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Abstract—In this paper, we demonstrate that the dynamics
of an n-dimensional Lindblad control system can be separated
into its inter- and intra-orbit dynamics when there is fast
controllability. This can be viewed as a control system on the
simplex of density operator spectra, where projectors represent-
ing the eigenspaces are viewed as control variables. The local
controllability properties of this control system can be analyzed
when the control-set of projectors is limited to a finite subset. In
particular, there is a natural finite subset of n! projector-tuples
that are effective for low-purity orbits.

Index Terms—Quantum control, open systems, Lindblad equa-
tion, decoherence, dissipation.

I. INTRODUCTION

Advances in quantum technologies, such as the nascent
progress in quantum computation [1][2][3][4], as well as the
developments of coherent control of chemical reactions [5][6]
and NMR [7], have resulted in great effort to apply mathemati-
cal control theory [8] to quantum mechanical systems [9]. The
interaction of a system with its environment is a major obstacle
in quantum control, and as a result quantum control theory has
expanded from closed systems [10] to open systems (see [11],
[12], [13] and [14] for surveys; some important papers are
[15]1[16][17][18][19D).

A common method of modeling open systems is to assume
they are Markovian and time-independent, in which cases the
dynamics are described by a quantum dynamical semi-group
and the Lindblad master equation [20][21][22]. Typically, the
control functions appear in the system Hamiltonian (although
there has been progress in engineering Lindblad dynamics
[23][24][25]). This means that, absent the interaction with
the environment, the controls are only capable of steering the
system within a given unitary orbit [26][27][28]. The motion
between orbits depends on the Lindblad super-operator. Conse-
quently, the Hamiltonian cannot directly affect the eigenvalues,
or the purity T7(p?), since the eigenvalues of the density
operator are constant on any orbit. If the optimal time [29]
between two unitarily equivalent density operators is much
smaller than the time-scale characterized by the Lindblad
dynamics, it becomes an interesting question as to how best
position the system on any given orbit.
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The aim of this paper is to formally consider an approach
to control of open quantum systems in which the space of
density matrices is decomposed into spectra (the set of possible
orbits) and eigenprojectors (the positions along a given orbit).
If one has sufficiently fast and complete Hamiltonian control,
the intra-orbit dynamics can be made arbitrarily faster than
the inter-orbit dynamics, since the Lindblad super-operator is
bounded. After separating the dynamics, we want to view the
trajectories of the eigenprojectors as control functions, and
the spectrum as the state variables. We refer to this viewpoint
as projector-based control. After a desired projector trajectory
has been determined, we can consequently reconstruct the
necessary Hamiltonian, which contains the true control func-
tions. We are building on previous work on two-dimensional
systems [30][31]. The n = 2 case is easier to study from
a control perspective as the set of orbits is isomorphic to a
closed line segment, and all orbits but one are isomorphic
to a sphere. In order to generalize to 2 < n < 00, one
must address the delicacies of dealing with more complicated
orbit sets, as well as cope with the difficulties that come with
non-trivial control sets. Chapter 8 in reference [32] discusses
the geometry of density matrices, and, in particular, their
orbit sets. Our approach contrasts with the generalized Bloch
vector representation approach [28][33], which yields an affine
differential equation on the vector space of density operators.
This representation has little to do with the orbit structure
however.

One obstacle that arises in our approach is the non-linearity
of the control space. This space consists of all n-tuples of
orthogonal projector operators, which is the quotient manifold
U(n)/(U(my) x - xU(my,)), where m,, is the multiplicity
of the ath eigenvalue of the density operator and ny is the
number of distinct eigenvalues. It is therefore non-trivial to
apply standard control theory results to a projector-based
control system. In this paper, we demonstrate that a local
controllability result can be applied when one limits the
projector-controls to a finite subset of the overall control space.
In particular, the behavior of the Lindblad operators at the
completely mixed state yields a natural set of n! projector-
tuples that are particularly useful for low-purity orbits.

Infinite-dimensional quantum systems [34] present many
technical difficulties. In particular, the Lindblad super-operator
is not necessarily bounded, which means it has no character-
istic time-scale, and we cannot assume our unitary control is
faster than the Lindblad dynamics. For this reason, we consider
only finite-dimensional systems.

In section II, we decompose the Lindblad master equation
into its spectral and projector components, and in section III,



we re-interpret the spectral ODE as a control equation. In sec-
tion IV, we analyze the local controllability of finite projector
control-sets, and in section V we show some examples.

II. SEPARATION OF SPECTRAL AND PROJECTOR
DyNAMICS

A state in an n-dimensional open quantum system is de-
scribed by an operator p on the n-dimensional Hilbert space,
called the density operator. It must be positive semi-definite
with unit trace. It can be written in terms of its eigenvalues:

pP= Z )\kﬂ-kv
k=1

where the \;’s are the (possibly repeated) eigenvalues of p,
and the 7’s are orthogonal projectors onto the corresponding
eigenspaces. The properties of p demand that all eigenvalues
lie on the interval [0,1] and that ), A\, = 1.

The dynamics of a system with Lindblad dissipation is
described by the Hamiltonian H(¢), which is a (possibly
time-dependent) Hermitian operator, and a set of N Lindblad
operators {Lj} with the Lindblad equation:

d

2P0 = L(p(2)) = [-iH (2), p(t)] + L (p(t)) (1)
al .1
Lplp) = ]; <LkaL = (L};Lkp + pL,JLLk)> .

We are interested in investigating and controlling how
a system moves between unitary orbits. In the absence of
Lindblad dissipation, the solution to (1) can be written p(t) =
U(t)p(0)U(t)t where U() is a trajectory on the unitary
group U(n) obeying LU(t) = —iH(t)U(t). Since U(t)
is unitary, the eigenvalues of p(t) are invariant under the
Hamiltonian evolution. That is, if we define the unitary orbit
O(p) := {UpU' : U € U(n)}, the system does not leave
the orbit without the influence of L. For simplicity, we will
assume fast controllability on the orbit: we can write

n?—1

H t) = Ho + Z ui(t)H,
i=1

where {H; : i = 1,2,...,n% — 1} is a basis of su(n),
and the {u;(t)} are real-valued control functions that are
unbounded and piecewise-continuous. The unboundedness is a
key property: since Lp() is a bounded super-operator, motion
along a unitary orbit can be made arbitrarily faster than motion
between orbits. And because {H;} span the Lie algebra, any
point on the orbit is reachable from any other.

We want to separate the dynamics of the eigenvalues from
that of the projectors. We want to write down a linear ODE for
the eigenvalues, which necessitates using vector notation. Let
A € R” be the vector of eigenvalues written in non-increasing
order, and let 7 be the n-tuple of corresponding projectors.

A lives on an n-simplex 7 C R™, with vertices (1,0, - ,0),
(3,5,0,-+-,0), (3,%,%,0,---,0), ..., (£, L.+, 1), Note

that we have made a choice of convention here: there are
actually n! different simplices we could have chosen, corre-
sponding to the different re-orderings of the eigenvalues (see
[32] for a discussion of the geometry of the eigenvalues of p).

T is an (n — 1)-dimensional subset of R™. It can be useful
to project it onto R™~!. We consider a map P:

T:=P(T)cR"!
T = P(A)
Ty = \/ﬁ <Z)\ j>‘j+1> .

P is a linear map: let II be its corresponding (n — 1) X n
matrix, so that z = IIA. Let ¢ denote the A corresponding
to the completely mixed state: ¢ = (%, %, cee n) One can
check the following identities: It = 0, it = 1,4, 071 =
I, —nu” and «TA = L. Using these identities we can see
that A = 1+ I17z, and also that P is an isometry'. Therefore,
T is an n-simplex with the same side-lengths as 7.

Our state space 7 is a manifold with boundary. 07 consists
of n faces. One face corresponds to the lowest eigenvalue
vanishing: \,, = 0. The remaining (n — 1) faces correspond
to eigenvalue crossings A; = Aj41, §j = 1,2,...,(n — 1).
We must treat eigenvalue crossings with some care. Our
decomposition of p into A and 7 becomes ill-defined there,
as our choice of 7 is no longer unique in the sectors with
repeated eigenvalues.

We would like to know what the derivatives of A and =
are. We will refer to Kato [35] for details. At an eigenvalue
crossing A with ng distinct eigenvalues \¢, define the total
projectors Po, = 3 ;5 _yay ;. For any operator A, also
define (A),p 1= Py APg Theorem 5.4 from chapter two of
[35] allows us to write down the derivative of a total projector:

d / o + / o
%Pa_z(p)xg_;pd)ﬁ . 2)
Bra o B

Note that the constituent projectors 7; of a total projector may
not be differentiable: see section II.3 of [35] for a counter-
example. Away from eigenvalue crossings however, there is no
distinction between the elements of 7 and the total projectors,
so the above formula becomes a formula for the derivative
d

Now let us write down a formula for the derivative of A. The
aforementioned theorem from [35] tells us that the eigenvalues
of p are differentiable if p itself is differentiable. The elements
of A however are only left- and right-differentiable, because
crossing eigenvalues must be rearranged to maintain the non-
decreasing order. In other words, differentiability of p(t)
implies there exists a differentiable A(t) where A and A are
identical up to re-ordering.

Moreover, [35] states that the eigenvalue derivatives are
given by the derivatives of (p')aq. Using this, we can write
down the following proposition:

Proposition IL.1. If p(t) obeys the Lindblad equation, and

(A(t),w(t)) is a differentiable decomposition of p(t), define
Wi = Tr(m-LmerL). Then:
d
—A(t) = QA 3
L A() (), ®
lThat is, ||H(A1 — A2)|| = HAl — A2|| for any A1, Ao.



where Q" is an n-by-n matrix with:
wr{ B 17
=D Wi, i= .
Proof. If A(t) and w(t) are differentiable, we can use the
product rule:

o= Z ()\;wj + )\jﬂ';)
J
)\; = Tr (ijlﬂj) — ZTI‘ (ﬂ'j)\k’ﬂ';c’ﬂ'j)
k
= Tr (m;p'mj) .

From the first to second line, we have sandwiched both sides
with projectors and taken the trace. The second term in the
second line vanishes because 7;m}m; = 0. This formula can
be derived by differentiating m;m, = d;57;, where d;;, is the
Kronecker delta, and sandwiching the results between 7;’s.
Now we use the Lindblad equation:

Nj = Tr(mjp'm;)

= ZTr(ﬂj[—iH, Mo + 7 Lp (AT )T5)
k=1

TI'(’iTle)\kﬁijWj

M=
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k=1
n
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k=1
We have made use of the identities m;m, = J;,m; and
ZZ:1 T = In. O

Corollary IL2. Q7 is rank-deficient. On the projected simplex,
we have the formula for x(t) € T:

%x(t) = b0 4 AT O (1),

where b™ = IIQ™ . and A™ = TIQ™TIT.

“4)

Proof. Q™ must be rank-deficient because its column-sums are
zero, which is a reflection of the fact that the element-sum
of A must be one. The ODE is obtained by substituting A =
t+1II7z into the ODE in the proposition, and then multiplying
by II. O

III. THE PROJECTED CONTROL SYSTEM

We have decomposed the Lindblad system into its spectrum
and projectors, and now we want to define a new control
system. Let us clarify the distinction between the old and new
control systems:

Definition The p-control system is the Lindblad equation (1),
a complete set of control Hamiltonians {H;} that span the
Lie algebra su(n), and the control functions w;(¢) that are
piecewise-continuous, real-valued and unbounded.

Now let P = U(n)/U(1)™ be the space of projector-tuples
7, and PN = U(n)/(U(my) x -+ x U(m,,)) the space of
tuples of total projectors. Then:

Definition The A-control system is the linear ODE (3), to-
gether with control projectors 7(t) on the control-set P. We
consider only functions 7(¢) that are piecewise-differentiable.
Additionally, the control functions must meet the following
two conditions:

1) At any crossing \; = \;, m; and 7; diagonalize (p')aa.
where P, is the appropriate total projector. More strictly,
for some neighborhood of the crossing time, there must
exist a ¢ > 0 such that [[mLp (3, A\ Py)mil| <
ClId = Al

2) 7(t) must satisfy an initial and a final condition: 7(ty) =
mo and 7(ty) = 7y.

The first condition reflects the fact that the orbit space P*
has a lower dimension at crossings. We have the freedom to
choose the total projectors P,, but not their diagonalizations.
The dimension of the control set is n? — Y m?2. When all
eigenvalues are simple, this dimension is n2—n. The inequality
must be satisfied to ensure the Hamiltonian is continuous at
crossings. In Proposition III.1 below, we require this inequality
to avoid singularities in the Hamiltonian.

The second condition above is imposed since we typically
have an initial and target density matrix in mind, each with
their own eigenprojectors that we may not choose. Note that
both conditions can be dropped if we are willing to settle for
approximate controllability: that is, if it suffices that our final
p is arbitrarily close to our target p. We will expand on this
shortly.

We can now write down a formula for the Hamiltonian:

Proposition III.1. Given a trajectory A(t) and controls 7(t)
that satisfy the ODE (3) in the A-control system, we can
recover the density operator p(t) = _; \;(t)m;(t) using the
following Hamiltonian:

[ / na (LD(ZWAVPW))
H™(t) =i —ij(t)ﬂj(t)—i- > IGERYI0)

a,B=1
a#B

ap

This Hamiltonian is piecewise-continuous.

Proof. Firstly, note that the piecewise-continuity follows from
condition one in the definition of the A-control system. If we
write the two terms of the Hamiltonian H™ = H} + HFE, it is
clear that H7 is piecewise-continuous due to the piecewise-
differentiability of 7. HE is piecewise-differentiable because
the numerator and denominator are, and condition one de-
mands the numerator always approaches zero at least as fast
as the denominator.

We must now show that our re-constructed p(t) and H™(t)



obey the Lindblad equation (1), which amounts to:
Z ()\;ﬂ'j + )\j’iT;) = Z ([—iHW, )\jﬂ'j] + ,CD()\jﬂ'j)) .
j=1 j=1
We‘ claim that [—iH7, >, A\jm]
[—iHE, >0 Al + 32, Lo(Ajmj)
would prove the proposition.
For the first part of the claim:

> Ajm; and that
)\27‘(‘], which if true

-5,

n

[*iHLZ/\m] == > [mmy, A
j jk*l
= — Z Aj 7rk7rk7rj+2)\ T J
7,k=1
= — Z A (77, — T )T —&—Z)\ 7TJ7TJ)
jk 1 7j=1
:—Zﬂk)\ 7TJ+ZAk7Tk7rk+Z/\ — )
7,k=1
:iAJ"N;,
j=1

where we have used the identities ), 7, = 0, and w;ﬂj +

! !
7TJ7Tj —’ﬂ'j.

For the second part of the claim:

ZHB,Z)\ ;5] +Z£D (Ajm;) Z (ED(AJ‘WJ‘)

j=1
el & [PaLlp(MPy)Pg, Ajmj]
22 JvR—Y
a,f=1~v=1 @ B
a#fB
n nd nd
S o) - Y SRl
j=1 a,,i:ﬁl’y:l

=Y PuLp(p)Pa =Y Pa([—iH",pl+ Lp(p)) Pa

ng d n
= ZPad—fPa = Z)\;ﬂ-j
a=1 7j=1

In the second to last line, we can insert the commutator
because P,p = pP, = A.FP,. We have shown that our
construction obeys the Lindblad equation. [

Note that the constructed H™(t) may become very large if
two eigenvalues become very close. If the eigenvalues actually
cross however, the Hamiltonian does not blow up, due to
the first condition. There are only certain 7 (¢) that allow an
eigenvalue crossing, and trying to approach a crossing with an
illegal 7(t) requires an infinite energy cost. Note that orbits
with repeated eigenvalues fall on the boundary of 7, so if we
only require that we steer arbitrarily close to such an orbit,
we can ignore the first condition, since nearby points are in
the interior where the condition does not apply.

We now explore the implications of eliminating the second
condition. If we construct a trajectory (A(t),w(¢)) with the

desired initial and final A, but with an undesired initial and
final 7, we can book-end the trajectory with fast unitary trans-
formations. Say we have initial and target density operators pg
and pp. We are able to construct A(t) and 7 (¢) on the interval
[0,T] that brings p; to p2, where there are skew-symmetric
matrices —ih; and —ihg such that p; = e i pget™ and
p2 = e "7 pretT Then we can construct the following
motion on the interval [—-A, T + Al:

0 — P1
a2

p1 — P2
<0110 ) Z i

p2 = py
€T, T+A] { H(t) = hy/A.
Let p,(t) denote our ideal trajectory py — p1 — p2 — pr
and py(t) the actual trajectory pg — p1 — p2 — py. To
measure distance between density operators, we will use the

trace distance?:

d(paa Pb) = Z

k=1

STr(vGou — ) =

l\D\>—~

where )\i are the (real) eigenvalues of p, — pp.
We now show a proposition regarding approximate trajec-
tories.

Proposition IIL.2. If there exists a 7(t) on [0,T] that brings
A,y to A,y then there is a Hamiltonian H(t) on [—A, T+ A]
that brings po to py such that d(py, pr) < CA. The constant
C is universal for all initial and final density operators.

Proof. To begin, we note that the time-derivative of the
distance is d'(pa, p0) = X pecs A where C°(t) is the
subset of indices such that )\5 > 0. If one or more eigenvalues
are zero with non-zero derlvatlve the metric has different
left- and right-side derivatives. In this case, define C°(t—)
to include indices for zero and decreasing eigenvalues, and
C°(t+) to include indices for zero and increasing eigenval-
ues. We know that the eigenvalues are differentiable, since
the aforementioned work of Kato [35] can be applied with
minimal modification to p, — pp-
Now for the first part of the trajectory:

d(p1,p1) <A - sup |d'(pa(t), pu(t))]
—A<t<0

A

< —. su )\5/

-2 7A<Iz:€)<02|
A

==. su
2 —A<It)<02 ik )

where the ul are eigenvalues of (p), — p}) projected onto its
different eigenspaces. Now (p/, — pb) [—ihi/ A, po — po] +
Lp(pp). The Hamiltonian piece projected onto its eigenspaces
vanishes, so we are left with only the dissipative piece. It
follows that ] < sup_x<,<q L0 (po(0)] < 230, |Lunl?.
So d(phﬁl) <nA Zm ‘Lm|2

2See [32] for other distance measures for density matrices.



The middle piece of the trajectory causes no problems,
since both p, and p, experience the same dynamics, and the
Lindblad equation is known to be contractive [20]. We can
adapt equation (3) for (p, — py) instead of p, where A° and
7% replace A and 7 (this can be done since the positive semi-
definiteness of p is not invoked in the proof). On the interval
[0,T7], we have:

n
U &1 546
d'(pas pp) = Z Ak = Z ZQQI)\Z
keC? keCs I1=1
— w06
ol UDDIRD DR RURY
k,leCs keCd,lgCs
_ 56 Y
=- Z Wiy A} + Z Wiy Ay
kgCd,leCs keC? 1gCs
= Z wkl|)‘ | - Z wkl|>\ |
kgCd leCs keCs 1gCs
<0,

where in the third line,éﬁrst sum, we have used the fact that
the column-sums of Q™ are zero.
So |p2 — p2| < |p1 — p1]. To finish, we have:

d(pg, pr) < d(p2,p2) + A~ sup |d'(pa(t), po(t))|
T<t<T+A
N
<2nA Z | Lo |?.
m=1

The multiplicative constant 2n ngl |L,|? is independent of
po and py. O

Corollary IIL3. If we expand the A-control system to allow
piecewise-differentiable 7 (t) with a finite number of disconti-
nuities, the final density operator corresponding to the final A
can be reached within an arbitrarily small error.

Proof. This is merely an extension of the previous proposition,
where instead of book-ending one continuous trajectory with
fast unitary transformations, we are intersplicing a finite num-
ber of fast unitary transformations at the discontinuities. [J

While the two conditions in the definition of the A-control
system are necessary for planning trajectories in p-space and
their corresponding Hamiltonians, they can be disregarded
when analyzing controllability. This will be made clearer in the
next section; for now, we define the following control system:

Definition The unconstrained A-control system is the linear
ODE (3), together with a piecewise-differentiable projectors
m(t), with a finite number of possible discontinuities.

“Unconstrained” in this case refers to the absence of the
two conditions.

Because the control set of the A-control system is a non-
Euclidean manifold, it is not trivial to use standard control-
theoretic results for the projected system. However, if we view
the elements wy; as controls, we are left with a bi-linear control
system, smce Q7 is linear in these elements. Define the map
w: P — R" " that sends 7 to the corresponding vector of

w7, Note that w(P) is a closed and bounded set in R~

Also define Q(w), w € R" =" to be the matrix with off-
diagonal elements equal to w;;, and diagonal elements equal
0o—>, 21, Wik~ Define the following control system, which is
the unconstrained A-control system with a transformation:

Definition The w-control system is the bi-linear ODE A =
Q(w)A on T. The control set is w(P) and control functlons
must be piecewise-differentiable, with a finite number of
discontinuities.

The derivatives of w are, where h € TP C su(n):

Zﬂ] L, ]7rkL T + ﬂ]Llﬂk[Ll , hm;
=1

Z% i (t) Lim;(t)

+ wj( YLy (4)k[ L], 7' (8)]7; (L) (5)

Note that w(7) is a map from a manifold of dimension n? —n
to R™ ~"_ This means that if dw is full rank along a trajectory
w(t), then, by the Inverse Function Theorem, the projectors
m(t) can be recovered. The difficulty in analyzing this w-
control system is understanding the structure of the control
set w(P).

dw]k(

[Li, 7' (t)]

IV. LOCAL CONTROLLABILITY ANALYSIS

In the remainder of this paper, we wish to examine the
controllability of the A-control system. We will restrict our-
selves to local controllability, as this simplifies the analysis
somewhat:

Definition A control system is locally controllable (LC) [8]
in time 71" at a point p if for every neighborhood V' of p, V'
contains another neighborhood W such that Yy, z € W, y can
be controlled to z in time 7. The system is strongly locally
controllable (SLC) if a W can be found for any V such that
Vy,z € W, y can be controlled to z without leaving W.

In plain terms, local controllability guarantees a trajectory
between two local points in a given time, while strong local
controllability demands this trajectory also be local. We will
give a sufficient condition for SLC in both the unconstrained
and constrained A-control system. First let PA* be the subset of
PP satisfying the first sentence of condition 1) in the definition
of the A-control system. Now define V,,(A) = {Q"A : 7 € P}
and V.(A) = {Q7A : 7 € PA*}. These are the sets of possible
tangent vectors %A for the unconstrained and constrained
systems, respectively. For A with distinct elements, these
sets are identical, but when there is eigenvalue multiplicity,
Ve(A) C V(D).

Here, int denotes “interior” and co ‘“convex hull”:

Proposition IV.1. If 0 € int co V,(A), then both the un-
constrained and constrained A-systems are SLC at A. If
0 & co Vy(A), then there is a T for which neither are LC
at A for T < .

Proof. The first part is an application of Lemma 3.8.5 and its
corollary from [8], which states that if O lies in the interior
of the convex hull of the set of available tangent vectors, then



the system is SLC. The wrinkle we must deal with is showing
that the SLC extends to the constrained system, despite the
smaller control set.

For the constrained system, we claim that co V,(A) =
co V.(A), which if true yields the desired result. OQur claim
follows from the Schur-Horn theorem [36][37], which states
that for any Hermitian operator A, {diag(UAUT) : U €
Un)} = co{ol'a : 0 € S,}. Here diag() denotes the
vector of diagonal elements, o.I' denotes I' with elements
permuted with permutation o € S,,, and I' 4 denotes the vector
of eigenvalues of A. This can be extended to direct sums: for
any set of Hermitian operators A,, {P,, diag(U,A.UL) :
Uy €U(na)} = co{B,0.Ta, : 0 €Sy, }). In our case we
use Ay = (p')aa- Then we have:

co V.(A) =co {@ 00Ty 200 € Sp., P € P}
= {Pdiag(UaPop' PaUL) : Uy € U(ma), Po € PA}

= {@ diag(mjp'mj) : m € P}
J
=co {0y :0€8,} =co V,(A).

In the second and fourth lines, we apply the Schur-Horn
theorem. In the third line, we recognize the set of all diagonal
vectors of pf,, is equal to the set of all possible B 7',
for Zjéca T = Pa.

To show the second part of the proposition, note that
co V,(A) is compact, since w(P) and thus V,,(A) is compact,
and the convex hull of a compact set in R™ is compact.
Suppose at some A = Ay, 0 & int co V,,(Ap). Due to the
compactness and convexity, there is a unique point v,, €
0 co Vyu(Ag) C R™ with minimal magnitude, and this fixes a
hyperplane passing through Ag that is orthogonal to v,,. The
magnitude of this vector as A varies cannot vary more than
Cq|dA|, where Cq = sup |Q(w(PP))|. Due to compactness,
there is also a point vy, not necessarily unique, of maximal
magnitude. If we define 7 = 2@:’;?‘0@, then the reachable set
R, (Ao) falls entirely on one side of the hyperplane and thus
cannot contain zero. This is because:

) v
A(T) = Ag) - 22 > inf (A'(t) =
( (T) 0) |'Um‘ = Ttelfén']( ( ) |Um|)
> 7(|Jvm| — Cq sup |A'(t)|7)
te(0,7]

1
> 7(Jum| — Calvam|T) = §T‘Um‘ > 0.
It follows that LC' does not hold at Ay for any T < 7. O

Analyzing the local controllability of the A-system requires
studying V), (A). For general A € T, this is difficult, but at the
completely mixed state, its structure simplifies greatly, as it is
the convex hull of a finite set of vectors:

Proposition IV.2. V,(v) = co {o0.T'4, : 0 € Sy, }, where A, is
the operator ), [Ly, L,).

Proof. This is a consequence of the fact that when p = %LI ,
o = %AL. If one applies the Schur-Horn theorem, the
proposition immediately follows. O

In general, V,,(A) is not the convex hull of a finite number
of vectors, as it is at the completely mixed state. However, it
does raise a tractable question: where does SLC hold for the A-
control system when one is restricted to a finite control-set? To
this end, we state a theorem (which is easier to state in terms of
x = ITA € R™~! rather than A € R™) about the region A C T
where the necessary condition for SLC from proposition IV.1
holds. It states that .4 is the image under a rational function
of an n-simplex of parameters, and that the boundary 0.A is
the image of the parameter-simplex’s boundary.

Define the parameter simplex 7; := {s € R" : s; >
0,>>;ss =1}, and the following function:
B:T, - R"!

B(S):_<iSJAJ> <i8]b]>
J=1 J=1

We will assume we have a finite set of control projector-tuples
7. For each .J define:

A7 =10~ 1i?
b = HQ”JL

Theorem 1V.3. If one has n control projector-tuples 7’ such
that A” is invertible ¥.J, then SLC must hold on the following
set:

A= int (B(T.)) |7

The boundary of this region will overlap OT. The remaining
piece is given by:

OA— 0T = (int T) N B(IT5).

Proof. The necessary condition for SLC is 0 € int co {b; +
Ajyx: J=1,...,n}. Either the n points by + Az lie in a
hyperplane, in which case the interior is empty, or they form
an n-simplex. We will show shortly that the former case never
occurs in the interior of B(7y), which we call claim (A). In
the latter case, convexity means the condition reduces to 0 =
Y1 ss(bys+ Ayzx), s € int T;. Re-writing we get:

ZSJAJJJ:—ZSJ[)J
J=1 J=1
n -1 n
$:—<ZS]AJ> <ZS]I)J>:B(S)
J=1 J=1

We can take the inverse because each A is invertible, and
since €2 is always negative semi-definite®, each A is also
negative semi-definite. We have shown that the necessity
condition for SLC holds in B(int 7;) given claim (A). We
will also prove shortly that B(07;) = 0B(Ts), which we call
claim (B). Given this claim, int B(7;) C B(int 7,), which
means that SLC must hold on int (B(73)). Restricting to 7T,
we have proven the first part of the theorem, pending proof of
claims (A) and (B).

To prove claim (A), we apply Carathéodory’s Theorem [38],
which says that any point in a convex hull of a set P in an

3, T — .. - Nayoay . .2 .2 H L ..
v Qu = ZKj(w”—&-wﬂ)vzvj—w”vi —wjiv; < 0if wgy, wi; <O0.



m-dimensional linear space must also lie in the convex hull
of a set P/ C P with at most m elements. This means if
the by + Ajyx are co-planar, there is one we can eliminate
without changing the convex hull. But this means one element
of s is zero, and this only occurs on d7;. So the exceptional
case only occurs if z € B(975). Given claim (B), this means
x € 0B(Ts).

Now we prove claim (B). There are three types of points on
Ts: boundary points, interior points that are critical points of B
and interior points that are regular points of B. Regular points
must map to points in int B(7;), due to the Inverse Function
Theorem. To examine the interior critical points, write A(s) =
> _1ssAy and b(s) = >.'_, ssbs. Then the directional
derivative of B is:

dB,(0s) = —A(s) " b(8s) — A(s) "L A(65)A(s) " b(s)
= —A(s)7 (b(65) + A(ds)x(s)),

where ds is an arbitrary vector in 7;. We have used the product
rule as well as the derivative formula for matrix inverse:
A7V = —A71A’A~1. We claim there are no isolated critical
points, and that the critical points form disjoint subsimplices
of T,. If the derivative is degenerate at some s*, there is some
non-zero ds* for which dB,-(6s*) = 0. Since A(s)~! is full-
rank, this means b(ds*) + A(ds*)x(s*) = 0. Linearity of b
and A in s means that b(s* + kds*) + A(s* + kds*)x(s*) =0
for all real k. But this implies that x(s* + kds™) = x(s*)
for all real k. It follows that s* lies in some affine subspace
V. = s* + ker dBs~ and that every point in V, is a critical
point. There may be more than one critical subspace, but they
must be disjoint: a non-zero intersection could be used to gen-
erate a higher-dimensional critical subspace that contained the
intersecting subspaces. Now if we restrict a critical subspace
to T, we are left with a subsimplex 7.. We have seen that
any critical subsimplex maps to a single point under B. We
claim that this point lies on the boundary of B(Ty).

To see why B(T.) € 0B(T;), we show that
User, im dB; # R"™~! which means that there are directions
from B(T.) that can’t be generated by small deviations from
T.. Therefore a neighborhood of 7, cannot map to a ball in
R"~1, which it must if 7, mapped to the interior of B(Ty).
To determine which direction, let V| be the complementary
subspace to Vi, so that im dBs = (J, ¢y, dBs(v). From the
formula for dBs we get that im dBs, = —A(s)~1(b(V, +
A(Vy)x,) where z, = x(7.). Since V| has dimension
m < n—1,b(Vy) + AV, )z, is an m-dimensional linear
subspace of R" !, and there is a vector v,, orthogonal to it.
This is the direction we are looking for, because —A(s)™!
is a positive-definite matrix, which can never map a vector
in a linear subspace to the complement of that subspace
(open half-spaces are invariant under positive-definite linear
maps). It follows that a sufficiently small neighborhood of 7
maps to a set that only intersects span v,.. at x.. Therefore
x, & int B(T;).

What we really want to show is that the boundary points
of Ty map to OB(T;). If s € T, and s € V,, then we know
that B(s) € 9B(7;), so let us consider a boundary point s
that is regular. s cannot map locally to an interior point, so

if it maps to an interior point, some other s’ must also map
there i.e. B(s) = B(s'). Note however that the structure of B
demands that B(s) = B(s + k(s’ — s)) for any real k. This
means that s is part of an affine space that maps to B. This
affine space must be one of the critical subspaces, and so s
must map to a boundary point. So we have proven claim (B).

Finally, we must prove the second part of the theorem.
Claim (B) states that the boundary of B(7;) is B(075). When
we restrict to 7, the boundary becomes a union of some piece
of T and the restriction of B(97;) to T, so we are done. [J

The theorem applies only for a control set of n projector-
tuples, but it can be extended to a larger set:

Corollary IV4. If one uses np > n projector-tuples as
controls, A = Jy Ax, where K is a subset of {1,--- ,np}
with n elements, and Ay is the region given by the theorem
using {by, Ay : J € K}. Furthermore, 0A C \Jx Br (07Ts)
where By is the map B using {by, Ay :J € K}.

Proof. If 0 € intco {b;y + Ayx : J = 1,--- ,np}, then
Carathéodory’s Theorem says that there is a subset K of
n indices such that 0 € intco {by + Ayz : J € K}.
We can use the theorem to construct Ax for each K, and
Carathéodory implies that A = | J, Ax. It also follows that
0A C g Bk (0T;), but equality will typically not hold
(the boundary of a union is not necessarily the union of
boundaries). O

The preceding theorem can be used to visualize SLC sets for
n = 3 and 4. We show some examples of this in the following
section.

V. EXAMPLES

The requirement that the A;’s be invertible is not terribly
restrictive, as it only requires a certain number of wl]] be non-
zero. For n = 3, we have:

I J . J JoJ J.J
detA; = wiswis + wizwiy + wirwis + whwis

J.J JoJ J.J J o J.J
TWyzW31 + Wy W3 + W31 Wio + W3oWo1 + W3 W3-

Since the wZJj’s are always non-negative, we only need one of
nine pairs to be non-zero.

Theorem IV.3 states that for any triple of projector-tuples,
the SLC region is the image of 7; under B(s), restricted
to 7, which for n = 3 is a quotient of two homogeneous
quadratic functions. Since the boundary of 7 consists of three
line segments, B(97T;) consists of three arcs. Now, if we have
more than three projector-tuples, say n., the unrestricted SLC
region is the union of the SLC sets for each triple. It follows
that there are (") arcs that may contribute to B(97;). If one
plots these candidate arcs, we can visualize the SLC region.

For our examples, let 7, be some tuple of projectors formed
out of the eigenbasis of the Hermitian operator A,. Define
7, .-+, 7% to be the projector-tuples obtained by permuting
the elements of m,, so that we have a control-set of six
projector-tuples. Call this set P,. If A, is simple, it is unique
up to re-numbering. This choice of control-set is attractive
because all possible tangent vectors at the completely mixed



state are contained in the convex hull generated by P,. We
have n. = 6, and therefore there are fifteen candidate arcs.

Figure 1 shows an example for a random Lindblad system.
By random, we mean eight Lindblad operators were generated
with elements whose real and imaginary parts were uniform
on the interval [0,100]. The top panel shows the fifteen arcs
generated by 7,, as well as the boundary of T . The SLC set is
the interior of the region formed by these arcs, restricted to 7,
and this is the dark region shown in the bottom panel. To get
some sense of how “good” our SLC region is we generated
twenty random unitary matrices, used them to generate twenty
projector-tuples as well as their permutations. With these
random projector-tuples, we used corollary (IV.4) to plot a
“better” SLC set. This makes for (6+g‘20) = 7875 arcs. In the
bottom panel of figure 1, we have shown the SLC region for
this extended control set as the light region. It is clearly larger,
but the original controls cover a good portion.

Instead of examining randomly generated Lindblad systems,
we can investigate systems with two specific types of Lindblad
operators: jump operators and de-phasing operators. A jump
operator relative to a certain orthonormal basis is a Lind-
blad operator with only one non-zero element, which is off-
diagonal. Fix a basis and define, for j # k, Lfk = \/VjkCiks
where e, is the matrix with a one at the (j, k) position and
zeros elsewhere. Such an operator is called a jump operator
as it models a stochastic jump from state k to state j. A de-
phasing operator meanwhile is a Lindblad operator with only
diagonal non-zero elements. It is so-called as any coherent
superposition of states will decay to an incoherent mixture so
long as the respective diagonal elements are non-zero. In the
same basis, define L = Y7, ¢ jej;, where [ indexes the
de- phasmg operators. Note that with these Lindblad operators,
A, = Zj k=1, Vik€;;- Hence , is in fact generated by the
projectors e;;.

Figure 2 shows A for a system with six jump operators

(the coefficients are Vrz = 81, /yrr = 81, \/ye3 = 73,
V732 = 36, /31 = 70 and /713 = 48). The SLC region
obtained using 7,, in dark, covers almost the entire SLC region
with an extended control set (similar to the preceding example,
where there are 7875 controls in total). This is not an accident.
When restricted to jump and de-phasing operators in some
basis, it is difficult to find projectors other than =, and its
permutations that enlarge 4. The reason for this is that these
 are critical points of the map w(), and in fact the derivative
of this map vanishes when 7 € P,.

To see why, consider that the derivative (5) vanishes if,
for each Lindblad operator L,, and component dw;y, either
TjLymy = 0, or Tj[Ly,, hlm, Vh € T;P. For the de-phasing
operators, the first condition is automatically satisfied, since
they are diagonal with respect to 7,. For a jump operator L}.], K
we have 7er‘j]/l,€,7r;c = 0;;:0kk/\/Vj'k’> SO the first condition is
satisfied for all components except for j = j', k = k/. And
for this component, we claim the second condition is satisfied.

To see why this claim is true, note that 7P is the subspace
of su(n) consisting of all off-diagonal matrices (since any
projector set is stationary when acted upon by diagonal matri-
ces). For this reason, mphm, # 0, which means L;—Ikhﬂ'k =0.
Similarly, 7;hL7, = 0, and therefore m;[L7,,hlme = 0.

0.2

T2 or T

0.2

0.257 ]

0.2f1 ]

0.157 ]

T2

0.05

-0.05— : : : :

0.4 0.5

Fig. 1. (Top) Candidate arcs for 0.A for a random Lindblad system, with the
simplex 7 also shown. (Bottom) A for the same system when (dark) only
7, are used and (light) twenty random projector-tuples extend the control set.
Axes co-ordinates refer to the components of x.

So we can say that dw(w,) = 0. It follows that the map
7 — Q(w(w))A has a critical point when © = 7,, since ()
is linear in w.

The significance of m, being a critical point is that proposi-
tion I'V.1 implies that SLC fails when 0 moves from an interior
point of V,(A) to to a boundary point. But a boundary point
of V,(A) must be a critical value of 1 — Q(w(m))A, or
alternatively a critical value of the map = — IIQ(w(w))A.
Setting b(o.7,) — A(o.m,)x = 0 yields the six terminal points
of the fifteen arcs from which 0.A is obtained. Note that in
principle, the non-terminal points of the arcs are not critical
points, but in practice, there is not much room between the
arcs and any points that fall outside.

We can also visualize A for n = 4. Figures 3 and 4
show candidate surfaces for A for two randomly generated
systems consisting of only jump operators. Figure 3 shows a
system with four Lindblad operators: Vbels, V3ea1, V4 4eos
and \/3esy. Straight line-segments in the figures indicate the
simplex 7. In figure 3, we see that 9.A shares a portion of 9T,
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Fig. 2. (Top) Candidate arcs for 9.A for a Lindblad system with only jump
and de-phasing operators (Bottom) A for the same system when (dark) only
7, are used and (light) twenty random projector-tuples extend the control set.

but does not include the vertices corresponding to the orbit of
pure states, so it is not possible to purify this system with the
projectors m,. However, the closest edge corresponds to states
where the two lower eigenvalues are zero. Since one of the
surfaces meets this edge, it is possible to obtain states that are
a mixture of only two pure states.

Figure 4 has eight Lindblad operators: Ve, \/gelg,
V6e14, V13ea3, V8esa, V17ess, Vdess and /5ey3. These
have been chosen so that 0.A includes the orbit of pure states.
Interestingly, it is possible to purify this system with m,, but it
is not possible to obtain arbitrary mixtures of two pure states,
or even other mixtures of three pure states.

VI. CONCLUSIONS AND FUTURE WORK

This paper has demonstrated a procedure by which the
dynamics of a quantum Lindblad system can be decomposed
into its inter- and intra-orbit dynamics. The purpose of this is
to investigate how the system moves between orbits depending
on how the system moves along the orbit. Since we can
construct arbitrary paths along the orbit given sufficiently fast

0
054
) ’ 06 04 02 0

X1

Fig. 3. Candidate surfaces for an n = 4 Lindblad system that cannot be
purified, but for which mixtures of two pure-states are reachable. Axes co-
ordinates refer to components of x.
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Fig. 4. Candidate surfaces for an n = 4 Lindblad system for which the only
globally reachable mixtures of three pure states are the pure states.

Hamiltonian control, we would like to know which orbits are
reachable, and how to construct the necessary Hamiltonians.
We have shown that the orbits can be represented by a state
vector A (technically an equivalence class of such vectors),
and the position within the orbit can be represented by a tuple
of projectors 7. Given this decomposition, we have written
down a dynamical equation (3) and a control system (III).We
have shown how to reconstruct a Hamiltonian from a desired
trajectory along the orbit manifold. Because the orbits are
lower-dimensional manifolds at eigenvalue crossings, planning
trajectories through crossings require projectors obeying a

0.2 -0.4 -06




technical condition.

If one is only studying local controllability, the technicalities
concerning eigenvalue crossings can be safely ignored. The
challenge in studying local controllability is the fact the control
set is not a linear space, but a compact manifold. We have
shown that if one limits the control set to a finite subset,
the region of strong local controllability can be calculated
analytically. We have shown several examples for n = 3
and n = 4. While a dramatically smaller control set may
appear to be an unnecessary limitation, we have shown for
the case where all Lindblad operators are jump and de-phasing
operators in a certain basis, almost the entire SLC set can be
recovered from a set of n! carefully chosen controls.

The obvious limitation of this approach is that the control
set is highly non-linear and thus it is difficult to attain analytic
results. Its compactness however is an attractive feature, and
so numerical work may pay dividends. A further drawback
to using the analytic result for finite control sets is that the
number of hypersurfaces that are candidates for 0. A grow
extremely quickly: there are n! possible o.7w, and thus the
number of hypersurfaces is (™) ~ n!™. It is only practical
for low-dimensional systems, and even for n = 4, we must
construct (234) = 2024 surfaces (although symmetry makes
many of these redundant). Nevertheless, if the Lindblad struc-
ture is simple (i.e. only one Lindblad operator, or several jump
operators), these complications may be mollified.
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