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Abstract In this paper, we describe a constrained Lagrangian and Hamiltonian
formalism for the optimal control of nonholonomic mechanical systems. In partic-
ular, we aim to minimize a cost functional, given initial and final conditions where
the controlled dynamics are given by a nonholonomic mechanical system. In our
paper, the controlled equations are derived using a basis of vector fields adapted
to the nonholonomic distribution and the Riemannian metric determined by the
kinetic energy. Given a cost function, the optimal control problem is understood
as a constrained problem or equivalently, under some mild regularity conditions, as
a Hamiltonian problem on the cotangent bundle of the nonholonomic distribution.
A suitable Lagrangian submanifold is also shown to lead to the correct dynamics.
Application of the theory is demonstrated through several examples including
optimal control of the Chaplygin sleigh, a continuously variable transmission, and a
problem of motion planning for obstacle avoidance.

1 Introduction

Although nonholonomic systems have been studied since the dawn of analytical
mechanics, there has been some confusion over the correct formulation of the
equations of motion (see, e.g., [4, 10] and [29] for some of the history). It is only
recently that their geometric formulation has been fully understood. In addition,
there has been recent interest in the analysis of control problems for such systems.
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Nonholonomic control systems exhibit distinctive features. In particular, many
naturally underactuated systems are controllable, the controllability arising from
the nonintegrability of the constraints.

Nonholonomic optimal control problems arise in many engineering applications,
for instance systems with wheels, such as cars and bicycles, systems with blades or
skates, etc. There are thus multiple applications in the context of wheeled motion,
space or mobile robotics and robotic manipulation. In this paper, we will introduce
some new geometric techniques in nonholonomic mechanics to study the case of
control effort minimizing optimal control problems.

The application of modern tools from differential geometry in the fields of
mechanics, control theory, field theory and numerical integration has led to sig-
nificant progress in these research areas. For instance, the study of the geometrical
formulation of the nonholonomic equations of motion has led to better understand-
ing of different engineering problems such as locomotion generation, controllability,
motion planning, and trajectory tracking (see, e.g., [4-8, 12, 13, 22, 25, 30-
32, 37, 39] and references therein). Geometric techniques can also be used to study
optimal control problems (see, e.g., [8, 15, 16, 20, 21, 42, 43]).

Combining these ideas in this paper, we study the underlying geometry of opti-
mal control problems for mechanical systems subject to nonholonomic constraints
and we apply it to several interesting examples.

Classical nonholonomic constraints which are linear in the velocities can be
geometrically encoded by a constant rank distribution D. As we will see, the
distribution D will play the role of the velocity phase space. Given a Lagrangian
L =K-V:TQ — R, where K and V are the kinetic and potential energy,
respectively, and a distribution D where the motion of the system is restricted,
the dynamics of the nonholonomic system is completely determined using the
Lagrange-d’ Alembert principle [4]. In this paper, we will formulate a description in
terms of a Levi Civita connection defined on the space of vector fields taking values
on D. This connection is obtained by projecting the standard Lie bracket using the
Riemannian metric associated with the kinetic energy K (see [3]) and the typical
characterization of the Levi-Civita connection (see also [9]). By adding controls
in this setting we can study the associated optimal control problem. Moreover, we
can see that the dynamics of the optimal control problem is completely described
by a Lagrangian submanifold of an appropriate cotangent bundle and, under some
regularity conditions, the equations of motion are derived as classical Hamilton’s
equations on the cotangent bundle of the distribution, 7*D. Although our approach
is quite intrinsic, we also give a local description since this is important for working
out examples. For this, it is necessary to choose an adapted basis of vector fields for
the distribution. From this point of view, we combine the techniques used previously
by the authors of the paper (see [3, 11, 35]). An additional advantage of our method
is that symmetries may be naturally analyzed in this setting. Concretely, the main
results of our paper can be summarized as follows:

* Geometric derivation of the equations of motion of nonholonomic optimal
control problems as a constrained problem on the tangent space of the constraint
distribution D.
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* Construction of a Lagrangian submanifold representing the dynamics of the
optimal control problem and the corresponding Hamiltonian representation when
the system is regular.

* Definition of a Legendre transformation establishing the relationship and corre-
spondence between the Lagrangian and Hamiltonian dynamics.

» The application of the theory is demonstrated through several examples including
optimal control of the Chaplygin sleigh, a continuously variable transmission and
a problem of motion planning for obstacle avoidance.

2 Nonholonomic Mechanical Systems

Constraints on mechanical systems are typically divided into two types: holonomic
and nonholonomic, depending on whether the constraint can be derived from a
constraint in the configuration space or not. Therefore, the dimension of the space of
configurations is reduced by holonomic constraints but not by nonholonomic con-
straints. Thus, holonomic constraints allow a reduction in the number of coordinates
of the configuration space needed to formulate a given problem (see [38]).

We will restrict ourselves to the case of nonholonomic constraints. Additionally,
assume that the constraints are given by a nonintegrable distribution D on the
configuration space Q. If we choose local coordinates (¢°), 1 < i < n = dimQ,
the linear constraints on the velocities are locally given by equations of the form

(¢4 =ui(@qd =0, 1<a<m=<n, ey

depending, in general, on local coordinates and their velocities. From an intrinsic
point of view, the linear constraints are defined by a distribution D on Q of constant
rank n — m such that the annihilator of D is locally given by

Ann(D) = span {pf’ =pldg' ;1 <a< m}

where the 1-forms p“ are independent.

In addition to these constraints, we need to specify the dynamical evolution of
the system, usually by fixing a Lagrangian function L: 7Q — R. In mechanics, the
central concepts permitting the extension of mechanics from the Newtonian point of
view to the Lagrangian one are the notions of virtual displacements and virtual work;
these concepts were originally formulated and developed in mechanics for their
use in statics. In nonholonomic dynamics, the dynamics is given by the Lagrange—
d’Alembert principle. This principle allows us to determine the set of possible values
of the constraint forces from the set D of admissible kinematic states alone. The
resulting equations of motion are

d (LY AL, .
[a (a—qf)‘a—qf}gq =0
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where 8¢’ denotes the virtual displacement satisfying
1isq =0

(for the sake of simplicity, we will assume that the system is not subject to non-
conservative forces). This must be supplemented by the constraint equations (1). By
using the Lagrange multiplier rule, we obtain

d (o oL _,
a\og) ag M

The term on the right hand side represents the constraint force or reaction force
induced by the constraints. The functions A, are Lagrange multipliers which, after
being computed using the constraint equations, allow us to obtain a set of second
order differential equations.

Now, we restrict ourselves to the case of nonholonomic mechanical systems
where the Lagrangian is of mechanical type, given as follows

Lvg) = 39(04,v) ~ V(@)

where v, € T,0. Here G denotes a Riemannian metric on the configuration space
Q representing the kinetic energy of the system and V : O — R is the potential
energy. Locally, the metric is determined by the matrix M = (G;)1<ij<n Where

Jd 0
szg(a—qwa—q«)'

Denote by 7 : D — Q the canonical projection of D to Q and I"(zp) the set of
sections of the bundle tp, which is just the set of vector fields X(Q) taking values
on D in this context. If X, Y € X(Q), then [X, Y] denotes the standard Lie bracket
of the vector fields.

Definition 1 A nonholonomic mechanical system on a manifold Q is given by the
triple (G, V, D), where G is a Riemannian metric on Q, specifying the kinetic energy
of the system, V : Q0 — R is a smooth function representing the potential energy and
D is a non-integrable distribution on Q representing the nonholonomic constraints.

Remark 1 Given X,Y € I'(tp) that is, X(x) € D, and Y(x) € D,, for all x € Q,
then it may happen that [X, Y] ¢ I"(tp) since D is nonintegrable.

We want to obtain a bracket defined for sections of tp. Using the Riemannian
metric § we can construct two complementary orthogonal projection maps

P:TQ — D and Q: TQ — D,

with respect to the tangent bundle orthogonal decomposition D @ D+ = TQ.
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Therefore, given X,Y € I'(tp) we define the nonholonomic bracket [-,-] :
I'(tp) x I'(tp) = I'(tp) as

[X,Y] = P[X, Y],
where X,Y € I'(tp) (see [2, 3, 18]). This Lie bracket satisfies all the usual

properties of a Lie bracket except for the Jacobi identity.

Remark 2 From a more differential geometric point of view, D with this modified
bracket for sections of the vector bundle tp, inherits a skew-symmetric Lie
algebroid structure (see [17] and [3]), where now the bracket for sections of the
vector bundle tp does not satisfy in general the Jacobi identity, as an expression of
the nonintegrability of the distribution D.

Definition 2 Considering the restriction of the Riemannian metric G to the distri-
bution D, SD : D xp D — R we can define the Levi-Civita connection

VAR I'(tp) x I'(tp) — I'(tp),
determined by the following two properties:
g® g®
. [X.Y] =V{ Y-V, X (Symmetry).

2. X(82(v.2)) = 2V Y. 2) + G2 (V. V" Z)  (Metricity).

Let (¢') be local coordinates on Q and {e, } vector fields on I'(zp) (that is, e4 (x) €
D,), such that D, = span {e4(x)}, with x € U C Q. The Christoffel symbols I'j. of

the connection VS are given by
b A
VEB ec = I'gc(q)ea.

Definition 3 A curve y : I C R — D is admissible if there exists a curve o : I C
R — Q projecting y to Q such that y(t) = &(¢).

Given local coordinates on Q, (¢') i = 1,...,n, and {es} a basis of sections of
, 0 .
I'(tp), such that e4 = pj (q)T, we introduce induced coordinates (¢', y!) on D
q' ‘
where, if e € D, then e = y“e4(x). Therefore, y(t) = (¢'(¢), y*(¢)) is admissible if

(1) = Pl (g())y* ().
Now, consider the restricted Lagrangian, £ : D — R,
l.p
) = 59 (v,v) = V(zp(v)),

where v € D.
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Definition 4 (see [3]) A solution of the nonholonomic system is an admissible
curve y : I — D such that

D
Vi ¥(0) + gradgn V(zo (y(1))) = 0.
Here the section gradg» V € I'(tp) is characterized by
G% (gradgo V,X) = X(V),

forevery X € I'(tp).
These equations are equivalent to the nonholonomic equations. Locally, these are
given by

q' = ph(ay",

. RO 1%
L (SD)CBpBa—q,.,

where (GP)4% denotes the coefficients of the inverse matrix of (S)sz with
GP (ea.e8) = ().

Remark 3 Observe that these equations only depend on the adapted coordinates
(¢',y") on D. Therefore, the nonholonomic equations are free of Lagrange multi-
pliers. These equations are equivalent to the nonholonomic Hamel equations (see,
e.g., [11, 35] and the references therein).

3 Optimal Control of Nonholonomic Mechanical Systems

The purpose of this section is to study optimal control problems for nonholonomic
mechanical systems. We assume that the controllability condition is satisfied, i.e.,
for any two points go and gy in the configuration space Q, there exists an admissible
control u(#) defined on the control manifold U € R”, such that the system with
initial condition g reaches the point gy at time T (see [4] and [13] for more details).
We will analyze the case when the dimension of the input or control distribution
is equal to the rank of D. If the rank of D is equal to the dimension of the control
distribution, the system will be called a fully actuated nonholonomic system.

Definition 5 A solution of a fully actuated nonholonomic system is an admissible
curve y : I — D such that

VI y(0) + gradgs V(o (y(1))) € (1),
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or equivalently,

VS Y (1) + gradgn V(Tn (y (1)) = i (Dea(ro (1 (1),

where u” are the control inputs.

Locally, the equations may be written as follows

q' = phy".

5 = TG — ()P i
Given a cost function

C:DxU—R
(ql’ .yA’ L[A) g C(ql’ -yA, MA)’
the optimal control problem consists of finding an admissible curve y : I — D

solving the fully actuated nonholonomic problem, given initial and final boundary
conditions on D and minimizing the functional

T
30y (1. u(t)) = /0 COy (). u(v))dt,

where y is an admissible curve.
Next, we define the submanifold D® of TD by

D® ={v e TD | v =y(0), where y : I — D is admissible}, 2)

and we can choose coordinates (x',y*,7") on D, where the inclusion on 7D,
denoted by ipye : D? < TD is given by

i’D(z)(qivyAsyA) = (qlvyAvp;x(Q)yAvyA)

Therefore, D is locally described by the constraints in 7D, given by
q' —ppy" =0.

Observe now that our optimal control problem is alternatively determined by a
smooth function £ : D@ — R, where

. . .9V
L@y = € (qzmc Y <9D>03pga—qi) . 3)
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The following diagram summarizes the situation

@@CL TD

Here j : D — TQ is the canonical inclusion from D to TQ ‘C(2 D p@ 5 p

and t7p : TD — D are the projections locally given by r,D 1)(q R yA) = (¢'.y")
and 7 (¢', y*, v, 3) = (¢',y"), respectively. Finally, Tty : TD — TQ is locally
described as follows: (¢',y*, ¢',3*) — (¢', ).

To derive the equations of motion, we use the standard variational calculus with
constraints approach and, define the extended Lagrangian L:DOXR" > R, given
as follows

L(g Y3 ) = L(g'. v 7™ + M@ — ply™).

Therefore, the equations of motion are

L L . AL
i(a_“)_a_':)“ v 'gd?f_o

d (3L aL  d (3L AL
z(a*)W:a(W) gyt T =0 @

3.1 Example: Continuously Variable Transmission (CVT)

We want to study the optimal control of a simple model of a continuously variable
transmission, where we assume that the belt cannot slip (see [36] for more details).

The shafts are connected to spiral springs fixed to the chasis. The belt between
the two cones is translated along the shafts in accordance with the coordinate x,
providing a varying transmission ratio. The belt moves in a plane perpendicular to
the shafts, so that the belt has constant length (see [36] for a complete description
and integrability of this system). The variables 6; and 6, denote the angular
deflections of the shafts, m is mass of the belt slider, J; > O is the inertia about
the center of mass of the driving pulley and J, > 0 is the inertia about the center
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of mass of the driven pulley. The configuration space is S! x S! x R and the local
coordinates on the configuration space are ¢ = (6, 65,x) € S! x S' x R.

The control inputs are u#; and u,. The first is a force applied perpendicular to the
center of mass of the belt slider and the second is the torque applied about the center
of mass of the driving pulley. We assume that x < 1 (which corresponds to finite
gear ratio).

The belt gives a constraint due to no slippage and is expressed in differential
form by

@ =xd91 — (1 —x)d@z.

Therefore the constraint distribution is given by D = span {X;(g), X2(q)} where

19 d d
Xi(q) = o and X»(gq) = (1 —x)a—e1 +xa—92.

The Lagrangian is metric on Q = S! x S! x R, where the matrix associated with
the metric G is

Ji 00
92 0.]20
0 0m

Then the Lagrangian L : T(S' x S' x R) — R is given by
L 52 2
L(g,q) = > (.1191 + 105 + mx )

The projection map P : T(S' x S! x R) — D is

. Ji(1 —x)? 0 Jix(1 —x) 0
P@q.9) = o, ® — 4o ® ——
(¢.9) Ji = 2J1x + J1x2 4 Jpx? 1 ® 790, +J1—2J1x+J1x2 + Jox? 1®392
Jox(1 —x) a Jox? 0 0
do, ® —- o @ — +dx ® —.
J1_2J1x+11x2+12)€2 2®891 +Jl—211x+J1x2+J2x2 2®392+ x®3x

Let g = (61, 65, x) be coordinates on the base manifold @ = S! x S! x R and
take the basis {X, X»} of vector fields on D. This basis induces adapted coordinates
(01,02,x,y1,y2) € D in the following way: Given the vector fields X; and X,
generating the distribution D, we obtain the relations for g € S' x S' x R and

0 0 a .
Xi@) = pl@gg + 0@ g + 0@ i=1.2
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Then,

1
Each element e € D, is expressed as a linear combination of these vector fields
e =yXi(q) +2X2(q). qeS' xS'xR.

Therefore, the vector subbundle 7p : D — S! x S x R is locally described by
the coordinates (6, 02, x, y1, 2); the first three for the base and the last two, for the
fibers. Observe that

(Y o (1 al?
CTM\max) T Va6, T %8, )

and, as a consequence, D is described by the conditions (admissibility conditions)

) ) ) 1
O =10—-x)y, b=xpn i= Ul

as a vector subbundle of 7Q, where y; and y, are the adapted velocities relative to the
basis of D defined before. The nonholonomic bracket is given by [-,-] = P([-,]).
Observe now

1 9 1 0
X1, Xo] = PX1. Xo] = P | =~ o + — o
[X1. X2] = PXi. Xa] ( m891+m392)

1 (1 =x) = Jox 9 9
A /Ao (/S T S
m I + J1(1 — x)? (( Y38, T30,

The restricted Lagrangian in these new adapted coordinates is rewritten as

2
1
(61, 02,x,v1,y2) = &((1 —x)z.]] + szz) + —y%.
2 2m

The Euler-Lagrange equations, together with the admissibility conditions for this
Lagrangian are

1

Vi . . .
s 0, i=0—-x)y2, bh=xpn i= Ul

A
=0, 5B - A0
m m

where A(x) = Ji(1 —x) — Jox and B(x) = (1 —x)2J; + Jox2.
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Next, we add controls in our picture. Therefore, the controlled Euler-Lagrange
equations are

) V1Y2A(x) V1
uy = y2B(x) — E— ~

3

together with

. . . 1
O =0—-xy. br=xy i= il

The optimal control problem consists of finding an admissible curve satisfying
the previous equations, given boundary conditions on D, and minimizing the
functional

1 T
301,02, x,y1,y2, U1, u2) = 5/0 (w7 + ”%) dt,

for the cost function C : D x U — R given by

1
C(61, 02, x,y1,y2, U1, u2) = E(u% + M%)-

This optimal control problem is equivalent to the constrained variational problem
determined by the lagrangian £ : D@ — R, given by

+ —

yA®) ) 3
m 2m2’

.. 1/.
L(61,05,x,91,y2,91,32) = 3 (yzB(X) -

Here, D? is a submanifold of the vector bundle 7D over D defined by
DY = 101,02, x,y1,y2,01,62,%,91,52) € TD)x— = 0,
91 — (I =x)y, =0, 92 —xy; = 0} ,
where ipyo) : DP < TD, is given by the map
. .. yro. .
ZD(Z)(QI, Hstsylvstylsyz) - (015 Hstsylvst (1 _-x)y27-xy27 Zsylvyz) .
The equations of motion for the extended Lagrangian

L(61,602,%, 1,2, 01, 62, %, 91,52, 1) =

L4+ (91 - —x)yz) + A, (92 —xyz) + A3 (56— %)’1) ,
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are

=0, =0,

b = 20 = o) + (7280 —AWZ22) (y—ly Z(Jnlf h) 2y2A(x)) ,
Az = —%1 — Ay, (yzB(x) —A(x)y:ﬂﬂ) ,
0= A1 =x) + Apx — %ylA(x) (yzB(x) —A(x))%)
+ 80 (72800 + 5229 L (A1 4 - TR

with

. . . 1
91 = (1 —x)yz, 92 = XY2, X = Eyl.

The resulting system of equations for the optimal control problem of the continu-
ously variable transmission is difficult to solve explicitly and from this observation,
it is clear that it is necessary to develop numerical methods, which preserve the
geometric structure for these mechanical control systems. The construction of
geometric numerical methods for this kind of optimal control problem is a topic
future of research, as we remark in Sect. 5.

3.2 Example: Chaplygin Sleigh

We want to study the optimal control of the so-called Chaplygin sleigh (see [4])
introduced and studied in 1911 by Chaplygin (see [14] and [38]). The sleigh is a
rigid body moving on a horizontal plane supported at three points, two of which
slide freely without friction while the third is a knife edge which allows no motion
in the direction orthogonal to the sleigh as shown in Fig. 1.

We assume that the sleigh cannot move sideways. The configuration space of
this dynamical system is the special Euclidean group SE(2), with local coordinates
q = (x,,0), since an element A € SE(2) is represented by the matrix

cosf —sinf x
A= sinf cosf y |,
0 0 1

where § € S! and (x,y) € R? are the angular orientation of the sleigh and position
of the contact point of the sleigh on the plane, respectively. Let m be the mass of the
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Fig. 1 The Chaplygin sleigh

sleigh and I 4+ ma?® be the inertia about the contact point, where I is the moment of
inertia about the center of mass C and a is the distance from the center of mass to
the knife edge.

The control inputs are denoted by u; and u,. The first one corresponds to a force
applied perpendicular to the center of mass of the sleigh and the second one is the
torque applied about the vertical axis.

The constraint is given by the no slip condition and is expressed in differential
form by

® = sin O dx — cos Ody.

Therefore the constraint distribution is given by D = span {X,(g), X>(q)} where

cosf 0 sinf 0

10
Xl(ﬁl)zj@andxz(éﬂz 8x+ m 9y

The Lagrangian is metric on SE(2), where the matrix associated with the metric

Gis

mO0O0
=1 0moO
00J

The Lagrangian L : T(R? x S') — R is given by the kinetic energy of the body,
which is a sum of the translational kinetic energy and the rotational kinetic energy
of the body

. m . . J .
L(g.§) = 5 (e +30) + 567,
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where xc = x + acosf and yc =y + asin 6. The projection map P : TQ — D is

P(q,q) = cos® Bdx ® i + cos 0 sin Odx ® i + cos 0 sin Ody ® i
ox dy ox

0 il
in’ — 0 —.
+ sin 9dy®ay+d ®89

Let ¢ = (x,y,0) be coordinates on the base manifold R?> x S! and take
the basis {X;, X,} of vector fields of D. This basis induces adapted coordinates
(x,¥,0,y1,y2) € D in the following way: Given the vector fields X; and X,
generating the distribution, we obtain the relations for g € R? x S!

9 9 9
Xi(q) p,(q)3x+p,(q)ay+p,(q)39, i=1,2.
Then,

cos 0 sin 6

1 2
. IO = . IO =
2 m 2

Each element e € Dq is expressed as a linear combination of these vector fields
e =yiXi(q) + y2X2(q), qeR*xS.

Therefore, the vector subbundle 7 : D — R? x S! is locally described by the
coordinates (x, y, 6, y1, y2); the first three for the base and the last two, for the fibers.

Observe that
_ 10 n cosf 0 N sinf 0
e=n J 26 Y2 m 0x m dy

and, as a consequence, D is described by the conditions (admissibility conditions)

cos 0 . sin 6 . 1
X = 2, V= y2, 0=-y
m m J

as a vector subbundle of 7Q, where y; and y, are the adapted velocities relative to
the basis of D defined before. The nonholonomic bracket given by [-,-] = P([-,])
satisfies

1
IIleXZ]I = T[Xl,Xz] =P (_J_ sinf— +
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The restricted Lagrangian in the new adapted coordinates is given by

a2

am
£(x,y,0,y1.2) = —(yz)2 + (yl) where b = R
Therefore, the equations of motion are
by, Vo . cos 0 . sin 6 . 1
oo, oo, k= Y2, Y= y2, 0= -y
J m m m J

The controlled Euler-Lagrange equations are written as

by, V2 . cosfB . sin 8 . 1
— =u, —=u, = Y2, Y= y2, 0 =-y.
m m m

J

The optimal control problem consists on finding an admissible curve satisfying
the previous equations, given boundary conditions on D, and minimizing the
functional

1 T
Jx,y, 0,51, y2, u1,u) = 5/0 (7 + u3) dt.,

for the cost function C : D x U — R given by

1
C(x,y,0,y1,y2,u1,uz) = E(M% +13). (%)

As before, the optimal control problem is equivalent to solving the constrained
variational problem determined by £ : D@ — R, given by

byt 9
Ly, 0. y1.y2.91,32) = -(Jz T )

Here, D is a submanifold of the vector bundle 7D over D defined by

cos 0
y»2 =0,
m

DO _ {(x,y, 0.31.72,%.3,0,51,32) € T -

. sinf 1
y—— =0 6’—jy1—0

where ipe : DP < TD, is given by the map

cosf sinf 1 . )
Y2, — Y2, 7V1, Y1, Y2 ) -
m m J

ip@ (X, y,0,y1,y2,91,92) = (x,y, 0,y1, 2,
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The equations of motion for the extended Lagrangian

~ s . cosf . sinf
L, y,0,y1,y2,%,9,0,31,52,A) =L+ Ay (x— - yz)+lz(y— ” yz)
+15 (0 !
3 Jyl ,

=0, Ah=0 i;=22(sinf—Acos6),
m

with A = (A1, A2, A3) € R3, are

sz}l . .
A= = = —m(A; cos 6 + Az sin ),
with
cos @ . sin@ ;1
X = 2. y=——x, 0=-y.
m m J

The first two equations can be integrated and give A; = ¢; and A, = ¢;, where ¢,
and ¢, are constants and differentiating the equation for A3 with respect to the time
and substituting into the third equation, the above equations reduce to the following
equations

}% = % (cacos6 —cysinf), ¥, = —m(cy cos 6 + ¢, sin 0),
m
with
. cos B . sin 0 . 1
x= 2, y=—y, 0= -y
m m J

If we suppose, A; = 0 and A, = O (that is, ¢; = ¢; = 0) the first two equations
above reduce to the following equations

y1 =0 and y, = 0.

Integrating these equations and using the admissibility conditions, we obtain
constants of integration ¢;, i = 3, ..., 8 and the equations

C3t3 n C4t2 cs5t + ¢
6J 2J J

1 /’ (C3S3 + 3c4s? + 6¢55 + 6¢6
— cos

m Jo

0(r) =

)

x(1) =

7 ) (c78 + cg) ds,

1 [ 3+ 3c487 + 6 6
y(t) = —/ sin Ca8” + J6us + 05 + OCs (c78 + cg) ds.
m Jo 6J
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Therefore, the controls u; and u, are

Cc7 c3t+ ¢y
u () = —, wu(t) = .
m J

Remark 4 A similar optimal control problem was studied also by Hussein and
Bloch in [9]. The authors also used the theory of affine connections to analyze
the optimal control problem of underactuated nonholonomic mechanical systems.
The main difference with our approach is that in our paper we are working on
the distribution D itself. We impose the extra condition A; = A, = 0 to obtain
explicitlly the controls minimizing the cost function. Usually, there are prescribed
initial and final boundary conditions on D. For the Chaplygin sleigh we impose con-
ditions (x(0), ¥(0), 8(0). y1(0), y2(0)) and (x(T), ¥(T), 8(T). y1(T), y>(T)). Observe
that if we transform these conditions into initial conditions we will need to take the
initial condition (x(0), ¥(0), 8(0), 1(0), y2(0), 31 (0), $2(0), A1(0), A2(0), 3(0)) and
it is not necessary that some of the multipliers are zero from the very beginning.

3.3 Application to Motion Planning for Obstacle Avoidance:
Chaplygin Sleigh with Obstacles

In this section, we use the model of the Chaplygin sleigh from the previous section
to show how obstacle avoidance can be achieved with our approach using navigation
functions. A navigation function is a potential field-based function used to model an
obstacle as a repulsive area or surface (see [23, 24]).

For the Chaplygin sleigh, consider the following boundary conditions on the
distribution D: x(0) = 0, y(1) =0, 6(0) =0, y;(0) =0, y(0) =0
andx(T) =1, y(T)=1, 6(T)=0, y(T)=0, y(T)=0.

Let the obstacle be circular in shape, with its center located at the point
(xc,yc) = (0.5,0.5) in the xy-plane. For llustrative purposes, we use a simple
inverse square law for the navigation function. Let V(x, y) be given by

K
(x—xc)? + (y—yo)?’

Vix,y) =

where the parameter « is introduced to control the strength of the potential function.

Appending the potential into the cost functional (5), the optimal control problem
is equivalent to solving the constrained variational problem determined by £ :
D — R, given by

. vy 3 K
L0y, 0. y1.y2.91.32) = S + 55 RS
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The equations of motion for the extended Lagrangian

~ e A . cosf . sinf
Ly, 0,91,92,%,9,0, 91,52, A) =L+ Ay (x— - yz)+lz(y—7yz)

|
+A3 (9 - j)ﬂ)

with A = (A1, A2, A3) € R? are

il - _ Kk (x —xc) 12:_ k(y—yc)
((x = xc)? + (v —yc)?)? (x=xc)? + (v —yo))?*
: 2 . ST .
A3 = = (Aysinf —Acos6), A3 = - Vo = —m(A;cos O + A, sin ),
m
with
. cos 0 . sin 6 . 1
X = Y2, Y= y2, 0= -y
m m J

We solve the earlier boundary value problem for several values of «. Starting
with « = 0, which corresponds to a zero potential function, we increment k until
the potential field was strong enough to prevent the sleigh from interfering with
the obstacle. We took ¥ = 0,0.01,0.1, 0.25, and 0.5 and T=1. The result is shown
in Fig.2. Note that for x = 0.25 and 0.5 the sleigh avoids the obstacle and as

one may anticipate, as k increases, the total control effort and therefore, the total
1

1
cost J = 3 / (u% + u% + V(x,y))dt increases. For example, J = 17.0242, when
0

k = 0.25 and J = 18.4634, when k = 0.5. Hence, we select k = 0.25 since it

"
wm .01
phrt w=i.1

Timefsec]

Fig. 2 The extremals solving the boundary value problem (left) and behavior of 6 (right) for
k =0,0.01,0.1,0.25 and 0.5
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Fig. 3 Behavior of the velocites y; (left) and y, (right) for « = 0,0.01,0.1,0.25 and 0.5

0% 06 0 08 08 1

Time [3ec) Temejsec)

Fig. 4 Behavior of the controls u; (left) and u, (right) for « = 0,0.01,0.1,0.25 and 0.5

corresponds to a trajectory that avoids the obstacle with the least possible cost (of
all five values of « tried in this simulation). The trajectories on D and the control
inputs u; and u, for the different values of « are shown in Figs. 3, 4. This example
illustrates how our approach can be used with the method of navigation functions
for optimal control purposes with obstacle avoidance.

4 Lagrangian Submanifolds and Nonholonomic Optimal
Control Problems

In this section we study the construction of a Lagrangian submanifold representing
intrinsically the dynamics of the optimal control problem and the corresponding
Hamiltonian representation when the system is regular. In the regular case, the
definition of a particular Legendre transformation gives rise to the relationship and
correspondence between the Lagrangian and Hamiltonian dynamics.
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4.1 Lagrangian Submanifolds

In this subsection we will construct Lagrangian submanifolds that are interesting for
our purposes in the study of the geometry of optimal control problems of controlled
mechanical systems (see [33] and [46]).

Definition 6 Given a finite-dimensional symplectic manifold (P, @) and a subman-
ifold N, with canonical inclusion iy : N < P, N is said to be a Lagrangian
submanifold if i, » = 0 and dim N = Jdim P.

A distinguished symplectic manifold is the cotangent bundle 7*Q of any
manifold Q. If we choose local coordinates (¢°), 1 < i < n, then T*Q has induced
coordinates (¢', p;). Denote by 7y : T*Q — Q the canonical projection of the
cotangent bundle given by mp(e,) = g, where ¢, € T;‘ Q. Define the Liouville

1-form or canonical the 1-form 6y € AY(T*Q) by
((Bg)c , X) = (e, Tmp(X)), where X € T.T*Q , € € T*Q.

In local coordinates we have that 6p = p; dg'. The canonical two-form wg on 7*Q
is the symplectic form wp = —dfy (i.e., wg = dg' A dp;).

Now, we will introduce some special Lagrangian submanifolds of the symplectic
manifold (T*Q, wy). For instance, the image ¥ = A(Q) C T*Q of aclosed 1-form
A € A'Q is a Lagrangian submanifold of (T*Q, wg), since A*wg = —dA = 0. We
then obtain a submanifold diffeomorphic to Q and transverse to the fibers of 7% Q.
When A is exact, i.e., A = df, where f : O — R, we say that f is a generating
function of the Lagrangian submanifold X = X (see [46]).

A useful extension of the previous construction is the following: given a manifold
Q and a function S : Q — R, the submanifold dS C T*Q is Lagrangian. There is a
more general construction given by Sniatycki and Tulczyjew [41] (see also [44] and
[45]), which we will use to generate the dynamics.

Theorem 1 (Sniatycki and Tulczyjew [41]) Let Q be a smooth manifold, N C Q
a submanifold, and S: N — R. Then
Xs={neT*Q| mp(n) € Nand (ju,v) = (dS,v)
forallv € TN C TQ such that 1p(v) = nQ(u)}
is a Lagrangian submanifold of T*Q. Here g : T*Q — Qand 19 : TQO — Q
denote the cotangent and tangent bundle projections, respectively.
Taking f as the zero function, for example, we obtain the following Lagrangian

submanifold

Zo={peT*Q|,|{p.v) =0, VveTN with p(v) = mo(p)} .
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which is just the conormal bundle of N:

V*(N) = {p € T*Q‘N such that p‘T N = O}.
x(p

4.2 Lagrangian Submanifold Description of Nonholonomic
Mechanical Control Problems

Next, we derive the equations of motion representing the dynamics of the optimal
control problem.

Given the function £ : D@ — R, following Theorem 1, when N = DO
TD we have the Lagrangian submanifold ¥; C T*TD. Therefore, £ : D® —
R generates a Lagrangian submanifold ¥, C T*TD of the symplectic manifold
(T*TD, wrp), where wrp is the canonical symplectic 2-form on 7*TD.

The relationship between these spaces is summarized in the following diagram

iy .
Tt o TTD

(”T*T'D)‘ZL\L l”r*rb
’D@(L D

Proposition 1 Let £ : D — R be a C®-function. Consider the inclusion igo)
D — TD, where wrp is the canonical symplectic 2-form in T*TD. Then

Yy ={u eT*TD|ix u =dL}y CT*TD

is a Lagrangian submanifold of (T*TD, wrp).

Definition 7 Let D be a non-integrable distribution, T'D its tangent bundle and D®
the subbundle of 7D defined in (2). A second-order nonholonomic system is a pair
(D, X¢), where Xz C T*TD is the Lagrangian submanifold generated by £ :
D@ — R.

Consider local coordinates (¢°, y*, ', ') on TD. These coordinates induce local
coordinates (q', y*, ¢', ¥, iti, lta, Vi, ya) on T*TD. Therefore, locally, the system is
characterized by the following set of equations on T*TD

Wy 4 AL
Wi + )’Ja—qi)ﬁ = B_qi’
; 9L

pa+viph = — (6)

oyt
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2L
o3
q' = ppy'.

Remark 5 Typically, local coordinates on X C T*TD are (¢',y*.,3", yi), where y;
plays the role of the Lagrange multipliers.

YA =

Remark 6 In the case of the Chaplygin sleigh, local coordinates on 7*TD will

be given by (x,y, 0, y1,y2, %, 3, 6, 1. V2. fxs ty, 65 15 L2 Vs Yy Vo V15 ¥2), Where
the local coordinates on 7D are (x,y,0,y1,y2,%,¥,0,91,y2). The Lagrangian
submanifold of 7*TD is described by the equations

my =0, =0,

=2 inf —
H@—m(VxSIIl@ yycosb),

b2
= _%, o = —m(y,cos O + y, cos 0),
_ b2>')1 _ ).’2
Vi = 2 2= m2
. cosf . sinf i
i = Yo, v = y2. 0=—.
m m J

After a straightforward computation one can check easily that these equations are
equivalent to those obtained in the Lagrangian formalism.

4.3 Legendre Transformation and Regularity Condition

We define the map ¥ : T*TD — T*D as

(W (10,), X)) = (o, X" (02)),

where € T*TD, v, € T, D, X(x) € T,D and X" (v,) € T, TD is its vertical lift to
vy. Locally,

(g VG5 i tas Vi va) = (@Y Vi va)-

Definition 8 Define the Legendre transform associated with a second-order non-
holonomic system (D®, ¥ ;) asthemap FL : ¥y — T*D givenby FL = Woiy, .
In local coordinates, it is given by

4 . P
FL(q' Y3 y) = (q‘,yA, Vis ﬁ) :
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The following diagram summarizes the situation

ixg 4

I C T*TD T*D
FL

Definition 9 We say that the second-order nonholonomic system (D@ X.) is
regular it FL : X; — T*D is a local diffeomorphism and hyperregular if FL
is a global diffeomorphism.

From the local expression of F.{ we can observe that from a direct application of
the implicit function theorem we have

Proposition 2 The second-order nonholonomic system (D®, X ) determined by

020
L : D@ — R is regular if and only if the matrix (8yA8 5
Remark 7 Observe that if the Lagrangian £ : D® — R is determined from an
optimal control problem and its expression is given by (3), then the regularity of the

82 L 2
matrix (W) is equivalent to det (

) is non singular.

m) # 0 for the cost function.
uAou

4.4 Hamiltonian Formalism

Assume that the system is regular. Let p; = y; and py = 3 yA then we can write
v = yA(q', ", pa). Define the Hamiltonian function H : T*D — R by

H(e) = (@.wp+rp |5, (FLTH@)) = £ (mrerp |5, (FLTH(@)),
where o € T*D is a I-form on D, and 7wp+rp |x,.: Xp — D@ is the projection
locally given by nr+rp |5, (¢', Y34 7)) = (¢',y*, ). Locally, the Hamiltonian

is given by

H(G . y*, pi.pa) = pay* (@ y* . pa)) + piply" — £(¢' .3 (. ¥ . pa)).

where we are using

FL™' (g y* . pi.pa) = (q YA ok a3 ad p/a >/‘ p.ithhPA)-
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Below, we will see that the dynamics of the nonholonomic optimal control
problem is determined by the Hamiltonian system given by the triple (T*D, wp, H),
where wp is the standard symplectic 2-form on 7*D.

The dynamics of the optimal control problem for the second-order nonholonomic
system are given by the symplectic hamiltonian dynamics determined by the
equation

ixq 0p = dJH. @)
Therefore, if we consider the integral curves of Xg¢, they are of the type ¢ +—

(G'(®), 3 (1), pi(t), pa(1)); the solutions of the nonholonomic Hamiltonian system are
specified by the Hamilton’s equations on 7*D

L0 A K

q = E7 = 87A’
. aH . oH
pi:_a_q"’ PA=—W,

ie.,
i =t

L : 9,
pi = ﬂ(Q‘,f,)'f“(q‘,)f“,pA)) —pf'a;’%yA’
. q

pA = ﬁ(qlvyAsij(qlvyAspA))_pl’pg'

From (7) it is clear that the flow preserves the symplectic 2-form wp. Moreover,
these equations are equivalent to the equations given in (4) using the identification

of the Lagrange multipliers with the variables p; and the relation py = W
Remark 8 We observe that in our formalism the optimal control dynamics are
deduced using a constrained variational procedure and equivalently it is possible
to apply the Hamilton-Pontryagin’s principle (see e.g., [19]), but, in any case, this
“variational procedure” implies the preservation of the symplectic 2-form, and this
is reflected in the Lagrangian submanifold character. Moreover, in our case, under
the regularity condition, we have seen that the Lagrangian submanifold approach
shows that the system can be written as a Hamiltonian system (which is obviously
symplectic).

Additionally, we use the Lagrangian submanifold ¥, as a way to define
intrinsically the Hamiltonian side since we define the Legendre transformation using
the Lagrangian submanifold X' ;. However there are other possibilities. For instance,
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in [1] (Sect.4.2) the authors define the corresponding momenta for a vakonomic
system. Using this procedure the momenta are locally expressed as follows

aL . of
= — VL
Pi= g T8y
oL off
= 4+ L
DA o + 5

where £ is an arbitrary extension of £ to 7D and fi = ¢ — pjy* = 0 are
the constraint equations. A simple computation shows that both approaches are
equivalent, but our derivation is more intrinsic and geometric, i.e., independent of
coordinates or extensions and without using Lagrange multipliers.

4.5 Example: Continuously Variable Transmission (CVT)
(cont’d)

Here we continue the example of the optimal control problem of a continuously
variable transmission that we considered in Sect.3.1 Recall that the constraint
distribution for the CVT is given by D C T(S! x S! x R), where

19 0
D= spand -0 (1—n-L 4200
Span%max’(l M58, T 56,

The system is regular since

L\ (B(x)?
det(ByAByB) == #0,

because B(x) = J1(1 — x)? 4+ Jox? # 0.

Denoting by (01, 62, X, ¥1,¥2, Po,» P8y, Px» P1, P2), the local coordinates on 7*D,
the dynamics of the optimal control problem for this nonholonomic system are
determined by the Hamiltonian 3 : T*D — R, given by

mpy P} A1y,
2 2(B(x))? mB(x)

H(O, 62, x,y1,¥2, P6,+ Po>» Px, P1. P2) =

N1
+ o (1= 0)y2 + poxyz +
The corresponding Hamiltonian equations of motion are

yi =m’p1, pg =0,

D2 A(x)y1y2
(B(x))? mB(x)

Y2 = [592 =0,



60 A. Bloch et al.

Py ((AW)* = JiJ2)  2p3A(x)

m(B(x))> (B(x)*’

pA®y: pe . Ay
mB(x) m T mB(x)

px = )’2(1791 _P(?z) -

pr==- —po, (1 —x) — pg,x.

4.6 Example: Chaplygin Sleigh (cont’d)

In what follows, we continue the example of the optimal control problem of the
Chaplygin sleigh that we studied in Sect. 3.2. Recall that the constraint distribution
is given by D C TSE(2), where

D - span{l 0 cosf 0 sinea}'

JA9' m 3x+ m@

The system is regular since

92L a*t
det[ 22 ) =L 2o
° (ayAayB) 770

Denoting by (x,y,8,y1,y2.Px.Py.P6.P1,p2), the local coordinates on 7*D,
the dynamics of the optimal control problem for this nonholonomic system are
determined by the Hamiltonian 3 : T*D — R, given by

2 m? Do sin 0

cos 6
2b2p1+ P2+Px y2+ 7)’1 +p}

H(x,y,0,y1, 2. Px. Py- P6.P1,P2) = y2.

The Hamiltonian equations of motion are

. IPpr ) .
y1r= 75 2 = m2p25 Px = 0, Py = 0,
. sin 0 cos B
PO = Px——Y2 — Py Y2,
m m
. Po . cos 0 sin 0
P1 ::_75 P2 = —Dx —Dy .
m m

Integrating the equations p, = 0 and p, = 0 give p, = ¢ and p, = ¢, where c,
and ¢, are constants, the above equations reduce to the following equations

. J’p1 . sin 0 cos 0
YI= 5 Ps=0C Y2—¢@ Y2,
b m m
. 2 . Do . cos 6 sin 0
Y2=m'py, p1=———, PpP2=—C —C

J m m
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Differentiating the equations for y; and y, and substituting in the above equa-
tions, we obtain

n_ 2 (cacos6 —cysinf), Vo, = —m(cy cos 6 + ¢, sin 0),
J  mb?
which are the same as the ones obtained in the Lagrangian setting.
Observe that in the case of motion planning for obstacle avoidance, the Hamilto-
nian H : T*D — R, is given by

2 2

J m cos B sin 6
H(x,y,0,91,92,Px, Py, D6.P1,D2) = ﬁlﬁ + =

o
> P Sl et LR U et

m
K

C 2 —xc)? + 20— yo)?

The corresponding Hamiltonian equations of motion are

5 _ I $2 = mipy. Py K (x —xc)
1= =5 M= 2, = ,

b? T ((r=x0)* 4+ (y —y0)?)?
o k(y —yc) o sin 6 B cos 6
L e B E U A I R
. Po . cos 6 sin 6
Pr==——, P2= "PDx — Py

J m m

5 Conclusions and Future Research

In this section we summarize the contributions of our work and discuss possible
future research.

5.1 Conclusions

In this paper, we studied optimal control problems for a class of nonholonomic
mechanical systems. We have given a geometrical derivation of the equations of
motion of a nonholonomic optimal control problem as a constrained variational
problem on the tangent space of the constraint distribution. We have seen how
the dynamics of the optimal control problem can be completely described by a
Lagrangian submanifold of an appropriate cotangent bundle and under some mild
regularity conditions, we have derived the equations of motion for the nonholonomic
optimal control problem as a classical set of Hamilton’s equations on the cotangent
bundle of the constraint distribution. We have introduced the notion of Legendre
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transformation in this context to establish the relationship between the Lagrangian
and Hamiltonian dynamics. We applied our techniques to different examples:
optimal control of the Chaplygin sleigh, a continuously variable transmission and a
problem of motion planning for obstacle avoidance.

5.2 Future Research: Construction of Geometric
and Variational Integrators for Optimal Control Problems
of Nonholonomic Mechanical Systems

We have seen that an optimal control problem of a nonholonomic system may
be viewed as a Hamiltonian system on 7*D. One can thus use standard methods
for symplectic integration such as symplectic Runge-Kutta methods, collocation
methods, Stormer-Verlet, symplectic Euler methods, etc., developed and studied in
[26-28, 40], e.g., to simulate nonholonomic optimal control problems.

We would like to use the theory of variational integrators as an alternative
way to construct integration schemes for these kinds of optimal control problems
following the results given in Sect. 3. Recall that in the continuous case we have
considered a Lagrangian function £ : D® — R. Since D is a subset of 7D we
can discretize the tangent bundle 7D by the cartesian product D x D. Therefore,
our discrete variational approach for optimal control problems of nonholonomic
mechanical systems will be determined by the construction of a discrete Lagrangian
Lg: DEZZ) — R where @((12) is the subset of D x D, locally determined by imposing
the discretization of the constraint ¢' = pf, (¢)y", for instance we can consider

G _ g (DFdr) (20t
h A 2 2 '

Now, the system is in a form appropriate for the application of discrete variational
methods for constrained systems (see [34] and references therein).

DP = (ghyi. g,y e DxD
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