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Abstract— In this paper, we study dynamic coverage optimal
control, which is a new class of optimal control problems
motivated by multi-spacecraft interferometric imaging ap-
plications. The dynamics is composed ofN second order
differential equations representingN fully actuated particles.
To be minimized is a cost functional that is a weighted sum
of the total fuel expenditure, the relative speeds between the
particles and the measure of a given set whose size is a function
of the particles’ trajectories. We derive optimality conditions
and give a simple three spacecraft example to illustrate the
concepts and ideas presented in the paper.

I. I NTRODUCTION

The use of geometric control methods for spacecraft for-
mation flying has received little attention, whereas extensive
investigations have been conducted in the field of robotic
path planning (for more on this issue, see Section (IV)
in [1]). This work is an attempt to use geometric optimal
control theory for spacecraft formation motion planning for
imaging applications.

Let Cr be the set of allr-fold continuously differentiable
curves c : [0, T ] → M , where T is a fixed terminal
maneuver time andM is an n-dimensional (n = 1, 2 or
3) Riemannian manifold equipped with the metric〈·, ·〉.
In our research, we consider the general class of problems
described by a system ofN particles satisfying dynamics
of the form:

Dci

dt
(t) = vi(t)

Dvi

dt
(t) = ui(t). (1.1)

Let ui(t) ∈ TTci(t)M be given by

ui(t) =
m∑

j=1

uj
i (t)Yj(ci(t)), (1.2)

wherem ≤ n andYj , j = 1, . . . , n, satisfy〈Yj , Yk〉 = δjk.
In other words,Yj is an orthonormal set of vector fields on
Tci(t)M . Mathematically, this assumption limits the class of
manifolds we consider (to parallelizable manifolds) for the
general problem formulation, but is satisfied for the special
case where we deal with systems of particles in space.m =
n corresponds to the fully actuated system, whereasm < n
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corresponds to the under-actuated situation. Here we only
consider fully actuated systems.

Assumption I.1. Each particle is fully actuated in alln
directions. That is to saym = n.

II. I MAGING AND THE COVERAGE PROBLEM

Equations (1.1) represent the spacecraft dynamics, treat-
ing each spacecraft as a point particle. Hence, we ignore
attitude dynamics and assume all spacecraft are perfectly
aligned and are pointing towards the target. Results pre-
sented in this paper can be extended to include rigid body
dynamics, which is the main reason for using language and
tools from geometric control theory. This, however, is the
subject of current research. In interferometric imaging, we
are interested in the relative position dynamics as projected
onto a plane perpendicular to the line of sight. This plane
is called the observation plane, denoted byO ⊂ R2. Hence,
we are interested in theprojected relative curves:

c̃ij(t) =
1
λ

PO (cj(t)− ci(t)) , (2.1)

where λ is the optical wavelength and̃cij : [0, T ] → Õ
are curves onÕ, the frequency (or,u-v) plane, andPO

is the operator that projects relative trajectories inM onto
the observation planeO. Hence,O is the plane on which
motion is projected and̃O is theu-v frequency plane.

In multi-aperture interferometry, there are two main
imaging goals. The first is simply referred to as frequency
domain (oru-v plane) coverage. Here, we only state the
coverage goal and refer the reader to [2] for a more detailed
discussion. We are interested in having the resolution disc
as defined by the setDR =

{
(u, v) :

√
u2 + v2 ≤ 1/θr

}
be

completely covered by some ball of radiusrp centered at
c̃ij(t), for somet ∈ [0, T ], i andj, whereθr is the angular
resolution. An image is said to be successfully completed
if a maneuverM satisfies the following condition.

Definition II.1. (Successful Imaging Maneuver) An imag-
ing maneuverM is said to be successful if, for each
(u, v) ∈ DR, there exists a timet ∈ [0, T ] and some
i, j = 1, . . . , N such that(u, v) ∈ B̄rp

(c̃ij(t)), where
B̄x(y) is a closed ball in R2 of radius x centered aty.
rp is proportional to the size of the telescope’s airy disc.

The second objective is that all frequencies inDR must be
sampled while maximizing the signal-to-noise ratio (SNR).
SNR can be controlled by controlling the relative speeds
between the spacecraft in the formation [2]. As the projected
relative speed between a spacecraft pair is minimized, so
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is the achievable SNR. Intuitively, as a spacecraft moves
slower, it has more time spent in the neighborhood of a
relative position state in space. This leads to more photon
(that is, image information) collection from that neighbor-
hood, resulting in a stronger signal. This is analogous to the
notion of exposure time in photography, where the longer
the shutter time is, the more photons get deposited on the
photographic film and the better the image gets.

III. D YNAMIC COVERAGE OPTIMAL CONTROL

Based on the above discussion, we wish to minimize three
quantities: (1) the fuel expended by each spacecraft in the
constellation, (2) the projected relative speeds between the
spacecraft of the system and (3) the number of uncovered
points inDR. The constraints we have are the dynamics
(1.1) and boundary conditions on the position and velocity
vectors of each spacecraft. Motion constraints (as defined in
[3]) are not treated in this paper, though they can be easily
incorporated in the analysis. We now state the coverage
optimal control problem considered in this paper.

Problem III.1. Coverage Optimal Control Problem:Min-
imize

J (ci,ui, t; i = 1, . . . , N) =
∫ T

0

1
2

{ N∑
j=1

[
〈uj ,uj〉

+τ2
N∑

k=1

〈
Dc̃jk

dt
,
Dc̃jk

dt

〉 ]}
+ κ2 meas (Ψ) dt, (3.1)

where Ψ is the mapping that returns the set of un-
covered frequency points inDR up to time t; Ψ :
(t, c̃ij ; i, j = 1, . . . , N) → {(u, v) ∈ DR : ∀σ ∈
[0, t] and ∀i, j ∈ 1, . . . , N, (u, v) 6∈ B̄rp

(c̃ij(σ))} and the
functionmeas (Λ) is a measure function of some setΛ. The
constraints are the dynamics (1.1), the boundary conditions

ci(0) = c0
i , ci(T ) = cT

i , vi(0) = v0
i , ci(T ) = vT

i , (3.2)

i = 1, . . . , N , and the relationship in Equation (2.1).

Note that if κ = 0, then the problem reduces to that
discussed in [3] for a two-spacecraft formation. In this case,
the terminal boundary conditions alone drive the system.
On the other hand ifκ 6= 0, then the system is driven to
also minimize the set of uncovered points inDR. Whenever
meas (Ψ) becomes zero, the only drive is to meet the
terminal conditions in (3.2).

The measure functionmeas(·) is simply the area covered
by the setΨ(t, c̃ij). Firstly, note that as the curves̃cij :
[0, T ] → Õ change, the measure ofΨ at time T changes.
However, if the curves̃cij correspond to trajectories of
successful maneuvers as defined in Definition (II.1), then
meas(Ψ(T, c̃∗ij)) is zero at timeT .

Secondly, note thatmeas(Ψ) is a monotonically decreas-
ing function in timet. The reason for this is illustrated in
Figure (1), which is the situation in the frequency domain
for a two spacecraft system (hence, two coverage discs),
and is explained as follows. Maximum decrease rate for

meas(Ψ) is when all balls B̄rp
(c̃ij(t)), i, j = 1, . . . , N ,

are moving into uncovered territoryinsideDR. In Figure
(1), this happens at timet0 andt3 since both coverage balls
move in previously uncovered territory. The other extreme
is whenall balls B̄rp

(c̃ij(t)), i, j = 1, . . . , N , are moving
in previously covered regions or have wandered outside
DR, which corresponds to a constant value ofmeas(Ψ).
In Figure (1), this happens instantaneously at timet2 since
both balls cover previously covered territory. Intermediate
decrease rates vary between these two extremes (for ex-
ample, at timet1 as shown in the figure.) Note that the
two coverage balls traverse symmetric curves. Symmetry
holds for an arbitrary number of spacecraft by virtue of the
condition (2.1).

Assumption III.1. The functionmeas is differentiable with
respect to both argumentst and c̃.
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Fig. 1. A two spacecraft illustration of motion in the frequency domain
(t0 < t1 < t2 < t3).

Finally, note that according to the definition of the cover-
age optimal control problem stated above, solutions to this
problem do not necessary result in successful maneuvers.
As the weightκ approaches infinity, the resulting solutions
will tend to be successful maneuvers. Removing the term
κ2 meas (Ψ(t)) from the integrand and posing it as the
terminal constraintmeas (Ψ (T )) = 0 is another strategy
that results in successful maneuvers. This is not pursued
here and will be the subject of future research.

IV. N ECESSARYCONDITIONS FOROPTIMALITY

To obtain necessary optimality conditions we first append
the dynamic constraints in Equations (1.1) to the Lagrangian
of the cost functional (3.1) by introducing the terms

λj
1

(
Dcj

dt
− vj

)
+ λj

2

(
Dvj

dt
− uj

)
(4.1)

into the cost functionalJ , whereλj
1 andλj

2, j = 1, . . . , N ,
are Lagrange multipliers. Collecting terms with the same



indexes, Equation (3.1) becomes:

J (ci,ui) =
∫ T

0

N∑
j=1

[
1
2
〈uj ,uj〉+ λj

1

(
Dcj

dt
− vj

)

+ λj
2

(
Dvj

dt
− uj

)
+

τ2

2

N∑
k=1

〈
Dc̃jk

dt
,
Dc̃jk

dt

〉 ]
+ κ2 meas [Ψ (c̃jk(t); j, k = 1, . . . , N)] dt (4.2)

We then introduce the following one-parameter variations
for the curvesci:

ci(t, 0) = ci(t),
Dci

∂ε
(t, 0) = Wi(t)

Dci

∂ε
(0, 0) =

Dci

∂ε
(T, 0) = 0, (4.3)

D
dt

Dci

∂ε
(t, 0) =

D
dt

Wi(t) is continuous on[0, T ]

D
dt

Dci

∂ε
(0, 0) =

D
dt

Dci

∂ε
(T, 0) = 0,

i = 1, . . . , N . Likewise, we may define variations invi(t),
ui(t) andλi

k(t), k = 1, 2, i = 1, . . . , N , by vi(t, ε), ui(t, ε)
andλi

k(t, ε), k = 1, 2, i = 1, . . . , N , as follows:

ui(t, ε) =
m∑

j=1

uj
i (t, ε)Yj(ci(t, ε)) ∈ Tci(t,ε)M

vi(t, ε) =
n∑

j=1

vj
i (t, ε)Yj(ci(t, ε)) ∈ Tci(t,ε)M

λi
k(t, ε) =

n∑
j=1

λij
k (t, ε)ωj(ci(t, ε)) ∈ T ∗

ci(t,ε)
M

where ωj , j = 1, . . . , n, are co-vector fields such that
ωl(Yj) = δlj . Taking variations inui andvi, we have:

Dui

∂ε
(t, ε)

∣∣∣∣
ε=0

= δui(t) + (B (Wi,ui)) (ci(t)) ∈ TTM

Dvi

∂ε
(t, ε)

∣∣∣∣
ε=0

= δvi(t) + (B (Wi,ui)) (ci(t)) ∈ TTM

where, for instance,

δui(t) =
m∑

j=1

∂uj
i

∂ε
(t, 0)Yj(ci(t))

and

(B (Wi,ui)) (ci(t)) =
m∑

j=1

uj
i (t) (∇WiYj) (ci(t)).

Similar expressions can be obtained forDvi

∂ε and Dλj
i

∂ε ,
j = 1, 2, i = 1, . . . , N . B(·, ·) is a bilinear form that we
introduce in order to be able to separate variations in the
components ofui, vi and λj

i , i = 1, . . . , N , j = 1, 2,
from variations in the basis vector fields. It is important to
separate these terms since the variationsδui, δvi andδλi

j ,
i = 1, . . . , N , j = 1, 2, are independent from each other as
well as fromWi –a fact which has significant importance

in deriving necessary conditions.
For variations iñcij(t), let

c̃ij(t, ε) =
2∑

k=1

c̃k
ij(t, ε)Zk(c̃ij(t, ε)) ∈ Tc̃ij(t,ε)Õ,

whereZk, k = 1, 2, is an orthonormal set of vector fields
on Tc̃ij(t,ε)Õ. The setZk, k = 1, 2, may be taken to be the
standard set of vector fields spanningR2.

Assumption IV.1. Let M = O ⊂ R2. In other words, the
surfacesM andO coincide.

Under Assumption (IV.1), the projectionPO is the iden-
tity operator. This implies that all the derivativesD/dt
could be replaced by regular derivatives inR2. However, we
will retain the former notation because future research will
not make Assumption (IV.1) and will consider rigid body
dynamics, where most of the results obtained below will
only be slightly modified. Moreover, as long as one chooses
non-rectangular coordinates the former notation becomes
very convenient. Thus, fori, j = 1, . . . , N we have

c̃ij(t, 0) = c̃ij(t) =
cj(t)− ci(t)

λ
,

Dc̃ij

∂ε
(t, 0) =

1
λ

[Wj(t)−Wi(t)]

Dc̃ij

∂ε
(0, 0) =

Dc̃ij

∂ε
(T, 0) = 0, (4.4)

D
dt

Dc̃ij

∂ε
(t, 0) =

1
λ

D
dt

[Wj(t)−Wi(t)] cont. on[0, T ]

D
dt

Dc̃ij

∂ε
(0, 0) =

D
dt

Dc̃ij

∂ε
(T, 0) = 0.

Theorem IV.1. Under Assumptions (I.1), (III.1) and (IV.1),
taking first order variations of the expression in Equation
(4.2) leads to the following relationship:

∂J
∂ε

(ci(t, ε),ui(t, ε), t; i = 1, . . . , N)
∣∣∣∣
ε=0

=

=
∫ T

0

N∑
j=1

〈uj ,B (Wj ,uj)〉 −
Dλj

1

dt
(Wj)

− λj
1 (B (Wj ,vj))− λj

2 (B (Wj ,uj))

+ λj
2 (R (Wj ,vj)vj)−

Dλj
2

dt
(B (Wj ,vj))

+
N∑

k=1

τ2

λ2
〈uk − uj ,Wj〉 −

κ2

λ

∂meas
∂c̃jk

(Wj) dt (4.5)

+
∫ T

0

N∑
j,k=1

− τ2

λ2
〈uk − uj ,Wk〉+

κ2

λ

∂meas
∂c̃jk

(Wk) dt

+
∫ T

0

N∑
j=1

−λj
2(δuj) + 〈uj , δuj〉dt

+
∫ T

0

N∑
j=1

−λj
1 (δvj)−

Dλj
2

dt
(δvj) dt.

Proof In Equation (4.2), we replacẽcjk(t), uj(t) andvj(t)



with the perturbed variables̃cjk(t, ε), uj(t, ε) andvj(t, ε),
respectively. To prove the theorem, we compute∂J /∂ε on
a term by term basis as follows. First, we have:

∂

∂ε

∫ T

0

1
2
〈uj(t, ε),uj(t, ε)〉dt

∣∣∣∣
ε=0

=
∫ T

0

〈uj , δuj + B (Wj ,uj)〉dt, (4.6)

where a summation overj is understood. For the fourth term
in Equation (4.2), we use the fourth identity in Equations
(4.4) and integrate by parts to obtain

∂

∂ε

∫ T

0

τ2

2

N∑
j=1

N∑
k=1

〈
Dc̃jk

dt
,
Dc̃jk

dt

〉
dt

∣∣∣∣
ε=0

=
∫ T

0

τ2

λ

N∑
j=1

N∑
k=1

〈
Dc̃jk

dt
,
D
dt

[Wk −Wj ]
〉

dt

= −
∫ T

0

τ2

λ

N∑
j=1

N∑
k=1

〈
D2c̃jk

dt2
,Wk −Wj

〉
dt

+
N∑

j=1

N∑
m=1

τ2

λ

〈
Dc̃jk

dt
,Wk −Wj

〉 ∣∣∣∣T
0

.

The second term vanishes due to the fixed boundary con-
ditions (4.3). Under Assumption (IV.1), we have

D2c̃jk

dt2
=

1
λ

(uk − uj) .

Thus, for the fourth term in Equation (4.2) we have

∂

∂ε

∫ T

0

τ2

2

N∑
j,k=1

〈
Dc̃jk

dt
,
Dc̃jk

dt

〉
dt

∣∣∣∣
ε=0

= −
∫ T

0

τ2

λ2

N∑
j,k=1

〈uk − uj ,Wk −Wj〉dt. (4.7)

For the second term, we have

∂

∂ε

∫ T

0

λj
1

(
Dcj

dt
− vj

)
dt

=
∫ T

0

λj
1

(
D
dt

Wj − δvj −B (Wj ,vj)
)

dt.

For the first term in the parenthesis, we integrate by parts
to obtain∫ T

0

λj
1

(
D
dt

Wj

)
dt = λj

1 (Wj)
∣∣∣∣T
0

−
∫ T

0

Dλj
1

dt
(Wj) dt.

The first term on the right hand side vanishes by virtue of
the boundary conditions (4.3). We then obtain

∂

∂ε

∫ T

0

N∑
j=1

λj
1

(
Dcj

dt
− vj

)
dt =

∫ T

0

N∑
j=1

−Dλj
1

dt
(Wj)

− λj
1 (δvj + B (Wj ,vj)) dt. (4.8)

For the third term in Equation (4.2), first recall the identity

(page 52 in [4]):

D
∂ε

D
∂t

Y − D
∂t

D
∂ε

Y = R

(
Dc
∂ε

,
Dc
∂t

)
Y.

Then, we have

∂

∂ε

∫ T

0

N∑
j=1

λj
2

(
Dvj

dt
− uj

)
dt

=
∫ T

0

N∑
j=1

λj
2

(
R(Wj ,vj)vj +

D2vj

∂t∂ε
− δuj

−B (Wj ,vj)
)

dt

=
∫ T

0

N∑
j=1

λj
2

(
R(Wj ,vj)vj − δuj −B (Wj ,vj)

)

−Dλj
2

dt
(δvj + B (Wj ,vj)) dt (4.9)

where integration by parts has been used to arrive at the
last equation. Finally, under AssumptionIII.1, for the last
term we have

∂

∂ε

∫ T

0

κ2meas [Ψ] dt =
∫ T

0

N∑
j,k=1

κ2 ∂meas
∂c̃jk

∂c̃jk

∂ε
dt

=
∫ T

0

N∑
j,k=1

κ2

λ

∂meas
∂c̃jk

(Wk −Wj) dt, (4.10)

where it is understood that themeas function is applied
to the setΨ(c̃jk) for all j, k = 1, . . . , N . Finally, from
equations (4.6-4.10), by separating terms involving the co-
efficientsWj , Wk, δvj andδuj , we obtain the expression
(4.5) and, hance, proving the theorem. �

Theorem IV.2. Under Assumptions (I.1), (III.1) and (IV.1),
a set of optimal trajectories̃ci, i = 1, . . . , N , that minimize
J while satisfying the dynamic constraints (1.1) and the
boundary conditions (3.2) satisfies the following necessary
conditions for an arbitrary vector fieldX:

Dci

dt
= vi

Dvi

dt
=

(
λj

2

)#

,

Dλj
1

dt
(X) = (R (uj ,vj)vj)

[ (X) (4.11)

Dλj
2

dt
(X) = −λj

1 (X)

uj =
(
λj

2

)#

0 =
N∑

k=1

τ2

λ2

(
λk

2 (X)− λj
2 (X)

)
− κ2

λ

∂meas
∂c̃jk

(X)

for j = 1, . . . , N and whereY[ (X) = 〈Y,X〉, with [
denoting the flat operator [5].

Proof The first equation follows immediately from Equation
(1.1). For an optimal solution, the first order necessary



condition is that
∂J
∂ε

(ci(t, ε),ui(t, ε), t; i = 1, . . . , N)
∣∣∣∣
ε=0

= 0. (4.12)

The rest of the proof relies on this condition and the fact
that Wj , Wk, δuj and δvj are independent for allj, k =
1, . . . , N . The fourth equation follows immediately from
the last integral in Equation (4.5) and the independence of
δvj , j = 1, . . . , N . The fifth equation follows immediately
from condition (4.12), the third integral in Equation (4.5)
and the independence ofδuj , j = 1, . . . , N . The last
(algebraic) equation in (4.11) is obtained by studying the
second integral in Equation (4.5). SinceWk, k = 1, . . . , N ,
are independent, we then have

N∑
j=1

− τ2

λ2
(uk − uj) +

κ2

λ

∂meas(Ψ)
∂c̃jk

= 0, ∀k = 1, . . . , N.

Sinceuj =
(
λj

2

)#

and by interchanging indices (j → k

and k → j), we obtain the last (algebraic) condition in
(4.11). Hence, the last term under the first integral in

Equation (4.5) is zero. This, the fact thatDλj
2

dt = −λj
1 and

the independence ofWj , j = 1, . . . , N , in the first integral
in Equation (4.5) give the third equation in the theorem.
The second equation follows from Equation (1.1) and the
fifth condition in equation (4.11). �

Studying the last (algebraic) necessary condition gives
further insight into the optimal trajectory. Note that one
can write theseN conditions in a matrix form:

AU =
κ2λ

τ2
M, (4.13)

where

A =


N − 1 −1 · · · −1
−1 N − 1 −1
...

...
...

−1 · · · −1 N − 1


is anN ×N matrix, U is theN × 1 column matrix whose
jth entry isuj andM is theN × 1 column matrix whose
jth entry is

∑N
k=1

∂meas(Ψ)
∂c̃jk

. Let aij be theijth element of

A. Note thataNj = −
∑N−1

i=1 aij . Hence, the last row is
dependent on the firstN − 1 rows. In fact, one can show
that A has rank exactly equal toN − 1. The homogenous
solution to the above equation is found to beuh

1 = uh
2 =

· · · = uh
N . The homogeneous solution corresponds to the

motion of the center of mass of the formation in the plane.
Since it is desired to minimize fuel, then we may set the
homogeneous solution to zero:uh

1 = uh
2 = · · · = uh

N = 0.

What really matters in this situation is the particular
solution, if one exists. Indeed, we now show that the matrix
M lies in the range space of the matrixA and, hence, a
particular solution exists. First, appendM to A to form the
new matrixÃ = [A M]. Recall thatA has rank equal to
N−1. If we can show that̃A also has rankN−1, thenM
lies in the range space ofA. Let M̃ be the matrix whose

elements are given bỹMij = ∂meas
∂c̃ij

. With c̃ij = −c̃ji and

c̃ii = 0 is fixed at the origin, then∂meas
∂c̃ii

= 0 and M̃ is
skew symmetric. Next, note that theN th element ofM is
given by

N−1∑
j=1

∂meas
∂c̃Nj

=
N−1∑
j=1

∂meas
∂c̃Nj

+
N−1∑
j,k=1

∂meas
∂c̃kj

=
N−1∑
j=1

N∑
k=1

∂meas
∂c̃kj

= −
N−1∑
j=1

N∑
k=1

∂meas
∂c̃jk

,

where the second term after the first equality sign is zero
sinceM̃ is skew symmetric. The term after the last equality
sign is nothing but the sum of all the firstN − 1 elements
of the matrixM. This and the fact thataNj = −

∑N−1
i=1 aij

show that the last row of̃A is equal to the sum of the first
N − 1 rows of Ã. SinceA has rankN − 1, then so must
Ã. Hence,M must in fact be in the range space ofA and
a particular solution must exist ([6], pp. 116-121).

For N = 2, the condition (4.13) is equivalent tou1 −
u2 = κ2λ

τ2
∂meas
∂c̃12

. Hence, for a two spacecraft formation, a
necessary optimality condition is that the relative thrusting
between the two spacecraft is in the direction of descent of
the measure of the uncovered set ofu-v points. ForN = 3,
the condition (4.13) is equivalent to:

u1 − u2 =
1
3

κ2λ

τ2

[
∂meas
∂c̃13

+ 2
∂meas
∂c̃12

+
∂meas
∂c̃32

]
u1 − u3 =

1
3

κ2λ

τ2

[
∂meas
∂c̃12

+ 2
∂meas
∂c̃13

+
∂meas
∂c̃23

]
,

where now a necessary optimality condition is that the
relative thrusting between the three spacecraft is a weighted
sum of the direction of descent of the measure of the
uncovered set ofu-v points.

Hence, each spacecraft’s motion and control effort is
affected by the amount of area ofDR that has not been
covered by the formation as it involves summations over
motions of all the other spacecraft. Therefore, the resulting
control law is in some sense decentralized: Given knowl-
edge of the motions of the other spacecraft, the above
necessary conditions command each spacecraft to move in
directions that attempt to minimize the cost functionJ .
Remarks:

1) Note that ∂meas
∂c̃jk

constitute the components of the
differential form d (meas). Hence, the notation
∂meas
∂c̃jk

(X) denotes this form operating onX.
2) In the proof for Theorem (IV.1) we have not taken

variations in the multipliersλj
i , i = 1, 2, j =

1, . . . , N . This is standard practice and the justifica-
tion can found in Section 2 of [7].

V. EXAMPLE

In this section we state the necessary conditions for
a three-spacecraft, rigidly-connected, co-planar formation.
The necessary conditions for a general one degree of
freedom system are slightly different from those of Theorem



(IV.2). Since we only have a single degree of freedom,
a single control vector field suffices to drive the system.
Hence, the condition (4.13) will vanish. Instead, the effect
of the measure functionmeas (Ψ) on the closed loop system
appears in the dynamics governing the Lagrange multipliers.
This result governs other single degree of freedom systems
with different numbers of spacecraft and configurations.

The formation we study is shown in Figure (2). The
formation assumes the shape of an equilateral triangle.
Formations such as this one appear in previous literature.
See for example the formation used in [8]. Let the side
of the triangle be given bya and each spacecraft is at
a distancer from the center of massCM , where r =
a/
√

3. To guarantee that the resulting motion results in a
successful maneuver, we impose the condition thata =
2rpλ. Moreover, assume the resolution discDR has a radius
of 1/θr = 3rp. These conditions and the rigidity of the
formation guarantee that the resulting six picture frame
discs (as defined in SectionII ) are centered such that each
scans an annulus about the central disc. After the formation
rotates by an angle of60◦, the maneuver is completed,
resulting in a successful maneuver. The motion in theu-
v plane is shown in Figure (2) (right).

Since this is a single degree of freedom system evolv-
ing on the unit circleS1, let the angular position,θ(t),
describe the state of the system as shown in Figure (2).
Hence,θ(0) = 0 and θ(T ) = π/3. For this example, an
approximation of the measure function is given by

meas (Ψ(θ(t))) = −24r2
pθ(t) + 8πr2

p. (5.1)

One can also check thatmeas (Ψ(θ = 0)) = 8πr2
p (that

is, the area of the initial uncovered annulus) and that
meas(Ψ (θ = π/3)) = 0 as one expects at the end of a
successful maneuver.

If we let the mass of each spacecraft be given byms and
the torque applied to each spacecraft be given byF , then
the equations of motion are given by the equation

Dθ

dt
= ω,

Dω

dt
= u, (5.2)

whereu = F
ms

. The cost function to be minimized is

J =
∫ T

0

1
2
〈u, u〉+

τ ′2a2

2λ2
〈ω, ω〉+ κ2meas(θ)dt, (5.3)

where the absolute linear velocity of the discs is given by
a
λ

Dθ
dt = 2rp

Dθ
dt . AppendingJ by the termsλ1

(
Dθ
dt − ω

)
and λ2

(
Dω
dt − u

)
, and following a procedure similar to

that used to derive Theorems (IV.1) and (IV.2), we obtain
Equations (5.2) and

Dλ1

dt
(X) = κ2 ∂meas

∂θ
(X) + 〈R(u, ω)ω,X〉

Dλ2

dt
(X) = −λ1 (X) + τ2 〈ω,X〉

u = λ#
2 ,

as necessary conditions, where∂meas/∂θ = −24r2
p and

X ∈ TM is any arbitrary vector field. We note here that

the algebraic condition onλ2 vanishes since the system has
only one degree of freedom. Instead, an additional term is
added to theDλ1

dt equation.

CM

rr

r
a

a

θ(t)

θ(t)

θ(t)

s/c 1

s/c 2s/c 3

a

u

v

3rp

θ(t)

Fig. 2. A three-spacecraft, rigidly-connected, co-planar formation (left)
and the motion in theu-v plane (right).

VI. CONCLUSION

In this paper we studied the dynamic coverage optimal
control problem. The problem is motivated by interfero-
metric imaging spacecraft formations. An optimal control
problem is defined to achieve maneuvers optimal in both
imaging and fuel senses. Optimality conditions were derived
and a simple three spacecraft example was given to illustrate
our results. Future work will aim at eliminating some of
the assumptions made in this paper. Specifically, we aim at
studying systems evolving in gravitational fields and those
evolving on non-planar Riemannian manifolds.
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