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Abstract

For a given skew symmetric real n × n matrix N , the bracket [X, Y ]N = XNY − Y NX defines
a Lie algebra structure on the space Sym(n, N) of symmetric n × n real matrices and hence a corre-
sponding Lie-Poisson structure. The purpose of this paper is to investigate the geometry, integrability,
and linearizability of the Hamiltonian system Ẋ = [X2, N ], or equivalently in Lax form, the equation
Ẋ = [X, XN + NX] on this space along with a detailed study of the Poisson geometry itself. If N
has distinct eigenvalues, it is proved that this system is integrable on a generic symplectic leaf of the
Lie-Poisson structure of Sym(n, N). This is established by finding another compatible Poisson structure.

If N is invertible, several remarkable identifications can be implemented. First, (Sym(n, N), [·, ·]) is
Lie algebra isomorphic with the symplectic Lie algebra sp(n, N−1) associated to the symplectic form on
Rn given by N−1. In this case, the system is the reduction of the geodesic flow of the left invariant
Frobenius metric on the underlying symplectic group Sp(n, N−1). Second, the trace of the product of
matrices defines a non-invariant non-degenerate inner product on Sym(n, N) which identifies it with
its dual. Therefore Sym(n, N) carries a natural Lie-Poisson structure as well as a compatible “frozen
bracket” structure. The Poisson diffeomorphism from Sym(n, N) to sp(n, N−1) maps our system to a
Mischenko-Fomenko system, thereby providing another proof of its integrability if N is invertible with
distinct eigenvalues. Third, there is a second ad-invariant inner product on Sym(n, N); using it to identify
Sym(n, N) with itself and composing it with the dual of the Lie algebra isomorphism with sp(n, N−1),
our system becomes a Mischenko-Fomenko system directly on Sym(n, N).

If N is invertible and has distinct eigenvalues, it is shown that this geodesic flow on Sym(n, N) is
linearized on the Prym subvariety of the Jacobian of the spectral curve associated to a Lax pair formu-
lation with parameter of the system. If, on the other hand, N has nullity one and distinct eigenvalues,
in spite of the fact that the system is completely integrable, it is shown that the flow does not linearize
on the Jacobian of the spectral curve.
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1 Introduction

The Problem and Discussion of the Results. Fix N ∈ so(n), the space of skew symmetric n × n
matrices, also regarded as the Lie algebra of SO(n), the n-dimensional proper orthogonal group. This paper
continues the analysis, begun by Bloch and Iserles in [5], of the following set of ordinary differential equations
on Sym(n), the linear space of n× n symmetric matrices:

Ẋ = [X2, N ]. (1.1)

Here, X ∈ Sym(n), Ẋ denotes the time derivative, and initial conditions are denoted X(0) = X0 ∈ Sym(n).
It is easy to check that [X2, N ] ∈ Sym(n), so that if the initial condition is in Sym(n) then X(t) ∈ Sym(n)
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for all t. As will be seen shortly, this system is Hamiltonian and, despite its quadratic dependence on X,
conservation of energy guarantees that solutions of (1.1) exist for all t ∈ R.

Because of the obvious identity
[
X2, N

]
= [X,XN +NX] = X2N − NX2, equation (1.1) may be

rewritten in the Lax form
Ẋ = [X,XN +NX], (1.2)

again with initial conditions X(0) = X0 ∈ Sym(n).1

Define the N -bracket by [X,Y ]N := XNY − Y NX. It is easy to check that this makes Sym(n) into
a Lie algebra and with this structure it will be denoted Sym(n,N). The structure of this Lie algebra is
completely analyzed in the present paper. Using the trace inner product, identify Sym(n,N) with its dual
and endow it with the associated Lie-Poisson structure. As will be done below, it is straightforward to show
that the system (1.1) is Hamiltonian with respect to this Lie-Poisson structure with Hamiltonian equal the
quadratic form defined by the Frobenius metric. Interestingly, the system is also Hamiltonian with respect
to a compatible “frozen” Poisson structure; this provides a bi-Hamiltonian structure for equation (1.1). We
study the Poisson geometry on Sym(n,N) for both Poisson structures and, in particular, determine the
generic leaves and the Casimir functions of both Poisson structures relative to which the system (1.1) is
bi-Hamiltonian. The Poisson geometry in the case N is not invertible turns out to be particularly rich.

A key result of the paper is that if N has distinct eigenvalues (one of which could be zero), this system
is integrable on the generic symplectic leaf of Sym(n,N) (of either the Lie-Poisson or the frozen Lie-Poisson
structures). The proof makes use of the Lax pair with parameter found in [5] to find a class of integrals
that, as we show using the preceding bi-Hamiltonian structure together with a technique inspired by [22],
are in involution.2 Related work on bi-Hamiltonian structures may be found in [17] and [6]. Independence
is proved directly.

We show that if N is invertible, the Lie algebra Sym(n,N) is isomorphic to the symplectic Lie algebra
sp(n,N−1), where the symplectic form on Rn is given by N−1. Thus, in this case, the system (1.1) is
Lie-Poisson on (the dual of) sp(n,N−1), and so the system is the (Euler-Poincaré or Lie-Poisson) reduction
of the geodesic flow on the underlying symplectic group, denoted by Sp(n,N−1), relative to the Frobenius
metric.

If N is invertible there is a Poisson diffeomorphism from sp(n,N−1) to Sym(n,N), the inverse of which
maps our system to a Mischenko-Fomenko system (see [19; 20; 21])3, thereby providing another proof of
integrability in the case that N is invertible with distinct eigenvalues. In addition, by identifying the
symmetric matrices with themselves by an an ad-invariant inner product if N is invertible (as opposed to
the standard identification by the trace of the product used before which is valid in general, even if N is not
invertible), our flow can be seen as a Mischenko-Fomenko flow on its dual. A byproduct of our work is thus
the bi-Hamiltonian structure for the associated Mischenko-Fomenko system on sp(n,N−1). Bi-Hamiltonian
structures for Mischenko-Fomenko systems were first discussed in [17], [6], and later in [22]. We also note that
the sequence of integrals we produce by our Lax pair with parameter method on Sym(n,N) is not produced
by shifting the arguments in Casimir functions. Relative to the Lie-Poisson structure on Sym(n,N), our
method for analyzing this system appears to be fundamentally different from completely integrable systems
either of rigid body or Toda type (on symmetric matrices) and none of the standard involution theorems
(see e.g. [25]) seem to be applicable.

Since the system (1.1) is integrable and its integrals are polynomials, one would expect that this system
may be algebraically completely integrable (as defined, for example, in [3]). It turns out that the situation
is quite involved.

If N is invertible and has all eigenvalues distinct, then the linearization criterion in [3] or [11] applies and
the system is linearizable on the Jacobian of the associated spectral curve. In spite of this fact, we could not
prove that the system is algebraically completely integrable. However, the spectral curve has an involution,
and thus the system is in fact linearizable on a Prym variety.

1Integrable equations that bear a formal resemblance to equation (1.1); that is, to (1.2), in the context of free associative
algebras are given in [18] and [24].

2A related result on bi-Hamiltonian structures for rigid body type equations with a parameter can be found in [7]. Note
that the bi-Hamiltonian structure in the present paper is for the equations without parameter, which is more relevant for the
present study.

3We thank A. Bolsinov for this observation and the referee for a related observation.
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If N has odd size, distinct eigenvalues, and nullity one, we show by the concrete study of the case n = 5
that the system (1.1) is not linearizable on the Jacobian of the spectral curve. On the other hand, it was
already shown that the system is integrable, so this situation is an example of an integrable system all of
whose integrals are polynomials but whose flow does not linearize on the Jacobian of the spectral curve.

The Structure of the Paper. In §2, the Lie algebra structure on the space of symmetric matrices induced
by N is introduced and in the case in which N is invertible, the isomorphism with sp(n,N−1) is set up. In
§3, two compatible Poisson structures are defined and the associated bi-Hamiltonian structure is analyzed,
and the symplectic leaves and Casimir functions of both Poisson structures are determined. In §4 the system
(1.1) is shown not to directly lie in this family. However, the dual of a Lie algebra isomorphism defines a
Poisson isomorphism from sp(n,N−1) to Sym(n,N); its inverse maps (1.1) to a Mischenko-Fomenko system
on sp(n,N−1) if N has distinct eigenvalues. This fact provides a proof of complete integrability of (1.1) if
N is invertible with distinct eigenvalues. §5 returns to the system (1.1) on Sym(n,N), presents the Lax pair
with parameter, and finds a new family of functions containing the right number of functionally independent
integrals of motion; this set of functions is thus a candidate for the Liouville integrals. In §6 involutivity of
these integrals is shown using the bi-Hamiltonian structure and §7 proves the independence of these functions
provided that N has distinct eigenvalues and is either invertible or has nullity one. Finally, §8 is devoted to
the proofs of the linearization statements given above.

2 The Lie Algebra and the Euler–Poincaré Form

Regarding N as a Poisson tensor on Rn, the bracket of two functions f, g is defined in the standard way as

{f, g}N = (∇f)TN∇g. (2.1)

The Hamiltonian vector field associated with a function h (with the convention that ḟ(z) = Xh(z) ·∇f(z) =
{f, h} (z)) is easily checked to be given by

Xh(z) = N∇h(z). (2.2)

Quadratic Functions. For each X ∈ Sym(n), define the quadratic Hamiltonian QX by

QX(z) :=
1
2
zTXz, z ∈ Rn.

Let Q := {QX | X ∈ Sym(n)} be the vector space of all such functions. Note that the map Q : X ∈
Sym(n) 7→ QX ∈ Q is an isomorphism. Using (2.2) it follows that the Hamiltonian vector field of QX has
the form

XQX
(z) = NXz. (2.3)

The Poisson bracket of two such quadratic functions is easy to work out.

Lemma 2.1 For X,Y ∈ Sym(n), we have

{QX , QY }N = Q[X,Y ]N , (2.4)

where, as earlier, [X,Y ]N := XNY−Y NX ∈ Sym(n). In addition, Sym(n) is a Lie algebra relative to the Lie
bracket [·, ·]N and with this structure will be denoted Sym(n,N). Therefore, Q : X ∈ (Sym(n,N), [·, ·]N ) 7→
QX ∈ (Q, {·, ·}N ) is a Lie algebra isomorphism.

Proof. Using (2.1), we have

{QX , QY }N (z) = (∇QX) (z)TN (∇QY ) (z) = (Xz)T
NY z = zTXNY z

=
1
2
zT (XNY − Y NX) z = Q[X,Y ]N (z).
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Recall that the notation QV is reserved only for symmetric matrices V . Since X,Y ∈ Sym(n,N) implies
that [X,Y ]N = XNY − Y NX ∈ Sym(n,N) we can write Q[X,Y ]N in the preceding equation.

The bracket [·, ·]N on Sym(n,N) is clearly bilinear and antisymmetric. The Jacobi identity follows by a
straightforward direct verification.

It is a general fact that Hamiltonian vector fields and Poisson brackets are related by

[Xf , Xg] = −X{f,g}, (2.5)

where the bracket on the left hand side is the Jacobi-Lie bracket. Thus, it is natural to look at the corre-
sponding algebra of Hamiltonian vector fields on the Poisson manifold (Rn, {·, ·}N ) associated to quadratic
Hamiltonians. If we take f = QX and g = QY , with Xf = NX and Xg = NY , and recall that the Jacobi-Lie
bracket of linear vector fields is the negative of the commutator of the associated matrices, then we have the
following result, which can also be verified directly.

Proposition 2.2 Equations (2.4) and (2.5) imply

N [X,Y ]N = [NX,NY ] . (2.6)

Letting LH denote the Lie algebra of linear Hamiltonian vector fields on Rn relative to the commutator
bracket of matrices, (2.6) states that the map

X ∈ (Sym(n,N), [·, ·]N ) 7→ NX ∈ (LH, [·, ·])

is a homomorphism of Lie algebras4.

Invertible Case. If N is invertible, then this homomorphism is an isomorphism. In addition, the non-
degeneracy of N implies that n is even and that Rn is a symplectic vector space relative to the symplectic
form defined by N−1, that is, (u,v) 7→ u · N−1v for u,v ∈ Rn. Therefore, the Lie algebra (LH, [·, ·])
is isomorphic to the Lie algebra sp(n,N−1) of linear infinitesimally symplectic maps of Rn relative to the
symplectic form defined above by N−1. Recall that elements Z ∈ sp(n,N−1) are characterized by the
identity ZTN−1 +N−1Z = 0 which is equivalent to the statement that N−1Z is a symmetric n× n matrix.
Thus NX ∈ sp(n,N−1) is equivalent to X = XT , as expected.

We summarize these considerations in the following statement that can also be found in [27] at the end
of remark 22 in §44 page 245.

Proposition 2.3 Let N ∈ so(n). The map Q : X ∈ (Sym(n,N), [·, ·]N ) 7→ QX ∈ (Q, {·, ·}N ) is a Lie algebra
isomorphism. The map Φ : X ∈ (Sym(n,N), [·, ·]N ) 7→ NX ∈ (LH, [·, ·]) is a Lie algebra homomorphism
and if N is invertible it induces an isomorphism of (Sym(n,N), [·, ·]N ) with sp(n,N−1).

Noninvertible Case. Assume that N is a general skew-symmetric matrix, not necessarily invertible. We
shall determine now the structure of the Lie algebra (Sym(n,N), [·, ·]N ). The point of departure is the fact
that if N is non-degenerate, then X ∈ (Sym(n,N), [·, ·]N ) 7→ NX ∈ (LH, [·, ·]) = (sp(n,N−1), [·, ·]) is a Lie
algebra isomorphism. Recall that if Rn has an inner product, which we shall take in what follows to be the
usual dot product associated to the basis in which the skew-symmetric matrix N is given, and L : Rn → Rn

is a linear map, then Rn decomposes orthogonally as Rn = imLT ⊕ kerL. Taking L = N in this statement
and recalling that NT = −N , we get the orthogonal decomposition Rn = imN ⊕ kerN . Let 2p = rankN
and d := n− 2p. Then N̄ := N |im N : imN → imN defines a non-degenerate skew symmetric bilinear form
and, by the previous proposition, (Sym(2p), [·, ·]N̄ ) is isomorphic as a Lie algebra to (sp(2p, N̄−1), [·, ·]). In
this direct sum decomposition of Rn, the skew- symmetric matrix N takes the form

N =
[
N̄ 0
0 0

]
,

4We thank Gopal Prasad for suggesting isomorphisms of this type; they are closely related to well-known properties of linear
Hamiltonian vector fields, as in [16], Proposition 2.7.8.
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where N̄ is a (2p)× (2p) skew-symmetric non-degenerate matrix.
The Lie algebra (Sym(2p), [·, ·]N̄ ) acts on the vector space M(2p)×d of (2p) × d matrices (which we can

think of as linear maps of kerN to imN) by S · A := SN̄A, where S ∈ (Sym(2p), [·, ·]N̄ ) and A ∈ M(2p)×d.
Indeed, if S, S′ ∈ Sym(2p) and A ∈M(2p)×d, then

[S, S′]N̄ ·A = (SN̄S′ − S′N̄S)N̄A = SN̄S′N̄A− S′N̄SN̄A

= S · (S′ ·A)− S′ · (S ·A). (2.7)

Now form the semidirect product Sym(2p)sM(2p)×d. Its bracket is defined by

[(S,A), (S′, A′)] = ([S, S′]N̄ , S ·A′ − S′ ·A)
= (SN̄S′ − S′N̄S, SN̄A′ − S′N̄A) (2.8)

for any S, S′ ∈ Sym(2p) and A,A′ ∈M(2p)×d.
Next, define the Sym(d)-valued Lie algebra two-cocycle

C : Sym(2p) sM(2p)×d × Sym(2p) sM(2p)×d → Sym(d)

by
C((S,A), (S′, A′)) := AT N̄A′ − (A′)T N̄A (2.9)

for any S, S′ ∈ Sym(2p) and A,A′ ∈M(2p)×d. The cocycle identity

C([(S,A), (S′, A′)], (S′′, A′′)) + C([(S′, A′), (S′′, A′′)], (S,A))
+ C([(S′′, A′′), (S,A)], (S′, A′)) = 0

for any S, S′, S′′ ∈ Sym(2p) and A,A′, A′′ ∈ M(2p)×d is a straightforward verification. Now extend
Sym(2p) sM(2p)×d by this cocycle. That is, form the vector space (Sym(2p) sM(2p)×d) ⊕ Sym(d) and
endow it with the bracket

[(S,A,B), (S′, A′, B′)]C :=
(
SN̄S′ − S′N̄S, SN̄A′ − S′N̄A,

AT N̄A′ − (A′)T N̄A
)

(2.10)

for any S, S′ ∈ Sym(2p), A,A′ ∈M(2p)×d, and B,B′ ∈ Sym(d).

Proposition 2.4 The map

Ψ : ((Sym(2p) sM(2p)×d)⊕ Sym(d), [·, ·]C) → (Sym(n,N), [·, ·]N )

given by

Ψ(S,A,B) :=
[
S A
AT B

]
(2.11)

is a Lie-algebra isomorphism.

Proof. It is obvious that Ψ is a vector space isomorphism, therefore only the Lie-algebra homomorphism
condition needs to be verified. So, let (S,A,B), (S′, A′, B′) ∈ (Sym(2p) sM(2p)×d)⊕ Sym(d) and compute

Ψ([(S,A,B), (S′, A′, B′)]) = Ψ(SN̄S′ − S′N̄S, SN̄A′ − S′N̄A,AT N̄A′ − (A′)T N̄A)

=
[

SN̄S′ − S′N̄S SN̄A′ − S′N̄A
(SN̄A′ − S′N̄A)T AT N̄A′ − (A′)T N̄A

]
=

[
S A
AT B

] [
N̄ 0
0 0

] [
S′ A′

(A′)T B′

]
−

[
S′ A′

(A′)T B′

] [
N̄ 0
0 0

] [
S A
AT B

]
= [Ψ(S,A,B),Ψ(S′, A′, B′)]N

as required.

For a different description of the structure of this Lie algebra using its Levi decomposition and not
involving cocycles see [27], §44, Remark 22, page 245.
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Euler–Poincaré Form. The Euler–Poincaré form for the equations can be derived as follows. Identify
Sym(n,N) with its dual using the the positive definite inner product

〈〈X,Y 〉〉 := trace (XY ) , for X,Y ∈ Sym(n,N). (2.12)

Remark. The inner product 〈〈X,Y 〉〉 is not ad-invariant relative to the N -bracket, but the bilinear form

κN (X,Y ) := trace(NXNY ), (2.13)

is invariant, as is easy to check. Note that for N invertible κN is non-degenerate and hence an inner product
and provides another method of identifying Sym(n) with its dual. We shall return to this observation at the
end of §4.

Define the Lagrangian l : Sym(n,N) → R on the Lie algebra (Sym(n,N), [·, ·]N ) by

l(X) =
1
2

trace
(
X2

)
=

1
2

trace
(
XXT

)
=

1
2
〈〈X,X〉〉 . (2.14)

Proposition 2.5 The equations
Ẋ = [X2, N ] (2.15)

are the Euler-Poincaré equations5 corresponding to the Lagrangian (2.14) on the Lie algebra (Sym(n,N), [·, ·]N ).

Proof. Recall that the general (left) Euler-Poincaré equations on a Lie algebra g associated with a La-
grangian l : g → R are given by

d

dt
Dl(ξ) = ad∗ξ Dl(ξ),

where Dl(ξ) ∈ g∗ is the Fréchet derivative of l at ξ. Equivalently, for each fixed η ∈ g, we have

d

dt
Dl(ξ) · η = Dl(ξ) · [ξ, η]. (2.16)

In our case, letting ξ = X and η = Y arbitrary, time-independent, equations (2.16) become

d

dt
〈〈X,Y 〉〉 = 〈〈X, [X,Y ]N 〉〉

= 〈〈X,XNY − Y NX〉〉 ;

that is,

trace
(
ẊY

)
= trace (X(XNY − Y NX))

= trace
(
(X2N −NX2)Y

)
,

which gives the result.

3 Poisson Structures

Two compatible Poisson structures on Sym(n,N) are introduced in this section. Their associated Poisson
geometry is studied in detail. These two structures together with the bi-Hamiltonian methodology will be
the key to proving integrability of (1.1).

5For a general discussion of the Euler-Poincaré equations, see, for instance, [16].
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Two Poisson Structures. Identifying Sym(n,N) with its dual using the inner product 〈〈·, ·〉〉 defined in
(2.12), endows Sym(n,N) with the the (left, or minus) Lie-Poisson bracket

{f, g}N (X) = − trace
[
X

(
∇f(X)N∇g(X)−∇g(X)N∇f(X)

)]
, (3.1)

where ∇f is the gradient of f relative to the inner product 〈〈·, ·〉〉 on Sym(n,N).
Later on we shall also need the frozen Poisson bracket

{f, g}FN (X) = − trace
(
∇f(X)N∇g(X)−∇g(X)N∇f(X)

)
. (3.2)

It is a general fact that the Poisson structures (3.1) and (3.2) are compatible in the sense that their sum is
a Poisson structure (see e.g. Exercise 10.1-5 in [16]).

For what follows it is important to compute the Poisson tensors corresponding to the above Poisson
brackets. Recall that the Poisson tensor can be viewed as a vector bundle morphism B : T ∗(Sym(n,N)) →
T (Sym(n,N)) covering the identity. It is defined by B(dh) = {·, h}N for any locally defined smooth function
h on Sym(n,N). Since Sym(n,N) is a vector space, these bundles are trivial and hence the value BX at
X ∈ Sym(n,N) of the Poisson tensor B is a linear map BX : Sym(n,N) → Sym(n,N) by identifying
Sym(n,N) with its dual using the inner product 〈〈·, ·〉〉.

Proposition 3.1 Denote the value at X ∈ Sym(n,N) of the Poisson tensors corresponding to the Lie-
Poisson (3.1) and frozen (3.2) brackets by BX and CX , respectively. Then for any Y ∈ Sym(n,N) we
have

BX(Y ) = XYN −NYX (3.3)
CX(Y ) = Y N −NY. (3.4)

Proof. Let f and g be locally defined smooth functions on Sym(n,N). The definition of BX gives

〈〈∇f(X), BX(∇g(X)〉〉 = {f, g}N (X)

= − trace
[
X

(
∇f(X)N∇g(X)−∇g(X)N∇f(X)

)]
= trace

[
∇f(X)

(
X∇g(X)N −N∇g(X)X

)]
= 〈〈∇f(X), X∇g(X)N −N∇g(X)X〉〉,

which implies (3.3) since any Y ∈ Sym(n,N) is of the form ∇g(X), where g(X) = 〈〈X,Y 〉〉. Similarly, the
definition of CX gives

〈〈∇f(X), CX(∇g(X)〉〉 = {f, g}FN (X)

= − trace
(
∇f(X)N∇g(X)−∇g(X)N∇f(X)

)
= trace

[
∇f(X)

(
∇g(X)N −N∇g(X)

)]
= 〈〈∇f(X),∇g(X)N −N∇g(X)〉〉,

which proves (3.4).

Hamiltonian Vector Fields. Let us determine the Hamiltonian vector fields associated to a smooth
function for both Poisson brackets. Recall that if g is a Lie algebra, the Lie-Poisson equations defined by
h ∈ C∞(g∗) relative to the minus Lie-Poisson bracket are

µ̇ = ad∗δh/δµ µ

where µ ∈ g∗.
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We shall identify Sym(n,N)∗ with itself via the inner product 〈〈·, ·〉〉. Therefore, for any X,Y, Z ∈
Sym(n,N), we have〈〈(

adN
Y

)∗
X,Z

〉〉
= 〈〈X, [Y, Z]N 〉〉 = trace (XYNZ −XZNY )

= trace ((XYN −NYX)Z) = 〈〈XYN −NYX,Z〉〉

and hence (
adN

Y

)∗
X = XYN −NYX.

If h ∈ C∞(Sym(n,N)), we denote by ∇h(X) the gradient relative to the inner product 〈〈 , 〉〉. Therefore, the
Lie-Poisson equations for h ∈ C∞(Sym(n,N)) are

Ẋ =
(
adN

∇h(X)

)∗
X,

that is,
Ẋ = X∇h(X)N −N∇h(X)X. (3.5)

Similarly, Hamilton’s equations for the frozen bracket are

Ẋ = ∇h(X)N −N∇h(X). (3.6)

In particular, if h(X) = trace(X2)/2, equation (3.5) becomes Ẋ =
[
X2, N

]
. Similarly, if h(X) = trace(X3)/3,

equation (3.6) becomes Ẋ =
[
X2, N

]
.

If N is invertible, we have seen that there is an ad-invariant inner product κN (X,Y ) = trace(NXNY ).

Therefore, we can identify Sym(n,N)∗ with itself using the inner product κN . Denote by
(
adN

Y

)†
the

adjoint relative to κN of the N -adjoint map adN
Y (Z) := [Y,Z]N , for any Z ∈ Sym(n,N). To determine it,

let M,Y,Z ∈ Sym(n,N) be arbitrary (M thought of as an element in the dual), compute

κN

((
adN

Y

)†
M,Z

)
= κN (M, [Y, Z]N ) = trace (NMN(Y NZ − ZNY ))

= trace (N(MNY − Y NM)NZ) = κN ((MNY − Y NM), Z) ,

and conclude that (
adN

Y

)†
M = MNY − Y NM = [M,Y ]N .

If h ∈ C∞(Sym(n,N)), denote by ∇Nh(M) the gradient relative to the inner product κN . Therefore, the
Lie-Poisson equations for h ∈ C∞(Sym(n,N)) are

Ṁ =
(
adN

∇N h(M)

)†
M =

[
M,∇Nh(M)

]
N
. (3.7)

For example, if h(M) = trace(N2MN2M)/2, then for any S ∈ Sym(n,N) we get

trace(N2MN2S) = dh(M) · S = κN

(
∇Nh(M), S

)
= trace

(
N∇Nh(M)NS

)
and hence

∇Nh(M) = NMN,

so Hamilton’s equations (3.7) are
Ṁ = [M,NMN ]N . (3.8)

Note that if l(X) = 〈〈X,X〉〉 /2 = trace(X2)/2 then the Legendre transform M := ∇N l(X) = N−1XN−1

gives the Hamiltonian

h(M) := κN (M,X)− l(X) =
1
2

trace(N2MN2M).

Hence the Lie-Poisson equation (3.8) is equivalent to the Euler-Poicaré equation (2.15). One can check this
fact explicitly: substituting for M in terms of X in (3.8) gives (2.15) and vice versa.
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Generic Leaves. Next, the dimension of the generic leaves of the two Poisson brackets are determined.
The Lie-Poisson bracket is treated first. The following Proposition follows from [27], §44, Proposition 23,
page 245. We give below an elementary proof.

Proposition 3.2 Let n = 2p+ d, where 2p = rankN . The generic leaves of the Lie–Poisson bracket {·, ·}N

are 2p(p+ d)-dimensional.

Proof. As in the proof of Proposition 2.4, we orthogonally decompose Rn = imN ⊕ kerN so that N̄ =
N | imN : imN → imN is an isomorphism. In this decomposition the matrix N takes the form

N =
[
N̄ 0
0 0

]
and, according to the isomorphism Ψ in Proposition 2.4, the matrix X can be written as

X =
[
S A
AT B

]
,

where S ∈ Sym(2p), B ∈ Sym(d), and A ∈M(2p)×d. Therefore, if

Y =
[
U C
CT D

]
∈ Sym(n,N)

with U ∈ Sym(2p), D ∈ Sym(d), C ∈ M(2p)×d, the Poisson tensor of the Lie-Poisson bracket {·, ·}N takes
the form (see Proposition 3.1)

BX(Y ) = XYN −NYX

=
[
S A
AT B

] [
U C
CT D

] [
N̄ 0
0 0

]
−

[
N̄ 0
0 0

] [
U C
CT D

] [
S A
AT B

]
=

[
SUN̄ − N̄US +ACT N̄ − N̄CAT −N̄UA− N̄CB

ATUN̄ +BCT N̄ 0

]
.

Since N̄ is invertible, the kernel of BX : Sym(n,N) → Sym(n,N) is therefore given by all U ∈ Sym(2p),
D ∈ Sym(d), and C ∈M(2p)×d such that

SUN̄ − N̄US +ACT N̄ − N̄CAT = 0 and UA+ CB = 0.

To compute the dimension of the maximal symplectic leaves, we assume that the matrix X is generic. So,
supposing that B is invertible, we have C = −UAB−1 and(

S −AB−1AT
)
UN̄ − N̄U

(
S −AB−1AT

)
= 0.

Since S−AB−1AT ∈ Sym(2p) is given, this condition is identical to the vanishing of the Poisson tensor on
the dual of the Lie algebra

(
Sym(2p, N̄), [· , ·]N̄

)
evaluated at S−AB−1AT . But N̄ is invertible so, according

to Proposition 2.3, this Lie algebra is isomorphic to sp(2p, N̄−1) whose rank is p. Therefore, the kernel of
the map

U ∈ Sym(2p, N̄) 7→
(
S −AB−1AT

)
UN̄ − N̄U

(
S −AB−1AT

)
∈ Sym(2p, N̄)

for generic S −AB−1AT has dimension p.
Since C = −UAB−1 is uniquely determined and D ∈ Sym(d) is arbitrary, we see that the dimension of

the kernel of BX for generic X has dimension p+ d(d+ 1)/2.
Thus, the dimension of the generic leaf of the Lie–Poisson bracket {·, ·}N is

1
2
(2p+ d)(2p+ d+ 1)− p− 1

2
d(d+ 1) = 2p(p+ d)

as claimed in the statement of the proposition.
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Proposition 3.3 All the leaves of the frozen Poisson bracket {·, ·}FN are

(i) 2p(p+ d)-dimensional if N is generic, that is, all its non-zero eigenvalues are distinct, and

(ii) p(p+ 1 + 2d)-dimensional if all non-zero eigenvalue pairs of N are equal.

Proof. Proceeding as in the proof of the previous proposition and using the same notation for N , X, and
Y , the Poisson tensor of the frozen bracket takes the form

CX(Y ) = Y N −NY =
[
U C
CT D

] [
N̄ 0
0 0

]
−

[
N̄ 0
0 0

] [
U C
CT D

]
=

[
UN̄ − N̄U N̄C
CT N̄ 0

]
.

Thus, since N̄ is invertible, the kernel of CX is given by all U ∈ Sym(2p), D ∈ Sym(d), C ∈ M(2p)×d such
that C = 0 and UN̄ − N̄U = 0.

Since N̄ is non-degenerate, there exists an orthogonal matrix Q such that

N̄ = QT

[
0 V
−V 0

]
Q,

where V = diag(v1, . . . , vp) and vi ∈ R, vi 6= 0 for all i = 1, . . . , p. Therefore,

0 = UN̄ − N̄U = UQT

[
0 V
−V 0

]
Q−QT

[
0 V
−V 0

]
QU

= QT

(
QUQT

[
0 V
−V 0

]
−

[
0 V
−V 0

]
QUQT

)
Q

is equivalent to

Ũ

[
0 V
−V 0

]
−

[
0 V
−V 0

]
Ũ = 0 (3.9)

where Ũ := QUQT ∈ Sym(2p). Write

Ũ =
[
U11 U12

UT
12 U22

]
with U11 and U22 symmetric p× p matrices and U12 an arbitrary p× p matrix. Then (3.9) is equivalent to

U22 = V U11V
−1 = V −1U11V and UT

12 = −V −1U12V = −V U12V
−1. (3.10)

(i) Assume now that vi 6= vj if i 6= j. Since V U11V
−1 = V −1U11V is equivalent to V 2U11V

−2 = U11, it
follows that

v2
i

v2
j

u11,ij = u11,ij for all i, j = 1, . . . , p,

where u11,ij are the entries of the symmetric matrix U11. Since the fraction on the left hand side is never
equal to one for i 6= j, this relation implies that u11,ij = 0 for all i 6= j. Thus U11 is diagonal and U22 = U11.
A similar argument shows that U12 is diagonal. However, then it follows that U12 = −UT

12 which implies
that U12 = 0. Therefore, the kernel of the map U 7→ UN̄ − N̄U is p-dimensional.

Concluding, the dimension of every leaf of the frozen Poisson structure equals 1
2 (2p + d)(2p + d + 1) −

p− 1
2d(d+ 1) = 2p(p+ d).

(ii) The other extreme case is when vi = vj =: v for all i, j = 1, . . . , p. Then V = vI, where I is the
identity matrix, and (3.10) becomes U22 = U11, UT

12 = −U12. Therefore, the kernel of the map U 7→ UN̄−N̄U
has dimension equal to 1

2p(p+ 1) + 1
2p(p− 1) = p2.

Concluding, the dimension of every leaf of the frozen Poisson structure equals 1
2 (2p + d)(2p + d + 1) −

p2 − 1
2d(d+ 1) = p(p+ 1 + 2d).
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Casimir Functions. The next job will be to determine Casimir functions for both brackets. Here is the
main result.

Proposition 3.4 Let the skew symmetric matrix N have rank 2p and size n := 2p+d. Choose an orthonor-
mal basis of R2p+d in which N is written as

N =

 0 V 0
−V 0 0
0 0 0

 ,
where V is a real diagonal matrix whose entries are v1, . . . , vp.

(i) If vi 6= vj for all i 6= j, then p + d(d + 1)/2 Casimir functions for the frozen Poisson structure (3.2)
are given by

Ci
F (X) = trace(EiX), i = 1, . . . , p+

1
2
d(d+ 1),

where Ei is any of the matrices Skk 0 0
0 Skk 0
0 0 0

 ,
0 0 0

0 0 0
0 0 Sab

 .
Here Skk is the p× p matrix all of whose entries are zero except the diagonal (k, k) entry which is one
and Sab is the d × d symmetric matrix having all entries equal to zero except for the (a, b) and (b, a)
entries that are equal to one.

(ii) If vi = vj for all i, j = 1, . . . , p, then p2 +d(d+1)/2 Casimir functions for the frozen Poisson structure
(3.2) are given by

Ci
F (X) = trace(EiX), i = 1, . . . , p2 +

1
2
d(d+ 1),

where Ei is any of the matricesSkl 0 0
0 Skl 0
0 0 0

 ,
 0 Akl 0
−Akl 0 0

0 0 0

 ,
0 0 0

0 0 0
0 0 Sab

 .
Here Skl is the p × p symmetric matrix having all entries equal to zero except for the (k, l) and (l, k)
entries that are equal to one and Akl is the p× p skew symmetric matrix with all entries equal to zero
except for the (k, l) entry which is 1 and the (l, k) entry which is −1.

(iii) Denote

N̄ =
[

0 V
−V 0

]
The p + d(d + 1)/2 Casimir functions for the Lie-Poisson bracket {·, ·}N on the open set det(B) 6= 0
(see (2.11)) of Sym(2p+ d) are given by

Ck(X) :=
1
2k

trace
([(

S −AB−1AT
)
N̄−1

]2k
)
., for k = 1, . . . , p

and
Ck(X) = trace(XEk), for k = p+ 1, . . . , p+

1
2
d(d+ 1) ,

where Ek is any matrix of the form 0 0 0
0 0 0
0 0 Sab

 .
12



In the special case when N is full rank the Casimir functions are just

Ck(X) =
1
2k

trace
[(
XN−1

)2k
]
, for k = 1, . . . , p,

Proof. To prove (i), recall from Proposition 3.3(i) that the kernel of the Poisson tensor CX has dimension
p+ 1

2d(d+ 1). Moreover, if E belongs to this kernel, then the linear function given by X 7→ trace(EX) has
gradient E, which is annihilated by the Poisson tensor CX . Thus all Ci

F are Casimir functions. Since the
gradients of all these functions are the p+ 1

2d(d+ 1) matrices in the statement which are obviously linearly
independent, it follows that the functions Ci

F form a functionally independent set of Casimir functions for
the frozen bracket {·, ·}FN .

Part (ii) has an identical proof.
Now consider Part (iii). First, we compute the gradient relative to 〈〈·, ·〉〉. We compute for any

δX =
[
δS δA

(δA)T δB

]
∈ Sym(n,N)

the derivative

DCk(X) · δX = trace
(
N̄−1

(
S −AB−1AT

)
N̄−1 · · · N̄−1

(
S −AB−1AT

)
N̄−1(

(δS)− (δA)B−1AT −AB−1(δA)T +AB−1(δB)B−1AT
))
. (3.11)

Now denote

∇Ck(X) =
[
α β
βT γ

]
so that

trace
(
∇Ck(X)(δX)

)
=

〈〈
∇Ck(X), δX

〉〉
= trace

([
α β
βT γ

] [
δS δA

(δA)T δB

])
= trace

(
α(δS) + β(δA)T + βT (δA) + γ(δB)

)
. (3.12)

By (3.11) and (3.12) we have

α = N̄−1
(
S −AB−1AT

)
N̄−1 · · · N̄−1

(
S −AB−1AT

)
N̄−1

β = −N̄−1
(
S −AB−1AT

)
N̄−1 · · · N̄−1

(
S −AB−1AT

)
N̄−1AB−1

γ = B−1AT N̄−1
(
S −AB−1AT

)
N̄−1 · · · N̄−1

(
S −AB−1AT

)
N̄−1AB−1

where in each term we have 2k factors of N̄−1. Therefore

∇Ck(X) =
[

α −αAB−1

−B−1ATα B−1ATαAB−1

]
with α given above. Now we check that all these matrices ∇Ck(X) are in the kernel of the operator of the
Lie-Poisson operator BXY = XYN −NYX. Indeed,

X∇Ck(X)N −N∇Ck(X)X

=
[
S A
AT B

] [
α −αAB−1

−B−1ATα B−1ATαAB−1

] [
N̄ 0
0 0

]
−

[
N̄ 0
0 0

] [
α −αAB−1

−B−1ATα B−1ATαAB−1

] [
S A
AT B

]
=

[
S A
AT B

] [
αN̄ 0

−B−1ATαN̄ 0

]
−

[
N̄α −N̄αAB−1

0 0

] [
S A
AT B

]
=

[
SαN̄ −AB−1ATαN̄ 0
ATαN̄ −BB−1ATαN̄ 0

]
−

[
N̄αS − N̄αAB−1AT N̄αA− N̄αAB−1B

0 0

]
=

[
(S −AB−1AT )αN̄ − N̄α(S −AB−1AT ) 0

0 0

]
.
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This vanishes if and only if

(S −AB−1AT )αN̄ − N̄α(S −AB−1AT ) = 0. (3.13)

However, we know that α = N̄−1
(
S −AB−1AT

)
N̄−1 · · · N̄−1

(
S −AB−1AT

)
N̄−1 where in each factor we

have 2k factors of N̄−1. We replace α with this expression in (3.13) and get

(S −AB−1AT )αN̄ − N̄α(S −AB−1AT )

= (S −AB−1AT )N̄−1
(
S −AB−1AT

)
N̄−1 · · · N̄−1

(
S −AB−1AT

)
N̄−1N̄

− N̄N̄−1
(
S −AB−1AT

)
N̄−1 · · · N̄−1

(
S −AB−1AT

)
N̄−1(S −AB−1AT )

= (S −AB−1AT )N̄−1
(
S −AB−1AT

)
N̄−1 · · · N̄−1

(
S −AB−1AT

)
−

(
S −AB−1AT

)
N̄−1 · · · N̄−1

(
S −AB−1AT

)
N̄−1(S −AB−1AT ) = 0

since both factors are equal; each once contains 2k − 1 factors of N̄−1.
However, sp(2p, N̄−1) is identified with the subalgebra consisting of the (1, 1) blocks of elements of

Sym(n,N) (see Proposition 2.4). The isomorphism S ∈ Sym(2p, N̄) 7→ N̄S ∈ sp(2p, N̄−1) given in Proposi-
tion 2.3 identifies the basis of p Casimirs in the dual of sp(2p, N̄−1) (given by the even traces of the powers
of a matrix) with the functions S 7→ trace

[
(SN̄−1)2k

]
/2k. Therefore the functions Ck for k = 1, . . . , p

given in the statement of the proposition are functionally independent Casimirs for the Lie-Poisson bracket
of Sym(n,N).

To see that the remaining functions Ck(X) = trace(XEk) are Casimirs observe that in this case

∇Ck(X) =
[
0 0
0 Sab

]
and

BX(∇Ck(X)) =
[
S A
AT B

] [
0 0
0 Sab

] [
N̄ 0
0 0

]
−

[
N̄ 0
0 0

] [
0 0
0 Sab

] [
S A
AT B

]
= 0.

Since the matrices Sab span symmetric k×k matrices, these Casimirs are functionally independent. The two
sets of Casimirs are also independent taken together, since each set depends only on a subset of independent
variables and these two sets of variables are disjoint. We have thus obtained p+ d(d+ 1)/2 Casimirs, which
is the codimension of the generic leaf, thus proving that they generate the space of all Casimir functions of
the Lie-Poisson bracket.

The Equations in the Degenerate Case. If N is degenerate, representing it and the matrix X ∈
Sym(n,N) as in Proposition 2.4, the equations Ẋ = [X2, N ] are equivalent to the system

Ṡ = [S2 +ATA, N̄ ]

Ȧ = −N̄(SA+AB)

Ḃ = 0.

Example. It is illuminating to examine the system in the lowest dimension degenerate case, i.e. p = 1 and
d = 1. Let

X =

a e f
e b g
f g c

 =:
[
S A
AT c

]
and

N =

 0 1 0
−1 0 0
0 0 0

 =:
[
N̄ 0
0 0

]
.
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Then the dynamics becomes

ȧ = −2(ae+ eb+ fg)

ḃ = 2(ae+ eb+ fg)
ċ = 0

ė = a2 + f2 − b2 − g2

ġ = af + ge+ cf

ḟ = −(ef + bg + gc) .

In this case the two Casimir functions of the Lie-Poisson bracket are given by

C1 =
1
2

(
−ba+

g2a

c
+ e2 − 2

fge

c
+
f2b

c

)
= −detX

2c

and by C2 = c, so that ċ = 0 in equations of motion expresses the conservation of this Casimir directly.
As we shall see in forthcoming sections the two integrals of motion which prove integrability are trace(X)

and trace(X2). We already know these are conserved since the flow is isospectral. Observe also that
conservation of trace(X) is given by summing the first two equations of motion while trace(X)2/2 is the
Hamiltonian.

We illustrate this example with time plots in Figure 3.1 and two phase plots plots in Figure 3.2.
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Figure 3.1: Time plot of flow in the 3 by 3 case for a, b, c, e, f , and g.

4 The Sectional Operator Equations and Relation to Mischenko-
Fomenko Flows

It is shown that the equation (1.1) can be mapped to a Mischenko-Fomenko type system (see [19; 20; 21] or
[27]) in the case N is invertible with distinct eigenvalues.
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Figure 3.2: Phase plane portraits in the 3 by 3 case projected to the a-e and the b-e planes.

The Mischenko-Fomenko Construction. Consider a semisimple complex or real split Lie algebra g
with Killing form 〈·, ·〉. Let h be a Cartan subalgebra, let a, b ∈ h and a be regular (i.e. its value on every
root is non-zero). Define the sectional operators Ca,b,D : g → g by Ca,b,D(ξ) := ad−1

a adb(ξ1) + D(ξ2)
where ξ = ξ1 + ξ2, ξ2 ∈ h, ξ1 ∈ h⊥ (the perpendicular is taken relative to the Killing form and thus h⊥ is the
direct sum of all the root spaces), and D : h → h is an arbitrary invertible symmetric operator on h. Then
Ca,b,D : g → g is an invertible symmetric operator (relative to the Killing form) satisfying the condition

[Ca,b,D(ξ), a] = [ξ, b] (4.1)

for all ξ ∈ g.
The Lie-Poisson bracket on g∗ ∼= g (the isomorphism being given by the Killing form) has the expression

{f, g}(ξ) = −〈ξ, [∇f(ξ),∇g(ξ)]〉

for any f, g ∈ C∞(g), where ∇ is taken relative to 〈·, ·〉. Hamilton’s equations for h ∈ C∞(g) have thus the
form

ξ̇ = [ξ,∇h(ξ)].

In particular, if

h(ξ) :=
1
2
〈Ca,b,D(ξ), ξ〉

then ∇h(ξ) = Ca,b,D(ξ) since Ca,b,D is 〈·, ·〉-symmetric. Thus the equations of motion are

ξ̇ = [ξ, Ca,b,D(ξ)]. (4.2)

Example: For g = so(n), the Killing form is a multiple of the symmetric bi-invariant two-form (Ω1,Ω2) 7→
tr(Ω1Ω2), and one chooses C−1(Ω) := ΩJ + JΩ for a given diagonal matrix J satisfying Ji + Jj > 0 if i 6= j.
We have

[C(M), J ] = [M,J2]
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for any M ∈ so(n). Then Ṁ = [M,C(M)] is the n-dimensional rigid body equation. Note in this case that
J and J2 are not in the Cartan subalgebra of so(n), but the general theory in [20; 21] deals also with this
situation for any semisimple complex or real split Lie algebra; J an J2 are in the Cartan subalgebra (after
one makes them trace zero) of sl(n,C).

Returning to the general case note that (4.2) can be written as

d

dt
(ξ + λa) = [ξ + λa,C(ξ) + λb] (4.3)

if and only if (4.1) holds.
Now it is obvious that ξ 7→ fk(ξ + λa), k = 1, . . . , ` := rank(g) = dim h, are conserved on the flow

of (4.3), for any element of the basis of the polynomial Casimir functions f1, . . . , f` and any parameter λ.
Since the fk are polynomial, it follows that the coefficients of λi in the expansion of fk(ξ + λa) in powers
of λ are conserved along the flow of (4.2). There are redundancies: some coefficients of λi vanish and other
coefficients are Casimir functions.

Mischenko and Fomenko ([20; 21]) proved the following result.

Theorem 4.1 Let g be a semisimple complex or real split Lie algebra and C : g → g a symmetric oper-
ator satisfying (4.1). Then the Lie-Poisson system ξ̇ = [ξ, C(ξ)] on g defined by the Hamiltonian H(ξ) =
〈C(ξ), ξ〉/2 is completely integrable on the maximal dimensional adjoint orbits of the Lie algebra g and its
commuting generically independent first integrals are the non-trivial coefficients of λi in the polynomial λ-
expansion of

fi,λ(ξ) = fi(ξ + λa)

which are not Casimir functions; here f1, . . . , f` is the basis of the ring of polynomial invariants of g. In
addition, all functions fi,λ commute with H.

A Poisson Isomorphism for N invertible. We want to compare the Lie-Poisson bracket (3.1) on
Sym(n,N) with that on sp(n,N−1)∗.

To obtain the Lie-Poisson bracket on sp(n,N−1)∗ we identify sp(n,N−1)∗ with sp(n,N−1) via the in-
variant non-degenerate symmetric bilinear form

〈〈Z1, Z2〉〉 := trace (Z1Z2) .

Therefore, the Lie-Poisson bracket on sp(n,N−1)∗ ∼= sp(n,N−1) is given by

{φ, ψ}sp(Z) := −〈〈Z, [∇φ(Z),∇ψ(Z)]〉〉 , (4.4)

where ∇ is taken relative to 〈〈·, ·〉〉 and φ, ψ : sp(n,N−1) → R are smooth functions.
In the following proposition, Sym(n,N)∗ is identified with itself using the non-invariant inner product

〈〈·, ·〉〉 (see (2.12)).

Proposition 4.2 The map Z ∈
(
sp(n,N−1), {·, ·}sp

)
7→ ZN ∈ (Sym(n,N), {·, ·}N ) is an isomorphism of

Lie-Poisson spaces.

Proof. By Proposition 2.3, the map Φ : (Sym(n,N), [·, ·]N ) →
(
sp(n,N−1), [·, ·]

)
given by Φ(X) := NX

is a Lie algebra isomorphism. Therefore its dual Φ∗ :
(
sp(n,N−1), {·, ·}sp

)
→ (Sym(n,N), {·, ·}N ) is an

isomorphism of Lie-Poisson spaces (see, e.g., [16]). Since for any Z ∈ sp(n,N−1) and Y ∈ Sym(n,N) we
have

〈〈Φ∗(Z), Y 〉〉 = 〈〈Z,Φ(Y )〉〉 = 〈〈Z,NY 〉〉 = trace(ZNY ) = 〈〈ZN, Y 〉〉

it follows that Φ∗(Z) = ZN .
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Since N is invertible, as we have seen in §3, Sym(n,N)∗ can be identified with itself using the ad-invariant
inner product κN . To compute the pull-back Φ† : sp(n,N−1) → Sym(n,N) if we identify Sym(n,N)∗ with
itself using κN , let Z ∈ sp(n,N) and Y ∈ Sym(n,N). We get

κN (Φ†(Z), Y ) = 〈〈Z,Φ(Y )〉〉 = 〈〈Z,NY 〉〉 = trace(ZNY ) = κN (N−1Z, Y )

and hence
Φ†(Z) = N−1Z. (4.5)

The Mischenko-Fomenko System on
(
sp(n,N−1), {·, ·}sp

)
. We now show that for N with distinct

eigenvalues Φ∗ maps the system (1.1) to a Mischenko-Fomenko system on
(
sp(n,N−1), {·, ·}sp

)
. Indeed,

denoting X := Φ∗(Z) = ZN , we get

Ż = ẊN−1 = [X2, N ]N−1 = X2 −NX2N−1

= ZNZN −NZNZNN−1 = [Z,NZN ].

The following lemma, which can easily be verified, shows that the linear invertible operator C : sp(n,N−1) →
sp(n,N−1) defined by C(Z) = NZN is a sectional operator.

Lemma 4.3 The map C

(i) is well-defined, i.e. NZN indeed belongs to sp(n,N−1),

(ii) is symmetric relative to 〈〈·, ·〉〉,

(iii) satisfies [C(Z), N−1] = [N,Z],

(iv) is of the form Ca,b,D with a = N−1, b = −N , and D having the same formula as C on the Cartan
algebra.

Applying the Mischenko-Fomenko Theorem 4.1 we get the following result.

Proposition 4.4 Let N be invertible with distinct eigenvalues. The system

Ż = [Z,NZN ] (4.6)

is integrable on the maximal dimensional orbits of sp(n,N−1) and its generically independent integrals in
involution are the non-trivial coefficients of λi in the polynomial expansion of 1

k tr(Z + λN−1)k that are not
Casimir functions, k = 2, . . . , n. The Hamiltonian for (4.6) is H(Z) := trace((ZN)2)/2.

Pushing forward Z by the map Φ∗ we obtain the following statement.

Theorem 4.5 Let N be invertible with distinct eigenvalues. The equation Ẋ = [X2, N ] is an integrable
Hamiltonian system on the maximal dimensional symplectic leaf of Sym(n,N) defined by the function l(X) =
tr(X2)/2 relative to the Lie-Poisson bracket (3.1). The independent integrals in involution are the non-
trivial coefficients of λi in the polynomial expansion of 1

k tr(XN−1 +λN−1)k that are not Casimir functions,
k = 2, . . . , n.

The Mischenko-Fomenko System on the Dual of Sym(n). For N invertible we can also show that
our system (1.1) is a system of Mischenko-Fomenko type directly on Sym(n,N) viewed as its own dual under
the ad-invariant inner product κN (X,Y ) = trace(NXNY ) defined in equation (2.13).

Recall from Proposition 2.3 the Lie algebra isomorphism

Φ : X ∈ (Sym(n,N), [ , ]N ) 7−→ Z := NX ∈ (sp(n,N−1), [ , ]).

It is easy to see that the ad-invariant inner product κN on Sym(n,N) is pushed forward by Φ to the non-
degenerate ad-invariant form given by the trace of the product on sp(n,N−1). Therefore, the pull back
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Φ† : sp(n,N−1) → Sym(n,N), where Sym(n,N)∗ is identified with itself using κN , is an isomorphism of
Lie-Poisson spaces. Hence Φ†(Z) = N−1Z maps the Mischenko-Fomenko system (4.6) on sp(n,N−1) to a
Mischenko-Fomenko system on Sym(n,N). A direct computation shows that M := N−1Z satisfies (3.8).

In the ensuing sections we provide a direct proof of integrability on Sym(n,N) for N with distinct
eigenvalues but not necessarily invertible, that is, N has at most one zero eigenvalue. In the invertible case,
we provide a different sequence of integrals and, in addition, derive a second Hamiltonian structure for the
Mischenko-Fomenko system on sp(n,N−1).

5 Lax Pairs with Parameter

To prove that system (1.1) is integrable for any N having distinct eigenvalues, we will compute its flow
invariants. Bear it in mind that, by virtue of the isospectral representation (1.2), we already know that the
eigenvalues of X, or alternatively, the quantities traceXk for k = 1, 2, . . . , n− 1, are invariants.

One way to compute additional invariants is to rewrite the system as a Lax pair with a parameter. One
can do this in a fashion similar to that for the generalized rigid body equations (see [15]).

Theorem 5.1 Let λ be a real parameter. The system (1.2) is equivalent to the following Lax pair system

d

dt
(X + λN) =

[
X + λN,NX +XN + λN2

]
. (5.1)

Proof. The proof is a computation. The only nontrivial power of λ to check is the first. In fact, the
coefficient of λ on the right hand side of equation (5.1) is

[N,NX +XN ] + [X,N2]

= N2X +NXN −NXN −XN2 +XN2 −N2X = 0,

which proves (5.1).

Manakov [15] noticed that the generalized rigid body equations Ṁ = [M,Ω] (see §4), can be written as
a Lax equation with a parameter in the form

d

dt
(M + λJ2) = [M + λJ2,Ω + λJ ]. (5.2)

Note the following contrast with our setting: in the Manakov case the system matrix M is in so(n) and
the parameter J is a symmetric matrix while in our case X is symmetric and the parameter N ∈ so(n).

For the generalized rigid body the nontrivial coefficients of λi, 0 < i < k in the traces of the powers of
M +λJ2 then yield the right number of independent integrals in involution to prove integrability of the flow
on a generic adjoint orbit of SO(n) (identified with the corresponding coadjoint orbit). The case i = 0 needs
to be eliminated, because these are Casimir functions.

Similarly, in our case, the nontrivial coefficients of λi, 0 ≤ i ≤ k, in

hλ
k(X) :=

1
k

trace(X + λN)k, k = 1, 2, . . . , n− 1 (5.3)

yield the conserved quantities. The coefficient of λr, 0 ≤ r ≤ k, in (5.3) is

trace
∑

|i|=k−r

∑
|j|=r

Xi1N j1Xi2 · · ·XisN js , r = 0, . . . , k, k = 1, . . . , n− 1,

where i = (i1, i2, . . . is), j = (j1, j2, . . . js) are multi-indices, iq, jq = 0, 1, . . . , k, and |i| =
∑s

q=1 iq, |j| =∑s
q=1 jq. The coefficient of λk is the constant Nk so it should not be counted. Thus we have r < k. In

addition, since the trace of a matrix equals the trace of its transpose, X ∈ Sym(n,N), and N ∈ so(n), it
follows that

traceXi1N j1Xi2 · · ·XisN js = (−1)|j| traceN jsXjs · · ·Xi2N j1Xi1 .
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Therefore, if r is odd, then necessarily

trace
∑

|i|=k−r

∑
|j|=r

Xi1N j1Xi2 · · ·XisN js = 0

and only for even r we get an invariant. Thus, we are left with the invariants

hk,2r(X) := trace
∑

|i|=k−2r

∑
|j|=2r

Xi1N j1Xi2 · · ·XisN js (5.4)

for k = 1, . . . , n − 1, iq = 1, . . . , k, jq = 0, . . . , k − 1, r = 0, . . . ,
[

k−1
2

]
, where [`] denotes the integer part of

` ∈ R.
The integrals (5.4) are thus the coefficients of λ2r, 0 < 2r < k, in the expansion of 1

k trace(X + λN)k.
For example, if k = 1 or k = 2 then we have one integral, the coefficient of λ0. If k = 3 or k = 4, only
the coefficients of λ2 and λ0 yield non-trivial integrals. If k = 5 or k = 6 it is the coefficients of λ4, λ2,
and λ0 that give non-trivial integrals. In general, for the power k we have

[
k+1
2

]
integrals. Recall that

k = 1, . . . , n− 1. If n− 1 = 2`, we have hence

1 + 1 + 2 + 2 + · · ·+
[
n− 1 + 1

2

]
+

[
n− 1 + 1

2

]
= 1 + 1 + 2 + 2 + · · ·+ `+ `

= `(`+ 1) =
n− 1

2

(
n− 1

2
+ 1

)
=
n− 1

2
n+ 1

2

integrals. If n− 1 = 2`+ 1 then we have

1 + 1 + 2 + 2 + · · ·+
[
n− 2 + 1

2

]
+

[
n− 2 + 1

2

]
+

[
n− 1 + 1

2

]
= 1 + 1 + 2 + 2 + · · ·+ `+ `+ (`+ 1)

= `(`+ 1) + (`+ 1) = (`+ 1)2 =
(n

2

)2

integrals. However, [
n

2

] [
n+ 1

2

]
=


n− 1

2
n+ 1

2
, if n is odd(n

2

)2

, if n is even

Concluding, we have [
n

2

] [
n+ 1

2

]
invariants which are the coefficients of λ2r, 0 < 2r < k, in the expansion of 1

k trace(X + λN)k for k =
1, . . . , n− 1.

We now address the issue of whether or not these integrals are the right candidates to prove complete
integrability of the system Ẋ = [X2, N ].

• If N is invertible, then n = 2p and hence[
n

2

] [
n+ 1

2

]
=

[
2p
2

] [
2p+ 1

2

]
= p2 =

1
2

(
2p2 + p− p

)
=

1
2

(
dim sp(2p,N−1)− rank sp(2p,N−1)

)
which is half the dimension of the generic adjoint orbit in sp(2p,N−1). Therefore, these conserved
quantities are the right candidates to prove that this system is integrable on the generic coadjoint orbit
of Sym(n,N). This will be proved in the next sections.
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• If N is non-invertible (which is equivalent to d 6= 0), then n = 2p+ d and hence[
n

2

] [
n+ 1

2

]
=

[
2p+ d

2

] [
2p+ d+ 1

2

]
=

(
p+

[
d

2

])(
p+

[
d+ 1

2

])
= p2 + p

([
d

2

]
+

[
d+ 1

2

])
+

[
d

2

] [
d+ 1

2

]
= p2 + pd+

[
d

2

] [
d+ 1

2

]
.

The right number of integrals is p(p + d) according to Proposition 3.2, so this calculation seems to
indicate that there are additional integrals. The situation is not so simple since there are redundancies
due to the degeneracy of N . Note, however, that if d = 1, then we do get the right number of integrals.
We shall return to the study of the degenerate case in §7.

Remark. Recall that in the special case when N is invertible, we found the sequence of integrals given in
Theorem 4.5. Note that these integrals have a different form from the family of integrals in (5.4). This does
not necessarily mean that the two sets of functions are functionally independent.

6 Involution

In this section we prove involution of the integrals found in the previous section for arbitrary N ∈ so(n).

Bi-Hamiltonian Structure. We begin with the following observation.

Proposition 6.1 The system Ẋ = X2N −NX2 is Hamiltonian with respect to the bracket {f, g}N defined
in (3.1) using the Hamiltonian h2(X) := 1

2 trace(X2) and is also Hamiltonian with respect to the compatible
bracket {f, g}FN defined in (3.2) using the Hamiltonian h3(X) := 1

3 trace(X3).

Proof. We have already implicitly checked the first statement using Euler-Poincaré theory, but here is a
direct verification. We want to show that the condition ḟ = {f, h2}N for any f determines the equations
Ẋ = X2N −NX2. First note that d

dtf(X) = trace(∇f(X)Ẋ). Second, since ∇h2(X) = X, the right hand
side {f, h2}N becomes, by (3.1),

{f, h2}N (X) = − trace
[
X

(
∇f(X)NX −XN∇f(X)

)]
= − trace

(
∇f(X)NX2 −∇f(X)X2N

)
.

Thus, Ẋ = X2N −NX2 as required.
To show that the same system is Hamiltonian relative to the frozen Poisson bracket, we proceed in a

similar way. Noting that ∇h3(X) = X2, we get from (3.2)

{f, h3}FN (X) = − trace
(
∇fNX2 −X2N∇f

)
= − trace

(
∇fNX2 −∇fX2N

)
,

and hence Ẋ = X2N −NX2, as before.
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Involution. Next we begin the proof that the
[

n
2

] [
n+1

2

]
integrals given in (5.4), namely

hk,2r(X) := trace
∑

|i|=k−2r

∑
|j|=2r

Xi1N j1Xi2 · · ·XisN js ,

where k = 1, . . . , n − 1, iq = 1, . . . , k, jq = 0, . . . , k − 1, r = 0, . . . ,
[

k−1
2

]
, are in involution. It will be

convenient below to write the expansion of hλ
k starting with the highest power of λ, that is,

hλ
k(X) =

1
k

trace (X + λN)k =
k∑

r=0

λk−rhk,k−r(X) . (6.1)

As explained before, not all of these coefficients should be counted: roughly half of them vanish and the last
one, namely, hk,k, is the constant Nk. Consistently with our notation for the Hamiltonians, we set hk = hk,0.

Firstly we require the gradients of the functions hλ
k .

Lemma 6.2 The gradients ∇hλ
k are given by

∇hλ
k(X) =

1
2
(X + λN)k−1 +

1
2
(X − λN)k−1. (6.2)

Proof. We have for any Y ∈ Sym(n,N),

〈〈∇hλ
k(X), Y 〉〉 = dhλ

k(X) · Y = trace
(
(X + λN)k−1Y

)
=

1
2

trace
((

(X + λN)k−1 + (X − λN)k−1
)
Y

)
.

Since 〈〈 , 〉〉 is non-degenerate on Sym(n,N), the result follows.

Proposition 6.3
BX(∇hλ

k(X)) = CX(∇hλ
k+1(X)) (6.3)

Proof. Using (3.3) we get

BX(∇hλ
k(X)) = X∇hλ

k(X)N −N∇hλ
k(X)X

=
1
2

[
X(X + λN)k−1N +X(X − λN)k−1N

−N(X + λN)k−1X −N(X − λN)k−1X
]

=
1
2

[
(X + λN)kN − λN(X + λN)k−1N + (X − λN)kN + λN(X − λN)k−1N

−N(X + λN)k + λN(X + λN)k−1N −N(X − λN)k − λN(X − λN)k−1N
]

=
1
2

[
(X + λN)kN + (X − λN)kN −N(X + λN)k −N(X − λN)k

]
= ∇hλ

k+1(X)N −N∇hλ
k+1(X) = CX(∇hλ

k+1(X))

by (3.4), which proves the formula.

Proposition 6.4 The functions hk,k−r satisfy the recursion relation

BX(∇hk,k−r(X)) = CX(∇hk+1,k−r(X)). (6.4)
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Proof. Substituting (6.1) into (6.3) we obtain

k∑
r=0

λk−rBX (∇hk,k−r(X)) =
k+1∑
r=0

λk+1−rCX (∇hk+1,k+1−r(X)) .

Since ∇hk+1,k+1(X) = Nk+1, formula (3.4) implies that CX (∇hk+1,k+1(X)) = 0. Thus on the right hand
side the sum begins at r = 1. Changing the summation index on the right hand side from r to r − 1 and
identifying the coefficients of like powers of λ yields (6.4).

Remark. It is worth making a few remarks about Propositions 6.3 and 6.4. Note that unlike the similar
recursion for the rigid body Manakov integrals (see e.g. [27] and [22]), our polynomial recursion relation (6.3)
does not have a premultiplier λ on the right-hand side and the polynomials on the left and right hand sides
appear to be of different order. This cannot be and indeed is not so. Indeed, the highest order coefficient on
the right hand side vanishes by virtue of following result.

Corollary 6.5 The functions hk,k−1(X) are Casimirs for the frozen Poisson structure, i.e.

CX (∇hk,k−1(X)) = 0 (6.5)

for all k.

Proof. By (6.1), hk,k−1(X) = trace
(
Nk−1X

)
, so its gradient equals ∇hk,k−1(X) = Nk−1. So (3.4)

immediately gives (6.5).

The recursion relations (6.4) for r = 0 also imply the following relation between the Hamiltonians that
can also be easily checked by hand.

Corollary 6.6
BX (∇hk(X)) = CX (∇hk+1(X)) (6.6)

Example: An interesting nontrivial example of the recursion relation to check isBX(dh3,2(X)) = CX(dh4,2(X)),
where h3,2(X) = trace(N2X) and h4,2(X) = trace(N2X2)+ 1

2 trace(NXNX). This example illustrates how
the recursion relation works despite the apparent inconsistency in order.

Involution follows immediately, using the recursion relations.

Proposition 6.7 The invariants hk,k−r are in involution with respect to both Poisson brackets {f, g}N and
{f, g}FN .

Proof. The definition of the Poisson tensors BX and CX and the recursion relation (6.4) give

{hk,k−r, hl,l−q}N = 〈〈∇hk,k−r(X), BX(∇hl,l−q(X))〉〉
= 〈〈∇hk,k−r(X), CX(∇hl+1,l−q(X))〉〉
= {hk,k−r, hl+1,l−q}FN = −{hl+1,l−q, hk,k−r}FN

= −〈〈∇hl+1,l−q(X), CX(∇hk,k−r(X))〉〉
= −〈〈∇hl+1,l−q(X), BX(∇hk−1,k−r(X))〉〉
= −{hl+1,l−q, hk−1,k−r}N = {hk−1,k−r, hl+1,l−q}N

for any k, l = 1, . . . , n−1, r = 1, . . . , k and q = 0, . . . , l−1. Of course, in these relations we assume that k−r
and l − q are even, for if at least one of them is odd, the identity above has zeros on both sides. Repeated
application of this relation eventually leads to Hamiltonians hk,k−r where either k − r is a power of λ that
does not exist for k, in which case the Hamiltonian is zero, or one is led to h0,0 which is constant. This
shows that {hk,k−r, hl,l−q}N = 0 for any pair of indices.

In a similar way one shows that {hk,k−r, hl,l−q}FN = 0.
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Bi-Hamiltonian Structure on sp(n,N−1). Using the bi-Hamiltonian property of system (1.1) and the
Poisson isomorphism in Proposition 4.2 we get the following statement.

Theorem 6.8 The Lie-Poisson isomorphism Z ∈
(
sp(n,N−1), {·, ·}sp

)
7→ ZN ∈ (Sym(n,N), {·, ·}N ) in-

duces a bi-Hamiltonian structure for the Mischenko-Fomenko equations (4.6) on sp(n,N−1). The second
Hamiltonian structure is

{f, g}N−1(Z) = − trace
(
N−1[∇f(Z),∇g(Z)]

)
for any f, g ∈ C∞(sp(n,N−1) and the Hamiltonian corresponding to this Poisson structure is h(Z) =
trace

(
(ZN)3

)
/3.

7 Independence

To complete the proof of integrability we need to show that the integrals hk,2r are independent. We will
demonstrate this first in the generic case when N is invertible with distinct eigenvalues.

By (5.4), the gradients of the integrals hk,2r have the form

∇hk,2r(X) :=
∑

|i|=k−2r−1

∑
|j|=2r

Xi1N j1Xi2 · · ·XisN js (7.1)

where k = 1, . . . , n− 1, iq = 1, . . . , k, jq = 0, . . . , k − 1, r = 0, . . . ,
[

k−1
2

]
.

The Generic Case. We consider the case N invertible with distinct eigenvalues. Therefore d = 0 and
n = 2p. In this case we show that the integrals hk,2r given in (5.4) are independent, and hence the system
(1.1) is integrable.

Theorem 7.1 For N invertible with distinct eigenvalues, the integrals hk,2r given by equation (5.4) are
independent.

Proof. We are concerned with the linear independence (in a generic sense) of (7.1) where k = 1, . . . , n− 1,
iq = 1, . . . , k, jq = 0, . . . , k−1 and r = 0, . . . [ 12 (k−1)]. We recall that N is invertible with distinct eigenvalues
and, without loss of generality, assume that X is diagonal,

X = diagµ.

This reduces the statement of the theorem to a problem about the independence of polynomials in single
matrix variable.

Now, we aim to prove a stronger statement: the terms

vi,j = Xi1N j1Xi2 · · ·XisN js

are independent for all multi-indices i and j in the above range. Note however that each vi,j is a q-degree
polynomial in µ1, µ2, . . . , µn, where q = k − 2r − 1 ∈ {0, . . . , n− 2}. Let

Hq = {vi,j | |i| = q, |j| even}.

Clearly, in a generic sense, if linear dependence exists, it must exist within the set Hq. In other words, if
we can prove that there is no linear dependence within each Hq, we are done. (Note that since k ≤ n − 1
in the expression (7.1) there is no dependence of powers of X on lower powers through the characteristic
polynomial.)

There is nothing to prove for q = 0. For q = 1 we have

H1 = {XN j | j even} ∪ {N jX | j even}.
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Suppose that there exists linear dependence in H1. Then there necessarily exist ρ0, ρ2, . . . , ρn−2 and
κ0, κ2, . . . , κn−2, not all zero, such that

X
(∑

ρ2jN
2j

)
+

(∑
κ2jN

2j
)
X = 0 = XR(N) +K(N)X = 0.

Therefore,
µa[R(N)]a,b + [K(N)]a,bµb = 0, a, b = 1, . . . , n.

Generically (i.e., for all µ except for a set of measure zero) this can hold only if R(N),K(N) = 0. But
degR,degK ≤ n − 1 and, since the eigenvalues of N are distinct, the degree of the minimal polynomial of
N is n. Therefore K,R ≡ 0, a contradiction. Hence there is no linear dependence.

We continue to q = 2. Now

H2 = {Xi1N j1Xi2N j2Xi3 : i1 + i2 + i3 = 2, j1 + j2 even}.

Assume that there exist ρi,j , not all zero, such that∑
i,j

ρi,jX
i1N j1Xi2N j2Xi3 = 0.

Therefore ∑
i,j

ρi,j

∑
b

µi1
a µ

i2
b µ

i3
c (N j1)a,b(N j2)b,c = 0, a, c = 1, . . . , n.

Note that we want the above to hold for all real µk, but this is possible only if

0 =
∑
i,j

ρi,j

∑
b

(N j1)a,b(N j2)b,c =
∑
i,j

ρi,j(N j1+j2)a,c, a, c = 1, . . . , n,

thus ∑
i.j

ρi,jN
j1+j2 = 0.

We again obtain a polynomial in N2 of degree < n/2, which cannot be zero: a contradiction.
We can continue for higher s in an identical manner.

Hence, since we have involution and independence, we have proved the following.

Theorem 7.2 For N invertible with distinct eigenvalues the system (1.1) is completely integrable.

Corollary 7.3 For N odd dimensional with distinct eigenvalues and nullity one, the system (1.1) is com-
pletely integrable.

Proof. In this case we have d = 1 and n = 2p+ 1. All eigenvalues are distinct with one of them being zero.
The above proof of independence still holds, the only change being that the characteristic (and minimal)
polynomial of N is of form Nw(N2), where w is a polynomial of degree (n− 1)/2.

Remark. Independently Li and Tomei [14] have shown the integrability of the same system in precisely
the two cases discussed in this paper employing different techniques; they use the loop group approach
suggested by the Lax equation with parameter (5.1) and give the solution in terms of factorization and the
Riemann-Hilbert problem.

8 Linearization of the Flow

We have demonstrated integrability of the system (1.1) for appropriate N by showing involution and inde-
pendence of a sufficient number of integrals. The purpose of this section is to analyze the linearization of
this system on the Jacobi variety of the curve

det(zI − λN −X) = 0

using the theory discussed in [3] and [11], for example (see also [12], [13], [9], [1]).
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Linearization on the Jacobian for N Invertible and Generic. Let us denote X(λ) := X + λN and
Y (λ) := NX + XN + λN2. For N invertible with distinct eigenvalues (n := 2p), choose an orthonormal
basis of R2p in which N is written as

N =
[

0 V
−V 0

]
,

where V is a real diagonal matrix whose entries are v1, . . . , vp.
Denote by xk,l the entries of the matrix X and put it in the form

X =
[
U C
CT R

]
,

where U ∈ Sym(p), R ∈ Sym(p), and C ∈Mp×p. Then the matrix Y (λ) can be written as

Y (λ) =
[
−λV 2 + V CT − CV V R+ UV

−V U −RV −λV 2 + CTV − V C

]
.

The plane algebraic curve (called a spectral curve), associated to each X(λ), namely,

ΓX(λ) := {(λ, z) ∈ C× C | det(zI −X(λ)) = 0},

is preserved by the flow of (5.1); the functions which are defined by the coefficients of the characteristic
polynomial Q(λ, z) of X(λ) are constants of motion of (5.1). Similarly, for each X(λ) the isospectral variety
of matrices AX(λ) defined by

AX(λ) := {X ′(λ) | X(λ) and X ′(λ) have the same characteristic polynomial}

is preserved by the flow of (5.1). Notice that the spectral curve and the isospectral variety depend on the
values of the constants of motion only (i.e., on the vector c = (qkl), where qkl is the coefficient of λkzl in
Q(λ, z)). Sometimes one writes Γc and Ac instead of ΓX(λ) and AX(λ). Notice that the spectral curve Γc

is non-singular for generic values of c. Let Γc be the compactification in the projective plane P2
C of Γc. For

generic values of c the projective curve Γc is also non-singular. Let us compute the points at infinity of the
spectral curve. The equation of the affine spectral curve is:

z2p + v2
1v

2
2 ...v

2
pλ

2p +Q1(λ, z) = 0, (8.1)

where the polynomial Q1(λ, z) has degree strictly less than 2p. Put λ = ν/z0 and z = ζ/z0. Now, set z0 = 0
in the equation

z2p
0 Q(ν/z0, ζ/z0) = 0

of the projective spectral curve Γc. We get the points at infinity

{P1, . . . , P2p} := Γc \ Γc,

with Pk+1 = (1, βk+1, 0), k = 0, 1, . . . , 2p− 1, where

βk+1 := v1/p exp
(
i
(2k + 1)π

2p

)
and v := |v1v2 · · · vp|.

At each of these points the meromorphic functions λ and z on Γc have a pole of order 1. Note also that the
genus of the plane curve Γc is g := (p− 1)(2p− 1) (the genus of a non-singular plane curve is given by the
well-known formula g = (n− 1)(n− 2)/2, where n is the degree of the homogeneous polynomial equation of
the curve; see also [11]).

Take now a generic value of the vector c such that Γc is non-singular and note that for generic (λ, z) ∈ Γc,
the eigenspace of X(λ) with eigenvalue z is one-dimensional. If we denote by ∆kl(z,X(λ)) the cofactor of the
matrix zI2p−X(λ) corresponding to the (k, l)-th entry then, the unique eigenvector of X(λ) with eigenvalue
z, normalized by ξ1 = 1, is

ξ(z,X(λ)) := (ξ1, . . . , ξ2p)T ,
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where
ξk = ∆1k(z,X(λ))/∆11(z,X(λ)).

By [3], p. 187, when X(λ, t) flows according to (5.1), the corresponding eigenvector ξ(t) := ξ(z,X(λ, t))
satisfies the autonomous equation

ξ̇ + Y ξ = ρξ,

where Y := Y (λ,X(λ, t)) and ρ is the scalar function

ρ := ρ(λ, z,X(λ, t)) =
2p∑
l=1

Y (λ,X(λ, t))1l∆1l(z,X(λ, t))/∆11(z,X(λ, t)).

The role of the eigenvector ξ is to define the divisor map

ic : Ac → Divd(Γc), X(λ) 7→ DX(λ),

where DX(λ) is the minimal effective divisor on Γc such that

(ξk)Γc ≥ −DX(λ), k = 1, . . . , 2p.

Here, d := deg(DX(λ)) is independent of X(λ) ∈ Ac (for generic c we can assume Ac connected) and so,
DX(λ) defines an effective divisor of degree d in Γc.

Now choose and fix a divisor D0 ∈ Divd(Γc), a basis (ω1, . . . , ωg) of holomorphic differentials on Γc, and
consider the vector ω := (ω1, . . . , ωg)T . One defines the linearizing map by

jc : Ac → Jac(Γc), X 7→
∫ DX

D0

ω,

where Jac(Γc) denotes the Jacobian of the curve Γc.
The role of the function ρ is to linearize the isospectral flow of (5.1) on Ac, that is, to be able to write∫ DX(t)

DX(0)

ω = t

2p∑
k=1

ResPk
(ρ(λ, z,X(λ, 0))ω), DX(0) = D0,

if it is possible. The Linearization Criterion in [3] p.195 says that this happens if and only if for each X ∈ Ac

there exists a meromorphic function ΦX on Γc with

(ΦX)Γc
≥ −

2p∑
k=1

Pk,

such that for all Pk,

(Laurent tail of dρ(λ, z,X)/dt at Pk) = (Laurent tail of ΦX at Pk);

see also [11].
Now we shall apply the linearization criterion to our case. Firstly, we have:

∆11(z,X(λ)) = z2p−1 + v2
2 ...v

2
pzλ

2p−2 +Q11(z, λ),

where the polynomial Q11(z, λ) has degree strictly less than 2p− 1. Then we compute

∆12(z,X(λ)) = M12(z, λ) +Q12(z, λ),

where the polynomial Q12(z, λ) has degree strictly less than 2p− 2 and the homogeneous polynomial

M12(z, λ) = −x1,2z
2p−2 + ...+ xp+1,p+2v1v2v

2
3 ...v

2
pλ

2p−2
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has degree 2p− 2. Similarly, we get for l = 3, . . . , 2p, l 6= p+ 1,

∆1l(z,X(λ)) = M1l(z, λ) +Q1l(z, λ),

where the polynomial Q1l(z, λ) has degree strictly less than 2p−2 and the homogeneous polynomial M1l(z, λ)
has degree 2p− 2. For l = p+ 1, we get

∆1,p+1(z,X(λ)) = M1,p+1(z, λ) +Q1,p+1(z, λ),

where the polynomial Q1,p+1(z, λ) has degree strictly less than 2p − 1 and the homogeneous polynomial
M1,p+1(z, λ) has degree 2p− 1.

Let zk be a local parameter around the point at infinity Pk, k = 1, . . . , 2p. The Laurent tail of z at Pk

is βk/zk and the Laurent tail of λ at Pk is 1/zk. By using the formulas above we conclude that the Laurent
tail of

∆1l(z,X(λ))/∆11(z,X(λ)), l = 2, . . . , 2p

at Pk is zero, since this meromorphic function is holomorphic at Pk. Moreover, this function has a zero at
Pk for each k = 1, . . . , 2p, and l 6= p+ 1 (note that on the denominator the constant term β2p−1

k + βkv
2
2 ...v

2
p

is non-zero for generic c).
Now we compute the Laurent tail of dρ(λ, z,X)/dt at Pk. We emphasize that ρ only depends on t through

X(λ). Firstly, we see that the Laurent tail of

d

dt
(∆1l(z,X(λ))/∆11(z,X(λ))), l = 2, . . . , 2p

at each Pk is zero, because this meromorphic function is holomorphic at Pk, k = 1, . . . , 2p. Since

Y11 = −λv2
1 , Y1l = v1xl,p+1 − vlx1,p+l for l = 2, . . . , p,

and
Y1,p+l = vlx1,l + v1xp+1,p+l for l = 1, . . . , p,

we conclude that the Laurent tail of

d

dt
ρ(λ, z,X) =

2p∑
l=2

d

dt
Y (λ,X(λ, t))1l

∆1l(z,X(λ, t))
∆11(z,X(λ, t))

+
2p∑
l=2

Y (λ,X(λ, t))1l
d

dt

∆1l(z,X(λ, t))
∆11(z,X(λ, t))

,

at each Pk is zero for all k = 1, . . . , 2p. Thus, the linearization criterion applies with ΦX = 0. We have
proved the following.

Theorem 8.1 For N invertible with distinct eigenvalues the map jc linearizes the isospectral flow of the
system (5.1) on the Jacobian Jac(Γc).

Linearization on the Prym Variety for N Invertible and Generic. Since (X + λN)T = X − λN ,
we have

Q(−λ, z) = Q(λ, z).

Thus there is an involution τ : Γc → Γc of the spectral curve defined by

τ(λ, z) = (−λ, z).

In homogeneous coordinates λ = ν/z0, z = ζ/z0 this involution is given by

τ(ν, ζ, z0) = (−ν, ζ, z0).
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Notice that the involution τ has no fixed points at infinity (z0 = 0 and ν = 0 would imply ζ = 0 from the
homogeneous equation of the curve). Thus, the fixed points are obtained from the equation

Q(0, z) = 0,

which is the characteristic polynomial of the symmetric matrix X. Generically, we obtain 2p distinct points
Z1, . . . , Z2p as its fixed (ramification) points, where Zk = (0, zk, 1), k = 1, . . . , 2p, with zk the (real) eigenval-
ues of the symmetric matrix X. By the Riemann-Hurwitz formula, the quotient (smooth) curve C1 := Γc/τ
has genus g1 := (p− 1)2.

Associated to the double covering
Γc → C1

is the Prym variety Prym(Γc/C1), with the property that Jac(Γc) is isogenous to

Jac(C1)× Prym(Γc/C1).

It follows that
dim

(
Prym(Γc/C1)

)
= g − g1 = p2 − p.

Let us denote by ΩΓc
the sheaf of holomorphic 1-forms on Γc. Recall that

Jac(Γc) ∼= H0(Γc,ΩΓc
)∗/H1(Γc,Z).

The involution τ acts on the vector space H0(Γc,ΩΓc
) and on the free group H1(Γc,Z) having eigenvalues

±1. The Prym variety Prym(Γc/C1) can be equivalently described as the quotient

H0(Γc,ΩΓc
)−∗/H1(Γc,Z)−,

where the upper ± index on a vector space denotes the ±1 eigenspaces.
Note that

ρ := ρ(λ, z,X(λ, t)) =
2p∑
l=1

Y (λ,X(λ, t))1l∆1l(z,X(λ, t))/∆11(z,X(λ, t))

= −λv2
1 + ρ1(λ, z,X(λ, t)),

where the meromorphic function ρ1(λ, z,X(λ, t)) has residue zero at each Pk; see the computation above.
By [11], or by direct computation, we have

ResPk
(τρ(λ, z,X(λ, 0))) = −ResPk

(ρ(λ, z,X(λ, 0))).

It follows that the flow is actually linearized on Prym(Γc/C1). Thus we have proved:

Corollary 8.2 For N invertible with distinct eigenvalues the map jc linearizes the isospectral flow of the
system (5.1) on the Prym variety Prym(Γc/C1).

The Case of N Maximal Rank and Nullity One. Let us consider now the case of n odd and N having
distinct eigenvalues and nullity one, i.e., n = 2p+1 and rankN = 2p. Choose an orthonormal basis of R2p+1

in which N is written as

N =

 0 V 0
−V 0 0
0 0 0

 ,
where V is a real diagonal matrix whose entries are v1, . . . , vp. The equation of the affine spectral curve is:

z2p+1 + v2
1v

2
2 ...v

2
pλ

2pz +Q0
1(λ, z) = 0, (8.2)
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where the polynomial Q0
1(λ, z) has degree strictly less than 2p + 1. Put λ = ν/z0 and z = ζ/z0. Now set

z0 = 0 in the equation
z2p+1
0 Q(ν/z0, ζ/z0) = 0

of the projective spectral curve Γc. We get the points at infinity

{P0, P1, . . . , P2p} := Γc \ Γc,

with P0 = (1, 0, 0) and Pk+1 = (1, βk+1, 0), k = 0, 1, . . . , 2p− 1, where

βk+1 := v1/p exp
(
i
(2k + 1)π

2p

)
and v := |v1v2 · · · vp|.

Note that at each of these points, with the exception of P0, the meromorphic functions λ and z on Γc have
a pole of order 1. At P0, the function λ has a pole of order 1 and z has a zero of order 1.

We shall analyze below in detail the particular case p = 2 (that is, n = 5). A direct computation shows
that

∆11 = (z4 + v2
2z

2λ2) +Q0
11(z, λ), degQ0

11 < 4

∆12 = (v1v2x34zλ
2 − x12z

3) +Q0
12(z, λ), degQ0

12 < 3,

∆13 = (−v1v2
2zλ

3 − v1z
3λ) +Q0

13(z, λ), degQ0
13 < 4,

∆14 = (v2x12z
2λ+ v1x34z

2λ− x14z
3 − v1v2x23zλ

2) +Q0
14(z, λ), degQ0

14 < 3,

∆15 = (−v1v2
2x35λ

3 + v2
2x15zλ

2 − v1x35z
2λ+ x15z

3) +Q0
15(z, λ), degQ0

15 < 3.

Let zk be a local parameter around the point at infinity Pk, k = 1, . . . , 4. The Laurent tail of z at Pk is
βk/zk and the Laurent tail of λ at Pk is 1/zk. By using the formulas above we conclude that the Laurent
tail of

∆1l(z,X(λ))/∆11(z,X(λ)), l = 2, . . . , 5

at Pk is zero, since this meromorphic function is holomorphic at Pk.
For P0 the computation changes. Let u be a local parameter around the point P0. The Laurent tail of

z at P0 is zero (z has a simple zero at P0) and the Laurent tail of λ at P0 is 1/u. We shall emphasize the
leading term for the Laurent tail of

∆11 = v2
2(x33x55 − x2

35)/u
2 + . . . ,

∆12 = v1v2(x35x45 − x34x55)/u2 + . . . ,

∆13 = v1v
2
2x55/u

3 + . . . ,

∆14 = v1v2(x23x55 − x25x35)/u2 + . . . ,

∆15 = −v1v2
2x35/u

3 + . . . ,

and we get

∆13/∆11 =
(

v1x55

x33x55 − x2
35

)
1
u

+ . . . ,

∆15/∆11 =
(

−v1x35

x33x55 − x2
35

)
1
u

+ . . . ,

the other two quotients ∆12/∆11 and ∆14/∆11 being holomorphic around P0.
As in the case of n even, we have

ρ(λ, z,X) = −v2
1λ+ (v1x23 − v2x14)

∆12

∆11

+ v1(x11 + x33)
∆13

∆11
+ (v2x12 + v1x34)

∆14

∆11
+ v1x35

∆15

∆11
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and hence

ResP0 ρ = v2
1

(
−1 +

(x11 + x33)x55 − x2
35

x33x55 − x2
35

)
.

¿From the system (1.2) we get

x11 + x33 = C1 and x55 = C2,

where C1, C2 are constants of the motion. Then a direct computation shows that

ResP0

dρ

dt
=

2v2
1C2x35ẋ35(C1 − x33)

(C2x33 − x2
35)2

,

which is non-zero generically. By applying Lemma 5.11 in [3] and the linearization criterion, we get the
following result.

Proposition 8.3 For N ∈ so(5) having distinct eigenvalues and nullity one, generically the map jc does
not linearize the isospectral flow of the system (5.1) on the Jacobian Jac(Γc).

An easier computation gives the same result in the case n = 3. We carried out the case n = 5 as more
representative of the general case; for n = 3, there are various non-typical simplifications of the computations
leading to the non-linearizability result due to the low size of the matrices involved.

We expect however that it will be possible to analyze linearization of the general case where N has
distinct eigenvalues (i.e. either n = 2p and N is invertible or, n = 2p + 1, rankN = 2p and N has nullity
one) on the generalized Jacobian (see e.g. [26]). To do this we intend to follow [10] and [4] (see also [2], [8]
and [3]). We intend to carry out this study of generalized algebraic integrability of our system in a future
publication.
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