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Abstract— In this paper, we study dynamic coverage optimal corresponds to the under-actuated situation. Here we only
control, which is a new class of optimal control problems consider fully actuated systems.
motivated by multi-spacecraft interferometric imaging ap-
plications. The dynamics is composed ofV second order Assumption |.1. Each particle is fully actuated in ak
differential equations representing N fully actuated particles.  directions. That is to say = n.
To be minimized is a cost functional that is a weighted sum
of the total fuel expenditure, the relative speeds between the II. IMAGING AND THE COVERAGE PROBLEM
particles and the measure of a given set whose size is a function . .
of the particles’ trajectories. We derive optimality conditions Equations {.1) represent the spacecraft dynamics, treat-
and give a simple three spacecraft example to illustrate the ing each spacecraft as a point particle. Hence, we ignore
concepts and ideas presented in the paper. attitude dynamics and assume all spacecraft are perfectly
aligned and are pointing towards the target. Results pre-
[. INTRODUCTION sented in this paper can be extended to include rigid body
The use of geometric control methods for spacecraft ford_ynamlcs, which is _the main reason for using Ianguage and
. . . . ) - tools from geometric control theory. This, however, is the
mation flying has received little attention, whereas extensive

investigations have been conducted in the field of roboti%:UbJect of current research. In interferometric imaging, we

: . . re interested in the relative position dynamics as projected
path planning (for more on this issue, see Section (Ivgnto a plane perpendicular to the line of sight. This plane
in [1]). This work is an attempt to use geometric optima b perp gnt. P

. ) ; is called the observation plane, denoted®y- R?. Hence,
control theory for spacecraft formation motion planning for . ) . )
) . L we are interested in therojected relative curves
imaging applications.

Let C" be the set of ali-fold continuously differentiable &i(t) = lpo (c;(t) — ci(t)), (2.1)
curvesc : [0,7] — M, whereT is a fixed terminal A _
maneuver time and/ is ann-dimensional ¢ = 1,2 or where X is the optical wavelength and,; : [0,7] — O
3) Riemannian manifold equipped with the metric-). are curves orO, the frequency (oru-v) plane, andPo
In our research, we consider the general class of problerissthe operator that projects relative trajectoriesiinonto

described by a system df particles satisfying dynamics the observation plan®. Hence,O is the plane on which

of the form: motion is projected and is the u-v frequency plane.
Dc; In multi-aperture interferometry, there are two main
dt (1) = wvi() imaging goals. The first is simply referred to as frequency
Dv; B 11 domain (oru-v plane) coverage. Here, we only state the
dt (1) = w(). (1.1) coverage goal and refer the reader to [2] for a more detailed
Let w,;(t) € TT. wM be given b discussion. We are interested in having the resolution disc
() i) " g Y as defined by the s@r = {(u,v) : Vu? +v? < 1/6,} be
() = ()Y (cs(1)), 1.2y completely covered by some ball of radius centered at
us(t) ;ul( J¥ilei() (12 ¢;;(t), for somet € [0, 7], i andyj, where#, is the angular

resolution. An image is said to be successfully completed

wherem < n andYj, j =1,...,n, salisfy (Y}, i) = 0jt. it 5 maneuverM satisfies the following condition.

In other words)Y; is an orthonormal set of vector fields on

Te, )M . Mathematically, this assumption limits the class ofDefinition I1.1. (Successful Imaging Maneuvey An imag-

manifolds we consider (to parallelizable manifolds) for theng maneuverM is said to be successful if, for each

general problem formulation, but is satisfied for the specidl, v) € Dg, there exists a timg € [0,7] and some

case where we deal with systems of particles in space:  i,j = 1,...,N such that(u,v) € B, (€;;(t)), where

n corresponds to the fully actuated system, whereas n B (y) is a closedball in R? of radiusz centered aty.
rp iS proportional to the size of the telescope’s airy disc.
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is the achievable SNR. Intuitively, as a spacecraft moveseas(¥) is whenall balls B,, (¢;;(t)), i,j = 1,...,N,
slower, it has more time spent in the neighborhood of are moving into uncovered territofipside Dg. In Figure
relative position state in space. This leads to more photdt), this happens at timg andts since both coverage balls
(that is, image information) collection from that neighbor-move in previously uncovered territory. The other extreme
hood, resulting in a stronger signal. This is analogous to thie whenall balls B,, (¢;(t)), i,j = 1,..., N, are moving
notion of exposure time in photography, where the longdan previously covered regions or have wandered outside
the shutter time is, the more photons get deposited on tfizz, which corresponds to a constant valueméas(¥).
photographic film and the better the image gets. In Figure @), this happens instantaneously at timesince
both balls cover previously covered territory. Intermediate
decrease rates vary between these two extremes (for ex-

Based on the above discussion, we wish to minimize thremmple, at timet; as shown in the figure.) Note that the
quantities: (1) the fuel expended by each spacecraft in th@o coverage balls traverse symmetric curves. Symmetry
constellation, (2) the projected relative speeds between thelds for an arbitrary number of spacecraft by virtue of the
spacecraft of the system and (3) the number of uncoveredndition @.1).
points in D. The constre'unts we have are the dynam'.cissumption [1l.1. The functionmeas is differentiable with
(1.1) and boundary conditions on the position and velocit ~

X ) , respect to both argumentsandc.

vectors of each spacecraft. Motion constraints (as defined in
[3]) are not treated in this paper, though they can be easily
incorporated in the analysis. We now state the coverage
optimal control problem considered in this paper.

I1l. DYNAMIC COVERAGE OPTIMAL CONTROL

Resolution Disc

Problem 111.1. Coverage Optimal Control Problemyin-
imize

Ty XN
j(chui?t;i:lw"aN):/ 2{Z|:<uj7u7>
0

j=1

N ~ ~ =~
+72 Z <D§Zk , Dgtjk > } } + k% meas (V) dt, (3.1) ) KX\J

k=1 B,p(c12(to))
where ¥ is the mapping that returns the set of un- i
covered frequency points iDg up to timet¢;, ¥
(t,¢ij3i,5=1,...,N) — {(u,v) € Dr : Vo €
[0,¢] and Vi,j € 1,..., N, (u,v) & B,, (€;;(0))} and the
functionmeas (A) is a measure function of some getThe
constraints are the dynamic&.(), the boundary conditions

Fig. 1. A two spacecraft illustration of motion in the frequency domain
ci(0) =cf, ci(T) =cf, vi(0) =v{, ci(T) =v], B2) (to<ti<ts<ts).
i#=1,..., N, and the relationship in Equatiore(l). Finally, note that according to the definition of the cover-
Note that if » = 0, then the problem reduces to thatage optimal control problem stated above, solutions to this
discussed in [3] for a two-spacecraft formation. In this casgroblem do not necessary result in successful maneuvers.
the terminal boundary conditions alone drive the systenAs the weightx approaches infinity, the resulting solutions
On the other hand if; # 0, then the system is driven to will tend to be successful maneuvers. Removing the term
also minimize the set of uncovered pointsiix. Whenever x2 meas (¥(t)) from the integrand and posing it as the
meas (¥) becomes zero, the only drive is to meet thaerminal constraintneas (¥ (7)) = 0 is another strategy
terminal conditions in%.2). that results in successful maneuvers. This is not pursued
The measure functiomeas(-) is simply the area covered here and will be the subject of future research.
by the set¥(t,c,;). Firstly, note that as the curves; :
[0,7] — O change, the measure &f at time T’ changes. IV. NECESSARYCONDITIONS FOROPTIMALITY

However, if the curvest;; correspond to trajectories of  To obtain necessary optimality conditions we first append
successful maneuvers as defined in Deflnltldn].x, then the dynamic constraints in Equa“or]sfo to the Lagrangian

meas(¥ (7, €;;)) is zero at timeT". of the cost functional3.1) by introducing the terms
Secondly, note thaheas(V) is a monotonically decreas- /De. /Dv.
ing function in timet. The reason for this is illustrated in A <dtj - vj) + A} (dtj — uj) (4.1)

Figure (1), which is the situation in the frequency domain ) 4
for a two spacecraft system (hence, two coverage disc#)to the cost functional7, where)] and X}, j =1,..., N,
and is explained as follows. Maximum decrease rate fare Lagrange multipliers. Collecting terms with the same



indexes, Equation3( 1) becomes:

Dc.
J(ci,u;) / { u],u]>—|—/\1 <dctj_vj>

Dv; D¢;r Dcjp
J J J
M ( z;< dt 7 dt >]

)L
a 2

k=

+ K2 meas [W (€,(t);j,k =1,...,N)]dt

(4.2)

in deriving necessary conditions.
For variations in¢;;(¢), let

2
Z éfj (t7 E)Zk (61] (tv 6)) € Tf:ij (t,e)Ov
k=1
whereZy, k = 1,2, is an orthonormal set of vector fields

on Tz, (t,6)O- The setZ;, k = 1,2, may be taken to be the
standard set of vector fields spannﬂﬁé

éij (f, 6)

We then introduce the following one-parameter Va”at'onﬁtssumptlon V1. Let M = O C R2. In other words, the

for the curvesc;:

surfacesM and O coincide.

De. ci(t,0) = eilt), Under Assumptionl{.1), the projectionPy is the iden-
9% L(t,0) = W;(t) tity operator. This implies that all the derivativds/dt
De. De., could be replaced by regular derivativesRih. However, we
L(0,0) = “(T,0) =0, (4.3) will retain the former notation because future research will
e e
D DZ D not make Assumptionl¥.1) and will consider rigid body
T Z(t,o) = aWi(t) is continuous or0,T] dynamics, where most of the results obtained below will
D DCG‘ D Dc, only be slightly modified. Moreover, as long as one chooses
&87;(070) = q ael (T,0)=0 non-rectangular coordinates the former notation becomes
. . . . L . very convenient. Thus, fot,j = 1,..., N we have
1=1,...,N. Likewise, we may define variations (),
w;(t) and\i(t), k=1,2,i=1,...,N,byv;(te), u;(t,e) &i(10) = &yt) = c;(t) — Cr(t),
and \: (t,e), k=1,2,i=1,...,N, as follows: De ) A
cz’j
(t,0) = < [W;(t) - W)
u;(t,e) = Zu (t,€)Yj(ci(t,€)) € Te,t,0M D(ZE ])56 !
- = —(T,0)= 4.4
af (070) 86 ( 30) 07 ( )
vi(t,e) = v (t,€)Yj(ci(t,€)) € Te,t,0)M D Dgy; + _ 1D 1) — Wit t T
Z ‘ 2I8(1,0) = o [Wy(0) ~ Wi(t)] cont. on[o, 7]
’ Do 0,0) = So(T0) -
A(te) = Z)\}j (t, O)wj(ci(t,e) € T (oM dt 9e ~ 77 dt 9e
J=1 Theorem IV.1. Under Assumptiond.), (I1l.1) and (V.1),
wherew;, j = 1,...,n, are co-vector fields such thattaking first order variations of the expression in Equation
w(Y;) = &;;. Taking variations inu; andv;, we have: (4.2) leads to the following relationship:
Du; 0
i (t,€) = du(t)+ (B (W,,w)) (ci(t)) e TTM afj(ci(t,e),ui(t,e),t;i: 1,...,N) =
e e=0 ¢ e=0
Dv; . T N D)\j
5e bO| = i+ BWow)(e(®) eTTM  _ / S Gy, B(Wj,u)) — ot (1)
where, for instance, j =t j
m o — X (B(Wj,v)) = A3 (B (W, uy))
dui(t) = L (t,0)Y;(cq(t)) , D)
j; Oe ’ + A (R(Wj,vj)vj) - 7dt2 (B(Wj,v;))
and 2
m +Z T (s =y W) %% (W;)dt  (4.5)
(B(Wi,w)) (ci(t)) = > ul(t) (Vw,Yy) (i) . ik
J=1 T T2 k2 Omeas
+/ -5 uk—u-,Wk (VV;C dt
Similar expressions can be obtained 8 0 j;1 N | Gy Ok ) dt
j=124i=1,...,N. B(,-) is a bilinear form that we
mtroduce in order to be able to separate variations in the Z A ( du;) + (uj, duy) dt
components ofu;, v; and >\J | = N, i = 1,2,
from variations in the basis vector frelds. Itis important to )\J
separate these terms since the variatibms év; and 5)\;1, / Z )\J - (5vj) dt.

i=1,...,N,j=1,2, are independent from each other as
well as fromW,; —a fact which has significant importance

Proof In Equation §.2), we replacetx(¢),

u; (t) ande (t)



with the perturbed variables; (¢, €), u;(t,€) andv,(t,¢),
respectively. To prove the theorem, we compd{g/de on
a term by term basis as follows. First, we have:

o (M1 4

5 | gttt ayar

T
= / <Uj, 51,1]' + B (W]‘, 11j)> dt, (46)
0

where a summation overis understood. For the fourth term
in Equation 4.2), we use the fourth identity in Equations
(4.4) and integrate by parts to obtain

5 N N

B D&;r D&y
dt
S HCIE=S P
j=1k=1 €
T 2 N N ~
T DCjk D
=/ — — 1) dt
JRES D RE-FAUAA)
j=1k=1
T 2 N N 2z
T DCjk
— [ R (B a
j=1k=1
N N o ~ T
T DCjk
F ST (HE )|

The second term vanishes due to the fixed boundary con-

ditions @.3). Under Assumptionl{.1), we have
D%¢jy, 1 (

de? A
Thus, for the fourth term in Equatiort.@) we have

up —u;).

Dc7k DC]k
ae/ Z< dt 7 dt >dt€_0
/ )\2 — uy, Wk — Wj> dt. (47)

7,k=1
For the second term, we have

0 T j DCJ
= /0 )\{ (dtWJ — (SVJ‘ -B (Wj,Vj)) dt.

For the first term in the parenthesis, we integrate by parts

to obtain

J 4

D T r
),

b DX
dt

dt

wj> dt = M (W) (W) dt.

The first term on the right hand side vanishes by virtue of

the boundary conditions4(3). We then obtain

T N
(D D)\J
J [ 221
j=1
— N (6vj + B (W, v;))dt. (4.8)

For the third term in Equatior(2), first recall the identity

(page 52 in [4]):
DD
Then, we have

Z ( uj) dt
A Z)\] (R W, vj)v, + D2v

Dl o
gige O

DD

Ot Oe

Dc Dc
Oe’ Ot

)

—B(W,,v,) )dt

T N
:/ ZAJZ(R(Wj,vj)vj — du; —B(Wj,Vj))
j=1
Dd)\J (6v; + B (W,,v,))dt (4.9

where integration by parts has been used to arrive at the
last equation. Finally, under Assumptioi.1, for the last
term we have

g [T 5 Omeas OCj,
— U] dt = I 4t
e /0 whmeas| / 3;1 9%;n e
T N
k2 Omeas
:/ N e (W, —W;)dt, (4.10)
0 k=1 Cjk

where it is understood that theeas function is applied
to the set¥ (¢,;) for all j,k = 1,...,N. Finally, from
equations 4.6-4.10, by separating terms involving the co-
efficientsW;, Wy, év; anddu;, we obtain the expression
(4.5 and, hance, proving the theorem. |

Theorem IV.2. Under Assumptiond.@), (lll.1) and (V.1),

a set of optimal trajectorieg;, : = 1, ..., N, that minimize
J while satisfying the dynamic constraint$.]) and the
boundary conditions3.2) satisfies the following necessary
conditions for an arbitrary vector fielX:

DCi B
'
dt _(/\2) ’
DN,
7 X) = (B (wj,v))vy) (X) (4.11)
DX ;
222 (X) = M (X
i (X) 1 (X)
N\ #
u; = ()
0 iﬁ ()\k (X) - M, (X)) k2 Omeas
_k:1 5 2 2 )\ acjk
for j = 1,...,N and whereY® (X) = (Y,X), with b

denoting the flat operator [5].

Proof The first equation follows immediately from Equation
(1.1). For an optimal solution, the first order necessary



condition is that elements are given bMZ] = ame‘” . With ¢;; = —¢;; and

8J(cl(t Omt e ti=1. . N) =0 (412) ¢i =0is flxeq at the origin, ther?g}:% =0andM is
Oe =0 skew symmetric. Next, note that thé'" element ofM is
The rest of the proof relies on this condition and the facgiven by
that W;, Wy, du; andév; are independent for all, k =  N-1

N—-1 N—-1
0 S 0 0
., N. The fourth equation follows immediately from Z ;geab = Z neas + Z eas
Ny

the last integral in Equatiod(5) and the independence of ;=1 j=1 Gk=1
dvj, j=1,...,N. The fifth equation follows immediately N-1 N 5 eas N-1 Omeas
from condition @.12), the third integral in Equation4(5) = Z Z e . Z Z = ,
. . - ackj - oc k
and the independence @fu;, j = 1,...,N. The last j=1 k=1 j=1 k=1
(algebraic) equation in (4.11) is obtained by studymg thevhere the second term after the first equality sign is zero
second integral in Equatiod ©). SinceW,,, k =1,..., N, sinceM is skew symmetric. The term after the last equality
are mdependent, we then have sign is nothing but the sum of all the firdf — 1 elements
9 of the matrixM. This and the fact thaty; = — Z].\i_l Qi
k> Omeas(¥) - j i=1 Gij
Z (up —u;) + N e, 0, Vk=1,...,N. show that the last row oA is equal to the sum of the first
j=1 Cik N — 1 rows of A. Since A has rankV — 1, then so must

) \ # ) S A. Hence,M must in fact be in the range space Afand
Sinceu; = ()\jz) and by interchanging indiceg (—~ k£ 3 particular solution must exist ([6], pp. 116-121).

and k£ — j), we obtain the last (algebraic) condition in For N = 2, the condition 4.13 is equivalent tou; —
(4.11). Hence, the last term under the first integral i, — = Wanéeab Hence, for a two spacecraft formation, a
Equation 4.5 is zero. This, the fact thaL —/\’1 and necessary optlmahty condition is that the relative thrusting
the independence dV;, j =1,..., N, in the first integral between the two spacecraft is in the direction of descent of
in Equation 4.5 give the third equation in the theorem.the measure of the uncovered setef points. ForN = 3,

The second equation follows from Equatich) and the the condition 4.13 is equivalent to:

fifth condition in equation (4.11). | 1 52\ [Omeas Omeas  Omeas
Studying the last (algebraic) necessary condition gives w2 = o7y { %13 0% 12 039 }
further insight into the optimal trajectory. Note that one 1 k2\ [ Hmeas Omeas  Omeas
can write theseV conditions in a matrix form: up —uz = 3,2 { 91 913 s } )

AU = JM (4.13) where now a necessary optimality condition is that the

7?2 relative thrusting between the three spacecraft is a weighted

where sum of the direction of descent of the measure of the

N-1 -1 - -1 uncovered set ofi-u points.
A -1 N-1 -1 Hence, each spacecraft's motion and control effort is
- : . : affected by the amount of area @y that has not been
1 1 N-1 covered by the formation as it involves summations over

motions of all the other spacecraft. Therefore, the resulting
Th ; . . control law is in some sense decentralized: Given knowl-
Jt entry isu; an%}l\lga:?\;)heN x 1 column matrix whose  gqge of the motions of the other spacecraft, the above
j*entryisy,_, S~ Letaj; be theij™ element of necessary conditions command each spacecraft to move in
A. Note thatay; = — > ;" a;;. Hence, the last row is directions that attempt to minimize the cost functign
dependent on the firsW — 1 rows. In fact, one can show Remarks:
that A has rank exactly equal & — 1. The homogenous 1) Note that 22 constitute the components of the
solution to the above equation is found to b = uf} = differential form d (meas). Hence, the notation

- = u%. The homogeneous solution corresponds to the  dmeas (X) denotes this form operating oX.
motion of the center of mass of the formation in the plane. 2) |g°{ﬁe proof for TheoremIY.1) we have not taken
Since it is desired to minimize fuel, then we may set the variations in the multipliers\!, i = 1,2, j =

homogeneous solution to zera} = u} = -~ = u} = 0. 1,...,N. This is standard practice and the justifica-
What really matters in this situation is the particular tion can found in Section 2 of [7].

solution, if one exists. Indeed, we now show that the matrix
M lies in the range space of the matrk and, hence, a

particular solution exists. First, appeid to A to form the In this section we state the necessary conditions for
new matrix A = [A M]. Recall thatA has rank equal to a three-spacecraft, rigidly-connected, co-planar formation.
N —1. If we can show thatA also has rankvV — 1, thenM  The necessary conditions for a general one degree of
lies in the range space dof. Let M be the matrix whose freedom system are slightly different from those of Theorem

is an N x N matrix, U is the N x 1 column matrix whose

V. EXAMPLE



(IV.2). Since we only have a single degree of freedonthe algebraic condition oi; vanishes since the system has
a single control vector field suffices to drive the systemonly one degree of freedom. Instead, an additional term is
Hence, the condition4(13 will vanish. Instead, the effect added to thet% equation.
of the measure functiomeas (¥) on the closed loop system
appears in the dynamics governing the Lagrange multipliers.
This result governs other single degree of freedom systems
with different numbers of spacecraft and configurations.
The formation we study is shown in Figur@)( The
formation assumes the shape of an equilateral triangle.

Formations such as this one appear in previous Iiterature,/ﬂ

s/cl

See for example the formation used in [8]. Let the side
of the triangle be given by: and each spacecraft is at
a distancer from the center of mas§'M, wherer
a/+/3. To guarantee that the resulting motion results in a~
successful maneuver, we impose the condition that
2rpA. Moreover, assume the resolution diS¢ has a radius

of 1/6, = 3r,. These conditions and the rigidity of the
formation guarantee that the resulting six picture frame
discs (as defined in Sectidh) are centered such that eachrig. 2. A three-spacecratt, rigidly-connected, co-planar formation (left)
scans an annulus about the central disc. After the formati@fid the motion in thei-v plane (right).

rotates by an angle o60°, the maneuver is completed,
resulting in a successful maneuver. The motion in the

| " { (right VI. CONCLUSION
v plane is shown in Figure2j (right). . . . .
Since this is a single degree of freedom system evolv: In this paper we studied the dynamic coverage optimal

. L 1 2 control problem. The problem is motivated by interfero-
ing on the unit circleS", let the angular positiond(t), o . . .

. L metric imaging spacecraft formations. An optimal control
describe the state of the system as shown in Figae ( roblem is defined to achieve maneuvers optimal in both
Hence,f(0) = 0 and §(T') = = /3. For this example, an P P

aporoximation of the measure function is diven b imaging and fuel senses. Optimality conditions were derived
PP 9 y and a simple three spacecraft example was given to illustrate
meas (U(0(t))) = —24r20(t) + 8mry. (5.1)

our results. Future work will aim at eliminating some of
One can also check thateas (¥(6 = 0)) = 8W§ (that the assumptions made in this paper. Specifically, we aim at
is, the area of the initial uncovered annulus) and th

a'sttudying systems evolving in gravitational fields and those
meas(¥ (0 = 7/3)) = 0 as one expects at the end of evolving on non-planar Riemannian manifolds.
successful maneuver.

a
) VIl. ACKNOWLEDGMENTS
If we let the mass of each spacecraft be given hyand The authors wish to thank Professor Peter Crouch for
the torque applied to each spacecraft be givenFhythen
; . . . useful comments.
the equations of motion are given by the equation
by, Dw
dt 7 dt

whereu = mL The cost function to be minimized is

REFERENCES

=u 5.2

’ (52) [1] D. P. Scharf, F. Y. Hadaegh, and S. R. Ploen, “A survey of spacecraft
formation flying guidance and control (part I): Guidanderdceedings

of the American Control Conferencpp. 1733-1739, June 2003.

[2

7_/2

1
7= [ g+ g )
where the absolute linear velocity of the discs is given by

2
a4 (w,w) + K?meas(0)dt, (5.3)

aDb — 9r, D0, AppendingJ by the termsi, (%f —_w) "
and X\, (% —u), and following a procedure similar to

that used to derive TheoremB/(l) and (V.2), we obtain
Equations %.2) and

(5]

Phx) = 2l (R X)
PRX) = X)) !
u = N, 8]

as necessary conditions, whedeneas/06 = —24r> and

X € TM is any arbitrary vector field. We note here that

S. Chakravorty, “Design and optimal control of multi-spacecraft
interferometric imaging systems,” Ph.D. dissertation, Aerospace En-
gineering, University of Michigan, 2004.

1. I. Hussein and A. M. Bloch, “Dynamic interpolation on riemannian
manifolds: An application to interferometric imaging?foceedings of
the 2004 American Control Conferenqgap. 413-418, July 2004.

J. Milnor, Morse Theory Princeton, NJ: Princeton University Press,
2002.

A. Bloch with J. Baillieul, P. E. Crouch, and J. E. Marsdépn-
holonomic Mechanics and ControlNew York, NY: Springer-Verlag,
2003.

J. S. BayJFundamentals of Linear State Space Systef@eston, MA:
McGraw-Hill, 1999.

I. I. Hussein and A. M. Bloch, “Optimal control on riemannian
manifolds with potential fields,43rd IEEE Conference on Decision
and Contro] December 2004, to appear.

W. J. Koon, J. E. Marsden, J. Masdemont, and R. M. Murray,
“Jo dynamics and formation flightProceedings of AIAA Guidance,
Navigation, and Control Conferencéugust 2001, paper No. AIAA
2001-4090.



	Introduction
	Imaging and the Coverage Problem
	Dynamic Coverage Optimal Control
	Necessary Conditions for Optimality
	Example
	Conclusion
	ACKNOWLEDGMENTS
	References

