which shows�� as a function of q/qmax for
a collection of energy values. One curious result is that the angle
�� does not approach � in the limit of circular orbits (see eq. [16]
below). For the set of curves shown in Figure 2, specifically for
energy and angular momentum in the ranges 0:2 � � � 1 and

Fig. 1.—Example of an orbit in the Hernquist potential with energy � ¼ 0:10
and angular momentum parameter q ¼ qmax /2. The orbit does not close and can
be characterized by the angle through which the orbit turns during one radial
oscillation. One part of the orbit is highlighted (open squares).

Fig. 2.—Turning angles for one-half of an orbit. The quantity�� is the angle
through which the orbit turns as the radius varies from the inner turning point to
the outer turning point. The turning angle�� for a half-orbit is plotted here as a
function of q/qmax, where qmax is the maximum angular momentum accessible
for a bound orbit at a given energy. The various curves correspond to dimen-
sionless energy values � ¼ 0:01, 0.1, 0.3, 0.5, 0.7, and 0.9 ( from top to bottom).
Note that ��! �/2 in the limit q ! 0, but, in general, �� 6¼ � in the limit of
circular orbits (q ! qmax).
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10�6 � q/qmax � 1, the turning angle �� can be approximated
with a fitting function of the form

��

�
¼ 1

2
þ (1þ 8�)�1=4� 1

2

� �
1þ ln (q=qmax)

6 ln 10

� �3:6
: ð11Þ

This function provides an approximation to the turning angle
with an accuracy of about 2.5% over the previously stated por-
tion of parameter space.

Figure 3 shows the orbital half-period, i.e., the time required
for the orbiting body to travel from the inner turning point to the
outer turning point. In the figure, the half-period is normalized
by the factor �3/2, which represents the variation expected in
the Keplerian limit, and by the factor ½cos�1

ffiffi
�

p
�

ffiffi
�

p
(1� �)1

=2�,
which gives the correct orbit time in the limit of zero angular mo-
mentum. The resulting (normalized) half-period is nearly inde-
pendent of angular momentum and nearly the same as that of the
radial orbit. The orbiting body spends most of its time at large �,
where q has little effect, so the result is almost independent of q.
The half-period does, however, depend on the energy �.

Given an energy and angular momentum (�, q), and hence the
radial turning points, one can define a generalized ‘‘eccentricity’’
in terms of �1 and �2. Unlike the Keplerian case, the definition of
eccentricity leads to some ambiguities. Two reasonable defini-
tions of eccentricity are

e � �2� �1
2��

; ẽ � �2� �1
�2þ �1

: ð12Þ

At low energies �! 0, the orbits become Keplerian and both
definitions of the eccentricity coincide with the traditional one.
In general, however, the two definitions do not coincide (see

x 5.3). The first definition of eccentricity e has the advantage in
that it includes the radius �� of the circular orbit and the turning
points represent symmetric departures from �� (analogous to the
Keplerian case). In contrast, the second definition ẽ does not
correctly describe small departures about the circular orbit be-
cause �2 þ �1 6¼ 2��. On the other hand, the second definition
allows for the full range of eccentricities 0 � ẽ � 1, whereas
the first definition has a maximum eccentricity so that 0 � e �
emax (for all nonzero energies � > 0). This maximum eccen-
tricity occurs for radial orbits (q ! 0), where the outer turning
point �2 ! (1� �)/� and the inner turning point �1 ! 0, and is
given by

emax ¼
2(1� �)

1� 4�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8�

p : ð13Þ

In the Keplerian limit �! 0, one recovers the expected result
that emax ! 1. In the inner limit �! 1, one finds emax ! 3/4. In
between, the maximum eccentricity is a continuous monotonic
function of dimensionless energy �.

2.2. Limiting Forms of the Solutions

For the cases of circular orbits, radial orbits, and zero-energy
orbits, the solutions reduce to limiting forms that can be readily
evaluated. For circular orbits, one can solve for the relationship
between the orbital period � and radius. The resulting ‘‘Kepler
law’’ for circular orbits takes the form

� 2¼ 2�

G�0
�(1þ � ) 2: ð14Þ

For a circular orbit at radius �, the energy and angular momentum
are given by � ¼ (1þ �/2)(1þ � )�2 and q ¼ (1/2)�3(1þ � )�2.
As a result, we can write the orbital period in terms of the di-
mensionless energy so that

� 2 ¼ �

G�0

1

�

1þ 4�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8�

p

8�2
�1

� �
: ð15Þ

As defined here, the period � is the time required for the orbit to
make a complete circuit, i.e., for the angle � to trace through 2�
rad. However, the angular integral (eq. [7]) does not approach �
in the limit of circular orbits (as it does for Keplerian orbits). The
angular displacement is less than � and depends on energy ac-
cording to

lim
q!qmax

�� ¼ �(1þ 8� )�1=4: ð16Þ

In the Keplerian limit �! 0, ��! �, as expected. For � 6¼ 0,
equation (16) agrees with the limit points of the curves shown in
Figure 2. Since circular orbits are stable in this potential, small
perturbations about the circular orbit lead to oscillations at the
epicyclic frequency �, which takes the form �2 ¼ 2�G�0(3þ
� )��1(1þ � )�3.

Another class of orbits that can be considered separately are
those with zero angular momentum, i.e., radial orbits. In this
case, the angular coordinate is no longer of interest and the or-
bits are characterized by their energy, �. Each energy has a cor-
responding infall timescale � , defined to be the time required to
fall from the outer turning point �2 to the center. This timescale
can be evaluated to obtain the result

� ¼ (4�G�0)
�1=2��3=2 cos�1

ffiffi
�

p
þ

ffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffi
1� �

p� 	
: ð17Þ

Fig. 3.—Range of orbital half-period. The quantity �̃1=2 is the time required
for the orbit to travel from the inner turning point to the outer turning point. Here
the half-period is normalized by two functions: first, the factor �3/2, which
represents the variation expected in the Keplerian limit, and second, the factor
½cos�1

ffiffi
�

p
�

ffiffi
�

p
(1� �)1

=2�, which gives the correct orbit time in the limit of zero
angular momentum (q ! 0). The half-period is plotted as a function of q/qmax ,
where qmax is the maximum angular momentum accessible for a bound orbit at a
given energy. The various curves correspond to dimensionless energy values
� ¼ 0:01, 0.1, 0.3, 0.5, 0.7, and 0.9 ( from bottom to top).
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For radial orbits, the position along the orbit is specified by the
radial coordinate, so the angle � is no longer necessary. None-
theless, the angle of the orbit remains defined and the half-
angle of the orbit (eq. [7]) reaches a definite limit. As q ! 0,
we find ��! �/2.

Finally, we consider zero-energy orbits. For Keplerian poten-
tials, such orbits are parabolas. Here the corresponding orbits are
more complicated, but simple solutions can be found for limiting
cases. The key parameter for a zero-energy orbit is its inner turn-
ing point, which is given by

�1¼
qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4q

p
2

: ð18Þ

One limiting form of this solution occurs when �T1 for the
entire orbit. This solution would also result for the case in which
a density profile of the form � � 1/r extends out to infinity. In
this limit, the orbit equation can be solved to obtain sin � ¼ffiffiffi
q

p
/�; i.e., the orbital path is a straight line defined by y ¼

� sin � ¼ ffiffiffi
q

p ¼ constant. For orbits that remain in the outer halo
where �31, we can also simplify the expression to obtain

cos
qþ 1

q

� �1=2

�

" #
¼1� 2(qþ 1)

�
: ð19Þ

2.3. Orbital Elements

A particle in orbit can be described by six phase-space vari-
ables, which are usually taken to be the position vector x ¼
(x; y; z) and the velocity vector v ¼ (vx; vy; vz). For the Kepler
problem, one can replace these phase-space variables with os-
culating orbital elements, i.e., the elliptical (Keplerian) orbit that
has the same instantaneous position and velocity vectors
(Murray & Dermott 1999). For trajectories in extended mass
distributions, the phase-space variables can be written in terms of
the elements of the orbits found here. Since the potential is
spherically symmetric and angular momentum is conserved,
orbital motion is confined to a plane. The two angles that define
the unit normal of the orbital plane (�p, 	p) thus provide the first
two orbital elements. The rest of this discussion is confined to
this orbital plane. Although the assignment of the remaining
orbital elements is not unique, we present a sensible prescription
in what follows.

Within the plane, the orbital shape is determined by the energy
� and angular momentum, specified here by q. The pair (�, q) thus
can be used as the next two orbital elements. However, other
choices are available. The energy � can be replaced with the ef-
fective semimajor axis ��, as defined by equation (10). For a given
energy and angular momentum, the cubic equation (5) defines
the turning points �1 and �2 of the orbit, so that the generalized
eccentricity (eq. [12]) is well defined and can be used as the other
variable. One can thus replace the variables (�, q) with the pair
(��, e), which provides the closest analogy to theKepler problem.
Alternately, one can use the turning points themselves, (�1, �2), to
specify the orbital shape. Recall that the cubic equation that
defines the turning points has three real roots in the regime of
interest; because the problem has only two parameters (�, q),
specification of the turning points (�1, �2) is sufficient to define
the equation, and the third root can be written in terms of the
turning points (eq. [6]).

The two remaining orbital elements must specify the orien-
tation of the orbit within the plane and the position of the particle
along its orbit. In the custom of solar system dynamics, the term
‘‘longitude’’ is used to denote an angle that is measured relative

to a fixed location in inertial space. Here we can specify the
orientation of the orbit in terms of the longitude $ of the inner
turning point �1 (the longitude of pericenter). Like the elliptical
orbits in the Kepler problem, the longitude of pericenter can
precess. Unlike the case of the Kepler problem, orbits in ex-
tended mass distributions are not closed and the longitude $ of
pericenter changes with every orbit. A full orbit turns through
an angle 2�� < 2�, so the pericenter precesses backwards at
the rate of 2(����) per orbit. The longitude of pericenter is
given by$ ¼ 2(���� )nþ$0, where$0 is the starting value
(t ¼ 0) and n is the number of full orbits that have elapsed. Note
that we can use either the starting longitude $0 or the current
longitude of pericenter $ as the next orbital element. For com-
pleteness, we can also define a continuous longitude of peri-
center through the relation$c � 2(���� )t /� þ$0, where � is
the (full) orbital period. Finally, the location of the particle along
the orbit is given by its angular displacement �. Again follow-
ing the custom of solar system dynamics, the angular displace-
ment variable can be called the ‘‘anomaly.’’ The angle � is thus
the true anomaly and can be measured in two different ways. The
natural definition is to measure � from the inner turning point (or
the outer turning point) for the current longitude of pericenter$.
However, one could also measure the angle with respect to the
starting longitude of pericenter$0 , in which case the anomaly is
denoted as �0. We can also define a mean anomaly M ¼ !(�t),
where�t is the time since pericenter passage and the mean mo-
tion variable ! � (�� ) /�1=2 (see eqs. [7] and [8]).
A collection of possible orbital elements is summarized in

Table 1. Here we assume that the orbital plane is specified so that
only four phase-space variables remain. The usual variables [(x,
y), (vx, vy)] can be replaced with various choices for the oscu-
lating orbital elements listed in Table 1. For each pair of shape
parameters, any of the possible pairs for the orientation and
anomaly are viable choices. The last line of the table lists the
variables required to describe the orbit as an epicycloid (spiro-
graph pattern), as discussed in the following section.

3. EQUIVALENT SPIROGRAPHIC ORBITS

The orbits found here for the Hernquist potential look much
like epicycloids, more generally known as spirograph patterns.
In this section we explore the relationship between the actual
orbits and the closest equivalent spirographic orbits. We find a
quantitative measure of the difference between the physical or-
bits and the spirographic approximation and show that the spi-
rographic treatment is valid over a large portion of parameter
space. This finding allows for a class of physical orbits to be
described using simple parametric—and hence analytic—
equations. The resulting analytic description facilitates a greater
physical understanding of the orbital dynamics. For example, the
effects of dissipation (friction) on the orbits can be modeled
analytically using the spirographic approximation (see x 3.3).
The epicycloids discussed here are not the same as epicycles,

which are often considered in connection with astronomical or-
bits. In the original Ptolemaic definition, an epicycle is the curve

TABLE 1

Orbital Elements

Shape Parameters Orientation Anomaly

(�, q) ............................................ $0 �0
(�*, e)........................................... $ �

(�1, �2) ......................................... $c M

(
, �, �) ...................................... 	 t̂p
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generated by a small circle that rotates while it moves along the
circumference of a larger circle. Epicycloids are curves gener-
ated by a smaller circle rotating inside (or outside) a larger circle,
with a drawing point located a given distance away from the
center of the smaller circle. In modern astronomy, the epicyclic
frequency is the frequency of radial oscillation for a body in a
circular orbit, when perturbed in the radial direction by an in-
finitesimal amplitude [so that �2 ¼ r�3d(r4�2)/dr]. As a result,
the inclusion of epicyclic motion (radial oscillations with fre-
quency �) provides a first-order correction to a circular orbit in
an arbitrary potential [which determines the rotation curve�(r)].
Many previous studies have explored the epicyclic approxi-
mation and the inclusion of higher order terms (e.g., Shu 1969;
Kalnajs 1979; Dehnen 1999). In contrast, this present work ex-
plores epicycloids as approximations to physical orbits.

3.1. Parametric Description of the Orbits

In a fixed plane, here the orbital plane, the parametric equa-
tions for an epicycloid (a generalized spirograph pattern) can be
written in the form

x ( t̂p) ¼ (
� � ) cos t̂p þ � cos (
� � )t̂p=�
� �

;

y ( t̂p) ¼ �(
� � ) sin t̂p þ � sin (
� � )t̂p=�
� �

; ð20Þ

where 
 is the radius of the larger spirograph circle, � is the
radius of the smaller circle, and � is the distance from the center
of the smaller circle to the drawing point (e.g., see the World
Wide Web site of D. P. Little,4 which includes interactive draw-
ing capability). These length scales should be considered dimen-
sionless; they can be converted into physical units by specifying
a length scale (rs). Keep in mind that the variable t̂p is a parame-
ter and does not represent physical time (its relationship to time
is elucidated below). With this form of the parametric equa-
tions, the spirograph pattern begins at t̂p ¼ 0 with its maxi-
mum radius with an angle � ¼ arctan ( y/x) ¼ 0; the pattern then
turns (counterclockwise) through an angle (1� �/
 )� as the ra-
dius decreases to its minimum value. The parametric variable t̂p
ranges from 0 to ��/
 over this half-orbit. Note that the starting
orientation of the orbit can be changed by including a starting
phase angle 	 (equivalent to an offset in the parametric time
variable).

The parametric forms in equation (20) allow for two different
(equivalent) representations of physical orbits (see below). In
this treatment, we use the representation where � plays the role
of the semimajor axis. In this case, the transformation between
the spirographic variables and the physical variables—and the
inverse transformation—take the form

�1 ¼ � � (
� � ); �2 ¼ � þ (
� � ); �� ¼ (
� � )�=
;

� ¼ 1

2
(�1þ�2); 
¼ �

2��
(�2��1); � ¼ 1

2

�

��
�1

� �
(�2��1):

ð21Þ

Since the turning points �1 and �2 of the physical problem are
related to the energy � and angular momentum (specified by q)
through equation (5), the above relations (eq. [21]) implicitly
define the spirograph parameters in terms of the energy and an-
gular momentum. The physical problem contains only two vari-

ables, which can be taken to be the energy and angular momen-
tum (�, q) or the turning points (�1, �2). The equivalent epicycloid
is written in terms of three parameters (
, �, �), but only two are
independent. Any such triple will define an epicycloid, but only
those related through equation (21) are physically relevant. The
spirographic parameters are related to the energy and angular mo-
mentum of the orbit via

�¼ � 2 þ 2� � (
 � � )2

2� (1þ �)2 � (
 � � )2
� � ; q¼

�
� 2 � (
 � � )2

�2
2� (1þ �)2 � (
 � � )2

� � :
ð22Þ

Note that since �1; �2 ¼ � � (
� � ), the parameter � is akin
to the semimajor axis of the orbit (although this analogy is not
exact because the orbits are not ellipses). A natural definition of
the eccentricity es for a spirographic orbit has the form

es ¼

� �

�
: ð23Þ

Since � 	 (
� � ) for physically relevant orbits, the eccentricity
es � 1.

In the Keplerian limit, the turning angle ��! �. Thus, the
Kepler limit corresponds to the limit in which �T
 and the
turning points are given by �1; 2 ¼ � � 
. In the limit of circular
orbits, the above expressions (eqs. [22] and [23]) indicate that
(
� � ) ! 0. However, in order for the parametric forms in
equation (20) to trace a circle, the condition (
� � ) /� !
1 (
 /� ! 2) must also hold. In order for both of these limits
to apply, 
; � ! 0. The limit of radial orbits is realized when
the angular momentum vanishes, which requires � ¼ (
� �),
and��! �/2, which requires 
 ¼ 2�; as a result, radial orbits
are given by (
; �; �) ¼ (2x; x; x) for any value of x.

The range of possible epicycloid patterns is much larger than
the range of orbital shapes that represent physical motion (in the
potential of an extended mass distribution). The allowed pa-
rameter space is depicted in Figure 4 (where the parameter � is
set equal to unity). For physical orbits, the turning angle for a
half-orbit falls in the range �/2 � �� � �; for our chosen rep-
resentation, this constraint restricts the parameter space to the
region � < 
 /2. Since the inner turning point must be greater
than zero, � > (
� � ). The allowed region of the 
-� plane
is thus bounded from above by the dashed line and from below
by the dotted line. Above the dashed line where � ¼ 
 /2, the
turning angle is too small and the resulting spirograph patterns
are more open than those realized in physical potentials. Below
the dotted line, the inner turning point is formally negative, so
that the pattern turns ‘‘in front of ’’ the center, rather than orbiting
around it. The resulting pattern is tighter than those realized in
physical orbits. The inset diagrams show the basic orbital shapes
for the different regions of parameter space. Note that for this
formulation, � > 
; �, and the drawing point of these epi-
cycloids extends beyond the smaller circle (so they cannot be
drawn with conventional spirographic wheels).

The region of the 
-� plane above the dashed line and below
the dotted line (the upper right portion of Fig. 4) corresponds to
the second representation of the orbits. In this region, the comple-
mentary epicycloid pattern has the same shape, turning points, and
turning angle as the ‘‘original’’ pattern under the transformation

� 0 ¼ (
� � ); (
 0 � � 0) ¼ �;


 0=� 0 ¼ (1� �=
)�1; t̂ 0p ¼ �(
=� �1)t̂p; ð24Þ
4 D. P. Little (1997), available at http://www.math.dartmouth.edu/dlittle/java/

SpiroGraph.
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where the primes denote the complementary variables. The sign
transformation of the parametric time variable is necessary to
make the spirographic pattern turn in the counterclockwise sense;
the factor (
 /� � 1) is not necessary, but it keeps parametric time
passing at the same rate. For completeness, we note that epicy-
cloids with � < 0 are also allowed and correspond to the smaller
circle rotating on the outside of the larger circle (although such
solutions are not considered here).

The parametric forms in equation (20) completely specify the
geometry of the orbit (within the spirographic approximation).
The velocity is given by the derivatives of the parametric equa-
tions with respect to physical time; i.e.,

vx ¼ � (
 � � ) sin t̂p þ �



�
� 1

� �
sin

(
 � � )t̂p
�

� �
 �
d t̂p

dt
;

vy ¼ �(
 � � ) cos t̂p þ �

�



�
� 1

�
cos

(
 � � )t̂p
�

� �
 �
d t̂p

dt
:

ð25Þ

The direction of the velocity vector is thus determined (inde-
pendent of the derivative d t̂p /dt ) for any point along the orbit.
Since the radial displacement is given by � ¼ (x2 þ y2)1

=2, the
magnitude of the velocity is determined from conservation of
energy, which can be written in the dimensionless form

v2 ¼ v 2x þ v2y ¼
1

1þ �
� �; ð26Þ

where v 2(physical) ¼ v 2(2�0). We can complete the descrip-
tion by using this result to find the variation of parametric time
t̂p with physical time t ; i.e.,

d t̂p

dt
¼ 1

1þ �
� �

� �1=2

;
� 2(
=� � 1)


�
þ (
 � � )2


�
� 


�
� 1

� �
�2

� ��1=2

:

ð27Þ

This expression gives d t̂p /dt in dimensionless form. This for-
malism can be converted into physical units, where d t̂p /dt has
units of inverse time, using the fiducial timescale defined by
t 20 � (rs/2�0).
The full orbits in this problem sweep through the angular

coordinate faster when the orbiting body is near the inner turning
point (and slower near the outer turning point). In this approxi-
mation scheme, both the parametric expressions (eqs. [20] and
[25]) and the conversion factor d t̂p /dt have this qualitative be-
havior. In other words, some of the speed-up is accounted for in
the parametric equations and the rest is contained in d t̂p /dt.

3.2. Comparison with Physical Orbit Solutions

One way to compare the dynamics of the physical problem and
the spirographic approximation is to write the effective equations
of motion in the same form. The equations of motion for the orbit
problem itself are given in the text above. The equation of motion
for the spirograph equivalent system can be written in the form

d�

d�
¼ 1

�

�1�2 þ (1� 2�=
)�2h
(� 2 � � 21)(�

2
2 � � 2)

i1=2 ; ð28Þ

where � ¼ (x2 þ y2)1
=2 is the radial coordinate in the orbital

plane. Here we consider the system to be spirograph equivalent
if the orbits have the same turning points (�1, �2) and the same
turning angle (��, which sets �/
).
Next we note that the equation of motion for both physical

orbits and the spirographic orbits can be written in the form

d�

d�
¼ 1

�

h
(� � �1)(�2 � � )

i�1=2

g (� ); ð29Þ

where the functions g (� ) are slowly varying over the radial range
of the orbits �1 � � � �2. We denote the functions g (� ) as ‘‘dis-
tortion functions’’ because they determine the manner in which
the orbits are distorted from an elliptical shape. For physical orbits
in a Hernquist potential and the corresponding spirographic ap-
proximation, the distortion functions g (� ) take the form

gphys(� )¼
q

�

1þ �

aþ �

� �1=2

; gspi(� ) ¼
�1�2 þ (1� 2�=
)�2

(� þ �1)(� þ �2)½ �1=2
:

ð30Þ

Note that for Keplerian orbits, one obtains the same general form
as equation (29) with g(� ) ¼ q/�ð Þ1=2¼ �1�2ð Þ1=2 ¼ constant. The
function gphys reduces to this form in the limit a ! 1. The corre-
sponding function gspi approaches the Keplerian form in the limit
of low energy (�! 0) and high angular momentum (q ! qmax).
Figures 5 and 6 show how closely the actual (physical) orbits

can be approximated by the spirographic treatment developed

Fig. 4.—Allowed range of parameter space for spirographic orbits (epi-
cycloids) to approximate physical orbits. The drawing point parameter �, which
plays the role of the semimajor axis, has been set equal to unity. The parameter 

represents the radius of the larger circle, and � is the radius of the smaller circle.
The value of � must lie below the dashed line (where � ¼ 
 /2) so that the
turning angle of a half-orbit is greater than �/2. The �-value must also lie above
the dotted line (where � ¼ 
 � �) so that the inner turning point is positive.
Physical orbits are confined to the region below the dashed line and above the
dotted line. The inset diagrams show representative orbital shapes for the de-
limited regions of parameter space. The upper left portion of the diagram, above
the solid line at which 
 ¼ �, is not allowed (� < 
 by definition). The upper
right portion of the diagram (above the dashed line and below the dotted line)
allows for an alternate representation of the physical orbits (see text).
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here. Figure 5 shows the radial excursion of an orbit, with the
dimensionless radius plotted as a function of angle, for a physical
orbit and the corresponding spirographic orbit. The two curves
are nearly indistinguishable, which vindicates the approximation
for this system (� ¼ 0:90, q=qmax ¼ 0:75).

Next we need to quantify the difference between the physical
orbits and the spirographic approximation to the orbits over the
entire parameter space. We can characterize the available param-
eter space in terms of the quantities (�, q/qmax), where both varia-
bles have the range 0 � �; q=qmax � 1. The difference between the
two orbits at a particular radius � can be measured by the quantity

�g

g
�
gphys(� )� gspi(� )

gphys(� )
; ð31Þ

where the distortion functions g are defined above. The difference
between two orbits can be measured by the rms of the difference
(�g) /g averaged over an entire orbit, i.e., over the range of radii
�1 � � � �2. For a benchmark comparison, we find the portion of
parameter space for which the rms difference is less than 10%.
This value of 10% is arbitrary. However, in many applications,
such as the LMC orbit considered in the following section, the
observational errors are typically in the range 10%–20%. The
result is shown in Figure 6. For the region in the plane above
the solid curve, the orbits can be represented as epicycloids (spiro-
graph patterns) with an effective error less than 10%. Figure 6
also shows the portion of the �-q plane for which the orbits are
close to Keplerian in the same sense. The Kepler approximation
is also characterized by a function g (see above), and the dashed
curve marks the locus of points for which the Keplerian approx-
imation differs from the physical orbit by 10%. The Keplerian
approximation is thus valid only for the portion of parameter

space to the left and above the dashed curve. The bottom portion
of the �-q plane shown in Figure 6 corresponds to low angular
momentum and hence nearly radial orbits. The portion of pa-
rameter space below the dot-dashed curve can be modeled, again
within 10%, as radial orbits (for which we have analytic solu-
tions; see x 3.3).Note that for sufficiently deep orbits (�k0:9), the
combination of the spirographic and radial approximations is
sufficient to describe the orbits; this portion of parameter space
corresponds to ��P 0:073. Finally, the location of the orbit of the
LMC is shown in the diagram and is found to be squarely within
the spirographic regime (as discussed in x 4).

Another way to assess the validity of the spirographic ap-
proximation is to see how well the orbits conserve energy and
angular momentum. Conservation of energy is built into the ap-
proximation (through the conversion factor d t̂p /dt) and is satisfied
exactly. However, the spirographic orbits follow slightly different
paths (than the physical orbits) and experience small variations in
angular momentum over the course of an orbital cycle.Within the
spirographic formalism, the angular momentum in dimensionless
form is given by jspi ¼ jxvy � yvxjd t̂p /dt, which can be written

jspi ¼
1

1þ �
� �

� �1=2

;

�2(
=��1)� (
��)2þ�(
��)(
=��2)cos(
 t̂p=�)

�2(
=��1)2þ (
��)2�2�(
��)(
=��1)cos(
 t̂p=�)
� �1=2 :

ð32Þ

Fig. 5.—Comparison of the radial coordinate as a function of turning angle
for the physical orbit problem in a Hernquist potential (solid curve) and the
equivalent spirograph orbit (dashed curve). The two systems are chosen to have
the same radial turning points (�1 and �2) and the same angular displacement per
half-orbit �� 
 1:84 (��/� 
 0:585). These values correspond to the energy
� ¼ 0:90 and the angular momentum variable q/qmax ¼ 0:75 for the Hernquist
potential. According to the method of distortion functions developed in the text,
the two orbit shapes differ by 2.2%; the spirographic orbit conserves angular
momentum to an accuracy of 0.3%. For comparison, the shape of the physical
orbit differs from that of a Keplerian orbit with the same turning points by 69%.

Fig. 6.—Regions of parameter space for which the Keplerian and spiro-
graphic approximations are valid for the Hernquist profile. The region of the �-q
plane above the solid curve corresponds to orbital parameters for which the rms
deviation in the shape of the physical orbits from that of the spirographic ap-
proximation to the orbits is less than 10%. Similarly, the region above the
dashed curve is where the rms deviation of the physical orbits from Keplerian
orbits is less than 10%. The region above the dotted curve is where the spiro-
graphic approximation conserves the angular momentum of the orbit to an
accuracy of 10%. Finally, the region below the dot-dashed curve is where the
orbits are radial to within 10%. The large hexagon at (�; q/qmax) 
 (0:32; 0:69)
marks our best estimate for the orbital parameters of the LMC. The accompa-
nying (short) curves show the variation of the orbital parameters with variations
in the Galactic scale radius rs (open squares) and enclosed mass Min (open
triangles).
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If the spirographic approximation were exact, this expression
would be constant. In general, the approximation scheme leads
to a small variation (�j ) /j over the course of an orbit. The dotted
curve in Figure 6 shows the trajectory in parameter space for
which the angular momentum has an rms deviation of 10% over
the course of an orbit. In the region above the curve—most of
parameter space—the variation in angular momentum is less
than 10%. Note that the requirement of angular momentum con-
servation, as enforced here, is less stringent than that of orbital
shape, as measured by the distortion functions (compare the
dotted and solid curves in Fig. 6). Since conservation of angular
momentum is not precisely satisfied, the spirographic formalism
does not provide an exact solution to any approximate physical
problem; on the other hand, it does provide an extremely good
approximation to the exact physical problem.

3.3. Orbital Decay under a Frictional Force

Within the spirographic approximation, we can calculate how
orbits change under the action of a frictional force. As an exam-
ple, we consider the frictional force f per unit mass to be pro-
portional to the velocity so that

f ¼ � 1

T
v; ð33Þ

where the leading coefficient is constant and T has units of time
(this form applies to the low speed limit of dynamical friction;
e.g., see Binney & Tremaine 1987). The torque exerted on the
orbiting body is given by r < f, and the time rate of change of
the specific angular momentum j in terms of spirographic ele-
ments becomes

dj

dt
¼

� r 2s
T


�2� (
 � �)2 þ (
 � �)�(
 � 1) cos (1þ 
)t̂p
� �� 
 dt̂p

dt
;

ð34Þ

where 
 � (
 � � ) /� and where the conversion factor d t̂p /dt is
given by equation (27), including the fiducial timescale t0. The
change in angular momentum over each half-orbit can be written

� j ¼
Z �1=2

0

dt
dj

dt
¼ � r 2s

T

Z ��=


0

d t̂p
�

�2 � (
 � �)2

þ (
 � �)� (
 �1) cos ½(1þ 
)t̂p�


;

ð35Þ

where we have changed the variable of integration (to parametric
time) in the second equality. This procedure allows us to evaluate
the integral to obtain

�j ¼ � r 2s
T

�

�2 � (
 � �)2

� ��




� �
: ð36Þ

For comparison, in the limit of circular orbits (where 
; � ! 0,
and 
 ! 1) the change in angular momentum reduces to � j ¼
�(r 2s /T )�

2(�/2). This latter form is that expected from applying
a constant torque over a specified time (a half-orbital period).
The difference between the circular expression and equation (36)
shows how the geometry of the orbit affects the decay of angular

momentum.Within the spirographic approximation, this expres-
sion for the change in angular momentum is exact.
Next we consider the loss of orbital energy. The work done on

the orbiting body by the frictional force over a half-orbit leads to
a loss of energy, which can be written

�E ¼
Z

f = v dt ¼ � r 2s
T

Z �1=2

0

dt
�
�2
2 þ (
 � �)2

� 2�
(
 � �) cos (1þ 
)t̂p
� �
 dt̂p

dt

� �2

:

ð37Þ

The integral can be simplified by changing the integration var-
iable to parametric time. In this case, however, one factor of
d t̂p /dt is left over. Invoking the mean value theorem, we can
pull the extra factor out of the integral and the expression for
�E becomes

�E ¼ � r 2s
T

d t̂p

dt

� �
�2
2 þ (
 � �)2
� � ��




� �
: ð38Þ

If we could identify the correct value of hdt̂p/dti, then the above
expression would be exact within the spirographic formalism. In
practice, we have to settle for an approximation; the mean value
hd t̂p /dti 
 (��/
�1=2) will suffice for most applications. In sum-
mary, the loss of energy per half-orbit becomes

�E 
 � r 2s
T�1=2

�2
2 þ (
 � �)2
� � ��




� �2

: ð39Þ

In addition to the approximation made in using the spirographic
form (which typically leads to errors of a few percent), this ex-
pression for energy loss contains a few percent error incurred in
the evaluation of the integral.

4. THE ORBIT OF THE LARGE MAGELLANIC CLOUD

As an application of the solutions found here, we consider
the orbit of the LMC in the potential of the Galaxy. Using obser-
vational data in conjunction with the treatment developed above,
we find the orbital elements of the LMC motion. The closest
equivalent spirographic approximation reproduces the physical
orbit to a precision of �6%–7%, and we thereby obtain a para-
metric (and hence analytic) description of the orbit.
For this demonstration, we take the following observed quan-

tities as given. The observed velocities of the motion of the
LMC in Galactic coordinates (van der Marel 2002) are as fol-
lows: radial velocity vr ¼ 84 � 7 km s�1, tangential velocity v�¼
281� 41 km s�1, and total velocity vT ¼ 293 � 39 km s�1. The
quoted errors lie in the range 8%–15% and result in uncertainties
of comparable order in the derived quantities of the orbit. The
distance to the LMC is now reasonably well known, with r lmc 

50 kpc (e.g., van der Marel 2002). We also need to specify the
total mass Min contained within the LMC orbit; using velocity
data from a large number of Milky Way satellites, including the
LMC, Kochanek (1996) finds Min ¼ 5 � 1ð Þ ; 1011 M�. These
quantities are sufficient to specify the orbit within the framework
developed here, i.e., assuming that the potential of the Galaxy
can be modeled as a Hernquist potential over the range of radii
probed by the LMCorbit. For completeness, we note that in order
to reproduce the proper Galactic rotation curve at the solar circle,
we would need to include additional disk/bulge components that
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are neglected here (and which introduce another source of un-
certainty in the orbital parameters).

Conservation of energy implies

1

2
v 2T ¼ �0 ��þ 1

1þ �lmc

� �

 207 km s�1

� �2
; ð40Þ

where �lmc ¼ r lmc /rs. The scale�0 of the potential can be written
in terms of known quantities:

�0 ¼
GM1
rs

¼ GMin

r lmc

(1þ �lmc)
2

�lmc


 207 km s�1
� �2(1þ �lmc)

2

�lmc

:

ð41Þ

We can solve the above two equations for the dimensionless en-
ergy � to obtain

� ¼ 1þ �lmc � �lmc=�

(1þ �lmc)
2


 1

(1þ �lmc)
2
; ð42Þ

where we have defined � � 2GMin /(r lmcv
2
T ). The current obser-

vational estimates suggest that � 
 1, which leads to the second
approximate equality. Using the definition of q, we can write

q¼ v2�
2GMin

rlmc

� ��1
" #

�3lmc

(1þ �lmc)
2

 0:92

�

�3lmc
(1þ �lmc)

2
; ð43Þ

where we have used the observational results quoted above to
obtain the numerical coefficient.

If the scale length rs of the Galaxy and mass Min are known,
equations (42) and (43) specify the energy and angular momen-
tum of the LMC orbit. The working estimate for Min uses data
from many satellites of the Milky Way (Kochanek 1996) and is
reasonably secure (so that � 
 1 � 0:2). We estimate rs as fol-
lows. Numerical simulations of the formation of darkmatter halos
show that the density distributions approach a nearly universal
form (NFW) when properly scaled. A recent numerical study
(Navarro et al. 2004) indicates that the halo density profiles
should be scaled so that they line up at r�2, the radius at which the
logarithmic slope of the density profile s ¼ d log �/d log r ¼ �2.
The paper also shows that for halos with galactic masses (rotation
velocities �200 km s�1), the radius r�2 ¼ 18 28 h�1 kpc. For
the Hernquist density profile used here, the logarithmic slope s ¼
�2 occurs at � ¼ 1

2
, so that rs ¼ 2r�2 (note that this relation is

different for the original NFW profile, where r�2 ¼ rs). Using
h ¼ 0:7, we estimate the scale length of the Galaxy to be rs 

65 kpc. As a result, �lmc ¼ r lmc /rs 
 0:77 and our estimates for
the energy and angular momentum of the LMC orbit are

� 
 0:32; q 
 0:134 (q=qmax 
 0:69): ð44Þ

The solid hexagon in Figure 6 marks the location of the LMC
orbit in the plane of possible orbits. Note that the orbit falls
within the region where the spirographic approximation is valid.
The observed quantities used to estimate the orbital parameters
are uncertain at the�10% level, so the resulting orbital elements
are subject to comparable uncertainties.

Using the values of � and q found here, we can specify the other
parameters of the LMCorbit. The inner turning point r1 
 46 kpc,
the outer turning point r2 
 114 kpc, and the effective semimajor
axis of the orbit r� ¼ rs�� 
 82 kpc. With these estimates for the
turning points, the generalized eccentricities of the LMC orbit are
e ¼ (�2� �1) / (2��) 
 0:41 and ẽ ¼ (�2 � �1) / (�2 þ �1) 
 0:43.

The turning angle of the half-orbit is given by��/� 
 0:706, so
the orbit is far from closing. The total radial period � 
 1:75 Gyr,
which is comparable to the period of the equivalent circular orbit
�c ¼ 2�(r 3lmc /GMin)

1=2 
 1:5 Gyr.
For the estimates of � and q found here, the rms deviation of

the physical orbit from its spirographic approximation is�6.6%.
Because this difference is much smaller than the uncertainties
in the orbit due to observational error and systematics, there is
no practical difference between the actual physical orbit and its
spirographic approximation. For comparison, the rms deviation
of the physical orbit from the Keplerian approximation is much
larger (about 17%). The spirographic orbital elements (in phys-
ical units) are thus 
 ¼ 48 kpc, � ¼ 14 kpc, and � ¼ 80 kpc.
The corresponding spirographic orbital eccentricity es ¼ (
 �
� ) /� 
 0:425. Figure 7 shows an overlay of the physical orbit
and its approximate form given by the spirographic formalism.
The curves are shown in the orbital plane, and the phases of the
orbits are aligned. The close agreement between the two orbits
argues that the spirographic approximation is adequate for mod-
eling the LMC orbit.

In the discussion thus far, we have assumed that the scale
length rs and mass Min of the Galaxy within the radius of the
LMC are known. The possible variation of these quantities pro-
vides an important source of uncertainty in the orbital elements.
For example, if we assume that the scale length rs is completely
unknown, then equations (42) and (43) constrain the LMC pa-
rameters to lie along the curve defined by

q 
 0:92(1�
ffiffi
�

p
)3��1=2: ð45Þ

If we allow the scale length rs to vary over the range 50 � rs �
80, bracketing the estimated value, the allowed orbits in the �-q

Fig. 7.—Predicted shape of the LMC orbit in the potential of the Galaxy. The
coordinates x and y represent the plane of the orbit and are expressed in kilo-
parsecs. The solid curve shows the orbital shape for a Hernquist potential using
our best estimate for the dimensionless orbital energy and angular momentum
(�; q/qmax) ¼ (0:32; 0:69). The dashed curves shows the spirographic (ana-
lytic) approximation to the orbit. The shape of the orbits agree to within about
7%, as measured by the distortion functions (eqs. [30] and [31]). As another
measure, the analytic (spirographic) orbit conserves angular momentum to an
accuracy of 1%. For comparison, the observational determination of the orbital
parameters is subject to 10%–20% uncertainties.
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plane lie on the locus of points marked by open squares in Figure
6. Similarly, we can vary themass of the Galaxywithin the current
LMC position by varying the mass parameter � in the above
equations [� � Min /(5 ; 1011 M�)]. If we let the enclosed mass
vary over its allowed range � ¼ 1 � 0:2 (Kochanek 1996), the
orbit lies along the locus of points marked by open triangles in
Figure 6.

This analysis implies a lower limit on the mass Min . In order
for the LMC to be in a bound orbit, � > 0 and equation (42) im-
plies that

� >
�lmc

(1þ �lmc)
¼ r lmc

r lmc þ rs
: ð46Þ

The scale length rs cannot be arbitrarily large. If we adopt a
conservative upper limit on rs based on the results of numeri-
cal studies (e.g., Navarro et al. 2004; Bullock et al. 2001), then
rs < 100 kpc and hence � > 1

3
. The corresponding mass limit

becomesMin > 1:7 ; 1011 M�. This limit is consistent with pre-
vious estimates of Kochanek (1996) and others (van der Marel
2002; Wilkinson & Evans 1999; Lin et al. 1995).

Next we apply the frictional formulas developed in x 3.3 to the
orbit of the LMC (see also Murai & Fujimoto 1980). The above
analysis determines the values for the spirographic parameters

, �, and �. Using these results in equation (36), we find that
the change in angular momentum over a half-orbit is given by
� j 
 �3:12r 2s /T . The angular momentum itself is given by j ¼
rs 2q�0ð Þ1=2. Putting these results together with the parameters of
the LMC orbit, we find that the fractional change in angular mo-
mentum per orbit is given by

� j

j

 �0:94

T

1 Gyr

� ��1

: ð47Þ

The timescale T can be evaluated using previously known re-
sults (Binney & Tremaine 1987). The new result found here is
that the change in angular momentum (per orbit) obtained us-
ing the true orbital shape,� j / ½
� 2 � (
 � � ) 2�� /
 , is larger
than that of the equivalent circular orbit (� j / � 2/2) by 31%.

5. ORBITAL PROPERTIES FOR GENERAL
MASS DISTRIBUTIONS

The discussion thus far has focused on orbits in the Hernquist
potential and spirographic approximations to those orbits. In this
sectionwe show that awider class of potentials leads to orbitswith
similar shape and can be adequately modeled using the spiro-
graphic approximation. Toward this end, we prove a series of
results that apply to all physical potentials (xx 5.1 and 5.3) and find
the region of parameter space for which the spirographic ap-
proximation is valid for a collection of particular potentials (x 5.2).

5.1. General Constraints on Orbital Shape

This section presents a set of general constraints on orbit shapes
for any extendedmass distribution. This set of constraints not only
delimits the allowed orbital paths, but also shows that spiro-
graphic curves (epicycloids) provide reasonable approximations
to the orbits for general extendedmass distributions. The potential
for any suchmass distribution allows for two and only two turning
points for bound orbits (Contopoulos 1954). This constraint limits
the orbital path to lie within the annulus �1 � � � �2. We also
know that the turning angle for a half-orbit is confined to the range
�/2 � �� � � (Contopoulos 1954). To proceed further, we as-
sume that the turning points and the turning angle (�1, �2, and�� )

are given, and find constraints on the path taken as the orbit travels
from (�2, 0) to (�1, ��) in the orbital plane. To illustrate these
constraints, which are general, we plot one particular example in
Figure 8. Here we use turning points �1 ¼ 0:284, �2 ¼ 0:893, and
a turning angle �� ¼ 2:01 (for a Hernquist profile, these values
correspond to the choices of dimensionless energy � ¼ 0:5 and
angular momentum q/qmax ¼ 0:5, but the constraints derived
below hold for any physical potential).
One can show that the orbits contain no inflection points

(S. Tremaine 2005, private communication). A related constraint
can be found by using the definition of the turning angle and find-
ing an upper bound on the magnitude of the derivative |d�/d�|.
Since the potential is monotonic,  �  (�1) ¼ �þ q/�21 over the
radii of interest, and this bound takes the form

��� d�
d�

���
max

¼ �
� 2

� 21
�1

� �1=2

: ð48Þ

The integral of this quantity produces a curve of minimum radius
� for a given angle �, and this curve has the form

�(� ) ¼ �1 csc �þ sin�1(�1=�2)
� �

: ð49Þ

This function starts at the outer turning point and reaches the
inner turning point ‘‘as soon as possible,’’ in the sense that any
real orbit must travel inward more slowly as a function of angle
�. This argument produces a complementary limiting form—the
orbit could stay at the outer turning point for as long as possible
and then plunge inward (along a path of maximum |d�/d�|) just in

Fig. 8.—General constraints on orbital shape for an arbitrary potential. The
boldfaced curve shows the spirographic orbit for given turning points (open
symbols, with radii marked by the inner and outer circles) and a given turning
angle for a half-orbit. The two solid lines represent an upper limit on how fast the
orbit can turn, so that the orbit must trace a path between the two lines. Similarly,
the dashed curves depict a limit on how slowly the orbit can turn; this limit
corresponds to elliptical orbits and physical orbits must fall between these
curves as well. The dotted curves represent the constraint that the orbit cannot
turn any faster than the orbit of the uniform density model (which has
�� ¼ �/2, and all orbits must have�� 	 �/2). Physical orbits (for given �1, �2,
��) must lie between the three pairs of constraints, thereby limiting the orbital
shape to be reasonably close to that of the spirographic orbit.
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time to reach the inner turning point at � ¼ ��. The true orbit is
confined to lie between the two aforementioned curves, which are
shown as the solid lines in the illustrative example of Figure 8.

We can also consider the slowest possible turning of the orbit.
The turning angle �� � � (Contopoulos 1954) and only attains
the value of � in the Keplerian limit. The proof of this result
shows that the magnitude of the derivative |d�/d�| is always
greater than that of the Keplerian orbit. As a result, the orbit must
fall (from the outer turning point toward the inner turning point)
faster than the Keplerian orbit with the same turning points, and
the true orbit must lie within the Keplerian ellipse. As before, this
argument provides a complementary constraint: if we construct a
Keplerian orbit that has the same turning points and reaches the
inner turning point at � ¼ ��, and trace the orbit backward out to
the outer turning point, the physical orbit must lie outside the
curve. The physical orbit must thus lie between these two el-
lipses, which are shown as dashed curves in Figure 8.

In general, as the density profile become less centrally con-
centrated, the turning angle decreases. In particular, �� ¼ � in
the limit of a point mass (the Keplerian limit), and the turning an-
gle�� ¼ �/2 for a uniform density distribution (� ¼ constant).
Since physical orbits are confined to have turning angle �� 	
�/2, we argue that the uniform density orbit falls toward the inner
turning point faster than any other case. The uniform density
model thus provides a benchmark for comparison, and its orbits
are determined by the function fc(� ) defined by

fc(� ) ¼ (� 2 � � 21)(�
2
2 � � 2): ð50Þ

We want to show that physical orbits are bounded by the orbit of
the uniform density model, with the turning points �1, �2 chosen
to coincide with those of the physical orbit. Consider the dif-
ference in angle between an arbitrary physical orbit [determined
by f (� )] and the constant density benchmark case [determined by
fc(� )]. We define the difference in turning angle at a given radius
to be Q(� ) � �(�; f )� � (�; fc), so that

Q(� ) ¼
Z �2

�

d�

�

� ffiffiffi
q

p

f 1=2
� �1�2

f
1=2
c

�
: ð51Þ

Now we look for the maximum angular difference. The deriv-
ative dQ/d� ¼ 0 if and only if f (� )/q ¼ fc(� )/(�1�2)

2 at some
intermediate point �1< � < �2 [recall that f /q ¼ fc /(�1�2)

2 at
the turning points �1, �2 by construction]. Next one can show that
f (� ) /q ¼ fc(� ) /(�1�2)2 at an intermediate point only if the sec-
ond derivative of the physical potential d2 /d� 2 is less than that
of the constant density potential (since d 2 c /d�

2 < 0 for the
constant density case, ‘‘less than’’ means larger inmagnitude and
negative). Finally, we argue that the constant density potential
has the greatest negative curvature of any physically relevant
potential, so that the derivative dQ/d� 6¼ 0. This result implies
that the difference in turning angle between any physical orbit
and the orbit of the constant density potential must be mono-
tonic. By inspection we find that Q is monotonically increasing.
As a result, physical orbits are confined to lie outside the limiting
curve found by integrating the orbit of a constant density po-
tential (see eq. [50]); i.e.,

�(� ) ¼ �

4
� 1

2
sin�1 (� 21 þ � 22)�

2 � 2� 21�
2
2

� 2(� 22 � � 21)

� �
: ð52Þ

As before, a complementary bound exists. Since the orbit cannot
turn faster than equation (52), one can construct a solution in
which the orbit stays at the outer turning point as long as possible

and then follows a function of the form given in equation (52) to
the inner turning point. Physical orbits must lie within such a
curve. This argument leads to the pair of dotted curves shown in
Figure 8.

The above constraints limit the trajectory taken by an orbit in
any extended mass distribution. Each of the constraints leads to
a pair of bounding curves, with the true physical orbit confined
to lie between each pair of curves. The resulting combination of
constraints implies an orbit much like that of the epicycloid
(spirographic) curve. This set of constraints is illustrated in Fig-
ure 8 for one particular case, but this class of constraints holds for
all orbits.

5.2. Allowed Parameter Space for Specific Potentials

Another way to illustrate the usefulness of the spirographic
approximation is to explicitly calculate the allowed regions of
parameter space for a collection of extended mass distributions.
In addition to the Hernquist profile discussed above, we calculate
orbits for three additional potentials and find the regimes of pa-
rameter space for which the spirographic approximation is valid.
The first additional model is the NFW profile, where the density
distribution and potential can be written in the dimensionless
form

� ¼ 1

�(1þ � )2
;  ¼ 1

�
ln (1þ � ): ð53Þ

Next we consider a density distribution that is more concen-
trated and has the form

� ¼ 1

� 3=2(1þ
ffiffiffi
�

p
)4
;  ¼ 1

(1þ
ffiffiffi
�

p
)2
: ð54Þ

We denote this case as the 3/2 model (from the power-law slope
of its density profile in the inner limit). Like the Hernquist model,
these potentials reach a finite central value, and we have scaled
the dimensionless fields so that  (0) ¼ 1. As a result, the energy
� is confined to the range 0 � � � 1. For a given energy, each
potential allows a maximum value qmax of the angular momen-
tum parameter (qmax corresponds to a circular orbit) and the q
parameter is confined to the range 0 � q/qmax � 1.

We also consider the Jaffe model, where the density profile has
the form of a singular isothermal sphere for small radii, but falls
more quickly at large radii and reaches finite total mass (Jaffe
1983). These profiles have the form

� ¼ 1

� 2(1þ � )2
;  ¼ V0 ln

1þ �

�

� �
: ð55Þ

Unlike the previous cases, this potential does not reach a finite
value at the center, and hence the dimensionless energy � does
not have a finite range. The other potentials described above are
defined over the energy range 0 � � � 1 and allow orbits over
the full radial extent 0 � � � 1. In order to compare the Jaffe
model with these other potentials, we adopt the value V0 ¼ 1

5
;

with this normalization, the orbits for � ¼ 1 have an effective
semimajor axis �� 
 0:0041 (instead of �� ! 0).

For each potential defined above, we have calculated the or-
bits. For each physical orbit, we obtain the turning points (�1, �2)
and turning angle��, and use the results of x 3 to define a spiro-
graphic approximation to the orbital path. The departure of the
true orbit from its spirographic approximation is then calculated
using the method of distortion functions developed in x 3.2. For
these potentials, Figure 9 shows the region of parameter space
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for which the spirographic approximation to the orbits is valid,
with an accuracy of (at least) 10%. The allowed region of the
�-q plane lies above the various curves: Hernquist profile (solid
curve), NFW profile (dashed curve), the 3/2 profile (dotted
curve), and the Jaffe model (dot-dashed curve; keep in mind that
the parameter space for the Jaffe model extends beyond the por-
tion of the �-q plane shown here). At low energies correspond-
ing to large radius orbits, the spirographic approximation has a
limited range of validity for all of the potentials. At higher en-
ergy, the regime of parameter space for spirographic orbits de-
pends on the degree of central concentration of the density
profile. The Hernquist and NFW profiles have the same density
dependence for small � (� � ��1) and similar ranges of validity.
In general, the region of validity of the spirographic approxima-
tion shrinks as the power-law index of the inner density profile
increases (compare the previous models with the 3/2 model and
the Jaffe model). This finding, that less centrally concentrated
mass distributions give rise to orbits that aremore spirographic in
shape, can be understood from analytical considerations: in the
limit of a uniform density distribution, the turning angle of the
orbits has the value �� ¼ �/2 and the corresponding distortion
function is identical to that of the spirographic approximation
(see eq. [30] in the limit � ! 
 /2). For completeness, we note
that this analysis only considers the shape of the orbits. In order
to provide a complete description of the dynamics, one must in-
clude the transformation between parametric time and physical
time (the analog of eq. [27]), and this transformation depends on
the potential.

Each potential also has a region of parameter space for which
the Keplerian approximation is valid (these regions are not de-
limited here). The density profiles for the Hernquist and Jaffe
models approach the form � � ��4 at large radii and hence reach

the Keplerian regime for sufficiently large � (low-energy �). In
contrast, the enclosed mass for the NFW profile diverges loga-
rithmically and hence the Keplerian approximation is never ap-
plicable. The 3/2 model lies between these two cases, with a
narrow regime of parameter space (at the low-� edge of the plane)
for which the Keplerian approximation is valid.

5.3. Definitions of Orbital Eccentricity

The definition of orbital eccentricity necessarily contains an
ambiguity for extendedmass distributions. Specifically, we show
here that the two alternate definitions of eccentricity e ¼ (�2�
�1)/2�� and ẽ ¼ (�2� �1)/(�2 þ �1) are equivalent if and only if
the potential is Keplerian. The first definition e measures eccen-
tricity relative to the circular orbit given by �� and has a maxi-
mum value emax < 1. The second definition ẽ is not centered on
the circular orbit, but attains the full range 0 � ẽ � 1. The first
half of the argument is well known—the two definitions of ec-
centricity are the same for a Keplerian potential.
To complete the argument, we suppose that the claim is true so

that e ¼ ẽ. Then �1þ �2 ¼ 2��, where �� is the orbital radius of
the circular orbit (for a given �), and �1 and �2 are the turning
points. For a general potential  (� ), the turning points are given
by the zeros of the function f (� ), defined by

f (� ) ¼ ��� 2 þ � 2 (�)� q: ð56Þ

The radius �� of the circular orbit is given by the condition
df /d� ¼ 0. In order for �1 þ �2 ¼ 2�� to be valid for all orbits,
the function f (� ) must be symmetric with respect to the point
� ¼ ��; i.e., f (�� þ x) ¼ f (�� � x) for all x2½0; ���. If the func-
tion f (� ) is symmetric, all derivatives of odd order must vanish
at � ¼ ��. The first derivative df /d� vanishes by definition. The
third derivative must also vanish and is given by

d 3f

d�3
¼ � 2

d 3 

d� 3
þ 6�

d 2 

d� 2
þ 6

d 

d�
¼ 0: ð57Þ

This condition does not depend on � or q, but only on the form of
the potential. Furthermore, the possible range of � and q allow for
all values of �� to be realized. In order for the third derivative of
f (� ) to vanish for all orbits, equation (57) must hold for all values
of �. This differential equation is second order in the function
U � d /d� and has two linearly independent solutions: UA ¼
1/�2 and UB ¼ 1/�3. The first solution corresponds to  A � 1/�,
which is the Keplerian case. The second solution leads to  B �
1/� 2, which implies a negative mass density and is thus unphys-
ical. The original differential equation (57) is third order and has
a third solution,  C ¼ constant, which is not of interest. Thus,
we have shown that if e ¼ ẽ, then the potential  ¼ 1/� and is
Keplerian. In order words, the validity of the condition �1þ �2 ¼
2�� requires a Keplerian potential.

6. CONCLUSION

This paper has explored orbital trajectories for the Hernquist
potential and other extended mass distributions. Our results can
be summarized as follows:

1. The first set of results quantitatively determines the orbits
for the Hernquist potential. The analysis is straightforward. The
orbits have a rosette shape (Fig. 1), as waswell-known previously
in qualitative terms (Binney & Tremaine 1987). The resulting or-
bits can be described by their turning angles�� and half-periods
�1/2 for a given value of energy � and angular momentum q (see
Figs. 2 and 3). In analogy to the Kepler problem, we have defined

Fig. 9.—Regions of parameter space for which the spirographic approxi-
mation is valid for a collection of potentials. The region of the �-q plane above
the curves corresponds to orbital parameters for which the shape of the physi-
cal orbits deviates from that of the spirographic approximation by less than
10%. The potentials considered here are the Hernquist potential (solid curve),
the NFW profile (dashed curve), the 3/2 model with density profile � �
��3=2(1þ

ffiffiffi
�

p
)�4 (dotted curve), and the Jaffe model (dot-dashed curve). The

Jaffe model differs from the other cases in that the potential does not reach a
finite central value and hence the plane depicted here does not represent all of its
parameter space.
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osculating orbital elements (Table 1). The Hernquist profile al-
lows for a number of results to be derived analytically. We have
found the energy and angular momentum as function of the turn-
ing points (eq. [6]), the maximum angular momentum for a given
energy (eq. [9]), a radial scale �� that plays the role of the semi-
major axis (eq. [10]), the analog of Kepler’s law (x 2.2), an ana-
lytic form for the turning angle in the limit of circular orbits
(eq. [16]), and an expression for the radial period in the limit of
low angularmomentum (eq. [17]). This latter expression provides
a good approximation to the radial period for all orbits (Fig. 3).
We have also constructed a fitting formula (eq. [11]) that specifies
the turning angle��(�, q) as a function of energy and angularmo-
mentum over most of parameter space.

2. This paper shows that the physical orbits of the Hernquist
profile can be modeled to a good approximation by epicycloid
curves, more commonly known as spirograph patterns. These
curves have analytic solutions, which can be written in the pa-
rametric form of equation (20). These parametric equations al-
low for a completely analytic description of the orbits, and we
have developed this approximation in some detail. The trans-
formation between spirographic orbital elements and physical
parameters is given by equations (21)–(22). The effective ec-
centricity of a spirographic curve is given by equation (23). Most
importantly, the spirographic approximation faithfully reproduces
the shape of the physical orbits to an accuracy better than 10%
over most of parameter space (Fig. 6). The spirographic approx-
imation conserves energy exactly (using the transformation of
eq. [27] to relate physical time to parametric time) and conserves
angular momentum to a greater accuracy than it reproduces the
orbital shape.

3. As a demonstration of the efficacy of this approach, we
have found the shape of the orbit of the LMC as it traces through
the halo of our Galaxy. If we model the Galactic potential with a
Hernquist potential, the dimensionless energy and angular mo-
mentum of the LMC orbit are (�; q/qmax) ¼ (0:32; 0:69) and the
orbit takes the form shown in Figure 7. The spirographic ap-
proximation conserves angular momentum to an accuracy of 1%
and reproduces the shape of the physical orbit to an accuracy of
6%–7%. These levels of error are much smaller than both the ob-
servational uncertainties in the problem and the errors incurred in
approximating the Galaxy as a smooth, spherical, extended mass
distribution. As a result, the analytic (spirographic) approxima-
tion provides a good working model for the orbit (with essen-
tially no loss of accuracy).

4. In addition to considering orbits in the Hernquist potential,
this paper argues that the results found here—in particular the
spirographic approximation to the orbits—apply to general ex-
tended mass distributions. Toward this end, we have presented
general constraints on the orbital shape (x 5). Figure 8 shows that
the orbits are restricted to be relatively close to the shape of an
epicycloid for any extended mass distribution. Figure 9 shows
that the spirographic approximation is valid over much of the
�-q plane for a collection of specific potentials (including the
NFW profile). We have also shown that the definition of orbital
eccentricity necessarily contains an ambiguity: for a given mass
distribution, the eccentricity can either be defined to be symmet-
ric with respect to a radial scale that plays the role of the semi-
major axis or defined solely in terms of the turning points (see

eq. [12]); the two definitions coincide only for a Keplerian po-
tential (x 5.3).

Many astrophysical systems involve orbits in extended mass
distributions, and an analytic approximation to the orbits is often a
useful tool. This paper develops the spirographic approximation,
which can be used to model orbits in a wide variety of contexts.
One such example, that of the LMC orbit, has been studied in this
paper, but many additional applications of this formalism remain.
Possible future topics include orbits of galaxies within their clus-
ters, orbits of dark matter particles for dark matter detection strat-
egies, globular cluster orbits in galactic potentials, orbits of small
halos as they merge into larger halos during structure formation,
orbits of young stars in their birth aggregates, and many others.

In addition to its direct applications, the approach developed
here can be generalized in a number of ways. This work has
focused on the Hernquist potential, although some comparison
with other models has been included (see Fig. 9). Other cases
should be considered and compared with the spirographic ap-
proximation. These include the HH model, in which two dif-
ferent Hernquist potentials are nested together (Ciotti 1996);
models with varying degrees of central concentration (Tremaine
et al. 1994); andmodels that include a point mass at the origin (to
model the central black holes found in many galactic centers).
For power-law potentials, the turning angles have already been
computed (Touma & Tremaine 1997) and the spirographic ap-
proximation can be readily implemented. The orbits in this pa-
per are confined to a single plane, for spherical potentials, but
the spirographic approximation can be implemented for two-
dimensional orbits in nonspherical potentials.

We note that the Hernquist potential and alternate forms (e.g.,
the NFW profile or the Jaffe model) are just models for more
complicated physical structures. In the case of galactic halos,
for example, the true potential must have corrections due to
clumpiness and hence small-scale inhomogeneities, a galactic
disk (or multiple disk components) and hence a large-scale qua-
drapole moment, perturbations from nearby large galaxies (e.g.,
Andromeda), and other complications. Many of these effects
enter at the�10% level and imply 10% corrections to the orbital
shape calculated from a spherical potential. This paper shows
that over most of the relevant parameter space, the spirographic
approximation leads to orbital shapes that agree with those of
the Hernquist profile (and others; see Fig. 9) to an accuracy of
better than 10%. Thus, in practice, the spirographic approach
can be used as an approximation to the orbits without losing ac-
curacy (compared to numerically calculated orbits) while pro-
viding an analytic description of the dynamics.
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