

ENERGY in CIRCUITS and MECHANICS

JAN C. WILLEMS
K.U. Leuven, Flanders, Belgium

In honor of Peter Crouch on the occasion of his 60th birthday

Edzell, Scotland
September 1980

How are open systems formalized?
How are systems interconnected?
How is energy transferred between systems?
Are energy transfer and interconnection related?

A view from afar with almost 50 years of hindsight, befitting a 60th birthday celebration.

Motivation

The ever-increasing computing power allows
to model complex interconnected dynamical systems
accurately by tearing, zooming, and linking.
\leadsto Simulation, model based design, ...

Requires the right mathematical concepts
for dynamical system
for interconnection,
for interconnection architecture

SYSTEMS with TERMINALS

In order to keep the discussion simple and concrete,

 we discuss only systems thatinteract with the environment through terminals, and interact among each other via terminals.

- Electrical circuits
- Mechanical devices

Thermal systems
Hydraulic systems
Multidomain systems as motors, pumps, loudspeakers, ... etc., etc.

The why and how

If concepts and methods from system theory do not fit these simple examples seamlessly, what is the sense to pursue, with these concepts and methods, complex systems, as those encountered in cyberphysics, hi-tech, economics, biology, ...?

CLASSICAL VIEW

Input/output systems

Oliver Heaviside
Norbert Wiener

Input/output systems

Input/output thinking is inappropriate for describing the functioning of open physical systems.

A physical system is not a signal processor.

Better concept: a behavior

Interconnection

Interconnection as output-to-input assignment.

Output-to-input assignment is inappropriate for describing the interconnection of physical systems.

A physical system is not a signal processor.
Better concept: variable sharing

Signal flow graphs

Signal flow graphs are inappropriate for describing the interaction architecture of physical systems.

A physical system is not a signal processor.

Better concept: a graph with leaves

ELECTRICAL CIRCUITS

A circuit with external terminals

Describe the dynamic terminal behavior!
As seen from the environment.
What are the interaction variables?

Currents and voltages

Interaction variables: currents in $\&$ voltages across.

$$
I=\left[\begin{array}{c}
I_{1} \\
I_{2} \\
\vdots \\
I_{N}
\end{array}\right], \quad V=\left[\begin{array}{cccc}
V_{1,1} & V_{1,2} & \cdots & V_{1, N} \\
V_{2,1} & V_{2,2} & \cdots & V_{2, N} \\
\vdots & \vdots & \ddots & \vdots \\
V_{N, 1} & V_{N, 2} & \cdots & V_{N, N}
\end{array}\right]
$$

The behavior

Interaction variables: currents in \& voltages across.

$$
I=\left[\begin{array}{c}
I_{1} \\
I_{2} \\
\vdots \\
I_{N}
\end{array}\right], \quad V=\left[\begin{array}{cccc}
V_{1,1} & V_{1,2} & \cdots & V_{1, N} \\
V_{2,1} & V_{2,2} & \cdots & V_{2, N} \\
\vdots & \vdots & \ddots & \vdots \\
V_{N, 1} & V_{N, 2} & \cdots & V_{N, N}
\end{array}\right]
$$

$$
\underline{\text { Model }}: \Leftrightarrow \mathscr{B}_{I V} \subseteq\left(\mathbb{R}^{N} \times \mathbb{R}^{N \times N}\right)^{\mathbb{R}}
$$

$(I, V) \in \mathscr{B}_{I V}$ means

$$
\left(I_{1}, \ldots, I_{k}, \ldots, I_{N}, V_{1,1}, \ldots, V_{k_{1}, k_{2}}, \ldots, V_{N, N}\right): \mathbb{R} \rightarrow \mathbb{R}^{N} \times \mathbb{R}^{N \times N}
$$

is compatible with the circuit architecture and element values.
Trajectories $(I, V) \in \mathscr{B}_{I V}$ are those that can conceivably occur.

KVL

Kirchhoff voltage law:

$$
\llbracket(I, V) \in \mathscr{B}_{I V} \rrbracket \Rightarrow \llbracket V_{k_{1}, k_{2}}+V_{k_{2}, k_{3}}+\cdots+V_{k_{n-1}, k_{n}}+V_{k_{n}, k_{1}}=0
$$

for all $k_{1}, k_{2}, \ldots, k_{n} \in\{1,2, \ldots, N\} \rrbracket$.

Physically, KVL is evident (no EM fields outside the wires). We henceforth assume it.

Potentials

Thm: $V: \mathbb{R} \rightarrow \mathbb{R}^{N \times N}$ satisfies KVL \Leftrightarrow
$\exists P=\left[\begin{array}{c}P_{1} \\ P_{2} \\ \vdots \\ P_{N}\end{array}\right]: \mathbb{R} \rightarrow \mathbb{R}^{N}$ such that $V_{k_{1}, k_{2}}=P_{k_{1}}-P_{k_{2}}$.
P 'potential' $\Rightarrow\left[\begin{array}{c}P_{1}+\alpha \\ P_{2}+\alpha \\ \vdots \\ P_{N}+\alpha\end{array}\right]$ potential $\forall \alpha: \mathbb{R} \rightarrow \mathbb{R}$.

Electrical circuit

terminals

At each terminal:

a current (>0 into the circuit) and a potential

$$
\leadsto \text { behavior } \mathscr{B}_{I P} \subseteq\left(\mathbb{R}^{N} \times \mathbb{R}^{N}\right)^{\mathbb{R}}
$$

Electrical circuit

$\left(I_{1}, I_{2}, \ldots, I_{N}, P_{1}, P_{2}, \ldots, P_{N}\right) \in \mathscr{B}_{I P}$ means:
this current/potential trajectory is compatible with
the circuit architecture and its element values.

Early sources:

Mechanical device

At each terminal: a position and a force. \leadsto position/force trajectories $(q, F) \in \mathscr{B} \subseteq\left(\left(\mathbb{R}^{\bullet}\right)^{2 N}\right)^{\mathbb{R}}$.
More generally, position, force, angle, torque.

Other domains

Thermal systems: At each terminal:

a temperature and a heat flow.
Hydraulic systems: At each terminal:
a pressure and a mass flow.

Multidomain systems:

Systems with terminals of different types, as motors, pumps, loudspeakers, etc.

INTERCONNECTION

Connection of terminals

By interconnecting, the terminal variables are equated.

Electrical interconnection

$$
I_{N}+I_{N^{\prime}}=0 \quad \text { and } \quad P_{N}=P_{N^{\prime}}
$$

Behavior after interconnection:

$$
\mathscr{B}_{1} \sqcap \mathscr{B}_{2}:=\left\{\left(I_{1}, \ldots, I_{N-1}, I_{1^{\prime}}, \ldots, I_{N^{\prime}-1}, P_{1}, \ldots, P_{N-1}, P_{1^{\prime}}, \ldots, P_{N^{\prime}-1}\right) \mid\right.
$$

$\exists I, P$ such that $\left(I_{1}, \ldots, I_{N-1}, I, P_{1}, \ldots, P_{N-1}, P\right) \in \mathscr{B}_{1}$

$$
\left.\left(I_{1^{\prime}}, \ldots, I_{N^{\prime}-1},-I, P_{1^{\prime}}, \ldots, P_{N^{\prime}-1}, P\right) \in \mathscr{B}_{2}\right\} .
$$

Electrical interconnection

\sim more terminals and more circuits connected

Interconnection of 1-D mechanical systems

$$
q_{N}=q_{N^{\prime}} \quad \text { and } \quad F_{N}+F_{N^{\prime}}=0
$$

Variable sharing

Thermal systems:

At each terminal: a temperature and a heat flow.

$$
T_{N}=T_{N^{\prime}} \quad \text { and } \quad Q_{N}+Q_{N^{\prime}}=0
$$

Hydraulic systems:
At each terminal: a pressure and a mass flow.

$$
p_{N}=p_{N^{\prime}} \quad \text { and } \quad f_{N}+f_{N^{\prime}}=0
$$

Interconnection means variable sharing.

INTERCONNECTION ARCHITECTURE

A transmission line

Consider the transmission line shown below.

The aim is to model the relation between the voltage of the source and the voltage across the load.

A transmission line

View as an interconnection of 4 subsystems.

A transmission line

View as an interconnection of 4 subsystems.

The architecture \leadsto a graph with leaves.

A transmission line

The architecture \leadsto a graph with leaves.

Elements in the vertices
Interconnections in the edges
External terminals in the leaves

A transmission line section
In each of the vertices v_{1}, v_{2}, v_{3} we have:

View as the interconnection of 6 subsystems:

A transmission line section

The associated interconnection architecture is

Modeling the transmission line section

~ a LTIDS with 4 ODEs in the variables

$$
P_{\ell_{1}}, I_{\ell_{1}}, P_{\ell_{2}}, I_{\ell_{2}}, P_{\ell_{3}}, I_{\ell_{3}}, P_{\ell_{4}}, I_{\ell_{4}}
$$

Denote these equations as

The transmission line

The transmission line yields the subsystem equations

$$
R\left(\frac{d}{d t}\right)\left[\left[\left[\begin{array}{c}
P_{\ell_{1}} \\
I_{\ell_{1}} \\
P_{v_{1}, 2} \\
I_{v_{1}, 2} \\
P_{v_{1}, 3} \\
I_{v_{1}, 3} \\
P_{v_{1}, 4} \\
I_{v_{1}, 4}
\end{array}\right] \quad\left[\begin{array}{c}
P_{v_{2}, 1} \\
I_{v_{2}, 2} \\
P_{v_{2}, 2} \\
I_{v_{2}, 2} \\
P_{v_{2}, 3} \\
I_{v_{2}, 3} \\
P_{v_{2}, 4} \\
I_{v_{2}, 4}
\end{array}\right] \quad\left[\begin{array}{c}
P_{v_{3}, 1} \\
I_{v_{3}, 2} \\
P_{v_{3}, 2} \\
I_{v_{3}, 2} \\
P_{v_{3}, 3} \\
I_{v_{3}, 3} \\
P_{v_{3}, 4} \\
I_{v_{3}, 4}
\end{array}\right]\right]=0,\right.
$$

$$
P_{v_{4}, 1}-P_{v_{4}, 2}=R I_{v_{4}, 1}, \quad I_{v_{4}, 1}+I_{v_{4}, 2}=0,
$$

The transmission line

the interconnection equations

$$
\begin{aligned}
& P_{v_{1}, 3}=P_{v_{2}, 1}, \quad I_{v_{1}, 3}+I_{v_{2}, 1}=0, \\
& P_{v_{1}, 4}=P_{v_{2}, 2}, \quad I_{v_{1}, 4}+I_{v_{2}, 2}=0, \\
& P_{v_{2}, 3}=P_{v_{3}, 1}, \quad I_{v_{2}, 3}+I_{v_{3}, 1}=0, \\
& P_{v_{2}, 4}=P_{v_{3}, 2}, \quad I_{v_{2}, 4}+I_{v_{3}, 2}=0, \\
& P_{v_{3}, 3}=P_{v_{4}, 1}, \quad I_{v_{4}, 3}+I_{v_{4}, 1}=0, \\
& P_{v_{3}, 4}=P_{v_{4}, 2}, \quad I_{v_{3}, 4}+I_{v_{4}, 2}=0 .
\end{aligned}
$$

The transmission line

the interconnection equations

$$
\begin{aligned}
& P_{v_{1}, 3}=P_{v_{2}, 1}, \quad I_{v_{1}, 3}+I_{v_{2}, 1}=0, \\
& P_{v_{1}, 4}=P_{v_{2}, 2}, \quad I_{v_{1}, 4}+I_{v_{2}, 2}=0, \\
& P_{v_{2}, 3}=P_{v_{3}, 1}, \quad I_{v_{2}, 3}+I_{v_{3}, 1}=0, \\
& P_{v_{2}, 4}=P_{v_{3}, 2}, \quad I_{v_{2}, 4}+I_{v_{3}, 2}=0, \\
& P_{v_{3}, 3}=P_{v_{4}, 1}, \quad I_{v_{4}, 3}+I_{v_{4}, 1}=0, \\
& P_{v_{3}, 4}=P_{v_{4}, 2}, \quad I_{v_{3}, 4}+I_{v_{4}, 2}=0 .
\end{aligned}
$$

Finally, there is the manifest variable assignment

$$
w_{1}=P_{\ell_{1}}-P_{\ell_{2}}, \quad w_{2}=P_{v_{4}, 1}-P_{v_{4}, 2} .
$$

The transmission line

After elimination of the latent variables, we obtain the desired differential equation that describes the behavior of $\left(w_{1}, w_{2}\right)$

$$
r_{1}\left(\frac{d}{d t}\right) w_{1}=r_{2}\left(\frac{d}{d t}\right) w_{2}
$$

In practice, all these steps need to be carried out with the help of a toolbox.

ENERGY

Energy := a physical quantity transformable into heat.

Energy

Energy := a physical quantity transformable into heat.

For example capacitor \rightarrow resistor \rightarrow heat.
Energy on capacitor $=\frac{1}{2} C V^{2}$

PORTS

Energy transfer

Environment

Can we speak about
the energy transferred from the environment to the circuit along these terminals?

Electrical ports

Assume KVL.

Terminals $\{1,2, \ldots, p\}$ form a port $: \Leftrightarrow$
$\llbracket\left(I_{1}, \ldots, I_{p}, I_{p+1}, \ldots, I_{N}, V_{1,1}, \ldots, V_{k_{1}, k_{2}}, \ldots, V_{N, N}\right) \in \mathscr{B}_{I V} \rrbracket$
$\Rightarrow \llbracket I_{1}+I_{2}+\cdots+I_{p}=0 \rrbracket . \quad$ 'port KCL'

If terminals $\{1,2, \ldots, p\}$ form a port, then
power in $=I_{1}(t) P_{1}(t)+\cdots+I_{p}(t) P_{p}(t)$
energy in $=\int_{t_{1}}^{t_{2}}\left[I_{1}(t) P_{1}(t)+\cdots+I_{p}(t) P_{p}(t)\right] d t$
This interpretation in terms of power and energy is not valid unless these terminals form a port !

```
Internal ports
```

Analogous definition for internal terminals
\leadsto internal ports,
combinations of external and internal terminals
\leadsto mixed ports.

EXAMPLES

2-terminal circuits

2-terminal 1-port devices :

resistors, inductors, capacitors, memristors, etc., any 2 -terminal circuit composed of these.

$\mathbf{K V L} \Rightarrow$ only $V_{1,2}:=V$ matters,
$\mathbf{K C L} \Rightarrow I_{1}=-I_{2}=: I$.

3-terminal circuits

3-terminal 1-ports.

Transformer

$$
\begin{gathered}
P_{3}-P_{4}=n\left(P_{1}-P_{2}\right), \\
I_{1}=-n I_{3}, \\
I_{1}+I_{2}=0, I_{3}+I_{4}=0 .
\end{gathered}
$$

$\{1,2\}$ and $\{3,4\}$ form ports.
A transformer = a 2-port with two 2-terminal ports.

Transmission line

Terminals $\{1,2,3,4\}$ form a port; $\{1,2\}$ and $\{3,4\}$ do not.

We cannot speak about

"the energy transferred from terminals $\{1,2\}$ to $\{3,4\}$ ", or "from the environment to the circuit through $\{1,2\} "$.

Transmission line

The energy flows from the source and to the load are well-defined, since the terminals form internal ports.

Therefore we can speak about
"the energy transferred from the source to the load".

Transmission line

Terminals $\{1,2\}$ and $\{3,4\}$ now form a port.

RLC circuit

Not an internal port: energy flow not well-defined.

Are ports common?

Theorem: Consider an electrical circuit consisting of an interconnection of (linear passive) R's, L's, C's. Assume that every pair of external terminals is connected by the circuit graph. Then
the only port is the one that consists of all the terminals.

Are ports common?

Theorem: Consider an electrical circuit consisting of an interconnection of (linear passive) R's, L's, C's.
Assume that every pair of external terminals is connected by the circuit graph. Then
the only port is the one that consists of all the terminals.
For non-trivial ports, we need multi-port elements, as transformers.

MECHANICAL PORTS

Mechanical ports

Environment

Terminals $\{1,2, \ldots, p\}$ form a (mechanical) port $: \Leftrightarrow$

$$
\left(q_{1}, \ldots, q_{p}, q_{p+1}, \ldots, q_{N}, F_{1}, \ldots, F_{p}, F_{p+1}, \ldots, F_{N}\right) \in \mathscr{B}
$$

$$
\Rightarrow \quad F_{1}+F_{2}+\cdots+F_{p}=0 . \quad \text { 'port } \mathbf{K F L} \text { ' }
$$

Power and energy

If terminals $\{1,2, \ldots, p\}$ form a port, then
power in $=F_{1}(t)^{\top} \frac{d}{d t} q_{1}(t)+\cdots+F_{p}(t)^{\top} \frac{d}{d t} q_{p}(t)$,
energy in $=\int_{t_{1}}^{t_{2}}\left(F_{1}(t)^{\top} \frac{d}{d t} q_{1}(t)+\cdots+F_{p}(t)^{\top} \frac{d}{d t} q_{p}(t)\right) d t$.

This interpretation in terms of power and energy is not valid unless these terminals form a port !

Example

Spring

$F_{1}+F_{2}=0, \quad K\left(q_{1}-q_{2}\right)=F_{1}$,
satisfies KFL.
\Rightarrow A port.

Example

Damper

$$
F_{1}+F_{2}=0, \quad D \frac{d}{d t}\left(q_{1}-q_{2}\right)=F_{1}
$$

satisfies KFL.
\Rightarrow A port.
Springs, dampers, $\&$ their interconnection \leadsto ports.

Example

$$
M \frac{d^{2}}{d t^{2}} q=F
$$

does not satisfy KFL

Not a port!!!

Interconnections of springs, dampers, and masses do not necessarily form a port.

MOTION ENERGY

Conservation law

$$
\begin{gathered}
\stackrel{d^{2}}{d t^{2}} q=F \Rightarrow \frac{d}{d t} \frac{1}{2} M\left\|\frac{d}{d t} q\right\|^{2}=F^{\top} \frac{d}{d t} q
\end{gathered}
$$

If $F^{\top} v$ is not power,
is $\frac{1}{2} M\|\nu\|^{2}$ not stored (kinetic, motion) energy ???

Kinetic energy and invariance under uniform motions

What is the kinetic energy?

$$
\mathscr{E}_{\text {kinetic }}=\frac{1}{2} M\|v\|^{2}
$$

Willem 's Gravesande Émilie du Châtelet 1688-1742
 1706-1749

Motion energy

What is the motion energy?

What quantity is transformable into heat?

$$
\mathscr{E}_{\text {motion }}=\frac{1}{2} \frac{M_{1} M_{2}}{M_{1}+M_{2}}\left\|v_{1}-v_{2}\right\|^{2}
$$

Invariant under uniform motion.

Dissipation into heat

Can be justified by mounting a damper between the

 masses.

$$
\frac{1}{2} \frac{M_{1} M_{2}}{M_{1}+M_{2}}\left\|v_{1}-v_{2}\right\|^{2}
$$

is the heat dissipated in the damper.

Motion energy

Generalization to N masses.

$$
\mathscr{E}_{\text {motion }}=\frac{1}{4} \sum_{i, j \in\{1,2, \ldots, N\}} \frac{M_{i} M_{j}}{M_{1}+M_{2}+\cdots+M_{N}}\left\|v_{i}-v_{j}\right\|^{2}
$$

Motion energy

With external forces.

(KFL) $\sum_{i \in\{1,2, \ldots, N\}} F_{i}=0 \Rightarrow \frac{d}{d t} \mathscr{E}_{\text {motion }}=\sum_{i \in\{1,2, \ldots, N\}} F_{i}^{\top} v_{i}$.

Motion energy

$$
\mathscr{E}_{\text {motion }}=\frac{1}{4} \sum_{i, j \in\{1,2, \ldots, N\}} \frac{M_{i} M_{j}}{M_{1}+M_{2}+\cdots+M_{N}}\left\|v_{i}-v_{j}\right\|^{2}
$$

Distinct from the classical expression of the kinetic energy,

$$
\mathscr{E}_{\text {kinetic }}=\frac{1}{2} \sum_{i \in\{1,2, \ldots, N\}} M_{i}\left\|v_{i}\right\|^{2}
$$

Motion energy

Reconciliation: $M_{N+1}=\infty, F_{N+1}=-\left(F_{1}+F_{2}+\cdots+F_{N}\right)$,

measure velocities w.r.t. this infinite mass ('ground'), then

$$
\begin{aligned}
\frac{1}{4} & \sum_{i, j \in\{1,2, \ldots, N, N+1\}} \\
\frac{M_{i} M_{j}}{M_{1}+M_{2}+\cdots+M_{N}+M_{N+1}} & \left\|v_{i}-v_{j}\right\|^{2} \\
\stackrel{M}{M_{N} \rightarrow \infty} & \frac{1}{2} \sum_{i \in\{1,2, \ldots, N\}} M_{i}\left\|v_{i}\right\|^{2} .
\end{aligned}
$$

Motion energy is not an extensive quantity, it is not additive.

Total motion energy \neq sum of the parts.

Power and energy involve 'action at a distance’.

ENERGY TRANSFER

Energy transfer

One cannot speak about
"the energy transferred from system 1 to system 2 " or "from the environment to system 1 ", unless the relevant terminals form a port.

Ports and terminals

Terminals are for interconnection,

ports are for energy transfer.

CONCLUSION


```
Energy transfer
```

Energy transfer is associated with ports.
One cannot in general speak about the energy transferred from system 1 to system 2.

Energy is not an local quantity. It involves action at a distance.

Energy is not an extensive quantity.

Happy birthday, Peter!

Thank you

Thank you
Thank you
Thank you
Thank you
Thank you
Thank you

