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We show that the torsion of the Weitzenböck connection is responsible for the fictitious pseudogyro-
scopic force experienced by a general mechanical system in a non-coordinate moving frame. In particular,
we show that for the class of mechanical systems subjected to non-integrable constraints known as non-
abelian nonholonomic Chaplygin systems, the constraint reaction force directly depends on this torsion.
For these Chaplygin systems, we show how this torsional force can in some cases be removed by an ap-
propriate choice of frame depending on a multiplier f(q), linking these results to the process of Chaplygin
Hamiltonization through time reparameterization. Lastly, we show that the cyclic symmetries of f in
some cases lead to the existence of momentum conservation laws for the original nonholonomic system,
and illustrate the results through several examples.

Introduction

Elie Cartan’s method of moving frames [12] has a long history of applicability in me-
chanics [3, 34], nonholonomic mechanics [3, 13] and general relativity [35]. As such, it
represents a type of central node in a network linking these fields together. However,
historical divergences exist which have prevented new results and interpretations based
on the method from traveling between fields. With respect to our purposes here, the most
interesting divergence is centered around Einstein’s search for a Unified Field Theory in
the late 1920’s and early 1930’s.

Around this time period (overlapping with the development of Cartan’s method of
moving frames), Einstein began [19] an attempt to develop a unified field theory of grav-
itation and electromagnetism modeled on what is now called a Weitzenböck spacetime
[41] (for a comprehensive overview of the period of interest to us here, see [42]). These
are Riemann-Cartan manifolds [41] equipped with a zero curvature yet non-zero torsion
Weitzenböck connection [46] defined in terms of a moving frame. Such spacetimes pos-
sess absolute parallelism, teleparallelism, or distant parallelism (see [20], box 15.8.4 for a
discussion), allowing the path-independent parallel transport of vectors. Although Ein-
stein abandoned his attempt at using moving frames to develop his theory, the fruitful
discussions surrounding the method of moving frames and the associated Weitzenböck
connection [14, 42] led to the discovery that general relativity itself can be reformulated
in terms of the Weitzenböck connection, with the Einstein-Hilbert action now comprised
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of the Weitzenböck torsion instead of the scalar curvature [41]. The reformulation is now
called the teleparallel equivalent of general relativity [1], and has some advantages [41]
over the conventional formulation.

The components of the Weitzenböck torsion are equivalent to the objects of an-
holonomity [41, 44], which are well known from the study of mechanical systems in a
moving basis [44] (if the configuration space of the mechanical system is a Lie group and
the basis consists of the left-invariant vector fields, then the objects of anholonomity are
the same as the structure constants of the Lie algebra). With respect to Hamel’s for-
mulation of mechanics [5, 29, 33], they are equivalent to Hamel’s transpositional symbols
[31]. Thus, although the objects of anholonomity, as well as their other counterparts
above, are known widely throughout the mechanics literature, it seems that its connec-
tion to the Weitzenböck torsion has largely been ignored. In fact, several recent works
[25, 26, 28, 32, 43] have either explicitly used the objects of anholonomity or studied
mechanics on a Riemann-Cartan manifold without making reference to the Weitzenböck
connection.

Our goal in this paper is twofold: to show that the Weitzenböck connection is respon-
sible for the fictitious pseudogyroscopic force (see footnote 11 of [18], pg. 106 of [15] and
[31]) appearing in the non-coordinate basis treatment of mechanics, and to apply the in-
sights gained from this to the study of Chaplygin Hamiltonization [22, 24]. With regard to
the first objective, we will show that the torsion of the Weitzenböck connection is equiva-
lent to the curvature of the Ehresmann connection defined by the constraint one-forms of a
typical nonholonomic system. This establishes the constraint reaction force as a fictitious
force arising from the anholonomy of the basis in a precise way through the Weitzenböck
connection. As for the second objective, we will show that in some cases it is possible to
remove this torsion by exploiting the fact that it arises from the adapted nonholonomic
basis. This process will be shown to have the same effect as the reparameterization of
time encountered in our earlier results [22, 24] on Chaplygin Hamiltonization. Within
this context, we will also show how associated symmetries in the multiplier correspond
directly to momentum conservation laws in special cases.

After recalling some basic facts about the geometry of a Riemann-Cartan manifold in
Section 1, we introduce the Weitzenböck connection in Section 1.4 and use it to illustrate
the torsion force arising in a non-coordinate moving frame in Section 2. We then consider
the mechanics of nonholonomic systems in Section 3 and rephrase our earlier conditions
for Hamiltonization [22, 24] in terms of the Weitzenböck torsion in Section 4. Making use
of the moving frame approach, we then show how the symmetries of the Hamiltonizing
multiplier can in part lead to momentum conservation laws for the original nonholonomic
system. We illustrate this by examples in Section 5.

1 The Riemannian-Cartan Geometry of Mechanics

Consider an N dimensional Riemannian manifold Q with metric g equipped with a g-
metric compatible affine connection ∇ possessing (in general) non-zero torsion, sometimes
called a Riemann-Cartan manifold (Q, g,∇) [41]. In this section we briefly recall the rele-
vant definitions and results from Riemann-Cartan geometry which we will use throughout
the remainder of the paper.
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1.1 Non-Coordinate Bases

As noted in the introduction, many problems in mechanics and general relativity make use
of so-called non-coordinate bases, also known as nonholonomic and anholonomic bases.

Definition 1. A non-coordinate basis {ea = ei
a(q)∂i} is a frame of basis vectors

obtained from the coordinate basis {∂i} of TqQ by a GL(N, R)-rotation of the basis {∂i}
preserving the orientation (thus, {ei

a(q)} ∈ GL(N, R) and we take det(ei
a) > 0) and such

that [ea, eb] 6= 0 for at least one pair of basis vectors, where [·, ·] is the Lie bracket of
vectors fields on Q.

Moreover, by introducing the coframe θa := Ea
i (q)dqi such that θa(eb) = δa

b , we can
express the components of g with respect to the coframe:

g = gijdqi ⊗ dqj = g(∂i, ∂j)dqi ⊗ dqj = g(Ea
i ea, E

b
jeb)θ

a ⊗ θb = Gabθ
a ⊗ θb, (1.1.1)

where Gab = gije
i
ae

j
b are the components of the metric with respect to the non-coordinate

dual basis, and where hereafter we shall use the Latin indices a, b, c, . . . to index quantities
in the nonholonomic basis and reserve the later Latin indices i, j, k, . . . for the coordinate
basis, with both indices ranging from 1 to N .

Now, the Lie brackets of a nonholonomic basis define a new frame-dependent object:

[ea, eb] = −Ωc
abec, (1.1.2)

with Ωc
ab := −Ec

j

(
ei

a∂ie
j
b − ei

b∂ie
j
a

)
= −ei

ae
j
b

(
∂jE

c
i − ∂iE

c
j

)
= 2ei

ae
j
b∂[iE

c
j], (1.1.3)

where we have used the orthogonality of the basis and its dual1.
The Ωc

ab are known as the objects of anholonomity [44], and encode information
about the anholonomy of the moving basis. In fact, from (1.1.3) one can show [20, 45]
that if [ea, eb] = 0, then the {ea} are in fact a coordinate or holonomic basis, and the
components ei

a are the entries of the Jacobian matrix transferring the coordinate basis
{ei} into another coordinate basis {ea}. The objects of anholonomity are perhaps most
familiar in the case when Q = G is a Lie group and the ea’s are left invariant vector fields.
In this case, the −Ωc

ab become the structure constants Cc
ab of the Lie group [3]. We also

note in passing that Ω is anti-symmetric in its two lower indices.

1.2 Affine Connections

In this section we focus on the local components of the affine connection ∇ with respect
to the nonholonomic basis {ea} (for a modern introduction to the theory of connections,
see [17]). The connection ∇ takes two vector fields X, Y on Q to the vector field ∇XY ,
the covariant derivative of Y with respect to X. In components, in a nonholonomic basis
we have

∇XY = Xb (eb(Y
a) + Γa

bcY
c) ea =: Xb∇bY

cec, (1.2.1)

where ∇aY := ∇eaY and where the Xb = Eb
i X

i are the components of X with respect to
the nonholonomic basis. The Γ here are the Christoffel symbols of the second kind defined

1For each fixed frame, the objects of anholonomity are the components of a type (1,2) tensor.
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by ∇bec = Γd
bced, or equivalently by Γa

bc = GadΓdbc, where Γabc = g(ea,∇bec) are the
Christoffel symbols of the first kind. In the special case where α : I → Q is a curve on Q,
if ∇α̇(t)α̇(t) = 0 then α(t) is called a geodesic. Locally, this yields the geodesic equation
(8.0.14) in the Appendix.

The torsion and curvature tensors of ∇ are defined by

T (X, Y ) = ∇XY −∇Y X − [X, Y ], (1.2.2)

R(X, Y )Z = ∇X∇Y Z −∇y∇XZ −∇[X,Y ]Z,

with local components given by (8.0.8) and (8.0.9) in the Appendix, respectively. Spe-
cializing to the unique torsion-free and g-metric compatible Levi-Civita connection [17],
its covariant derivative ∇g is defined by [20]:

g(W,∇g
UV ) :=

1

2
[U(g(V, W ) + V (g(U,W ))−W (g(U, V ))]

+
1

2
[g([U, V ], W )− g([U,W ], V )− g(U, [V, W ])], (1.2.3)

which should be regarded as a definition of ∇g
UV in terms of the right-hand side. The

components Γabc and Γa
bc can then be extracted by letting W = ea, U = eb, V = ec in

(1.2.3), and are given by (8.0.10) and (8.0.12) of the Appendix, respectively.
In an anholonomic basis where Ω 6= 0 from (1.1.2), anywhere the Lie brackets of the

basis appear there will now be a correction term to geometric objects associated with our
affine connection. Indeed, this correction term depends on the objects of anholonomity
(see (8.0.8)-(8.0.9) and (8.0.10)). The presence of these Ωa

bc as an additional contribution
can be understood physically as emerging from the fact that the ei

a(q), being dependent
on q, vary from point to point and are obtained at each q ∈ Q by a GL(N, R) rotation
of the coordinate basis preserving the orientation. Such rotation generally twists the
nonholonomic basis as q varies throughout Q and thus contributes, for example, to the
torsion2. Indeed, the “rotation” in the so-called Ricci rotation coefficients (8.0.11) can
be similarly understood: with respect to the Levi-Civita connection, (8.0.10) tells us that
they contribute to the rotation that a parallel transported basis vector in an anholonomic
basis experiences relative to the original basis vector [27, 30].

1.3 Ehresmann Connections

Suppose now that Q has a fiber bundle structure [3] with projection map π : Q → M and
define the vertical space Vq := ker Tqπ.

Definition 2. The vector-valued one-form A on Q such that:
(a) Aq : TqQ → Vq is a linear map for each q ∈ Q, and
(b) A(vq) = vq for all vq ∈ Vq,

is known as an Ehresmann connection.

If we take as bundle coordinates qi = (rα, sC), where hereafter A, B, C, . . . range from
1 to K < N and α, β, γ, . . . range from 1 to σ = N −K, then π : (rα, sC) 7→ r and locally
we can take A to be of the form

2For example, recall the Frenet-Serret frame carried by a curve in R3.
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A = θC(q)
∂

∂sC
, where θC(q) = dsC + AC

α (r, s)drα. (1.3.1)

The reason for the special form for θC we have taken will become apparent when we
consider the mechanics of nonholonomic systems in Section 3.

The associated horizontal space D := ker A defines a σ-dimensional distribution on Q,
from which we obtain the decomposition TqQ = D ⊕ Vq. In fact, for any vq = vi∂i ∈ TqQ
we have:

vq = vα
(
∂α − AC

α (r, s)∂C

)
+ ωC∂C , where ωC = vC + AC

α (r, s)vα,

=: vαeα + ωCeC , (1.3.2)

from which it follows that v ∈ D if and only if v = vαeα or equivalently ωC = 0. Thus,
the Ehresmann connection decomposes a vector vq ∈ TqQ into the sum of its horizontal
part vh

q and its vertical part vv
q , where

vh
q = vq − A(vq) = vαeα,

vv
q = A(vq) = ωCeC . (1.3.3)

Moreover, given a tangent vector vr ∈ TrM , where r = π(q) ∈ M , we define the horizontal
lift of vr to be the unique vector vh

r ∈ Dq that projects to vr under Tqπ, vh
r = vα

r eα 7→
vα∂α = vr.

The curvature of A is the vertical-vector-valued two-form B on Q defined by its action
on two vector fields X, Y on Q through

B(X, Y ) = −A([Xh, Y h]), (1.3.4)

and has local components B(X, Y )C = −θC([Xh, Y h]) = BC
αβXαY β given by (8.0.15) in

the Appendix. We can see clearly from (1.3.4) that the curvature of A is zero if and
only if the horizontal distribution D is integrable (in the sense of Frobenius) [3], which
is equivalent to the requirement that the moving basis defined in (1.3.2) be holonomic.
However, if the curvature is non-zero, then (1.3.2) defines a nonholonomic frame according
to our Definition 1. Since

[Xh, Y h] = [Xαeα, Y βeβ] = −ΩC
αβXαY βeC =⇒ −θC([Xh, Y h]) = ΩC

αβXαY β, (1.3.5)

a straightforward computation of the Ω’s in (1.3.5) based on the nonholonomic frame
defined in (1.3.2) shows that3 ΩC

αβ = −BC
αβ, i.e. the curvature coefficients of A are the

negatives of the objects of anholonomity. We will return to this crucial observation below.
Lastly, we note that if we take π : TQ → Q to be the tangent bundle, then π :

(q, q̇) 7→ q, so that the fibers (the tangent spaces) are coordinatized by s = q̇. If we now
require that the sum of two (local) horizontal sections be horizontal, then (see [3])

Ac
b(q, q̇) = Γa

bc(q)q̇
c, (1.3.6)

3Comparing (1.3.4) to (1.3.5) would seem to imply that the components should be the same, but due to the
difference in the signs of AC

α in (1.3.1) and (1.3.2) they are not.
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where all indices now run from 1 to N since Q and TqQ have the same dimension (N).
We then define geodesic motion along a curve α(t) ∈ Q by parallel transport of its tangent
vector α̇(t) along the curve, i.e. α̇h(t) ∈ D, or α̇v(t) = 0. We then see from (1.3.3) and
(1.3.6) that ωa = 0 gives back the geodesic equations (8.0.14).

1.4 The Weitzenböck Connection

Let us now return to the discussion surrounding affine connections (see Section 1.2). As
we discussed, the Levi-Civita connection “senses” the presence of an anholonomic basis
through the objects of anholonomity. However, is there a connection which produces
the torsional effects that Ω induces yet has zero curvature? The answer is yes, and the
connection is known as the Weitzenböck connection4.

The Weitzenböck connection ∇w arises by instead taking ∇ to have zero curvature
and non-zero torsion (in contrast to the Levi-Civita connection). With respect to such a
flat connection, the parallel transport of vectors would now be path independent. Thus,
this condition is equivalent to the existence of n vector fields covariantly constant with
respect to the connection ∇w [41]:

0 = ∇w
i ej

c = ∂ie
j
c + ek

cW
j
ik, (1.4.1)

which gives the connection coefficients of the Weitzenböck connection:

W i
jk = ei

a∂jE
a
k . (1.4.2)

The connection ∇w is g-metric compatible [41], and also parallel transports the dual
basis5. Moreover, using the standard transformation law for connections [17, 37] shows
that the components of the Weitzenböck connection in the moving frame, W a

bc, van-
ish. From (8.0.8) we then arrive at the components of the torsion of the Weitzenböck
connection:

w

T a
bc= Ωa

bc, (1.4.3)

which shows that the objects of anholonomity can be thought of as the components of the
torsion of the Weitzenböck connection relative to the nonholonomic moving frame {ea}.
Moreover, if we combine this with the analysis of the curvature of the Ehresmann con-
nection in the bundle picture from Section 1.3, we see that the torsion of the Weitzenböck
connection W defined by a nonholonomic frame is the negative of the curvature of the
Ehresmann connection A defined by its coframe.

From (1.2.1) and using W a
bc = 0 we see that the covariant derivative of a vector field

Y in the direction of another vector field X associated with the Weitzenböck connection
is particularly simple in the nonholonomic frame:

∇w
XY = Xaea(Y

b)eb, (1.4.4)

4Or, in the context of Riemann-Finsler geometry, the crystallographic connection [2].
5Using the fact that ∂i

`
ej

aEa
k

´
= ∂iδ

j
k = 0, we have that:

∇w
j Ea

k = ∂jE
a
k − Ea

i W i
jk = ∂jE

a
k − Ea

i

“
ei

b∂jE
b
k

”
= ∂jE

a
k − δa

b ∂jE
b
k = 0.
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which is simply the directional derivative of Y in the direction of the vector field X,
resembling the covariant derivative of flat space (the resemblance is not accidental, since
after all W has zero curvature). Continuing the similarity, since W has zero curvature,
the Weitzenböck connection makes possible path independent parallel transport, leading
to teleparallelism (as discussed in the Introduction), as in flat space. However, the dif-
ference with a flat connection is of course that W possesses torsion. As we discuss in the
next section, this creates a closure failure in infinitesimal parallelograms [26], which is
intimately related to the transpositional relations [32, 38, 39] of mechanics.

2 Geometric Mechanics

2.1 The Transpositional Relations in Mechanics

We begin by first introducing the notion of a virtual displacement [3].

Definition 3. Consider a trajectory q(t) ∈ Q with fixed endpoints q(a) = qa and q(b) = qb.
A variation of the trajectory is a smooth (C2) mapping w : [a, b] × [−δ, δ] 7→ Q such
that:

(i) w(t, 0) = q(t), ∀ t ∈ [a, b],
(ii) w(a, ε) = qa, w(b, ε) = qb.

A virtual displacement corresponding to the variation of q(t) is defined as δq(t) =
(∂/∂ε)w(t, ε)|ε=0, with δq(a) = δq(b) = 0.

The virtual displacement is thus a vector field defined along the curve q(t). As such,
it depends on the choice of frame as

δq(t) = δqi(t)∂i = δqi(t)ea
i (q(t))ea =: Σa(q(t))ea, (2.1.1)

where Σa(q(t)) are the images of δqµ(t) in the moving frame (and thus they satisfy
Σc(q(b)) = Σc(q(a)) = 0).

Denoting dt := d/dt, we have dtδq
i(t) = δdtq

i(t) from the definition of a virtual
displacement. Thus, with respect to a torsionless connection, from (1.2.2) we have the
identity 0 = ∇q̇δq−∇δq q̇−[q̇, δq]. In other words, the parallelogram formed by the parallel
transport of the tangent and virtual displacement vector fields closes (as it should for a
torsionless connection). However, in a nonholonomic frame (which possesses torsion by
(1.4.3)), one would expect that such a parallelogram would not close. Indeed, this fact was
recognized at least as early as [25, 26] (it seems, however, the authors were unaware of the
relation to the Weitzenböck connection). Using the results of the previous sections, along
with the notation ωa = Ea

i q̇i for the quasivelocities (the components of q̇ with respect to
the moving frame {ea}), for the Weitzenböck connection we get:

[q̇, δq] = ∇w
q̇ δq −∇w

δq q̇−
w

T (q̇, δq)

= ωaea(Σ
b)eb − Σaea(ω

b)eb−
w

T b
cd ωcΣdeb

= (dtΣ
b)eb − (δωb)eb−

w

T b
cd ωcΣdeb. (2.1.2)
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The expression (both left hand side and right hand side) in (2.1.2) is called a transpo-
sitional relation in mechanics6 [39]. Early derivations of different forms of the equations of
motion of nonholonomic systems created controversy since the first line of (2.1.2) involves
the “variation velocities” (the velocity vectors tangent to the variation curves), which are
a priori undefined [38, 39]. However, a proper definition was given in [38], along with
a good discussion of the historically different choices for these variation velocities (see
also [28, 36, 43]). For our purposes, we shall follow Hamel [29] and define these “varia-
tion velocities” to be q̇w := ∂w(t, ε)/∂t. Then, [q̇, δq] = 0 and we arrive at the relevant
transpositional relation in our case:

(dtΣ
b)− δωb =

w

T b
cd ωcΣd = −[ω, Σ]b, (2.1.3)

where the last equality follows from the definition (1.1.2).
Equation (2.1.3) relates the transpositional relation used by Hamel to the torsion of

W (through (1.4.3)). It should thus be no surprise that Hamel’s own equations involve
the Weitzenböck connection.

2.2 The Hamel Equations

Consider the regular mechanical Lagrangian L : TQ → R given by L = T − V , where
T (q, q̇) = (1/2)g(q̇, q̇) = (1/2)gij q̇

iq̇j and V : Q → R, and define the Weitzenböck La-
grangian Lw(q, ω) := L(q, q̇i = ei

a(q)ω
a). Then a straightforward computation using

(2.1.3) proves the following equivalence of critical action principles.

Proposition 1. The following statements are equivalent:

(i) The curve q(t) is a critical point of the action functional∫ b

a

L(q, q̇) dt, (2.2.1)

where we choose variations of q(t) that satisfy δq(a) = δq(b) = 0.

(ii) The curve (q(t), ω(t)) is a critical point of the action functional∫ b

a

Lw(q, ω) dt, (2.2.2)

with respect to the variations δω induced by the variations δq = Σaea through (2.1.3) given
by:

δω = dtΣ + [ω, Σ]. (2.2.3)

Now, given the equivalence of the action principles in Proposition 1, we can derive
the equivalent equations of motion in both the coordinate and nonholonomic frames.
The latter are called the Hamel equations [5, 33], and we have the following analogue of
Proposition 1 (we remind the reader of the index conventions of Section 1.1).

6Such relations were studied early on in the modern history of analytical mechanics (see [38] and references
therein), but not from the viewpoint of Riemann-Cartan geometry.
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Proposition 2. The following statements are equivalent to (i) and (ii) of Proposition 1:

(a) The curve q(t) satisfies the Euler-Lagrange equations

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, (2.2.4)

or written with respect to the Levi-Civita connection ∇g in the coordinate basis {∂i},

∇g
q̇ q̇ = −grad(V ), or

dq̇i

dt
+

{
i

jk

}
q̇j q̇k = −gil∂lV, (2.2.5)

where grad(V ) = (gjk∂kV )∂j is the gradient of V in the coordinate basis, and the
{

i
jk

}
are the Christoffel symbols of the metric g.

(b) The curve (q(t), ω(t)) satisfies the Hamel equations

d

dt

∂Lw

∂ωd
− ed(L

w) =
∂Lw

∂ωa

w

T a
dc ωc, (2.2.6)

or written in terms of the Levi-Civita connection ∇g in the moving basis {ea},

∇g
q̇ q̇ = −grad(V ), or

dωa

dt
+ Γa

bcω
bωc = −Gabeb(V ), (2.2.7)

where grad(V ) = (Gabeb(V ))ea is the gradient of V in the moving basis, and the Γa
bc are

the components of the Levi-Civita connection from (8.0.12).

Proof. The equivalence of (i) and (a) is a standard computation of the variational deriva-
tive of the action functional in (2.2.1) [3], along with a straightforward expansion of (2.2.4)
in a coordinate basis (see [9]). The equivalence of (ii) and (b) follows by once again varying
(2.2.1) but instead with respect to the variations (2.2.3):

δ

∫ b

a

L(q, q̇) dt =

∫ b

a

δLw(q, ω) dt

=

∫ b

a

[
∂Lw

∂qi
δqi +

∂Lw

∂ωa
δωa

]
dt

=

∫ b

a

[
∂Lw

∂qi
ei

d −
d

dt

∂Lw

∂ωd
− ∂Lw

∂ωa

w

T a
cd ωc

]
Σd dt, (2.2.8)

where we’ve used (2.1.1) and (2.1.3). Upon assuming the independence of the variations Σ,
this variational derivative vanishes if and only if the Hamel equations (2.2.6) are satisfied
(we have used the anti-symmetry of Ω in (2.2.6)).

Lastly, by using the fact that Lw(q, ω) = (1/2)Gabω
aωb− V (q) to compute (2.2.6) we

arrive at

Gda
dωa

dt
+ Gda

{
a

bc

}
ωbωc −Gbe

w

T e
dc ωbωc = −ed(V ), (2.2.9)

where the
{

a
bc

}
are the Christoffel symbols of the moving basis given by (8.0.13). Multi-

plying (2.2.9) through by the inverse Gfd, by (8.0.10) and the antisymmetry of T it then
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follows that Γa
bcω

bωc =
({

a
bc

}
− T a

b c

)
ωbωc, where T a

b c = GbdG
ae

w

T d
ec. Using this in

(2.2.9) then yields (2.2.7).

Let us now discuss the insights gained from (2.2.6). To better illustrate our point,
let us specialize to the V = 0 case and assume we have chosen a g-orthonormal moving
basis. Then from (8.0.10) we have Γa

bc = γa
bc, so that Γa

bcω
bωc = −Ω a

b cω
bωc. Since

{
a
bc

}
vanishes by orthogonality, it then follows from (2.2.9) that:

ṗb =
w

T a
bc paω

c, (2.2.10)

where pa = ∂Lw/∂ωa = δabω
b. In a coordinate basis, the time rate-of-change of the

momenta of an unconstrained mechanical system is determined by the metric, as (2.2.4)
shows. However, in a non-coordinate basis, as (2.2.10) shows, they are here determined
by the torsion of the Weitzenböck connection. This is precisely the situation encountered
in, for example, the Euler equations on Q = SO(3).

In general, Proposition 2 shows that the geometric origin of the fictitious force aris-
ing in the Hamel equations (2.2.6) is precisely the torsion of the Weitzenböck connection7.
Moreover, as we shall see in the context of nonholonomic mechanics in Section 3.2, the
Weitzenböck torsion will also be responsible for the “pseudogyroscopic” constraint reac-
tion force (see footnote 11 of [18], pg. 106 of [15] and [31]) present in the reduced equations
of motion.

3 Nonholonomic Mechanics

Suppose now that we impose linear, homogeneous nonholonomic constraints on our me-
chanical system and let D be the non-integrable distribution describing these constraints.
Locally, D is given by

D = {q̇ ∈ TQ|θC(q̇) = 0},
where the θC are the constraint one-forms and where we refer the reader to the index
conventions of Section 1.3.

Now, let {ẽα} be a basis for D and extend this to a basis {ẽα, ẽC} for TQ such that
the {ẽC} spans the g-orthogonal complement to D. We can then decompose q̇ ∈ TQ into
q̇ = ωαẽα + ωC ẽC . The nonholonomic mechanics is then derived by projecting the Hamel
equations from Proposition 2 onto D, resulting in a nonholonomic (affine) connection.

3.1 The Nonholonomic Connection

Let P : TQ → D and Q : TQ → D⊥ be complementary g-orthogonal projectors. Then
the affine connection ∇ defined by

∇XY = ∇g
XY + (∇g

XQ) (Y ) (3.1.1)

7Physically, this should not be surprising since, by the very definition of the nonholonomic frame {ea} from
Section 1.1, an observer utilizing the moving frame employed in (2.2.7) would experience the additional rotational
forces from the point-to-point rotation of the frame {ea} quantified by the Ω term in (2.2.9).
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is called the constrained affine connection [7, 8, 15] or the nonholonomic connection [16].
It can be verified that this is indeed an affine connection [15, 16], and that it is metric
with respect to the metric g on D induced from g [16] (we will denote the components of
this induced metric by Gαβ).

The nonholonomic equations of motion are given by projecting (2.2.6) or (2.2.7) onto
D through P (or equivalently, by setting ωC = 0), and are given (in our notation) by:

∇q̇ q̇ = −P (grad(V )), or
dωα

dt
+ Γα

βγω
βωγ = −G

αβ
ẽβ(V ), (3.1.2)

where Γα
βγ = G

αδ
Γδβγ (recall (8.0.10)), with G

αβ
the matrix inverse of the sub-matrix

Gαβ of G. These equations appear in [28], and if we orthogonalize the basis {ẽα} then
(3.1.2) reproduces the equations in [7]. Moreover, in analogy with (2.2.10), if we further
assume that V = 0, then we can express (3.1.2) as:

ṗβ =
w

T a
βγ paω

γ. (3.1.3)

The preceding equations show that, whereas physically the main force generating the
nonholonomic dynamics is the constraint reaction force arising from the nonholonomic
constraints, geometrically the constraint force is nothing but the (projected) torsion force
arising from the Weitzenböck connection defined by the nonholonomic moving (and rotat-
ing) basis {ẽα}. Incidentally, equations (3.1.3) are a special case of the Euler-Poincaré-
Suslov equations [3].

The insight gained from (3.1.3) can now be used to recharacterize the process of
Chaplygin Hamiltonization [22, 24]. Before doing so, let us now define the particular class
of nonholonomic systems known as non-abelian Chaplygin systems [3, 15, 31].

3.2 Non-Abelian Chaplygin Systems

Non-abelian Chaplygin systems on Q are described by the triple (L, G,D), where L is
a (regular) mechanical Lagrangian (see Section 2.2), and G is a Lie group acting freely
and properly on Q which leaves L and the constraints describe by D invariant. They
are characterized by the splitting of the tangent spaces according to TqQ = TqOrb(q) ⊕
D, where Orb(q) is the group orbit through q. Therefore, there is a unique principal
connection A : TQ → g on the bundle π : Q → M := Q/G whose horizontal space is D
[3]. In the special case when G = Rk or G = Sk, we call the system abelian Chaplygin.
This case corresponds to the classical Chaplygin systems considered by Chaplygin himself
[15].

Denote r = π(q) and ξ = g−1ġ ∈ g (with g ∈ G), so that q ∈ Q can be written as
q = (rα, gA), with the index conventions of Section 1.3. We can then decompose q̇ ∈ TQ
into its horizontal and vertical parts as in (1.3.2) and (1.3.3), where the moving frame
{ẽa} = {ẽα, ẽA} is now given by

ẽa = ẽi
a∂i =

(
Iσ×σ −AA

αgB
A

0K×σ gB
A

) (
∂α

∂B

)
. (3.2.1)

The {ẽα} form a nonholonomic basis for D, and the nonholonomic constraints are
given simply by ωB = 0, where ωB = ξB + AB

α (r)ṙα in analogy to (1.3.2). Then, as in
Section 3.1, we arrive at the equations of motion by projecting the equations (2.2.6) or
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(2.2.7) onto D through P [3]. Anticipating the appearance of the Ωa
βγ as in (3.1.3), a

straightforward computation shows that Ωα
βγ = 0, while:

[ẽα, ẽβ] = −ΩD
αβ ẽD =: BD

αβ ẽD, (3.2.2)

where BD
αβ =

∂AD
α

∂rβ
−

∂AD
β

∂rα
− CD

ABAA
αAB

β ,

where the CD
AB are the structure constants of g, [ẽA, ẽB] = CD

AB ẽD = −ΩD
AB ẽD.

In agreement with the relationship we found in Section 1.3, the −ΩC
αβ are the local

components of the curvature of the principal connection A [3]. In fact, a quick glance
at equations (2.19)-(2.21) of [5] shows that in the general case of a mechanical system
with symmetry (nonholonomic or not), the non-trivial forces arising in the equations of
motion are just the various components of the torsion of the Weitzenböck connection. We
note that in our notation the function P (Lw) = Lw

c is the constrained reduced Lagrangian
lc : TM → R of [5].

4 Time Reparameterization and Chaplygin Hamiltonization

Given the fact that one can choose any nonholonomic frame in which to express the
dynamics of a mechanical system, one may wonder if there are particularly useful choices
which simplify the equations of motion. A popular avenue is to try and Hamiltonize the
nonholonomic system through Chaplygin’s Reducibility Theorem [6, 10, 11, 21].

As noted in [22, 24], one can view Chaplygin’s time reparameterization dτ = f(q)dt
from the Introduction in a different way as follows: we have q̇ = dq/dt = f(q)(dq/dτ) =:
f(q)ω, which defines the quasivelocities ω = q′ on Q (for a recent discussion of quasive-
locities in nonholonomic mechanics see [5]). These quasivelocities define a moving frame,
as discussed in Section 1.1. Thus, we can now study Chaplygin Hamiltonization within
the framework of the nonholonomic moving frames discussed in the earlier Sections.

4.1 Chaplygin Hamiltonization

In view of this interpretation of time reparameterization, consider the non-abelian Chaply-
gin nonholonomic systems from Section 3.2 and choose the nonholonomic basis {ea = fẽa},
where f = f(r) is a nowhere zero smooth function, with {ẽa} the nonholonomic basis from
Section 3. Since Ω now depends on f , we can decompose it as follows:

−Ωc
abec = [ea, eb] (4.1.1)

= [fẽa, f ẽb] =
1

f
(ea(f)δc

b − eb(f)δc
a) ec − f Ω̃c

abec,

which relates the Ωc
ab to the Ω̃c

ab (here Ω̃ is the object of anholonomity corresponding to
the original basis {ẽ}), which do not depend on f .

To obtain the reduced nonholonomic equations of motion, we now project the equa-
tions (2.2.6) onto D using the projector P from Section 3.1. Rather than repeating the
calculation, we note that the result is given simply by setting ωC = 0 in (2.2.9), to obtain
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Gαρ
dr′ρ

dt
+ Γαβγr

′βr′γ = GβC

w

TC
αγ r′βr′γ − eα(V ), (4.1.2)

where Gαβ = f 2Gαβ. Then, we have the following.

Theorem 3. The reduced nonholonomic equations of motion of a nonabelian Chaplygin
nonholonomic system are Lagrangian after the time reparameterization dτ = f(r) dt, with
Lτ

c (r, r
′) = (1/2)Gαβr′αr′β − V (r), if and only if there exists a nowhere zero smooth f(r)

such that

GβC

w

TC
αγ +GγC

w

TC
αβ= 0, for all α, β, γ. (4.1.3)

Moreover, the sufficient condition is simply GβC

w

TC
αγ= 0.

Proof. We can rewrite (4.1.2) more suggestively as

Gαρ
dr′ρ

dt
+

f

2
[∂β(Gγα) + ∂γ(Gβα)− ∂α(Gβγ)] r

′βr′γ = GβC

w

TC
αγ r′βr′γ − f∂α(V ), (4.1.4)

where we have used the fact that eα(f) = fẽα(f) = f∂α(f) due to the fact that f
only depends on r, and similarly for V and G. On the other hand, the Euler-Lagrange
equations of Lτ

c are

Gαρ
dr′ρ

dt
+

f

2
[∂β(Gγα) + ∂γ(Gβα)− ∂α(Gβγ)] r

′βr′γ = −f∂α(V ). (4.1.5)

Clearly, (4.1.4) and (4.1.5) are equivalent if and only if (4.1.3) is satisfied, although

a sufficient condition is that GβC

w

TC
αγ= 0.

Written out explicitly, the condition (4.1.3) reads:

∂f

∂rγ
Gβα +

∂f

∂rβ
Gγα − 2

∂f

∂rα
Gβγ = f

(
GβCBC

αγ + GγCBC
αβ

)
, (4.1.6)

where we note that one can replace G by G everywhere (since they differ by a multiplicative
factor of f 2). Equations (4.1.6) match our earlier necessary and sufficient conditions for
Chaplygin Hamiltonization [24], and we also note that their satisfaction implies that the
original nonholonomic system conserves measure with density fK [22, 24]. In the special
case that f = const. solves (4.1.6), then the nonholonomic system is called conditionally
variational [23].

Now, given the discussion surrounding (3.1.3), we can now geometrically interpret
the condition (4.1.3). Chaplygin Hamiltonizable systems are ones for which we can elim-
inate the fictitious Weitzenböck torsion force arising from the nonholonomiticity of the
basis by inducing a counter force (arising from (4.1.2)) and reparameterizing time. This
reparameterization is also physically interesting, since it relates time measured between
the nonholonomic and Hamiltonized frames (see Example 5.3 below), loosely analogous
to the distinction between “proper time” and “universal time” in general relativity.
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4.1.1 Conservation Laws through Moving Frames

Let us first begin with a simple observation. Theorem 3 provides us with a Hamiltonian
form of the constrained nonholonomic mechanics for a nonabelian Chaplygin system (pro-
vided a solution f to (4.1.3) exists). As such, one may then apply any of the well-known
results from the unconstrained theory of Hamiltonian mechanics to this Hamiltonized
system. In particular, one can investigate the integrability of the original nonholonomic
system by applying the Arnold-Liouville theorem or Hamilton-Jacobi theory to the Hamil-
tonized system (this is currently work in progress [40]). In addition, if this Hamiltonized
system is invariant under the action of a Lie group G (note that we no longer need to
worry about the constraints), then one may perform a Marsden-Weinstein reduction [3]
to a lower-dimensional system and in the process acquire momentum conservation laws
resulting from the corresponding momentum equations (we will see this below in Example
5.1).

The process of finding the symmetry groups which leave Lτ
c invariant can become

complicated if the Hamiltonized form of the restriction of the metric g to D (the Gαβ

in our notation) is complicated. However, since according to (1.1.1) these components
depend on the choice of our original moving frame, we can eliminate this extra layer
of complexity by g-orthonormalizing the basis {ẽ} from (3.2.1). After doing so, the
Hamiltonized constrained reduced Lagrangian Lτ

c would only depend on r through f and
V , making the search for symmetry groups easier. In the special case when there is no
potential (V = 0), one could then explicitly relate the symmetries of f to the existence
of momentum conservation laws for the original nonholonomic system.

Let us make our point more explicit by considering the special case of cyclic symme-
tries. Suppose now that we g-orthonormalize the moving frame {ẽ} from (3.2.1). Then,
assuming there exists a new f satisfying the corresponding (4.1.3), we have the following
result.

Proposition 4. Consider a non-abelian Chaplygin nonholonomic system for which we
have g-orthonormalized the basis (3.2.1), and suppose that there exists f satisfying the
corresponding Hamiltonization conditions (4.1.3). Then, if f and V are independent of
rα, we have the conservation law

χα = kα/f2, (4.1.7)

where kα ∈ R and χα is the α-component of the velocity in the g-orthonormalized basis.

Proof. Let {uα} denote the g-orthogonalized {ẽα}. The kinetic energy metric is now
f 2δαβ due to the orthonormalization. Thus, the nonholonomic equations of motion are

then given by (4.1.2), with Gαρ replaced by f 2δαρ and GβCΩC
αγ replaced by f 2δβCΩ̂C

αγ

(we will denote the objects of anholonomity of the g-orthonormalized basis by Ω̂). Now,
since we assume that there exists an f satisfying the new Hamiltonization conditions (the
conditions (4.1.3) with the aforementioned replacements of G and Ω), then the reduced
dynamics of the nonholonomic system are Lagrangian after the time reparameterization
dτ = f(r) dt. Since the α-th Hamiltonized nonholonomic equation is given by

d

dτ

(
f 2χα

)
− uα

(
f 2

2
δβγχ

βχγ − V

)
= 0, (4.1.8)

this leads directly to the conservation law (4.1.7) if f and V are independent of rα.
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We remark that since the new quasivelocity χα = χα
βr′β = (1/f)χα

β ṙβ, the conservation
law (4.1.7) can easily be written in terms of ṙ (or the nonholonomic momentum for that
matter). Moreover, if V = 0, then Proposition 4 provides a direct link between the
symmetries of the Hamiltonizing multiplier f and the momentum conservation laws of
the original nonholonomic system.

For reference purposes, we note that applying Proposition 4 requires the existence of
a solution f(r) to the g-orthonormalized version of (4.1.3), given by:(

uν
γδ

β
α + uν

βδγ
α − 2uν

αδβ
γ

) ∂f

∂rν
= −f

(
Ω̂β

αγ + Ω̂γ
αβ

)
, (4.1.9)

where the uα
β are the components of the g-orthonormalized basis {u} and the Ω̂ are its

associated objects of anholonomity, computed from (1.1.3).

5 Examples

5.1 The Vertical Rolling Disk

Consider the nonholonomic vertically rolling disk pictured in Figure 1 below with config-
uration space Q = R2 × S1 × S1 and parameterized by the coordinates (x, y, θ, ϕ), where
(x, y) is the position of the center of mass of the disk, θ is the angle that a point fixed on
the disk makes with respect to the vertical, and ϕ is measured from the positive x-axis.
This system has Lagrangian and constraints given by:

L =
1

2
m(ẋ2 + ẏ2) +

1

2
Iθ̇2 +

1

2
Jϕ̇2,

φ1 = ẋ−Rcos ϕθ̇ = 0,

φ2 = ẏ −Rsin ϕθ̇ = 0, (5.1.1)

where m is the mass of the disk, R is its radius, and I, J are the moments of inertia about
the axis perpendicular to the plane of the disk, and about the axis in the plane of the
disk, respectively.

x

z

y

(x, y)

θ

P0

ϕ

P

Figure 1: The Vertically Rolling Disk.
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For simplicity, let us take m = I = J = 1. Then, since (5.1.1) is invariant under
the additive action of G = R2

xy, the system is abelian Chaplygin according to Section 3.2.
The Ehresmann connection A from (1.3.1) describing the constraints is given by

A = (dx− cos ϕdθ) ∂x + (dy − sin ϕdθ) ∂y, (5.1.2)

and its kernel is D = span{∂ϕ, ∂θ + cos ϕ∂x + sin ϕ∂y}. Thus, the moving frame (3.2.1) is
given explicitly by {ẽ} = {ẽα, ẽC}, where

{ẽα} = {ẽϕ = ∂ϕ, ẽθ = ∂θ + cos ϕ∂x + sin ϕ∂y}
{ẽC} = {ẽx = ∂x, ẽy = ∂y}. (5.1.3)

The non-zero components of the associated Weitzenböck torsion are

w

T x
θϕ= − sin ϕ,

w

T y
ϕθ= − cos ϕ,

and from this, a straightforward calculation shows that the right-hand side of (4.1.6)
vanishes, implying that f = const. is a solution. Thus, Theorem 3 tells us that the reduced
nonholonomic equations are Lagrangian after the “reparameterization” by f with Lτ

c =
(1/2)f 2 (θ′2 + ϕ′2). However, since in this case f = const., one need not reparameterize
at all (thus the vertical disk belongs to the special class of nonholonomic systems studied
in [23]). Moreover, since Lτ

c is cyclic in both θ and ϕ, then we immediately have the

conservation laws θ̇ = kθ and ϕ̇ = kϕ. It is also interesting to note that in the standard
literature [3] the θ conservation law is induced by a horizontal symmetry while the ϕ is
not, whereas here we have found both conservation laws directly.

With respect to Proposition 4, a MAPLE verification shows that the conditions (4.1.9)
also have the solution f = const. However, no new insight is gained since we have already
arrived at the two conservation laws describing the reduced constrained dynamics.

5.2 The Nonholonomic Free Particle

Consider a nonholonomically constrained free particle with unit mass (more details can
be found in [3]), and Lagrangian and constraint given by

L = 1
2
(ẋ2 + ẏ2 + ż2) ,

φ(q, q̇) = ż + xẏ = 0. (5.2.1)

The system is Chaplygin Hamiltonizable with f(x) = (1+x2)−1/2 solving (4.1.3) (see
also [24]), which are given in this case by:

∂f

∂x
(x, y) = − x

1 + x2
f(x, y),

∂f

∂y
(x, y) = 0.

It then follows that Lτ
c = (1/2)f 2 (x′2 + (1 + x2)y′2). From this, we again see that since

Lτ
c is cyclic in y, then we have the associated conservation law y′ = ky, where ky is a

constant. Using the fact that ẏ = fy′ from Section 4, we can rewrite this conservation
law as

√
1 + x2ẏ = ky.
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With respect to Proposition 4, a straightforward calculation of the g-orthonormalized
basis {u} gives  ux

uy

uz

 =

 1 0 0
0 1√

1+x2 − x√
1+x2

0 x√
1+x2

1√
1+x2

  ∂x

∂y

∂z

 ,

and the only non-zero objects of anholonomity (or equivalently Weitzenböck torsion com-

ponents) are Ω̂y
xz = −1/(1+x2) and Ω̂z

xy = 1/(1+x2). Moreover, since only the objects
of anholonomity with all Greek indices (x and y in our case) enter into the right-hand-sides
of (2.2.6) and (4.1.9), it follows immediately that f = const. is a solution to (4.1.9). Thus,
g-orthonormalizing the basis has removed the need for Hamiltonization (or, equivalently,
our system is Hamiltonian in the g-orthonormalized basis).

As in the example above, since f is independent of both x and y and the potential
V = 0, then by Proposition 4 it follows that, with χx = ẋ and χy =

√
1 + x2ẏ, we have

the conserved quantities χx = kx and χy = ky where kx and ky are constants. Thus, we
not only recover the y conservation law already extracted, but in addition the x one as
well.

Now, since the reduced dynamics in this case are completely integrable by using the
aforementioned conservation laws, we can explicitly investigate the time reparameteriza-
tion dτ = f(x)dt. Let us assume that αx := ẋ(0) 6= 0 and αy := ẏ(0) 6= 0. Then the
solutions to the reduced dynamics are given by

x(t) = αxt, y(t) =
αy

αx

ln
(
x(t) +

√
1 + (x(t))2

)
, (5.2.2)

where we have chosen, without loss of generality, the initial conditions x0 = 0 and y0 = 0.
We can now explicitly find the reparamerization by integrating dτ = (1 + (x(t))2)−1/2 dt.
We arrive at

τ(t) =
1

αx

ln
(
x(t) +

√
1 + (x(t))2

)
+ τ0, (5.2.3)

where τ0 = τ(t = 0), but we shall set t0 = 0 henceforth for simplicity. Using x(t) from
(5.2.2) in (5.2.3) allows us to invert (5.2.3) and find t(τ):

t(τ) =
1

αx

sinh (αxτ) . (5.2.4)

Using (5.2.3) and (5.2.4) in (5.2.2) then allows us to express the reduced dynamics in
terms of τ :

x(τ) = sinh (αxτ) , y(τ) = αyτ. (5.2.5)

Although we could have found the explicit reparameterizations (5.2.5) directly from the
Euler-Lagrange equations of Lτ

c (in fact, the linearity of y(τ) follows directly from the
quadrature of the conservation law y′ = ky from above), by directly employing the repa-
rameterization in (5.2.2) we have managed to find the explicit relationship between the
constants of motion for the dynamics expressed in the two times.
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5.3 The Knife Edge on an Inclined Plane

Consider a plane slanted at an angle α from the horizontal and let (x, y) denote the posi-
tion of the point of contact of the knife edge with respect to a fixed Cartesian coordinate
system on the plane (see [3]). Moreover, let ϕ represent the orientation of the knife edge
with respect to the xy-axis. The Lagrangian and constraints are then given by

L = 1
2
(ẋ2 + ẏ2 + ϕ̇2) + x sin α,

φ(q, q̇) = ẏ − tan ϕẋ = 0, (5.3.1)

where we have set all parameters (mass, moment of inertia, and the gravitational accel-
eration) equal to one for simplicity.

Now, the only non-trivial equations in (4.1.3) are

∂f

∂ϕ
(x, ϕ) = − tan ϕf(x, ϕ),

∂f

∂x
(x, ϕ) = 0, (5.3.2)

whose solution is spanned by f(ϕ) = cos ϕ. From this, we have that Lτ
c = (1/2)f 2(sec2 ϕx′2+

ϕ′2)+x sin α. Although there are no cyclic symmetries here, the Euler-Lagrange equations
for Lτ

c are given by

x′′ = sin α, ϕ′′ = tan ϕϕ′2, (5.3.3)

from which it follows that x′ = sin ατ +K1 and ϕ′ = K2 sec ϕ, where K1, K2 are arbitrary
constants, and here we take K2 6= 0. Using q̇ = fq′ from Section 4 converts these into

ẋ = sin α cos ϕτ + K1 cos ϕ, ϕ̇ = K2, (5.3.4)

and without loss of generality, taking ϕ(0) = 0 gives ϕ(t) = ωt, where we have set K2 = ω.
This is precisely the ϕ solution to the reduced nonholonomic dynamics, given by:

ẍ + tan ϕϕ̇ẋ = sin α cos2 ϕ, ϕ̈ = 0. (5.3.5)

To make sense of the other first integral in (5.3.4), we need to find τ(t). We do this
by using our solution ϕ(t) to explicitly integrate dτ = f(ϕ) dt = cos(ϕ(t)) dt, arriving at

τ(t) =
1

ω
sin(ϕ(t)), (5.3.6)

where we have again set τ(t = 0) = 0 for simplicity. Then, using (5.3.6) in (5.3.4)
gives ẋ = sin α

ω
cos ϕ sin ϕ + K1 cos ϕ, from which we identify K1 as ẋ(0) =: κ. A simple

quadrature of (5.3.4) then gives the solution to the reduced nonholonomic dynamics,

x(t) =
sin α

2ω2
sin2(ϕ(t)) +

κ

ω
sin ϕ + x0, ϕ(t) = ωt, (5.3.7)

which agrees with that found in [3]. We also wish to note that since ω has units of inverse
time, then it follows from (5.3.6) that τ has units of time, so that (5.3.6) does indeed
represent a reparameterization of time. Hence, our system is Hamiltonian in τ -time, but
nonholonomic in t-time.

18



6 Conclusion

We have endeavored to show that the Weitzenböck connection W plays a central role in the
mechanics of systems in general, and is particularly fundamental to the interesting physical
and geometric characteristics that nonholonomically constrained systems possess. Indeed,
we have shown that the pseudogyroscopic force that arises when considering the equations
of motion of such systems in a moving frame adapted to D (the projection by P of the
equations (2.2.6)) is in fact a torsional force arising from the torsion of the Weitzenböck
connection through its relationship (1.4.3) with the objects of anholonomity of the frame.
Given the considerable interest in the so-called teleparallel equivalent of general relativity
(see [1]), we believe this relationship could provide an interesting set of research questions.
For example, loosely speaking, when studying the motion of a mechanical system in the
teleparallel theory one begins in a Minkowski spacetime, chooses a moving frame, and
then interprets the Weitzenböck torsion of this frame as a gravitational force acting on the
system. In principle, this is precisely what we have done in the examples above (before
enforcing the constraints), except that the relevant interpretation of the Weitzenböck
torsion for us is as a constraint force which enforces the nonholonomic constraints.

In addition to the theoretical aspects associated with the Weitzenböck torsion, in
Section 4 we also showed how this torsional force can, in some cases, be removed via
an appropriate time reparameterization. Aside from the interesting parallel between this
time reparameterization and the distinction between “proper” and “coordinate” time in
general relativity (see the discussion at the end of Section 4.1), this ability to remove the
torsional force induced by a moving frame allowed us to better understand the process of
Chaplygin Hamiltonization. In a nutshell, one is searching for an inertial frame in which
the nonholonomic dynamics are not subjected to a pseudoforce, relative to the reparame-
terized time. Moreover, the freedom in the choice of a moving frame, in addition to making
results like that of Proposition 4 possible, in theory allows one to investigate, for exam-
ple, which moving frames give one the most conservation laws for a given nonholonomic
system. Given the framework developed in Section 4, this is now theoretically possible
(whereas those who have worked with moving frames before would tend to consider the
choice of a “good” frame something of art).
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8 Appendix

A simple calculation [37] of the components of the torsion T a
bc = 〈θa, T (eb, ec)〉 and the

curvature Ra
bcd = 〈θa, R(ec, ed)eb〉 tensors yields:

T a
bc = Γa

bc − Γa
cb + Ωa

bc, (8.0.8)

Ra
bcd = 2e[bΓ

a
bcd + 2Γa

[b|eΓ
e
|c]d + Γa

ebΩ
e
cd. (8.0.9)
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In addition, by letting U = eb, V = ec, W = ea in (1.2.3) we have Γabc = g(ea,∇g
bec) given

by:

Γabc =
1

2
[eb(Gca) + ec(Gba)− ea(Gbc)] + γa

bc, (8.0.10)

where the γabc are the components of the second bracketed term in (1.2.3), and are known
as the Ricci rotation coefficients [20, 27]:

γabc = −1

2

[
GadΩ

d
bc + GbfΩ

f
ac + GcfΩ

f
ab

]
. (8.0.11)

From (8.0.10) we can the define the Christoffel symbols of the second kind Γa
bc by:

Γa
bc =

{
a

bc

}
+ γa

bc, (8.0.12)

where we have introduced the notation for the well known Christoffel symbols:{
a

bc

}
=

1

2
Gad [eb(Gcd) + ec(Gbd)− ed(Gbc)] , (8.0.13)

noting that in the coordinate basis these reduce to the standard Christoffel symbols
{

i
jk

}
.

Locally, the geodesic equation is then given by:

α̈a +

{
a

bc

}
α̇bα̇c = 0. (8.0.14)

Lastly, the components of the curvature of the Ehresmann connection A of (1.3.1)
are given by [3]:

BC
αβ = ∂βAC

α − ∂αAC
β + AB

α ∂BAC
β − AB

β ∂BAC
α , (8.0.15)

and by (3.2.3) in the case of a principal connection.
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