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Abstract

In this paper we introduce Hamel’s formalism for infinite-dimensional mechanical systems and in par-
ticular consider its applications to the dynamics of nonholonomically constrained systems. This devel-
opment is a nontrivial extension of its finite-dimensional counterpart. The analysis is applied to several
continuum-mechanical systems of interest, including coupled systems and systems with infinitely-many
constraints.

1 Introduction

Hamel’s formalism is a natural extension of Euler’s ideas of using nonmaterial velocity in mechanics. Non-
material velocity carries information about system’s velocity, but is not the rate of change of system’s
configuration with respect to time. For a system with finite number of degrees of freedom, nonmaterial
velocity is a collection of velocity components relative to a set of vector fields that span the fibers of the
tangent bundle of the configuration space. In the finite-dimensional setting, this development was carried out
by Hamel himself in [27]. Here we introduce Hamel’s formalism for infinite-dimensional mechanical systems.

One of the reasons for using nonmaterial velocity is that the Euler–Lagrange equations are not always
effective for analyzing the dynamics of a mechanical system of interest. For example, it is difficult to study
the motion of the Euler top if the Euler–Lagrange equations are used to represent the dynamics. On the
other hand, the use of the angular velocity components relative to a body frame as pioneered by Euler [18]
results in a much simpler representation of dynamics. In a similar fashion, Euler [19, 20, 21] uses convective
velocity to represent the dynamics of ideal incompressible fluid. Euler’s approach was further developed by
Lagrange [36] for reasonably general Lagrangians on the rotation group and by Poincaré [43] for arbitrary
Lie groups (see [39] for details and history).

The nonmaterial velocity used in Lagrange [36] and Poincaré [43] is associated with a group action.
Hamel [27] obtained the equations of motion in terms of nonmaterial velocity that is unrelated to a group
action on the configuration space. Hamel’s equations include both the Euler–Lagrange and Euler–Poincaré
equations (for the rigid body for example) as special cases.

∗Corresponding author
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As clearly seen from his paper, Hamel was particularly motivated by nonholonomic mechanics. His
formalism features the simplicity of an analytic representation of constraints and the intrinsic absence of
Lagrange multipliers in equations of motion. It is exceptionally effective for studying (finite-dimensional)
constrained systems and understanding their dynamics, both analytically and numerically; see e.g. Bloch
et al. [9], Ball and Zenkov [4], and Zenkov et al. [53] and references therein.

As mentioned above, in finite dimensions nonmaterial velocity refers to velocity components relative to a
set of vector fields that span the fibers of the tangent bundle of the configuration space. Alternatively, one
interprets nonmaterial velocity as a result of configuration-dependent velocity substitution. In the infinite-
dimensional setting, the former interpretation fails to work as generically bases fail to exist.

General properties of infinite-dimensional constrained systems are studied from the field-theoretic view-
point in e.g. Binz et al. [5] and Vankerschaver [47, 48, 49]. Infinite-dimensional nonholonomic mechanics, in
relation to electromechanical systems, diffeomorphism groups, and optimal transport, has been utilized in
Neimark and Fufaev [40] and Khesin and Lee [33], respectively. At the moment, the general theory of infinite-
dimensional nonholonomic systems in the form of ordinary differential equations on an infinite-dimensional
configuration space does not exist. As demonstrated by Ebin and Marsden [16] (see also Ebin [15]), the use
of the infinite-dimensional formalism in combination with nonmaterial (spatial) velocity is crucial for proving
existence of solutions in fluid mechanics. Motivated by this and as a part of the development of Hamel’s
formalism, we introduce the general theory of infinite-dimensional nonholonomic systems.

Our paper develops the general formalism of Hamel’s equations in infinite-dimensions with careful atten-
tion to the analytic setting in which the equations are well defined. We also discuss mechanical examples,
including a string, a constrained string, and strings attached to rigid bodies. The differential equations
describing these systems are derived and analyzed.

Having in mind possible future applications to the dynamics of systems with non-Banach configuration
manifolds (such as infinite-dimensional Lie groups), we develop the formalism on convenient manifolds.
These are (infinite-dimensional) manifolds modeled on convenient spaces. A convenient space is a locally-
convex space with ‘tweaked’ topology. By definition, the c∞-topology on a locally convex space E is the final
topology with respect to all smooth curves γ : R → E, i.e., it is the finest topology on E with respect to
which the aforementioned curves are continuous. Recall that smoothness is a bornological concept and is
independent of the choice of topology of a locally convex space. In general, the c∞-topology is finer than
any locally convex topology with the same collection of bounded sets. A locally convex vector space is
said to be c∞-complete or convenient if it is c∞-closed in any locally convex space. For a Fréchet space,
the c∞-topology coincides with the given locally convex topology. In general, a convenient space is not a
topological vector space.

A mapping between two convenient spaces is called smooth if it maps smooth curves to smooth curves.
The important property of the smooth mappings,

C∞(E × F,G) ∼= C∞(E,C∞(F,G)),

is known as the Cartesian closedness. We refer the reader to Kriegl and Michor [34] for details and proofs.
The use of such general spaces is natural in variational calculus and helps to clarify various technical

assumptions one needs to impose in the infinite-dimensional setting with velocity constraints. Meanwhile,
the complexity of proofs is unaffected by the use of convenient analysis. Moreover, the results remain correct
after a rollback to ‘simpler’ (e.g., Fréchet or Banach) manifolds.

Based on the earlier observations of the authors in the finite-dimensional setting and recent publications
on geometric continuum mechanics, we expect that the proposed formalism will be useful in:

• Systematic derivation of simple representations of equations of motion in continuum mechanics, which
includes elimination of unnecessary Lagrange multipliers from the equations of motion and singling out
control directions when they are inconsistent with configuration coordinates and/or do not commute.

• Multibody dynamics of systems with continuum components.

• Dynamics of contacting elastic rods (Gay-Balmaz and Putkaradze [24, 25]), molecular strands (Ellis
et al. [17]), and certain non-Newtonian fluids (Gay-Balmaz and Yoshimura [26]).
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• Stability and qualitative analysis, including existence of conservation laws in constrained systems and
Lyapunov function construction strategies for partial stability analysis, with applications to stability
of rigid bodies with fins moving in a fluid, fluid-filled bodies, and rolling elastic bodies.

• Development of structure-preserving integrators for constrained infinite-dimensional systems.

The paper is organized as follows: In Section 2 we review the finite-dimensional Euler–Lagrange, Euler–
Poincaré, and Hamel equations. In Section 3, the infinite-dimensional Hamel formalism is introduced. In
Sections 4 and 5, systems with constraints and symmetry are treated. In particular, systems with infinitely-
many constraints are studied, which, in the presence of symmetry, requires a somewhat different approach
than the standard formalism for systems with symmetry. Numerous illustrative examples are given.

2 Preliminaries

Lagrangian mechanics provides a systematic approach to deriving the equations of motion as well as estab-
lishes the equivalence of force balance and variational principles.

2.1 The Euler–Lagrange Equations

A Lagrangian mechanical system is specified by a smooth manifold Q called the configuration space
and a function L : TQ → R called the Lagrangian . In many cases, the Lagrangian is the kinetic minus
potential energy of the system, with the kinetic energy defined by a Riemannian metric and the potential
energy being a smooth function on the configuration space Q. If necessary, non-conservative forces can be
introduced (e.g., gyroscopic forces that are represented by terms in L that are linear in the velocity), but
this is not discussed in detail in this paper.

In local coordinates q = (q1, . . . , qn) on the configuration space Q we write L = L(q, q̇). The dynamics is
given by the Euler–Lagrange equations

d

dt

∂L

∂q̇i
=
∂L

∂qi
, i = 1, . . . , n.

These equations were originally derived by Lagrange [36] in 1788 by requiring that simple force balance
be covariant, i.e., expressible in arbitrary generalized coordinates. A variational derivation of the Euler–
Lagrange equations, namely Hamilton’s principle (see Theorem 2.1 below), came later in the work of
Hamilton [28, 29] in 1834/35.

Let q(t), a ≤ t ≤ b, be a smooth curve in Q. A variation of the curve q(t) is a smooth map β :
[a, b]× [−ε, ε]→ Q that satisfies the condition β(t, 0) = q(t). This variation defines the vector field

δq(t) =
∂β(t, τ)

∂τ

∣∣∣∣
τ=0

along the curve q(t).

Theorem 2.1. The following statements are equivalent:

(i) The curve q(t), where a ≤ t ≤ b, is a critical point of the action functional∫ b

a

L(q, q̇) dt

on the space of curves in Q connecting qa to qb on the interval [a, b], where we choose variations of the
curve q(t) that satisfy δq(a) = δq(b) = 0.

(ii) The curve q(t) satisfies the Euler–Lagrange equations.
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We point out here that this principle assumes that a variation of the curve q(t) induces the variation δq̇(t)
of its velocity vector according to the formula

δq̇(t) :=
d

dt
δq(t).

For more details and a proof, see e.g. [6] and [39].

2.2 The Euler–Poincaré Equations

The classical Euler equations for freely rotating rigid body read

JΩ̇ = JΩ× Ω,

where Ω is the body angular velocity and J is the inertia tensor. First derived by Euler [18], these equations,
as well as the Euler equation for an incompressible fluid flow,

∂v

∂t
+∇vv = −∇p, div v = 0,

were generalized by Poincaré [43, 44] to any Lie algebra. These Euler–Poincaré equations for a Lagran-
gian l(ξ) defined on a Lie algebra g are

d

dt

∂l

∂ξ
= ± ad∗ξ

∂l

∂ξ
. (2.1)

These equations are variational, with variations satisfying certain constraints, as the following theorem
clarifies.

Theorem 2.2. Let g be a Lie algebra and l : g→ R be a Lagrangian. The following statements are equivalent:

(i) The variational principle

δ

∫ b

a

l(ξ(t)) dt = 0

holds on g, using variations of the form

δξ = η̇ ± adξ η,

where η vanishes at the endpoints.

(ii) The Euler–Poincaré equations (2.1) hold.

See Bloch et al. [8], Cendra et al. [10], Marsden [37], Holm et al. [31], and Marsden and Ratiu [39] for details,
history, and proofs.

2.3 Lagrangian Mechanics in Non-Coordinate Frames

In many cases the Lagrangian and the equations of motion have a simpler structure when the velocity
components are measured against a frame that is unrelated to the system’s local configuration coordinates.
An example of such a system is the rigid body.

Let q = (q1, . . . , qn) be local coordinates on the configuration space Q and ui ∈ TQ, i = 1, . . . , n, be
smooth independent local vector fields on Q defined in the same coordinate neighborhood. In certain cases,
some or all of the fields ui can be chosen to be global vector fields on Q.

Let ξ = (ξ1, . . . , ξn) ∈ Rn be the components of the velocity vector q̇ ∈ TQ relative to the frame
u(q) = (u1(q), . . . , un(q)), i.e.,

q̇ = ξiui(q).
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The Lagrangian of the system written in the local coordinates (q, ξ) on the velocity phase space TQ reads

l(q, ξ) := L(q, ξiui(q)).

The coordinates (q, ξ) are Lagrangian analogue of non-canonical variables in Hamiltonian dynamics.
Define the structure functions caij(q) by the equations

[ui(q), uj(q)] = ckij(q)uk(q),

i, j, k = 1, . . . , n. These quantities vanish if and only if the vector fields ui(q), i = 1, . . . , n, commute.
Viewing ui as vector fields on TQ whose fiber components equal 0 (that is, taking the vertical lift of the

frame vector fields), one defines the directional derivatives ui[l] for a function l : TQ→ R in a usual way.
The evolution of the variables (q, ξ) is governed by the Hamel equations

d

dt

∂l

∂ξj
= ckij

∂l

∂ξk
ξi + uj [l], (2.2)

i, j, k = 1, . . . , n, coupled with equation q̇ = ξiui(q). These equations were introduced in [27] (see also [40]
and [9] for details, history, and contemporary geometric exposition). If ui = ∂/∂qi, the Hamel equations
become the Euler–Lagrange equations.

2.4 Ideal Constraints

Assume now that there are velocity constraints imposed on the system. We confine our attention to con-
straints that are linear and homogeneous in the velocity. Accordingly, we consider a configuration space Q
and a distribution D on Q that describes these constraints. Recall that a distribution D is a collection of
linear subspaces of the tangent spaces of Q; we denote these subspaces by Dq ⊂ TqQ, one for each q ∈ Q.

A curve q(t) ∈ Q is said to satisfy the constraints if q̇(t) ∈ Dq(t) for all t. This distribution will, in
general, be nonintegrable, i.e., the constraints will be, in general, nonholonomic.1

As discussed in e.g. Suslov [45] and Chetaev [13], it is assumed in classical mechanics that the constraints
imposed on the system can be replaced with the reaction force . This means that after the force is imposed
on the unconstrained system, the constraint distribution D ⊂ TQ becomes a conditional invariant manifold
of the forced unconstrained Lagrangian system whose dynamics on this invariant manifold is identical to that
of the constrained system.

Definition 2.3. Constraints (either holonomic or nonholonomic) are called ideal if their reaction force at
each q ∈ Q belong to the null space D◦q ⊂ T ∗qQ of Dq ⊂ TqQ.

As shown in Suslov [45] and Chetaev [13], the reaction force of ideal constraints is defined uniquely at each
state (q, q̇) ∈ TQ.

In summary, for a system subject to ideal constraints, the forced dynamics is equivalent to the Lagrange–
d’Alembert principle. We refer the reader to books [45] and [13] for a more detailed exposition and history
of the concept of ideal constraints.

Utilizing Hamel’s formalism and assuming the ideal velocity constraints read ξm+1 = · · · = ξn = 0, the
dynamics of the constrained system is given by (2.2) for j = 1, . . . ,m. The remaining n−m equations serve
for computing the reaction force and do not affect the dynamics of the system.

For the early development of these equations see [43] and [27]. We refer the readers to [39] and [9] for
the history and development of variational principles for the Euler–Lagrange, Euler–Poincaré, and Hamel
equations, and to [3] for the Hamilton–Pontryagin principle for the Hamel equations.

1Constraints are nonholonomic if and only if they cannot be rewritten as position constraints.
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2.5 The Chaplygin Sleigh

Here we describe the Chaplygin sleigh which is one of the simplest but nonetheless instructive example of
a nonholonomic mechanical system. The sleigh is essentially a vertical blade moving on a horizontal plane,
with no motion perpendicular to the blade allowed. There is a single contact point of the blade and the
plane, and the center of mass of the blade coincides with this contact point. The sleigh is often thought of as
a balanced platform on the top of the blade. See Figure 2.1 where the platform, the blade, and the contact
point are depicted as an oval, a bold segment, and a bold dot, respectively.

Let θ be the angular orientation of the sleigh and (x, y) be the coordinates of the contact point as shown
in Figure 2.1. The configuration space for the sleigh is the Euclidean group SE(2) = SO(2)sR2. We

(x, y)

θ

Figure 2.1: The Chaplygin sleigh.

parametrize the elements of SE(2) as (θ, x, y). The body frame is

∂

∂θ
, cos θ

∂

∂x
+ sin θ

∂

∂y
, − sin θ

∂

∂x
+ cos θ

∂

∂y
.

Using this frame,
θ̇ = ω, ẋ = v1 cos θ − v2 sin θ, ẏ = v1 sin θ + v2 cos θ, (2.3)

where ω is the angular velocity of the sleigh relative to the vertical line through the contact point and where
(v1, v2) are the components of the linear velocity of the contact point in the directions along and orthogonal
to the blade, respectively. Thus, the constraint reads v2 = 0.

Having in mind infinite-dimensional generalizations of the Chaplygin sleigh, we start using the complex
configuration variable z = x + iy on the plane. Similarly, the linear velocity relative to the body frame is
written as v = v1 + iv2. Formulae (2.3) become

θ̇ = ω, ż = eiθv, (2.4)

whereas the constraint in this complex representation reads

v = v̄.

Denote the mass and the moment of inertia of the sleigh by m and J . The Lagrangian is just the kinetic
energy of the sleigh, which is the sum of the kinetic energies of the linear and rotational modes of the sleigh.
Therefore the reduced Lagrangian of the Chaplygin sleigh is

l = 1
2

(
Jω2 +mvv̄

)
.

The elements of the algebra se(2) = so(2)sC in the complex representation used here are written as
(iω, v), where iω ∈ so(2), ω ∈ R, and v ∈ C. The bracket operation on the algebra se(2) reads

[(iω1, v1), (iω2, v2)] = (0, iω1v2 − iω2v1). (2.5)
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Using (2.5), the constrained Hamel equations for the Chaplygin sleigh are computed to be

ω̇ = 0, v̇ = 0. (2.6)

Recall that in (2.6) the quantity v is real-valued. The reduced dynamics of the Chaplygin sleigh is given by
the constrained Hamel equations (2.6) along with the kinematic equations (2.4).

Solving these equations gives

ω = const, v = const, θ = θ0 + ωt, z =

 z0 + eiθ0vt if ω = 0

z0 −
iv

ω

(
ei(θ0+ωt) − eiθ0

)
if ω 6= 0

and so generically the sleigh moves along a circle at a uniform rate.

3 Infinite-Dimensional Systems

Starting from this section, we no longer assume that systems have a finite number of degrees of freedom.
As the use of frames and bases in the infinite-dimensional setting is unnatural, cumbersome, and not even
always possible, we introduce a coordinate-free approach to Hamel’s formalism. Thus, instead of frames, we
use linear velocity substitutions. These substitutions, however, are not induced by a (local) configuration
coordinate change.

3.1 Lagrangian Mechanics

Let M be an infinite-dimensional smooth manifold modeled on a convenient vector space W and let TM
be its kinematic tangent bundle with the projection πM : TM → M . Consider the initial inclusion
map i : Q → M and the pullback vector bundle P = i∗TM .2 The importance of the manifold Q will be
demonstrated shortly.

A Lagrangian is a smooth function L : P → R. The dynamics for this Lagrangian is defined in a usual
way by Hamilton’s principle : The curve γ : [a, b]→ Q is a trajectory if

δ

∫ b

a

Ldt = 0

along γ.
To demonstrate the necessity of the initial inclusion map in infinite-dimensional mechanics, consider the

wave equation
φtt = ∇2φ

on Rn. This is the Euler–Lagrange equation for the Lagrangian

L(φ, φ̇) = 1
2

〈
φ̇, φ̇

〉
− 1

2

〈
∇φ,∇φ

〉
,

where 〈·, ·〉 is the standard Riemann metric on L2(Rn). This Lagrangian is defined on the space P =
H1 × L2 ⊂ L2 × L2 = TL2 and not on the entire TL2. Using our notations, Q = H1 ⊂ L2 = M . See
Marsden and Hughes [38] for details.

2The map i satisfies the following property: A map f : N → Q is smooth if and only if i ◦ f : N →M is smooth. Note that
Q is usually not a submanifold of M . See Kriegl and Michor [34] for details.
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3.2 Hamel’s Formalism and Hamilton’s Principle

Turning to Hamel’s formalism, let U be an open subset of M containing q ∈ Q and let

U ×W 3 (q, ξ) 7→ (q,Ψq ξ) ∈ π−1
M (U) ⊂ TM (3.1)

be a fiber-preserving diffeomorphism that is linear in the second input. Hence, for each q ∈ U , both
Ψq : W → TqM and Ψ−1

q : TqM → W are invertible bounded linear operators smoothly dependent on q in
an open subset i−1(U) ⊂ Q. The latter is verified by selecting the map (3.1) as a bundle chart on TM and
using the Cartesian closedness C∞(U ×W,W ) ∼= C∞(U,C∞(W,W )) along with the fact that the space of
all bounded linear operators from a convenient vector space E to a convenient vector space F is a closed
linear subspace of C∞(E,F ).3

Remark. As pointed out in Marsden and Ratiu [39], the space W and its dual are chosen to be suitable, in
the functional-analytic sense, to the problem in question. As the Lagrangian fails to be defined, in general,
on TM , it is necessary to consider various forms of equations of motion, such as weak and strong forms. In
particular, the weak form is important in understanding the existence of solutions as well as in numerical
methods. Further, the objects involved may not even be defined on the entire TM but only on a dense
subset already in the Banach case. See Marsden and Ratiu [39] for details and references.

For each q ∈ U and ξ ∈ W , the operator Ψq : W → TqM introduced in (3.1) outputs the vector
Ψq ξ ∈ TqM .4 Thus, each ξ ∈W defines the vector field

Ψ ξ := ∪q∈U (q,Ψq ξ)

on U , which usually will be written as
Ψ ξ(q) := Ψq ξ.

Given two vectors ξ, η ∈W , define an antisymmetric bilinear operation [·, ·]q : W ×W →W by

Ψq[ξ, η]q = [Ψ ξ,Ψ η](q), (3.2)

where [·, ·] is the Jacobi–Lie bracket of two vector fields on the manifold M . Next, for arbitrary ξ, η, ζ ∈W ,
we have

Ψq

(
[[ξ, η]q, ζ]q + [[η, ζ]q, ξ]q + [[ζ, ξ]q, η]q

)
= [[Ψ ξ,Ψ η],Ψ ζ](q) + [[Ψ η,Ψ ζ],Ψ ξ](q) + [[Ψ ζ,Ψ ξ],Ψ η](q) = 0,

implying, in view of invertibility of Ψq, the Jacobi identity for the bracket [·, ·]q. Therefore, for each q ∈ U ,
the space W with the operation [·, ·]q is a Lie algebra, denoted hereafter Wq.

The dual of [·, ·]q is, by definition, the operation [·, ·]∗q : Wq ×W ∗q →W ∗q given by〈
[ξ, α]∗q , η

〉
W

:=
〈
α, [ξ, η]q

〉
W
, ξ, η ∈W, α ∈W ∗.

As in the finite-dimensional setting, let q̇ and δq denote the velocity and the virtual displacement at q ∈ Q.
From now on, the inverse images of q̇ and δq are written as ξ, η ∈W , that is, q̇ = Ψq ξ and δq = Ψq η.

Interpreting ξ as an independent variable that replaces q̇ (locally) defines the Lagrangian as a smooth
function of (q, ξ) on V ×W :

l(q, ξ) := L(q,Ψq ξ),

where we used the smoothness of the mapping V ×W 3 (q, ξ) 7→ Ψq ξ ∈ π−1
M (U). The equations of motion

written when (q, ξ) are selected as (local) coordinates on the velocity phase space are called the Hamel
equations.

3Here, U can be thought of as an open subset of a convenient space.
4Each vector from TqM can be represented this way.
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Recall that, given a smooth curve q(t) ∈ Q, t ∈ [a, b], its variation is a smooth one-parameter family of
curves

[a, b]× [−ε, ε] 3 (t, τ) 7→ β(t, τ) ∈ Q, such that β(t, 0) = q(t).

An infinitesimal variation , also known as variation field δq, is defined by

δq(t, τ) :=
∂

∂τ
β(t, τ).

When this field is evaluated along the curve q(t), we write δq(t), i.e.,

δq(t) := δq(t, 0) =
∂

∂τ

∣∣∣
τ=0

β(t, τ). (3.3)

Thus, a variation of a smooth curve q(t) ∈ Q defines a curve η(t) ∈W

δq(t) = Ψq(t) η(t).

Theorem 3.1 (Hamilton’s Principe for Hamel’s Equations). Let L : P → R be a Lagrangian and l
be its representation in local coordinates (q, ξ). Then, the following statements are equivalent:

(i) The curve q(t), where a ≤ t ≤ b, is a critical point of the action functional∫ b

a

L(q, q̇) dt

on the space of curves in Q connecting qa to qb on the interval [a, b], where we choose variations of
the curve q(t) that satisfy δq(a) = δq(b) = 0.

(ii) The curve q(t) satisfies the weak form of the Euler–Lagrange equations∫ b

a

〈
δL

δq
− d

dt

δL

δq̇
, δq

〉
dt = 0. (3.4)

Furthermore, if i∗TqQ is dense in TqM for every q ∈ Q, the curve q(t) satisfies the strong form of
the Euler–Lagrange equations

d

dt

δL

δq̇
− δL

δq
= 0. (3.5)

(iii) The curve (q(t), ξ(t)) is a critical point of the functional∫ b

a

l(q, ξ) dt (3.6)

with respect to variations δξ, induced by the variations

δq = Ψq η,

and given by
δξ = η̇ + [ξ, η]q. (3.7)

(iv) The curve (q(t), ξ(t)) satisfies the weak form of the Hamel equations∫ b

a

〈
Ψ∗q

δl

δq
+

[
ξ,
δl

δξ

]∗
q

− d

dt

δl

δξ
, η

〉
dt = 0, η ∈ Ψ−1

q (TqQ) (3.8)

coupled with the equations q̇ = Ψq ξ. If i∗TqQ is dense in TqM for every q ∈ Q, the curve (q(t), ξ(t))
satisfies the strong form of the Hamel equations

d

dt

δl

δξ
=

[
ξ,
δl

δξ

]∗
q

+ Ψ∗q
δl

δq
(3.9)

coupled with the equation q̇ = Ψq ξ.

9



For the early development of these equations in the finite-dimensional setting see [43] and [27].

Proof. The equivalence of (i) and the weak form of the Euler–Lagrange equations (3.4) is proved by integra-
tion by parts:

δ

∫ b

a

L(q, q̇) dt =

∫ b

a

(〈
δL

δq
, δq

〉
+

〈
δL

δq̇
, δq̇

〉)
dt =

∫ b

a

〈
δL

δq
− d

dt

δL

δq̇
, δq

〉
dt.

The strong form of the Euler–Lagrange equations (3.5) follows easily from a standard contradiction argu-
ment,5 which finishes the proof of the equivalence of (i) and (ii).

To prove the equivalence of (i) and (iii), we first compute the quantities δq̇ and d(δq)/dt. Recall that

δq(t) =
∂

∂τ

∣∣∣∣
τ=0

β(t, τ) = Ψq(t) η(t), where η(t) ∈W.

Using the definition (3.3) of the field δq, one concludes that

δΨq(t) =
∂

∂τ

∣∣∣∣
τ=0

Ψβ(t,τ) = δq(t)[Ψq(t)] =
(
Ψq(t) η(t)

)
[Ψq(t)]. (3.10)

Hereafter, v[f ] denotes the derivative of the function f along the vector filed v; in particular, in (3.10) an
operator-valued function is differentiated.

Similarly,
d
dtΨq(t) = q̇(t)[Ψq(t)] =

(
Ψq(t) ξ(t)

)
[Ψq(t)],

and therefore
δq̇ =

(
Ψq η

)
[Ψq]ξ + Ψq δξ,

d
dtδq =

(
Ψq ξ

)
[Ψq]η + Ψq η̇.

From δq̇ = d
dtδq, we obtain

Ψq

(
δξ − η̇

)
=
(
Ψ ξ
)
[Ψ η](q)−

(
Ψ η
)
[Ψ ξ](q) = [Ψ ξ,Ψ η](q) = Ψq[ξ, η]q,

which implies formula (3.7).
To prove the equivalence of (iii) and the weak form of Hamel’s equations (3.8), we use the above formula

and compute the variation of the action (3.6):

δ

∫ b

a

l(q, ξ) dt =

∫ b

a

(〈
δl

δq
, δq

〉
+

〈
δl

δξ
, δξ

〉)
dt

=

∫ b

a

(〈
δl

δq
,Ψq η

〉
+

〈
δl

δξ
, η̇ + [ξ, η]q

〉)
dt

=

∫ b

a

〈
Ψ∗q

δl

δq
+

[
ξ,
δl

δξ

]∗
q

− d

dt

δl

δξ
, η

〉
dt.

If i∗TqQ is dense in TqM for every q ∈ Q, then for each t the subspace Ψ−1
q(t)(i∗Tq(t)Q) is dense in W , and

the variational derivative vanishes if and only if the strong form of the Hamel equations (3.9) is satisfied.

Example 3.2. For an incompressible fluid flow in a compact domain D ⊂ R3 with a smooth boundary the
configuration space is the group Diff(D) of (volume-preserving) diffeomorphism of D, which is a regular Lie
group in convenient setting. Let q(t) be a curve in this group, one may think of q(t) as a particular fluid flow.
Following Euler [19, 20, 21], one typically uses the spatial velocity ξ := q̇ ◦ q−1 ∈ Te Diff(D). Selecting

5 If δL
δq
− d
dt
δL
δq̇
6= 0 at some t0, and i∗Tq(t0)Q is dense in Tq(t0)M , there exists X ∈ Tq(t0)Q such that

〈
δL
δq
− d
dt
δL
δq̇
, X
〉
> 0.

Using continuity, it is straightforward to construct a variation of the curve q(t) for which
∫ b
a

〈
δL
δq
− d
dt
δL
δq̇
, δq(t)

〉
dt > 0, which

is a contradiction.
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W = Te Diff(D) = X (D), the space of smooth vector fields on D tangent to the boundary, and Ψq = TRq
gives q̇ = Ψq ξ. Therefore, the use of spatial velocity in fluid dynamics is an instance of infinite-dimensional
Hamel’s formalism. The variation formula (3.7) becomes

δξ = η̇ − adξ η ≡ η̇ + [ξ, η],

where [·, ·] is the Jacobi–Lie bracket on D. The dynamics, in the form of Hamel’s equations, reads

d

dt

δl

δξ
+ ad∗ξ

δl

δξ
= 0.

The latter are the Euler–Poincaré equations, as established by Poincaré [43] and Arnold [1].

Remark. The convective representation of fluid dynamics is straightforward to obtain by setting Ψq = TLq.
See Gay-Balmaz et al. [23] for details on the convective representation in continuum mechanics.

Example 3.3. For an inextensible string moving in the plane the configuration manifold is the space of
smooth embeddings Emb([0, 1],R2). We will view R2 as a complex plane.

Figure 3.1: An inextensible planar string.

Given z ∈ Emb([0, 1],C), the inextensibility constraint reads ‖zs‖ = 1, 0 ≤ s ≤ 1. For simplicity, we
assume no resistance to bending. Therefore, the Lagrangian reads

L(z) =

∫ 1

0

1
2

(
‖ż‖2 − λ(‖zs‖2 − 1)

)
ds,

where λ : [0, 1] → R is the Lagrange multiplier (tension). The boundary conditions for the Lagrange
multiplier are a part of the requirement δL = 0. For a free motion of a string, these conditions read

λ|s=0 = λ|s=1 = 0. (3.11)

Let
ż = Ψz ξ = zsξ, (3.12)

so the velocity components to be used to construct Hamel’s equations are represented by a complex-valued
function ξ = ξ(s, t). The real and imaginary parts of ξ are the tangent and normal velocity components of
the points of the string.

The Lagrangian becomes

l =

∫ 1

0

1
2

(
z̄szsξ̄ξ − λ(z̄szs − 1)

)
ds,

in which the density should be understood as a function of (zs, z̄s, ξ, ξ̄) and the Lagrange multiplier λ.
Next, the bracket formula (3.2) for the string becomes

[Ψ ξ,Ψ η](z) =
d

dτ

∣∣∣∣
τ=0

(
(z + τzsξ)sη − (z + τzsη)sξ

)
= zs(ξsη − ηsξ) = Ψz[ξ, η]z.

11



That is,
[ξ, η]z = ξsη − ξηs. (3.13)

Instead of establishing the formulae for the dual bracket and dual operator Ψ∗, it is more efficient in this
example to directly work with the variational principle. We have:

δl

δz
δz +

δl

δξ
δξ +

δl

δz̄
δz̄ +

δl

δξ̄
δξ̄, (3.14)

and since l is real-valued, the two last terms are obtained from the first two by conjugation. Thus, it is
sufficient to evaluate the last two terms in (3.14):

δl

δz̄
δz̄ +

δl

δξ̄
δξ̄ =

δl

δz̄
δz̄ +

δl

δξ̄

(
ξ̄sη̄ − ξ̄η̄s

)
− d

dt

δl

δξ̄
η̄

=

∫ 1

0

1
2

((
λzs − zsξ̄ξ

)
s
δz̄ + z̄szsξ

(
ξ̄sη̄ − ξ̄η̄s

)
− d

dt

(
z̄szsξ

)
η̄
)
ds− 1

2 z̄szs
(
λ− ξ̄ξ

)
η̄
∣∣s=1

s=0

=

∫ 1

0

1
2

(
zsz̄ssξξ̄ + zsz̄sξξ̄s + λsz̄szs + λzssz̄s − d

dt

(
z̄szsξ

))
η̄ ds− 1

2 z̄szsλη̄
∣∣s=1

s=0
,

which, after imposing the constraint
z̄szs = 1, (3.15)

implies Hamel’s string equation
ξ̇ = ξξ̄s + λs + iκ

(
λ− ξ̄ξ

)
(3.16)

as well as the tension conditions (3.11). Here κ = izsz̄ss is the signed curvature of the curve [0, 1] 3 s 7→
z(s) ∈ C. One of the implications of (3.16) is

λs = Re
(
ξt − ξξ̄s

)
, (3.17)

it will be used to identify the Lagrange multiplier λ in terms of the state of the string.
Using the identity

ξs + ξ̄s + z̄szss
(
ξ − ξ̄

)
= 0 (3.18)

that follows from (3.12) and (3.15), one obtains an alternative representation of equation (3.16),

ξ̇ = −ξξs + λs + iκ
(
λ− ξξ

)
. (3.19)

Either of the equations (3.16) and (3.19) is equivalent to the Euler–Lagrange equations for the string.
The Lagrange multiplier as a function of string’s state is obtained by solving the differential equation

λss − κ2λ+ |ξs + iκξ|2 = 0 (3.20)

subject to the boundary conditions (3.11). To derive equation (3.20), one differentiates (3.17) with respect
to s to obtain

λss = −|ξs|2 + Re
(
ξst − ξξ̄ss

)
. (3.21)

Formula (3.21) becomes (3.20) after a transformation using the identity

Re
(
ξst − ξξ̄ss + iκ

(
ξt − ξ̄ξs

))
= 0

that follows from (3.12) and (3.15).
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Remark. Alternatively, one defines the operator Ψ by

Ψz ξ :=
zs
|zs|

ξ.

Because of the constraint |zs| = 1, the resulting Hamel equation is (3.16). However, the bracket [ξ, η]z is
now given not by (3.13) but by a slightly different formula. This latter bracket is in fact induced by the
(standard) bracket of the Lie algebra of the infinite-dimensional group

G =
{

[0, 1] 3 s 7→ g(s) ∈ SE(2)
}
.

To see that, the string dynamics should be interpreted as a motion on G specified by the degenerate Lagran-
gian

l =

∫ 1

0

1
2

(
ξ̄ξ − λ(z̄szs − 1)

)
ds

subject to the constraint
zs
|zs|

= eiθ, (3.22)

where (θ, z) are the (standard) coordinates on SE(2) = SO(2)sC and ξ is the C-component of the body
velocity g−1ġ. One then composes the C-component of the Euler–Poincaré equations on G and imposes
constraint (3.22). This results in the string equations (3.16). It is worth noticing that the derivation of these
equations using formula (3.12) is simper and more efficient.

3.3 The Hamilton–Pontryagin Principle

Here we utilize the Hamilton–Pontryagin principle of Yoshimura and Marsden [50, 51, 52] for the derivation
of Hamel’s equations. This approach provides an alternative interpretation of Hamel’s formalism in general,
and of the bracket term in particular. The Hamilton–Pontryagin principle for finite-dimensional systems of
Hamel type was introduced in Ball, Zenkov, and Bloch [3].

Recall that the Hamilton–Pontryagin principle identifies the trajectories for the Lagrangian L : TQ→ R
with the critical points of the functional∫ b

a

(
L(q, v) + 〈p, q̇ − v〉

)
dt,

and so the curves the functional is calculated along belong to the Whitney sum TQ⊕ T ∗Q. See [50, 51, 52]
for details, motivation, and history.

Theorem 3.4 (The Hamilton–Pontryagin Principe for Hamel’s Equations). Let L : P → R be a
Lagrangian and l be its representation in local coordinates (q, ξ) on P . Then, the following statements are
equivalent:

(i) The curve (q(t), ξ(t), µ(t)) ∈ V × (W ⊕W ∗) is a critical point of the action functional∫ b

a

(
l(q, ξ) +

〈
µ,Ψ−1

q q̇ − ξ
〉)
dt

with respect to independent variations δq = Ψq η, δξ, and δµ, with η(a) = η(b) = 0.

(ii) The curve (q(t), ξ(t), µ(t)) satisfies the weak form of the implicit Hamel equations∫ b

a

〈
Ψ∗q

δl

δq
− µ̇+ [ξ, µ]∗q , η

〉
= 0,

δl

δξ
= µ, where η ∈ Ψ−1

q (TqQ),

together with the constraint ξ = Ψ−1
q q̇.
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If i∗TqQ is dense in TqM for every q ∈ Q, the curve (q(t), ξ(t), µ(t)) satisfies the strong form of
the implicit Hamel equations

Ψ∗q
δl

δq
− µ̇+ [ξ, µ]∗q = 0,

δl

δξ
= µ,

together with the constraint ξ = Ψ−1
q q̇.

Proof. From Ψ−1
q Ψq = id we have

δ(Ψ−1
q Ψq) = δΨ−1

q Ψq + Ψ−1
q δΨq = 0,

which implies
δΨ−1

q = −Ψ−1
q δΨqΨ

−1
q .

Therefore, using earlier calculation,

δ(Ψ−1
q q̇) = (δΨ−1

q ) q̇ + Ψ−1
q δq̇

= −Ψ−1
q δΨqΨ

−1
q q̇ −

(
d
dtΨ

−1
q

)
δq + d

dt

(
Ψ−1
q δq

)
= −Ψ−1

q δΨqΨ
−1
q q̇ + Ψ−1

q
d
dtΨqΨ

−1
q δq + η̇

=
[
Ψ−1
q q̇, η

]
q

+ η̇,

where η = Ψ−1
q δq ∈ Ψ−1

q (TqQ).
Finally, taking the variation and using the above formula along with integration by parts gives

δ

∫ b

a

(
l(q, ξ) +

〈
µ,Ψ−1

q q̇ − ξ
〉)
dt

=

∫ b

a

(〈
δl

δq
, δq

〉
+

〈
δl

δξ
− µ, δξ

〉
−
〈
δµ, ξ −Ψ−1

q q̇
〉

+
〈
µ, δ(Ψ−1

q q̇)
〉)

dt

=

∫ b

a

(〈
δl

δq
,Ψq η

〉
−
〈
µ̇, η
〉

+
〈
µ,
[

Ψ−1
q q̇, η

]
q

〉
+

〈
δl

δξ
− µ, δξ

〉
−
〈
δµ, ξ −Ψ−1

q q̇
〉)

dt

=

∫ b

a

(〈
Ψ∗q

δl

δq
− µ̇+

[
Ψ−1
q q̇, µ

]∗
q
, η

〉
+

〈
δl

δξ
− µ, δξ

〉
−
〈
δµ, ξ −Ψ−1

q q̇
〉)

dt.

Setting the latter equal to zero and noting that δξ is an arbitrary element of W yields the desired results.

4 Systems with Constraints

In this section we consider systems with ideal velocity constraints, both holonomic and nonholonomic. The
dynamics of such systems is equivalent to the Lagrange–d’Alembert principle. To simplify the exposition,
in the rest of the paper we assume that i∗TqQ is dense in TqM for every q ∈ Q, and thus all results will be
stated for strong equations of motion. Similar statements for weak equations are straightforward to obtain.

4.1 The Lagrange–d’Alembert Principle

Recall that in this paper the constraints imposed on on the system are assumed linear and homogeneous
in the velocity, and thus are specified by a distribution D on the manifold M . This distribution will, in
general, be nonintegrable. Verification of integrability of a distribution in the infinite-dimensional setting
may be nontrivial as the Frobenius theorem has not been established in the general infinite-dimensional
setting. See [34, 30, 46, 22] for some of the infinite-dimensional versions of Frobenius theorem.
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The condition for a curve to satisfy the constraints is of course insufficient for the development of con-
strained mechanics. One needs a mechanism for constructing the vector field that captures the dynamics of
the constrained system. For the ideal constraints in the finite-dimensional setting, this is accomplished by
a projection. Such constraints define a submanifold of the velocity phase space and a projection onto this
submanifold.

For a projection to be meaningful in the infinite-dimensional case, a submanifold has to be splitting.
Thus, in the infinite-dimensional setting, we require that D is a locally splitting subbundle of P . That
is, for each q ∈ Q there exists a chart (U, h) of M with i(q) ∈ U such that

Th(π−1
M (U) ∩ D) = h(U)×WD,

where the closed subspace WD of the model space W is splitting, or complemented , i.e., there is a
closed subspace WU of W such that WD ⊕WU = W and the projection πD uniquely determined by setting
(KerπD, ImπD) = (WU ,WD) is continuous. Note that the continuous projection πD in the convenient space
W is automatically smooth as a bounded linear mapping.6

The following Lagrange–d’Alembert principle is known to be equivalent to the dynamics of systems with
ideal holonomic and nonholonomic constraints:

Definition 4.1. The Lagrange–d’Alembert equations of motion for the system are those determined
by

δ

∫ b

a

L(q, q̇) dt = 0,

where we choose variations δq(t) of the curve q(t) that satisfy δq(a) = δq(b) = 0 and δq(t) ∈ Dq(t) for each t
where a ≤ t ≤ b.

This principle is supplemented by the condition that the curve q(t) itself satisfies the constraints. Note
that we take the variation before imposing the constraints; that is, we do not impose the constraints on the
family of curves defining the variation. This is well known to be important to obtain the correct mechanical
equations (see [2] and [6] for a discussion of other types of constraints and references).

The Lagrange–d’Alembert principle is equivalent to the equations

d

dt

δL

δq̇
− δL

δq
∈ D◦q , q̇ ∈ Dq. (4.1)

Here,
D◦q =

{
a ∈ T ∗qM | 〈a, v〉 = 0, v ∈ Dq

}
.

One way to give a more explicit representation of dynamics (4.1), under certain technical conditions, is to
make use of the Euler–Lagrange equations with multipliers. Let the distribution D be locally written
as

D = {q̇ ∈ TM | A(q) q̇ = 0},
where A(q) for each q ∈ Q is a continuous linear operator on TqM with values in the vector space WU .

For instance, if there is a single constraint imposed on the system, A(q) is a linear functional. We assume
smooth dependence q 7→ A(q).

The constrained variations δq(t) ∈ Tq(t)Q satisfy the condition

A(q) δq = 0. (4.2)

Using Definition 4.1 and formula (4.2), one writes the equations of motion as

d

dt

δL

δq̇
− δL

δq
∈ ImA∗(q), A(q) q̇ = 0,

6Nonsplitting closed subspaces already exist in Banach spaces; for more information on splitting subspaces, see Domański
and Masty lo [14] and references therein. The continuity of πD in a Banach space is a consequence of the closed graph theorem.
For more spaces with this property see Jarchow [32].
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where A∗(q) : WU
∗ → T ∗qM is the adjoint of A(q) and where the closure should be understood as weak*

closure. Thus, if A∗(q) has a weak* closed range,7 there exist Lagrange multipliers λ ∈WU∗ such that

d

dt

δL

δq̇
− δL

δq
= A∗(q)λ, A(q) q̇ = 0.

4.2 The Constrained Hamel Equations

Given a nonholonomic system, that is, a Lagrangian L : P → R and constraint distribution D, select the
operators Ψq : W → TqM , q ∈ U ⊂ Q, such that there exist closed subspaces WD, WU ⊂ W with the
properties W = WD ⊕ WU and Ψq = ΨDq ⊕ ΨUq , where ΨDq : WD → Dq and ΨUq : WU → Uq and their
inverses are bounded linear operators smoothly dependent on q ∈ U . One way to choose the operators Ψq is
to use the above subbundle chart. In general, U 6= Q, as numerous finite-dimensional examples demonstrate.

Each q̇ ∈ TM is then uniquely written as

q̇ = Ψq ξ
D + Ψq ξ

U , where Ψq ξ
D ∈ Dq, (4.3)

i.e., Ψq ξ
D is the component of q̇ along Dq. Similarly, each α ∈W ∗ can be uniquely decomposed as

α = αD + αU ,

where αD and αU denote the component of α along the duals of WD and WU , respectively. Actually, we
have

αD =
(
πD
)∗ ◦ α|WD and αU =

(
id−

(
πD
)∗) ◦ α|WU ,

where
(
πD
)∗

is the adjoint of πD. Using (4.3), the constraints read

ξ = ξD or ξU = 0.

This implies
δξ = δξD or δξU = 0.

The Lagrange–d’Alembert principle then implies the following theorem:

Theorem 4.2. The dynamics of a nonholonomic system is represented by the strong form of constrained
Hamel equations (

d

dt

δl

δξ
−
[
ξD,

δl

δξ

]∗
q

−Ψ∗q
δl

δq

)
D

= 0, ξU = 0, q̇ = Ψq ξ
D. (4.4)

Example 4.3. Consider an inextensible string moving in the plane subject to the vanishing normal velocity
constraint. See Figure 3.1. One may think of a motion of a ‘sharp’ string on the horizontal ice. Using the
notations introduced in Example 3.3, the constraint reads

ξ = ξ̄, (4.5)

i.e., ξ ∈ R. Equations (4.4) for the constrained string thus become

ξ̇ = ξξs + λs, (4.6)

ż = zsξ, (4.7)

supplemented by the inextensibility condition.
Identity (3.18) in the presence of constraint (4.5) implies

7This holds if TqM is a Fréchet space and A(q) has closed range, see Jarchow [32] for details.
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ξs = 0.

That is, all points of the string have the same speed, and (4.6) becomes

ξ̇ = λs. (4.8)

Using the boundary conditions (3.11), we conclude that

ξ̇ = 0.

Summarizing, ξ = const throughout the motion. This is in agreement with the motion of the Chaplygin
sleigh for which the velocity of the contact point relative to the body frame is constant. Unlike the sleigh,
the constrained string motion is not completely determined by the initial state: Any solution of (4.7) is of
the form

z = φ(s+ ξt),

where φ is an arbitrary twice-differentiable complex-valued function. The initial conditions define φ on the
segment [0, 1]. Outside this segment, the function φ is unknown, unless, for example, the motion of the front
end of the string is prescribed. The motion of the constrained string is therefore purely kinematic: The
string follows its front end at a constant speed.

This behavior is similar to that of the degenerate Chaplygin sleigh specified by the Lagrangian l = 1
2ξξ̄

and the constraint ξ = ξ̄, where ξ = e−iθ ż. The Lagrangian is degenerate as the term quadratic in θ̇ is
absent, i.e., the moment of inertia of the sleigh equals zero.

For the degenerate sleigh, the dynamics reads

ξ̇ = 0, ż = eiθξ,

where θ(t) is an arbitrary function. Thus, the motions are not identified by the initial conditions.8

Another remark about the string on ice is that, similar to SE(2)-snakes of Krishnaprasad and Tsakiris
[35], it is almost holonomic: Adding a single (holonomic) constraint z(0, t) = z(1, t) renders the system
holonomic. The string becomes closed and will slide, at a constant speed, along its initial shape.

5 Systems with Symmetry

Here we present infinite-dimensional analogues of some of the results of Bloch et al. [7, 9] on systems with
symmetry. The mechanical and nonholonomic connections, the momentum equation, and mechanics of
systems with infinitely-many velocity constraints are discussed. Recall that i∗TqQ is dense in TqM for every
q ∈ Q, and thus all results are stated for strong equations of motion.

5.1 The Lagrange–Poincaré Equations

Recall that in finite-dimensional mechanics with symmetry one starts with an action of a Lie group G on the
configuration space Q and Lagrangian and constraints (if any) that are invariant with respect to the lifted
action on the velocity phase space. The quotient space Q/G, whose points are the group orbits, is called the
shape space . It is known that if the group action is free and proper, the shape space is a smooth manifold
and the projection π : Q→ Q/G is a smooth surjective map with a surjective derivative at each point. The
configuration space thus has the structure of a principal fiber bundle, with the group acting on the fibers by
(left) multiplication.

We thus assume that in the general infinite-dimensional setting in the presence of symmetry the mani-
fold M is a principal fiber bundle (see Kriegl and Michor [34] for details in the infinite-dimensional case).
The base of this bundle is a smooth manifold, and the group G involved in the construction of this bundle

8Unlike the regular sleigh, for which θ̇ = const.
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may be finite- or infinite-dimensional. In the latter case, the group is assumed regular (see Kriegl and Michor
[34] and Omori [41]).9

We denote the bundle coordinates (r, g) where r is a local coordinate in the base, or shape space M/G,
and g is a group coordinate. Such a local trivialization is characterized by the fact that in such coordinates
the group does not act on the factor r but acts on the group coordinate by group multiplication. Thus,
locally in the base, the space M is isomorphic to the product M/G×G, and in this local trivialization the
map π becomes the projection onto the first factor. The model space of the manifold M/G is denoted WB .

Recall that in general in the infinite-dimensional setting Lagrangians are defined on the bundle P = i∗TM ,
where i : Q → M is the initial inclusion map and Q is a manifold. We will assume in the rest of the paper
that Q is a principal fiber bundle with the same group G and that in the aforementioned local trivialization
the group component of the initial inclusion map is the identity map.

Definition 5.1. We say that the Lagrangian is G-invariant if L is invariant under the induced action of
G on P .

Both left and right actions may be of interest. Below we develop the formalism assuming that the action is
left; the case of the right action is similar.

We start with the construction of the operator Ψ. Let g be the Lie algebra, and thus the model space,
of the group G. When the configuration space is a principal fiber bundle, the group component of the
operator Ψ can be defined globally, as shown below. For the fibers of T (M/G) we write the corresponding
operator as ψr : WB → Tr(M/G), i.e., ṙ = ψr ξ, whereas for the fibers of TG we set ġ := Lg∗ ◦ ϕr ζ, where
q = (r, g) in a local trivialization and ϕr : gr → g is a linear operator. The operators ψr and ϕr and their
inverses are, for each r ∈ Q/G, bounded, continuous, and depend smoothly on r. This implies that the
algebras g and gr are isomorphic. The bracket on the space WB is

[ξ1, ξ2]r := ψ−1
r [ψr ξ1, ψr ξ2],

whereas the bracket on gr is defined by

[ζ1, ζ2]gr
:= ϕ−1

r [ϕr ζ1, ϕr ζ2]g.

The use of the nonmaterial shape velocity is of importance already in the finite-dimensional setting in
some of the problem involving the rolling rigid body, such as the rattleback. In a number of interesting
finite-dimensional instances it suffices to use the shape velocity ṙ. The version of the infinite-dimensional
formalism developed here is motivated by the utility of nonmaterial velocity in accounting for fluid- and
elastic-type shapes.

The operator ϕr is important for accounting for various subbundle structures associated with subspaces
of the Lie algebra g. Such structures originate in the presence of control inputs and/or velocity constraints,
particularly in the motion generation problems (see Ostrowski et al. [42] and Bloch et al. [7] for the details
in the finite-dimensional setting). In general, the position of these subspaces in the Lie algebra g is shape-
dependent. While this operator may not appear to be important in the current part of the paper, it is
more straightforward to introduce it here in order to make the exposition of the rest of the paper more
straightforward.

Let As be a principal connection on the bundle Q → Q/G (see Kriegl and Michor [34] for details on
principal connections in the infinite-dimensional setting). Below we will discuss how the structure of the
Lagrangian facilitates the selection of a connection. Tangent vectors in a local trivialization Q = Q/G×G
at the point (r, g) are denoted (x, y). We write the action of As on this vector as As(x, y).10 Using this
notation, we write the connection form in the local trivialization as

As(x, y) = Adg(yc +Acx),

9According to Kriegl and Michor [34], all finite-dimensional Lie groups and all known infinite-dimensional Lie groups are
regular.

10Here and below, the subscripts ‘c’ and ‘s’ stand for ‘convective’ and ‘spatial’, respectively.

18



where yc is the left translation of y to the identity and, since we are working locally in shape space, we
regard Ac as a g-valued one-form on Q/G.

The curvature of the principal connection As is the g-valued two-form

Bs(X1, X2) := dAs(horX1,horX2),

where X1 and X2 are two vector fields and horX1 and horX2 are their horizontal components. In a local
trivialization one writes

Bs((x1, y1), (x2, y2)) = Adg Bc(x1, x2). (5.1)

where x1, x2 ∈ T (Q/G), y1, y2 ∈ g, and where

Bc(x1, x2) = dAc(x1, x2)− [Acx1,Acx2]g.

The quantity yc +Acx regarded as an element of gr will be denoted ζ +Ax, i.e.,

yc +Acx = ϕr(ζ +Ax), x ∈ Tr(Q/G), ζ ∈ gr.

Thus, the velocity vector q̇ in such a representation is characterized by the components

ṙ and Ω = ζ +Aṙ,

where ϕr ζ = g−1ġ ∈ g. The curvature of the connection A on Q/G in this representation is hereafter
denoted B.

With nonmaterial shape velocity being used, the velocity components become

ξ and Ω = ζ +Aψr ξ. (5.2)

Summarizing,
q̇ = Ψq(ξ,Ω) =

(
ψr ξ, Lg∗ϕr(Ω−Aψr ξ)

)
. (5.3)

Theorem 5.2. The strong Lagrange–Poincaré equations11 for a system with a G-invariant Lagrangian
L : P → R are

d

dt

δl

δξ
− ψ∗r

δl

δr
=

[
ξ,
δl

δξ

]∗
r

−
〈
δl

δΩ
, iξψ

∗
rB + 〈iξψ∗rγ, ψ∗rA〉 − 〈ψ∗rγ, iξψ∗rA〉+ 〈ψ∗rE ,Ω〉

〉
, (5.4)

d

dt

δl

δΩ
=

[
Ω,

δl

δΩ

]∗
gr

+

〈
δl

δΩ
, iξψ

∗
rE
〉
, (5.5)

where B is the curvature of A, γ := ϕ−1
r ◦ dϕr, and E := γ − adA, so that γ and E are gr ⊗ g∗r-valued

one-forms on Q/G. The shape equation (5.4) and the momentum equation (5.5) govern the reduced
dynamics for the Lagrangian L. The full dynamics is given by equations (5.4) and (5.5) along with the
kinematic shape equation

ṙ = ψr ξ

and reconstruction equation
ġ = gϕr(Ω− iξψ

∗
rA). (5.6)

Proof. The principal step is to uncover the structure of the bracket terms in the Hamel equations. Recall
that these terms are induced by the map Ψ defined in (5.3). Evaluating the Jacobi–Lie brackets of two vector
fields X1 and X2 whose components in local trivialization are (ξi, ζi), that is,

Xi =
(
ψr ξi, Lg∗ϕr(ζi −Aψr ξi)

)
, ξi = const, ζi = const, i = 1, 2,

11Often, ∂l/∂Ω is viewed as an independent variable in these equations. See Cendra et al. [11, 12], and Bloch et al. [9] for
the history, motivation, and finite-dimensional version of these equations.
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gives:[
X1, X2

]
=
[(
ψr ξ1, 0

)
,
(
ψr ξ2, 0

)]
+
[(
ψr ξ1, 0

)
,
(
0, Lg∗ϕr(ζ2 −Aψr ξ2)

)]
+
[(

0, Lg∗ϕr(ζ1 −Aψr ξ1)
)
,
(
ψr ξ2, 0

)]
+
[(

0, Lg∗ϕr(ζ1 −Aψr ξ1)
)
,
(
0, Lg∗ϕr(ζ2 −Aψr ξ2)

)]
.

Next, [(
ψr ξ1, 0

)
,
(
ψr ξ2, 0

)]
=
(
ψr[ξ1, ξ2]r, 0

)
,[(

ψr ξ1, 0
)
,
(
0, Lg∗ϕr(ζ2 −Aψr ξ2)

)]
=
(
0, Lg∗dψrξ1(ϕr(ζ2 −Aψr ξ2)

)
,[(

0, Lg∗ϕr(ζ1 −Aψr ξ1)
)
,
(
0, Lg∗ϕr(ζ2 −Aψr ξ2)

)]
=
(
0, Lg∗ϕr[ζ1 −Aψr ξ1, ζ2 −Aψr ξ2]gr

)
.

Summarizing the components of [X1, X2] are

ψr[ξ1, ξ2]r

and

Lg∗ϕr
(
〈iψrξ1E , ζ2〉 − 〈iψrξ2E , ζ1〉+ 〈iψrξ2γ,Aψr ξ1〉 − 〈iψrξ1γ,Aψr ξ2〉
− (ψr ξ1)[Aψr ξ2] + (ψr ξ2)[Aψr ξ1] + [Aψr ξ1,Aψr ξ2]gr + [ζ1, ζ2]gr

)
.

Applying the inverse of Ψq outputs the components

[ξ1, ξ2]r ∈WB

and

〈iψrξ1E , ζ2〉 − 〈iψrξ2E , ζ1〉+ 〈iψrξ2γ,Aψr ξ1〉 − 〈iψrξ1γ,Aψr ξ2〉 − (ψr ξ1)[Aψr ξ2]

+ (ψr ξ2)[Aψr ξ1] +A([ψr ξ1, ψr ξ2]) + [Aψr ξ1,Aψr ξ2]gr + [ζ1, ζ2]gr ∈ gr.

Utilizing the formula
dω(X1, X2) = X1[ω(X2)]−X2[ω(X1)]− ω([X1, X2])

for the exterior derivative of one-forms, the definition of the curvature, and the Cartan structure equation,
the bracket

[
(ξ1, ζ1), (ξ2, ζ2)

]
r

on WB ⊕ gr reads(
[ξ1, ξ2]r, 〈iξ1ψ∗rE , ζ2〉 − 〈iξ2ψ∗rE , ζ1〉+ 〈iξ2ψ∗rγ, iξ1ψ∗rA〉 − 〈iξ1ψ∗rγ, iξ2ψ∗rA〉 − ψ∗rB(ξ1, ξ2) + [ζ1, ζ2]gr

)
. (5.7)

From (5.7), the components of the dual bracket [(ξ, ζ), (α, β)]∗q are given by the formulae[
ξ, α
]∗
r
−
〈
β, iξψ

∗
rB + 〈iξψ∗rγ, ψ∗rA〉 − 〈ψ∗rγ, iξψ∗rA〉+ 〈ψ∗rE , ζ〉

〉
and

[
ζ, β
]∗
gr

+
〈
β, iξψ

∗
rE
〉
. (5.8)

Equations (5.4) and (5.5) then follow from Theorem 3.1 and formula (5.8).

In certain situations, it may be useful to know the formulae for variations. For systems considered in this
part of the paper, the general formula (3.7) transforms into

δξ = η̇ + [ξ, η]r,

δΩ = Σ̇ + [Ω,Σ]gr + 〈iξψ∗rE ,Σ〉 − 〈iηψ∗rE ,Ω〉+ 〈iηψ∗rγ, iξψ∗rA〉 − 〈iξψ∗rγ, iηψ∗rA〉 − ψ∗rB(ξ, η),

where the curves η(t) ∈ WB and ϕr(t) Σ(t) ∈ g satisfy the boundary conditions η(a) = η(b) = 0 and
Σ(a) = Σ(b) = 0, respectively. The reconstruction equation (5.6) is just the group component of the
equation q̇ = Ψq ξ.
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In the case that the material shape velocity is utilized, equations (5.4) and (5.5) read

d

dt

δl

δṙ
− δl

δr
= −

〈
δl

δΩ
, iṙB + 〈iṙγ,A〉 − 〈γ, iṙA〉+ 〈E ,Ω〉

〉
,

d

dt

δl

δΩ
= ad∗Ω

δl

δΩ
+

〈
δl

δΩ
, iṙE

〉
.

whereas the reconstruction equation becomes

ġ = gϕr(Ω− iṙA).

Now assume that the G-invariant Lagrangian equals the kinetic minus potential energy of the system
and that the kinetic energy is given by a (weak) Riemannian metric 〈〈 · , · 〉〉 on the configuration space Q.
In such a setting the isomorphism ϕr is usually selected to be the identity map.

Definition 5.3. The mechanical connection Amech is, by definition, the connection on Q regarded as
a bundle over shape space Q/G that is defined by declaring its horizontal space at a point q ∈ Q to be the
subspace that is the orthogonal complement to the tangent space to the group orbit through q ∈ Q using the
kinetic energy metric. The locked inertia tensor I(q) : g→ g∗ is defined by 〈I(q) ξ, η〉 = 〈〈ξQ(q), ηQ(q)〉〉,
where ξQ is the infinitesimal generator of ξ ∈ g and where 〈〈· , ·〉〉 is the kinetic energy inner product.

Of course, in the infinite-dimensional setting the mechanical connection may fail to exist when the group
metric is not strong.12 It is certain to exist in the important case of a finite-dimensional symmetry group.

Given a system with symmetry, one may use the mechanical connection to set up equations (5.4) and (5.5).
This choice of a connection changes the Lie algebra variables from ζ to the local version of the locked group
velocity Ω. With this connection choice the kinetic energy metric becomes block-diagonal , that is,

〈〈q̇, q̇〉〉 = 〈〈ξ, ξ〉〉+ 〈〈Ω,Ω〉〉.

For a rotating rigid body, the locked group velocity has the physical interpretation of the body angular
velocity.

Example 5.4. Here we revisit the planar string motion, but now derive the dynamics with an emphasis on
the SE(2) symmetry. We also assume that one of the ends of the string is attached to a platform (a flat rigid
body). Both the platform and string move in the same horizontal plane.

The elements of the Euclidean group SE(2) are written using complex notation, g = (eiθ, w), i.e., the
points of the R2 are identified with complex numbers, as before. The group SE(2) is the configuration space
of the platform and simultaneously the symmetry group of the entire system.

The angular and linear velocities of the platform (measured relative to the platform) are denoted ω ∈ R
and v ∈ C, so that

(iω, v) := (iθ̇, e−iθẇ) = g−1ġ

and the operator ϕ in (5.3) is the identity operator. The position of the string relative to the platform is
given by the embedding map z ∈ Emb([0, 1],C) subject to the conditions z(0) = 0 and zs(0) = 1.

The absolute position of the points of the string is

w + eiθz(s), (5.9)

and thus the velocity of the points of the string is given by

ẇ + eiθ(izθ̇ + ż). (5.10)

Written relative to the platform’s frame, the absolute velocity of the point z of the string reads

v + iωz + ż ≡ v + iωz + zsξ.

12The orthogonal complement may not exist in non-Hilbert spaces.
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That is, the operator ψ is defined by ż = ψzξ = zsξ.
The Lagrangian reads∫ 1

0

1
2

(
Jω2 +mv̄v +

(
v̄ − iωz̄ + z̄sξ̄

)(
v + iωz + zsξ

)
− λ
(
z̄szs − 1

))
ds,

where m and J are the mass and inertia of the platform. Recall that the quantities ω and v are s-independent.
The components of the mechanical connection denoted here Aθ, Aw, and Aw̄, so that

ω = Ω−Aθ ż − Āθ ˙̄z, v = V −Awż − Āw̄ ˙̄z,

are computed to be

Aθ = − imz̄

2
(
J(m+ 1) +mz̄z

) , Aw =
1− izAθ
m+ 1

, Aw̄ =
iz̄Aθ
m+ 1

.

The reduced dynamics is given by equations (5.4) and (5.5), where [·, ·]∗r is the dual of the bracket (3.13) and
[·, ·]∗gr

is the operator ad∗ on the algebra se(2).

5.2 Nonholonomic Systems with Symmetry

Recall that the manifolds M and Q are principal fiber bundles. The Lagrangian L and constraint distribu-
tion D are now invariant with respect to the induced action of G on P . Recall also that D is a (locally)
splitting subbundle of P .

Although it is not needed for everything that we will be doing, the examples and the theory are somewhat
simplified if we make the following assumption:

Assumption 5.5. The constraints and the orbit directions span the entire tangent space to the configuration
space:

Dq + Tq Orb(q) = TqQ,
13

for each q ∈ Q. If this condition is satisfied, we say that the principal case holds.

Let S be the subbundle of D whose fiber at q is Sq = Dq ∩ Tq Orb(q). We assume here that Sq 6= {0}.14

The subbundle S is invariant with respect to the action of G on P induced by the left action of G on M .
We assume that S is a (locally) splitting subbundle.15 Therefore, for each q ∈ Q there exist a subspace
Uq ⊂ Orb(q) such that Orb(q) = Sq ⊕ Uq and the subbundle U is (locally) splitting and G-invariant. Since
the distributions S and U are left-invariant, for each r ∈ Q/G there exist subspaces bSr and bUr of the Lie
algebra gr = bSr ⊕ bUr and an operator ϕr : gr → g such that in a local trivialization

Sq = Lg∗ϕrb
S
r and Uq = Lg∗ϕrb

U
r .

The operators ϕr are constructed in such a way that bSr and bUr are fixed subspaces of gr. Such an arrangement
is necessary for accounting for constraint subspaces that change their location in the Lie algebra g of the
symmetry group depending on system’s shape configuration.

Let bS and bU be the bundles over Q/G whose fibers are the subspaces bSr and bUr of gr. Given ζ ∈ gr,
we write its components along these subspaces as ζS and ζU so that for each r ∈ Q/G we have

g−1ġ = ϕr ζ ≡ ϕr ζS + ϕr ζ
U , where ζS ∈ bSr and ζU ∈ bUr .

13This is called the dimension assumption in the finite-dimensional setting, see Bloch et al. [7] for details.
14If Sq = {0}, a set of nonholonomic constraints is said to be purely kinematic.
15 Note that the intersection of two splitting subspaces may fail to be splitting already in a Banach space. For

the intersection of two subspaces to be splitting, additional assumptions are necessary. According to Bill Johnson,
asking that two subspaces are norm one complemented and the space itself is uniformly convex is sufficient. See
http://mathoverflow.net/questions/85492/intersection-of-complemented-subspaces-of-a-banach-space for details.
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Let As be a connection defined in a local trivialization by the formula

As(ṙ, ġ) = Adg(ϕr(ζ +Aṙ)),

where ζ ∈ gr and where A is a gr-valued one-form on Q/G. This form is such that the constraints in a local
trivialization read

ΩU ≡ ζU +AU ṙ = 0. (5.11)

That is, the U-component of the connection A is defined by the constraints. The S-component of A is
arbitrary at the moment; later on we will see how the structure of the Lagrangian affects the choice of this
component.

As in §5.1, introduce the operator ψr : WB → Tr(M/G) (locally), so that ṙ = ψr ξ and ξ is now the shape
velocity component used instead of ṙ. Utilizing the constrained Hamel equations (4.4) and the G-invariance
of the constraint distribution D, one obtains the reduced nonholonomic equations of motion from (5.4) and
(5.5) by projecting equation (5.5) onto the fibers of the bundle b∗S and imposing constraints, i.e., setting
Ω = ΩS . Summarizing, we have:

Theorem 5.6. The strong form of the reduced nonholonomic dynamics is given by the equations

d

dt

δl

δξ
− ψ∗r

δl

δr
=

[
ξ,
δl

δξ

]∗
r

−
〈
δl

δΩ
, iξψ

∗
rB +

〈
iξψ
∗
rγ, ψ

∗
rA
〉
−
〈
ψ∗rγ, iξψ

∗
rA
〉

+
〈
ψ∗rE ,ΩS

〉〉
, (5.12)[

d

dt

δl

δΩ

]
S

=

[[
ΩS ,

δl

δΩ

]∗
gr

+

〈
δl

δΩ
, iξψ

∗
rE
〉]
S

, (5.13)

coupled with the kinematic shape equation

ṙ = ψr ξ. (5.14)

In the above, the Lagrangian l is written as a function of (r, ξ,Ω), B is the curvature of A on Q/G (see
(5.1)), and the quantities γ and E are defined as in Theorem 5.2. Note that the partial derivatives of l in
(5.12) and (5.13) are evaluated before setting Ω = ΩS , i.e., before imposing the constraints.

The shape and momentum equations (5.12) and (5.13) can be rewritten as

d

dt

δlc
δξ
− ψ∗r

δlc
δr

=

[
ξ,
δl

δξ

]∗
r

−
〈
δl

δΩ
, iξψ

∗
rB +

〈
iξψ
∗
rγ, ψ

∗
rA
〉
−
〈
ψ∗rγ, iξψ

∗
rA
〉

+
〈
ψ∗rE ,ΩS

〉〉
,

d

dt

δlc
δΩS

=

[[
ΩS ,

δl

δΩ

]∗
gr

+

〈
δl

δΩ
, iξψ

∗
rE
〉]
S

,

where lc(r, ξ,ΩS) := l(r, ξ,ΩS) is the constrained reduced Lagrangian . These equations follow directly
from (5.12) and (5.13) as

δlc
δξ

=
δl

δξ

∣∣∣
Ω=ΩS

,
d

dt

δlc
δξ

=
d

dt

δl

δξ

∣∣∣
Ω=ΩS

,
δlc
δr

=
δl

δr

∣∣∣
Ω=ΩS

,
δlc
δΩS

=
δl

δΩS

∣∣∣
Ω=ΩS

.

Note that in general
δlc
δΩS

6= δl

δΩ

∣∣∣
Ω=ΩS

.

5.3 The Nonholonomic Connection

In the rest of the section we assume that the Lagrangian equals the kinetic minus potential energy, that the
kinetic energy is given by a (weak) Riemannian metric on the manifold M , and that the principal case holds
(see Assumption 5.5).
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Definition 5.7. The nonholonomic connection Anhc is, by definition, the connection on the principal
bundle Q → Q/G whose horizontal space at q ∈ Q is given by the orthogonal complement to the space
Sq = Dq ∩ Tq Orb(q) within the space Dq.

Similar to the remark on the existence of the mechanical connection, in the infinite-dimensional setting, the
nonholonomic connection may fail to exist when the group metric is not strong, but is certain to exist when
the symmetry group is finite-dimensional.

Under the assumption that the distribution D is invariant and from the fact that the group action
preserves orthogonality (since it is assumed to preserve the Lagrangian and hence the kinetic energy metric),
it follows that the distribution and the horizontal spaces transform to themselves under the group action.
Therefore, the nonholonomic connection in a local trivialization is defined by the formula

Anhc(ṙ, ġ) = Adg(yc +Acṙ), (5.15)

where yc ∈ g and where Ac is a g-valued one-form on Q/G. Given q̇ = (ṙ, ġ) ∈ TqQ, the horizontal and
vertical components of q̇ in a local trivialization are

(ṙ,−Acṙ) and (0, yc +Acṙ).

In order to reflect the bundle structure associated with velocity constraints, we use Definition 5.7 and
the map ϕr and rewrite yc +Acṙ in (5.15) as ϕr(ζ +Aṙ), where

ζ = ζS + ζU , A = AS +AU , ζS +AS ṙ ∈ bS , ζU +AU ṙ ∈ bU .

Using the nonholonomic connection, define the group velocity Ω ∈ g by the formula

Ω = ζ +Aṙ.

The constraints then are represented by formula (5.11).
Let the kinetic energy metric in a local trivialization be written as

〈〈q̇, q̇〉〉 = 〈G(r) ṙ, ṙ〉+ 2〈K(r) ṙ, ζ〉+ 〈I(r) ζ, ζ〉. (5.16)

The constrained locked inertia tensor IS : bS →
(
bS
)∗

is given in a local trivialization by

〈IS(r) ζ1, ζ2〉 = 〈〈Lg∗ϕr ζ1, Lg∗ϕr ζ2〉〉, ζ1, ζ2 ∈ bS .

Similarly, define IU (r) : bU →
(
bU
)∗

, ISU (r) : bU →
(
bS
)∗

, and IUS(r) : bS →
(
bU
)∗

by

〈IU (r) ζ1, ζ2〉 = 〈〈Lg∗ϕr ζ1, Lg∗ϕr ζ2〉〉, ζ1, ζ2 ∈ bU ,

〈ISU (r) ζ1, ζ2〉 = 〈〈Lg∗ϕr ζ1, Lg∗ϕr ζ2〉〉, ζ1 ∈ bU , ζ2 ∈ bS ,

〈IUS(r) ζ1, ζ2〉 = 〈〈Lg∗ϕr ζ1, Lg∗ϕr ζ2〉〉, ζ1 ∈ bS , ζ2 ∈ bU ,

respectively.
Definition 5.7 implies that the constrained kinetic energy metric written as a function of (ṙ,ΩS) is block-

diagonal, that is, it reads 〈
G(r) ṙ, ṙ

〉
+
〈
IS(r) ΩS ,ΩS

〉
.

Substituting ζ = ΩS − Aṙ in (5.16), one concludes that the S-component of the nonholonomic connection
satisfies the equation 〈(

IS(r)AS −KS(r) + ISU (r)AU
)
ṙ,ΩS

〉
= 0.

This equation may or may not have a solution in the infinite dimensional setting. If the restriction of the
metric on the subspace bS is strong, the S-component of the nonholonomic connection is well-defined and
reads

AS = I−1
S (r)KS(r)− I−1

S (r)ISU (r)AU .
The U-component of the nonholonomic connection is defined by the constraints. As in §5.2, the reduced
dynamics is given by equations (5.12)–(5.14).
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Example 5.8. Consider the planar motion of an inextensible string coupled with the two identical Chaplygin
sleighs. Assume that the ends of the string are attached at the contact points of the sleighs and the plane.
See Figure 5.1 for the illustration of the basic configuration.

w0

θ0

w1

θ1

Figure 5.1: The string with Chaplygin sleighs attached at the ends.

The manifold M(= Q) for this system is SE(2)×SE(2)×Emb([0, 1],C), and the system is invariant with
respect to the diagonal action of the group SE(2) on M . We identify the symmetry group with configurations
of the sleigh at s = 0. In such a representation, the position of the sleigh at the front end of the string (i.e.,
at s = 0) is characterized by the element (eiθ0 , w0) ∈ SE(2), while the relative position of the sleigh at the
opposite end of the string is (eiφ1 , z1) ∈ SE(2), so that the absolute position of that sleigh is

(eiθ1 , w1) = (eiθ0 , w0) · (eiφ1 , z1) = (ei(θ0+φ1), w0 + eiθ0z1).

The angular and linear velocity (relative to the body frame) of the sleigh at the front end of the string are

ω0 = θ̇0 and v0 = e−iθ0ẇ0,

while the angular and linear velocity of the other sleigh are

ω0 + φ̇1 and e−iφ1(v0 + iz1ω0 + ż1).

Thus, the constraints are

v̄0 = v0 and e−iφ1(v0 + iz1ω0 + ż1) = eiφ1(v̄0 − iz̄1ω0 + ˙̄z1). (5.17)

Formulae (5.17) define the operator ϕ and the constraint component of the nonholonomic connection. Both
are nontrivial for this coupled system.

Recall that the nonholonomic connection modifies the elements of the Lie algebra of the symmetry group.
The equations of motion that use such ‘shifted’ Lie algebra elements are useful in numerous situations,
including stability analysis of relative equilibria. However, one may verify that this form of equations is
rather complicated for the system considered here. Below we give a simpler representation of system’s
dynamics using the operators introduced earlier for the sleigh and string.

Using the notations introduced in §2.5 and Example 3.3, parametrize the configuration spaces of the
sleighs as (θj , wj), j = 0, 1, where wj = xj + iyj , and denote the absolute position of the string by w ∈
Emb([0, 1],C). The Lagrangian reads

l = 1
2

(
Jω2

0 +mv̄0v0

)
+ 1

2

(
Jω2

1 +mv̄1v1

)
+

∫ 1

0

1
2

(
w̄swsξ̄ξ − λ(w̄sws − 1)

)
ds. (5.18)

Coupling is accomplished by matching the position of the sleighs and the string’s ends:

w0 = w|s=0 and w1 = w|s=1. (5.19)

That is, the string is attached at and can rotate freely around the contact point of each sleigh.
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The constrained Hamel equations for this system read

Jω̇0 = 0, (5.20)

mv̇0 = 1
2λ0

(
w̄0
se
iθ0 + w0

se
−iθ0

)
, (5.21)

Jω̇1 = 0, (5.22)

mv̇1 = − 1
2λ1

(
w̄1
se
iθ1 + w1

se
−iθ1

)
, (5.23)

ξ̇ = ξξ̄s + λs + iκ
(
λ− ξ̄ξ

)
, (5.24)

where, by definition, λ0 := λ|s=0, λ1 := λ|s=1, w0
s := ws|s=0, and w1

s := ws|s=1. Equations (5.20), (5.22),
(5.24) and the left-hand sides of (5.21), (5.23) have been obtained earlier. The right-hand sides of (5.21)
and (5.23) account for the coupling constraints (5.19) and are obtained as projections of the external terms
(i.e., those due to integration by parts) associated with the Lagrange multiplier λ in (5.18) along the sleigh
directions.

5.4 Systems with Shape Constraints

Here we study systems with a ‘slim’ constraint distribution. That is, at each q ∈ Q, the complimentary
subspace of Dq ⊂ TqM is ‘larger’ than the tangent space to the group orbit at q. While this may happen
when the symmetry group is infinite-dimensional as well as when the system is finite-dimensional, our main
objects of interest here are systems with finite-dimensional symmetry group and constraint distributions of
infinite codimension. Assumption 5.5 does not hold for such systems, and the formalism of Bloch et al. [7]
and its infinite-dimensional analogue presented in §5.2 should be modified.

Example 5.9. Consider the Chaplygin sleigh with an inextensible string attached at and allowed to rotate
around the contact point of the sleigh and the plane, as shown in Figure 5.2. Assume that the string is
constrained as in Example 4.3. This system is SE(2)-invariant. Using formulae (5.9) and (5.10) there, the

w

θ

Figure 5.2: The Chaplygin sleigh coupled to a constrained string.

condition of vanishing normal velocity component is equivalent to

z̄s(v + iωz + ż) = zs(v̄ − iωz̄ + ˙̄z). (5.25)

Here the string position z is measured relative to the sleigh, and ω and v are the sleigh’s angular and linear
velocity measured relative to its frame. Formula (5.25) imposes infinitely-many constraints on the system,
one for each s ∈ [0, 1].

For a generic string placement, constraints (5.25) exhaust the Lie algebra se(2). Indeed, the vectors that
span the constraint subspaces for s0 = 0 and 0 < s1 < s2 < 1 are verified to be R-independent if and only if

(z̄sz + zs ˙̄z)|s=s1(zs − z̄s)|s=s2 − (z̄sz + zs ˙̄z)|s=s2(zs − z̄s)|s=s1 6= 0,

which generically holds. The rest of the constraints are effectively imposed on the shape degrees of freedom
of the system, and thus Assumption 5.5 does not hold.
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We begin by developing a special version of the formalism for unconstrained G-invariant systems. Using
notations introduced in §5.1, this system is characterized by the Lagrangian l(r, ξ, ζ). Recall that ṙ = ψrξ.
In order to simplify the exposition, we assume here that ϕr is the identity operator so that ġ = Lg∗ζ. Instead
of the velocity components (5.2), we will use

η = ξ + Cζ ∈WB and ζ ∈ g,

where C : g → WB is a linear map. It depends parametrically and smoothly on r ∈ U , where U is an open
subset of Q/G. This is motivated by the structure of the constraints (5.25). Thus, for the operator Ψq we
have

q̇ = (ṙ, ġ) = Ψq(η, ζ) =
(
ψr(η − Cζ), Lg∗ζ

)
.

The inverse of Ψq is
(η, ζ) = Ψ−1

q (ṙ, ġ) =
(
ψ−1
r ṙ + CL−1

g∗ ġ, L
−1
g∗ ġ

)
.

One can think of C as a connection on the local fiber bundle whose base and fiber are open subsets of G and
Q/G, respectively.

Theorem 5.10. The strong Lagrange–Poincaré equations are

d

dt

δl

δη
− ψ∗r

δl

δr
=

[
η − Cζ, δl

δη

]∗
r

+

〈
δl

δη
, ψ∗rdC ζ

〉
,

d

dt

δl

δζ
= ad∗ζ

(
δl

δζ
+ C∗ δl

δη

)
−
〈[
η − Cζ, δl

δη

]∗
r

, C
〉
−
〈
δl

δη
, i(η−Cζ)ψ

∗
rdC + iCψ

∗
rdC ζ

〉
.

Proof. The key step is to establish the bracket operation associated with the operator Ψq. One begins with
the computation of the Jacobi–Lie bracket

[Ψ(η1, ζ1),Ψ(η2, ζ2)] = [(ψ(η1 − Cζ1), L∗ζ1), (ψ(η2 − Cζ2), L∗ζ2)],

where ηi and ζi are constant vectors. For the M/G-component of the Jacobi–Lie bracket, we have, using the
chain rule:

[ψ(η1 − Cζ1), ψ(η2 − Cζ2)]M/G = ψ[η1 − Cζ1, η2 − Cζ2]r − ψ(ψη1 − ψCζ1)[Cζ2] + ψ(ψη2 − ψCζ2)[Cζ1].

For the G-component, we obtain

[L∗ζ1, L∗ζ2]G = L∗[ζ1, ζ2]g = L∗ adζ1 ζ2.

Applying the inverse operator Ψq outputs the bracket operation on WB ⊕ g:

[(η1, ζ1), (η2, ζ2)] =
(
[η1 − Cζ1, η2 − Cζ2]r − (ψη1 − ψCζ1)[Cζ2] + (ψη2 − ψCζ2)[Cζ1] + C adζ1 ζ2, adζ1 ζ2

)
.

Pairing with an element (α, β) ∈W ∗B ⊕ g∗, we obtain:〈
α, [η1 − Cζ1, η2 − Cζ2]r − (ψη1 − ψCζ1)[Cζ2] + (ψη2 − ψCζ2)[Cζ1] + C adζ1 ζ2

〉
WB

+
〈
β, adζ1 ζ2

〉
g

=
〈
[η1 − Cζ1, α]∗r + 〈α,ψ∗dCζ1〉WB

, η2

〉
WB

+
〈
ad∗ζ1(β + C∗α)− 〈[η1 − Cζ1, α]∗r , C〉WB

− 〈α, i(η1−Cζ1)ψ
∗dC〉WB

− 〈α, iCψ∗dCζ1〉WB
, ζ2
〉
g
,

which yields the components of the dual bracket,〈
[η1 − Cζ1, α]∗r + 〈α,ψ∗rdCζ1〉WB

, (5.26)〈
ad∗ζ1(β + C∗α)− 〈[η1 − Cζ1, α]∗r , C〉WB

− 〈α, i(η1−Cζ1)ψ
∗
rdC〉WB

− 〈α, iCψ∗rdCζ1〉WB
. (5.27)

Utilizing the dual bracket (5.26) and (5.27) and composing equations (3.9) completes the proof.
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Next, assume that there exists a splitting distribution D along with its complimentary distribution U
such that the constraint η ∈ Dq reads

ξU + CUζ = 0. (5.28)

Thus, the constraint is defined by the operator CU : g → Uq. This representation is, in general, local, i.e.,
(5.28) represents the constraint on an open subset U of the shape space Q/G. The operator CU is then
extended to C : g→WB at each r ∈ U .

There are, of course, infinitely many such extensions, and one needs to utilize additional requirements to
single out the desired one. Utilizing the general Hamel’s equations established in §4.2, the reduced dynamics
becomes (

d

dt

δl

δη
− ψ∗r

δl

δr
−
[
η − Cζ, δl

δη

]∗
r

−
〈
δl

δη
, ψ∗rdC ζ

〉)
D

= 0, (5.29)(
d

dt

δl

δζ
− ad∗ζ

(
δl

δζ
− C∗ δl

δη

)
+

〈[
η − Cζ, δl

δη

]∗
r

, C
〉

+

〈
δl

δη
, i(η−Cζ)ψ

∗
rdC + iCψ

∗
rdC ζ

〉)
D

= 0. (5.30)

If desired, one can give the representation of these equations using the constrained Lagrangian and con-
strained versions of the velocity components η and ζ, as in the approach in §5.2.

Example 5.9 (continued). Consider again the motion of the Chaplygin sleigh with the flexible string
attached. The normal velocity component of the string at each point is constrained to be zero, as in (5.25).
The system is SE(2)-invariant and the symmetry group is also the configuration space of the sleigh. The
Lagrangian of the system is the sum of the kinetic energy of the sleigh and the string Lagrangian and reads

1
2

(
Jω2 +mv̄v

)
+

∫ 1

0

1
2

((
v̄ − iωz̄ + z̄sξ̄

)(
v + iωz + zsξ

)
− λ

(
z̄szs − 1

))
ds,

where ξ = z̄sż is string’s shape velocity. The coupling is accomplished by setting

z|s=0 = 0, zs|s=0 = 1, ξ|s=0 = 0,

and the constraint is given by formula (5.25). We assume from now on that v > 0, i.e., the string trails the
sleigh.

Define the quantity η and the operator C by the formula

η = ξ + z̄s(v + iωz),

so that η is string’s absolute velocity. Doing so results in the Lagrangian

l = 1
2

(
Jω2 +mv̄v

)
+

∫ 1

0

1
2

(
η̄η − λ(z̄szs − 1)

)
ds.

The constraint in this representation ireads η = η̄, which is formula (5.28) written for the string. Equa-
tions (5.29) and (5.30) for the sleigh-string system become

Jω̇ = 0, (5.31)

mv̇ = λ|s=0, (5.32)

η̇ = ηηs + λs, (5.33)

where v and η are real-valued. These equations should be amended with the coupling conditions

η|s=0 = v. (5.34)

Note also that the position of the front end of the string coincides with the position of the contact point of
the sleigh and the plane.
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Arguing as in Example 4.3, one concludes that η is independent of s. Thus, equation (5.33) becomes

η̇ = λs. (5.35)

Equation (5.31) implies ω = const.
The tension λ is obtained by integrating (5.35) with respect to s and, since λ|s=1 = 0, we conclude that

λ = (s− 1)η̇. (5.36)

Therefore, λ|s=0 = −η̇, which in combination with (5.32) and (5.34) yields v = const. The velocity coupling
condition then implies that the blade moves at the constant speed η = v. Using (5.36), we conclude that
λ = 0.

Summarizing, the Chaplygin sleigh with the constrained string attached generically undergoes uniform
circular motion. Nongeneric trajectories are straight lines. The string (possibly after some period of time)
follows the trajectory of the contact point of the sleigh.

It is interesting to point out that in this example the shape dynamics (string’s motion) is modulated
by the group dynamics (skate’s motion). This is the opposite of typical reconstruction in finite-dimensional
constrained systems discussed in [7].

We note also that the qualitative dynamics of this system—uniform circular or straight line motion—is
consistent with the behavior of integrable Hamiltonian systems. One may raise the question of whether it is
integrable in a more precise sense—with infinitely-many conserved quantities. We intend to return to this
issue in a forthcoming publication.

Conclusions

This paper introduced Hamel’s formalism for infinite-dimensional mechanical systems, proved some general
results, and illustrated them with examples. A number of topics remain outside the scope of the paper.
For instance, the nature of nonholonomic constraints in the infinite-dimensional setting should be studied in
more detail and will be addressed in a forthcoming publication. We also intend to develop Hamel’s formalism
for field theories and apply it for constructing structure-preserving integrators for constrained continuum
mechanical systems.

Examples in this paper were intentionally kept relatively simple for pedagogical reasons, and solutions
there are classical, i.e., not generalized. More realistic examples, including systems with generalized solutions,
will be treated in the forthcoming paper on the field-theoretic Hamel formalism.
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[1] Arnold, V. I. [1966], Sur la géometrie differentialle des groupes de Lie de dimension infinie et ses
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