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Abstract

We show that the Flaschka map, originally introduced to analyze the dynamics of the integrable Toda
lattice system, is the inverse of a momentum map. We discuss the geometrical setting of the map and
apply it to the generalized Toda lattice systems on semisimple Lie algebras, the rigid body system on Toda
orbits, and to coadjoint orbits of semidirect products groups. In addition, we develop an infinite-dimensional
generalization for the group of area preserving diffeomorphisms of the annulus and apply it to the analysis
of the dispersionless Toda lattice PDE and the solvable rigid body PDE.
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1 Introduction

The Toda lattice system and its many generalizations are fundamental integrable systems that have inspired an
extraordinarily rich literature on its geometry and dynamics. A particularly useful form of the classical Toda
lattice is the finite non-compact lattice which goes back to the work of Moser [1975]. It models n particles
moving on the line under an exponential nearest neighbor potential. A key advance in the study of this system
was the introduction of the Flaschka map (Flaschka [1974a,b] and Manakov [1975]). This is a map from the
original phase space variables to variables which (in the non-compact case) give the dynamics in Lax pair
form on the space of tridiagonal symmetric (Jacobi) matrices. This observation was key to the Lie algebraic
generalizations of the Toda system in the work of Bogayavlensky [1976] and Kostant [1979]. The flow of the
generalized Toda lattice lies on a particular coadjoint orbit of a Borel group. Also of great interest is the full
Toda flow (see Deift et al. [1992]) which is the generalization of the classical finite Toda lattice system to flows
on full symmetric matrices, in the simplest setting, and periodic versions of the generalized Toda flow, which
involve Kac-Moody Lie algebras (Goodman and Wallach [1982]).

Our goal in this paper is to understand the (symplectic) geometry of the Flaschka map in as much generality
as possible and to show, in particular, that it is the inverse of a suitable momentum map.

One can rephrase the idea of the Flaschka map by asking when a given coadjoint orbit is symplectomorphic
to a magnetic cotangent bundle. For example, when the given Lie group is an exponential solvable group, such
as the group of lower triangular matrices, its simply connected coadjoint orbits are symplectomorphic to the
canonical cotangent bundle of R™. (See Arnal, Currey, and Dali [2009], Pedersen [1988], Pukanszky [1990].) A
procedure for constructing such coordinates is described in Symes [1980] and is due to Vergne [1972] (see also
Kirillov [1974, pp. 264-267]). Another class of examples is certain coadjoint orbits of semidirect products of Lie
groups with representation spaces, in which case there is a magnetic term, generically. For example, the generic
orbits of the special Euclidean group in 3-space are magnetic cotangent bundles of 2-spheres.

We remark that there is an alternative approach to proving the existence of global Darboux coordinates for
simply connected coadjoint orbits of solvable, connected, simply connected (not necessarily exponential) Lie
groups, which was first considered in Pukanszky [1992]. In this setting one makes use of so-called admissible
ideals. We will not follow this approach here but refer to Bloch, Gay-Balmaz, and Ratiu [2017] for details of
this approach.

The essential ingredient of the approach in this paper is a Lie subalgebra which is a real polarization
and, in addition, satisfies the so-called Pukanszky condition (see Duval, Elhadad, and Tuynman [1992]). This
condition, used for the construction of representations from coadjoint orbits, plays a key role in Duval, Elhadad,
and Tuynman [1992] and was used in Symes [1980] to construct the Flaschka transformation (Flaschka [1974a,b],
Manakov [1975]) for the Toda lattice (Toda [1970]). In Duval, Elhadad, and Tuynman [1992], a relation was
found between the Pukanszky condition and the diffeomorphic character of a momentum map obtained through
symplectic reduction. After revisiting this result via the cotangent bundle reduction theorem, we show that there
is a remarkable equivalence relation on coadjoint orbits, related to the Pukanszky condition. The associated
quotient space turns out to be the base space of a cotangent bundle diffeomorphic to the coadjoint orbit. Such
a realization is possible for exponential solvable Lie algebras, since, in this case, there is an explicit construction
of a real polarization verifying Pukanszky’s condition, via Vergne’s algorithm.

We then define the abstract Flaschka map by following the construction of Symes [1980] and Kirillov [1974]
and prove that it is the inverse of a very natural momentum map, namely, the momentum map of a Lie group
action induced on a symplectically reduced space relative to a specific subgroup naturally associated to the real
polarization. From this fact and the cotangent bundle reduction theorem, we obtain that the abstract Flaschka
map is a symplectic diffeomorphism from the coadjoint orbit to a magnetic cotangent bundle.

We then show how this situation occurs for the generalized Toda lattice flows associated to semisimple Lie
algebras, which generalize the Toda lattice flow on Jacobi matrices. We analyze the situation for both the
normal split and compact real forms. The latter form is important for investigating the symplectic geometry of
the orbit and, in particular, its relationship to the convexity of the momentum map (see Bloch, Flaschka, and
Ratiu [1990]). We also extend the analysis to the generalized rigid body system on Toda orbits.
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There is a natural generalization of the Toda lattice system to a flow on the Lie algebra of the Fréchet Lie
group of area preserving diffeomorphisms on the annulus S! x [0,1]. This Lie algebra consists of divergence
free vector fields on the annulus tangent to the boundary and the flow in question is the dispersionless Toda
lattice flow which arises, physically, from letting the lattice space tend to zero in a suitable fashion (see Brockett
and Bloch [1990], Bloch, Flaschka, and Ratiu [1993], Bloch, Flaschka, and Ratiu [1996], Deift and McLaughlin
[1992], Bloch, Golse, Paul, and Uribe [2003]). We derive the Flaschka map in this setting and describe the
associated solvable rigid body PDE.

Finally, we introduce the Flaschka transformation for certain coadjoint orbits of semidirect product groups by
identifying classes of coadjoint orbits that are symplectomorphic to magnetic cotangent bundles. We illustrate
this general result with the example of the Euclidean group in 3-space.

The outline of the paper is as follows. In §2, we provide some background material on the cotangent bundle
reduction theorem. In §3, we discuss the Pukanszky condition and its relationship to momentum maps. In §4,
we derive the momentum map interpretation of the Flaschka transformation. In §5 we present the Flaschka
transformation for the real split and compact real forms of the Toda lattice as well as the solvable rigid body
on the Toda orbit. In §6, we generalize the results to the infinite dimensional case by considering the group
of area preserving diffeomorphisms on the annulus and we derive the dispersionless Toda lattice equations
and the solvable rigid body PDE. In §7, we introduce the Flaschka transformation for certain coadjoint orbits
of semidirect products of a Lie group with a vector space and isolate a class of codadjoint orbits that are
symplectomorphic to magnetic cotangent bundles.

2 Preliminaries on cotangent bundle reduction

Let G be a Lie group and H C G a Lie subgroup (i.e., a subgroup, an initial submanifold of G, and a Lie group
relative to this manifold structure). Denote by L, respectively R, the left and right translations by g € G
on G. Counsider the canonical symplectic manifold (T*G, Q.4 ) and let H, respectively G, act on T*G by the
cotangent lift of left, respectively right multiplication, i.e.,
HxT;G > (h,ay) = Ty, L0y =t hay € T, G, (2.1)
TG x G 3 (ag, f) = Ty Ryay = ayf € TG
The associated momentum mappings are given (see, e.g., Marsden and Ratiu [1999]), respectively, by
I :T°G = 0", Jp(ay) = iy (TT Ryayg) = iy (agg_l) = (agg_l) o (2.3)
Jr:T*G — ¢*, Jp(ay) =T Lya, = g 'ay,
where iy : h — g is the inclusion and i : g* — h* its dual map.

It is useful to have the expressions of the actions and the corresponding momentum maps in the left trivi-
alization T*G 2 oy — (9,9 ag =T Lyay) € G x g* of T*G. Formulas (2.1)-(2.4) become

( ) (hg, 1), (2.5)
(gg Ady, ) (2.6)

JL (9,1 ( -1 :u) |ha (2.7)
Jr(g, u) = H, (2.8)

where g,g' € G, h € H, u € g*, and we denote by the same letter the momentum maps J : G x g* — b* and
rR:Gxg"—g".
2.1 Symplectic cotangent bundle reduction

Fix vy € b* and suppose that vy is H-invariant under the H-coadjoint action, that is, H,, = H. Symplectic
reduction yields the symplectic manifold
(I (0)/H, wu ) -

We now recall how this reduced space is isomorphic to a cotangent bundle endowed with the canonical symplectic
form modified by a magnetic term (see Abraham and Marsden [1978, Theorem 4.3.3], Marsden et al [2007, §2.2]).
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First, consider the map
Py - le(O) — T(G/H), (@olag), Tyma,u(vg)) = (ag,vg),

where 1. : G — G/H, w(g9) = [glg = Hg is the quotient map. This map is well-defined, H-invariant, and
induces a symplectic diffeomorphism

0o (le(O)/H,wo) = (T"(G/H),wean)

where wy is the reduced symplectic form on J El (0)/H and weqy, is the canonical symplectic form on the cotangent
bundle T*(G/H) (Satzer’s theorem, Satzer [1977]).

Second, fix vy € h*. In order to give a realization of the reduced symplectic space J Zl(uo) /H, we have to
introduce one more geometric object. Let a,, € Q'(G) be such that

oy, is left H,, = H-invariant and aw,y(g) € 37 (vp), for all g € G; (2.9)

see Abraham and Marsden [1978, Thm 4.3.3], Marsden et al [2007, Thm 2.2.1].
Such a one-form can be constructed with the help of a principal connection one-form A € Q(G,h) on the
left H-principal bundle ng g : G — G/H as follows (Kummer [1981]):

au, (9) := Alg)"vo. (2.10)

The equivariance property A(hg) o TyL, = Adj, 0A(g), for all h € H and g € G, of the left connection one-form
A and H = H,, imply
o (hg) = haw,(g), ¥V he H, (2.11)

which immediately implies that a,, € Q'(G) is invariant under the lift to T*G of left translation on G by
elements of H. Since A(g) (T.R4n) = n, for all n € b, by the defining property of the connection one-form A,
it follows that Jp(au,(g)) = v for all g € G. Thus «,, so constructed via a principal connection one-form
A € QY(G,b) satisfies properties (2.9).

As we shall see later on, for the Toda system example, we will need «,,, € Q!(G) satisfying (2.9) that is not
associated to a connection.

From now on, in this subsection and the next, we shall assume that a one-form oy, € QY (G) satisfying (2.9)
18 given.

The map

Shift,, : (TG, Qean) = (T*G, Qean — meday,),  Shift, (ay) == oy — au,(9),

where 7g : T*G — G is the cotangent bundle projection, is a symplectic diffeomorphism. This map re-
stricts to a H-equivariant diffeomorphism shift,, : J;'(v) — J7'(0), which induces a diffeomorphism shift,, :
J Y (v0)/H — J;1(0)/H. We conclude that the map

Guo 1= 0 0 shift,, : (I7 (o) /H,wie) = (T*(G/H),wean — Buy) (2.12)

is a symplectic diffeomorphism, where w,, is the reduced symplectic form, weqy, is the canonical symplectic form
on T*(G/H), and B,, € Q? (T*(G/H)) is defined by

. *
BVO T 7TG/HBVOV

where ng/p : T*(G/H) — G/H is the cotangent bundle projection, and f,, € Q*(G/H) is the unique 2-form
such that 7¢ 5y, = day,.

2.2 Description of the reduced G-action and momentum map

Since the actions of H and G commute, G acts symplectically on the right on the reduced space (J Zl (v0)/H, wyo)
and admits the equivariant momentum map

Iy JZI(VO)/H =g, IR (lagla) = 9710[9’ (2.13)

where ay € T;G is an arbitrary element in the equivalence class o]y € I~ (19)/H.
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Theorem 2.1. The right action of G on the cotangent bundle T*(G/H) induced by the natural right action of
G on le(uo)/H s given by

Blgu - =5 (Bigu) +C (gl 1), (2.14)

where ®T denotes the cotangent lift of the right action ® : G/H x G — G/H given by ®; ([9]x) := [9f]m and
C:G/HxG—T*(G/H) is defined by

¢ ([g]H7 f) =g (al/o (g)f - al’o(gf)) € T[Zf]H(G/H)

The momentum map of the right G-action (2.14) is G-equivariant and has the expression
IR (T(G/H),wean — Buy) = 8", IR (Blg) = Jean(Big) + 7w, ([9]1) , (2.15)

where @, : G/H — g* is defined by @, ([g]n) := g~ . (g) for g € [glm. (We denote by the same symbol J%
the momentum maps (2.13) and (2.15) since they are related by the symplectic diffeomorphism (2.12); see also
the diagram below.)

Proof. Given o, € T*G, define 8, := Shift, () = g — ay,(g). It is readily seen that the right action of
f € G on B, induced by the cotangent lift of right translation on «ay is

By f=0Bgf +¢lg,f), where (g, [f):=an(9)f — aw(gf) € Tg;G. (2.16)

Note that this action consistently preserves J;'(0), since Jr(c(g, f)) = 0. The H-invariance (2.11) of oy,
implies the equality c(hg, f) = he(g, f), for all h € H.

The definitions of the maps ¢y and @, imply that the G-action induced on T*(G/H) by (2.16) is given by
(2.14).

Using the shift map Shift,,, we conclude that the momentum map associated to the right G-action (2.16)
on 3, is given by 8, — g~ B4+ gt (g), and thus the induced momentum map on 7*(G/H) is J' (ﬂ[g]H) =
9By + g reu, (g), where B, € J7(0) is such that Fy(By) = Byy),,- We can rewrite this expression as

JE) (ﬁ[Q]H) = Jean (B[Q]H) + Qi ([Q]H) )

where @,, : G/H — g* is defined by a ([g]x) := g~ a, (g) for g € [g]g. This map is well-defined thanks to the
H-invariance property (2.11). [ ]

The diagram below illustrates the various maps involved in Theorem 2.1. The group G acts on the right on
all the spaces in this diagram. Its associated momentum map is denoted Jr. Note the same notation J79 for
the momentum maps J; ' (v)/H — g* and T*(G/H) — g* (because of the symplectic diffeomorphism (2.12)
in the last line)

Jr

1 shiftl,0
TG <—— 37 (1)) —2>J7 g*.

| \ /

37 (o) [ H === 371 (0)/H —=> T*(G/H)
shlft

For later use, it is worth recording some formulas appearing in the theorem above, if TG is left trivialized
as G x g*. Given vy € b*, let 7y € g* be an arbitrary extension. Let §° := {u € g* | (1, ) =0, Vn € h} be the
annihilator of h in g*. Then

I (o) & {(gu)erg | (Ad} ) [y =10} = {(9.pn) € Gx g" | Ad} -+ p— T € b°}
= {(9,Ad} (7 +1b°)) | g € G} (2.17)
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which does not depend on the choice of the extension vy € g* of vg. Thus, the reduced space
J;'(w)/H is diffeomorphic to  {(g,Ad} (% +b°)) | g € G} /H. (2.18)
Formulas (2.13) and (2.8) imply J%? ([g, | i) = p and hence (2.18) yields

range J7? = {Ad; (% +b°) | g € G} . (2.19)

3 Pukanszky’s condition and reduction

In this section, we recall, in our setting, the notion of polarization, Pukanszky’s condition, and their relationship
to reduction. The results on polarizations and Pukanszky’s condition can be found, in the more general setting
of the complexification of a Lie algebra, in Kostant [1970], Bernat et al. [1972, Chapter 4], and Duval, Elhadad,
and Tuynman [1992]. The reduction result in the second subsection is due to Duval, Elhadad, and Tuynman
[1992]. Due to the importance of these results later on (see e.g., §7.2) and the fact that the proofs simplify since
we are working only on real Lie algebras, we provide below short full proofs of all statements.

3.1 Real polarizations and Pukanszky’s condition

Definition 3.1. Let g be a Lie algebra and pug € g*. Given a linear subspace a C g, define
atro = {5 €g | </1*0» [S»UD =0,Vne a}'

Note that a C (aL*‘O)L“D, g = (gL“O)l“O, and that if a C b for some other linear subspace b, then
btro C atwo. In particular, gteo =g, = {€ € g | ad o = 0} C a®#o for any subspace a C g.
We also have
atro = (adl po)° . (3.1)

Indeed, ¢ € (ad} 110)° if and only if for any 7 € a we have 0 = <ad;§ to, &) = — (o, [€,n]) which is equivalent to
€€ atno,
By standard linear algebra, we have

dim(a) + dim(at#0) = dim(g) + dim(a N g*+o). (3.2)
Suppose that g,, C a. Then (3.2) and gtwo = g, imply that

dim(a) + dim(at#0) = dim(g) + dim(g,, ). (3.3)

Applying formula (3.3) to a‘#o, we get dim(a) = dim ((aluo)l”o) which proves that

(atwo)™0 =a if g, Ca. (3.4)

Laa

Finally, note that if G is a Lie group with Lie algebra g, then Ad,(at#0) = (Ad, a) ot " for all g € G.

Definition 3.2. Let G be a Lie group and pg € g*. A Lie subalgebra § C g is called real polarization
associated to g if

(i) {Adgh | ge Guo} =b;
(ii) bleo =b.

Note that if h C g is a real polarization associated to pg € g*, then

9o © 0. (3.5)

(i) b.

Remark 3.3. For a Lie subalgebra h C g and po € g*, it is easy to see that the following conditions are
equivalent:

Indeed, if £ € g,,, then for any n € h we have 0 = <ad2 M0777> = (1o, [¢,n]) which shows that & € hLro
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(i) hrro =,
(i) ((po,[&m) =0,Vneh) <= e,
(iii) (po,[h,b]) =0 and 2dim(h) = dim (g) + dim (g, )

Note that the second equation in (iii) can be written as dim(h°) = 1 dim(0,,), where h° C g* is the annihilator

of b.

Definition 3.4. Let G be a Lie group, ug € g*, and h C g a real polarization associated to .
(i) Define H, as the connected Lie subgroup of G whose Lie algebra is b.
(ii) Define the subset H := H,G,,, C G.

Remark 3.5. From (i) in Definition 3.2, it follows that H is a subgroup of G. To see this, it suffices to note
that Adg, b = b implies that gH, g~' = H, for all g € G,,,. This latter identity also immediately implies that
H,G,, = G Ho.

We need the following result of Kostant (see Kostant [1970]; see also Vergne’s article in Bernat et al. [1972,
Chapter 4]). This result is also cited in Duval, Elhadad, and Tuynman [1992, Lemma 3.6] since it is crucial for
their developments. Due to its importance in Subsection 7.2, we include the proof.

Lemma 3.6. Let G be a connected Lie group, pg € g*, and h C g a real polarization associated to pg. Then,

(1) Ho and H are a closed subgroups of G having the same Lie algebra b; H, is the connected component of
the identity in H;

(il) vo := ipto € b is Adj;-invariant, i.e., Hy,, = H (Ad}; denotes the H-coadjoint action on h*);
(iii) b° C g* and po + H° C g* are Adj -invariant for any h € H.
Note that if G, is connected, then H is also connected and hence H = H,.

Proof. (i) We reproduce the proof in Kostant [1970]. Note that
<adz to,m) =0, Vn€b isequivalent to & € b. (3.6)

Indeed, 0 = <ad2 140, 7]> = (o, [€,7m]) for all n € h means that & € hro = b by Definition 3.2(ii).
For n,{ € h, t € R, we have

t t 0
. d . _ d s
<Adexp(tg) Ho — M077]> = /0 s <Adexp(sg) Ho, 77> ds = /0 s <M07 E ) adg 77> ds

= 3 it" ad pug,ad? ! @0
>t (adg po.ad ™ )

since ad?*1 nebhforn>1.
Because H, is generated by elements exp ¢ for { € b, we have

(Adj po — po,m) =0,  Vne€b, he H,. (3.7)

It is clear that this identity also holds if h € H,. If X is in the Lie algebra of H,, replace above h by exp(t))
and take % o of the resiulting relation to get (ad} po,n) = 0, for all n € h. By (3.6), it follows that A € b.
This shows that H, and H, have the same Lie algebra b. Since Ho is a Lie subgroup of Ho, this shows that H,
is open, hence closed in H,. But H, is connected which implies that H, = H,.

Next, we show that H is closed in G. Note first that for any h € H,, k € G, and 7 € b, we have

* * * * (3.7)
(Adjyy, po — po,m) = (Ady, Ady, po — po,m) = (Ady, o — po,m) =" 0.

Thus, for any g € H := H,G,, = G, H, and 1 € b, we have <Ad; o — ,uo,77> = 0 and hence

(A} po — po,m) =0,  Vneh, g €H. (3.8)
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Let H, be the connected component of the identity in H, b, its Lie algebra, and ¢ € b, arbitrary. Put
g = exp(t¢) € H, in (3.8) and then take %|t:0 of the resulting relation. This yields <adz to,n) = 0 for any
n € b, which implies that ¢ € h by (3.6). Hence h. C . However, since H, C H C H and H, is a connected
closed subgroup of G, it is necessarily a subgroup of the connected component of the identity H, in H. In
particular, h C bh., which shows that h, = . Thus H, C H, both have the same Lie algebra, which implies
that H, is open, hence closed, in H.. Connectedness of H. implies then that H, = H,, i.e., H, is the connected
component of the identity in H.

Summarizing, we have the following inclusions of topological groups H, C H C H C G, where H, is the
connected component of the identity in H. However, H, is also the connected component of the identity in
the topological group H. Indeed, if H' is the connected component in the identity of the topological group
H, then H’ is a closed connected subgroup of H and thus H' C H,. On the other hand, H, C H’, since
H, is a connected topological subgroup of H, and hence H, = H, C H', which shows that H' = H, C H'.
Consequently, we have H, = H’, i.e., H, is the connected component of the identity in H.

Since H, is the connected component of the identity in both H and H, it follows that H is the union of H
and some connected components of H that are disjoint from H. Assume that C' # @ is a connected component
of H satisfying C N H = @. Since C is necessarily open in H, there is some open subset U of G such that
C=UNH. But then @ = CNH =UNHNH =UnN H, which is impossible since U contains points in H.
Thus H and H have the same connected components and are hence equal.

This proves that H is closed in G and that H, is its connected component of the identity.

(ii) We prove that (AdH)z‘hog),1 vy = 1y for all h, € H, and g € G,,. For all £ € b, we have

((Ada)fy, g1 0:€) = (ipto, (Ada)y 11 €) = (Adjos o, Ady 1 €) = (o, Ad 1 €)
- <y0,Adhgl g>

since g € G, and Adh;1 ¢ € bh. In order to show that the right hand side equals (vg, &), which is the statement
in (ii), it suffices to prove that

d
T (10, Adexpn §) =0, forall teR, &neh
because H, is generated by a neighborhood of the identity. We have

d d
dt <V07Adexptn £> <V0, % Adexptn £> = <V07Adexptn[7la€]> = <V07 [naAdexptT) §]> =0

because (uo, [0, h]) = 0 by the polarization condition in Remark 3.3(iii).

(iii) Tt is easy to verify that Ad} ° C h° for all h € H.
To prove the second assertion, we show below that Adj (o +v) —po € h° for any h € H and v € h°. Indeed,
if n € h, we have

(Adj, (po +v) — posn) = (o + v, Adpn) — (o, n) = (o, Adn 1) — (10, )

because Adpn € h and v € h°. Since all elements of H are generated by products of the form gh,, where
g € G, ho € Ho, it suffices to assume that h = gh,. But then the right hand side of the previous identity
equals {(ug, Ady, n) — (1o, n). However, H, is generated by elements of the form exp ¢ for ¢ € h. We have

d d
dt <,U/07 Adexp(t{ > </"‘07 a Adexp(t{) 77> <M07 Adexp (t¢) C 77]>

= <,U/07 [Ca Adexp(t() 77} > 0

by Remark 3.3(iii), since ¢, Adexp(¢c)n € h. This shows that <u0,Adexp(t<) n> = (uo,n), for any 7, ¢ € b, which
finishes the proof. |

Lemma 3.7 (Pukanszky’s condition). (Duval, Elhadad, and Tuynman [1992]) Let G be a Lie group and po € g*.
Let b C g be a real polarization associated to pg and define H as above. Then the following are equivalent:

(l) Ho + bo g Opo ;
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(i) {Adjpo | he H} = po+b°, for allh € H;
(iii) {Adj, po | h € H} is closed in g*.

If any of these equivalent conditions hold, we say that the real polarization by associated to poy € g* satisfies
Pukanszky’s condition.

Proof. The implications (ii) = (i) and (ii) = (iii) are obvious.

We next prove that (iii) = (ii). By Lemma 3.6(iii) we know that Ad} h° C §° and Adj, (uo + b°) C po + h°
for any h € H, which implies Adj o C po + h° for any h € H. Therefore {Adj po | h € H} C po + h° which,
by hypothesis, is closed. We show below that this is also an open set which proves the desired implication.

The closed Lie subgroup H C G acts on g* by the restriction of the G-coadjoint action. Therefore,
{Ady, o | h € H} =: H-pp is diffeomorphic to H/H,,,, where H,,, = HNG,,,. Since the Lie algebra of H,,, equals
{¢ebladfpo =0} =bNgu, = gu,, we have dim(H - po) = dimb — dim g,,, = dim g — dim b = dim(po + b°)
by Remark 3.3(iii). This shows that H - 1 is open in ug + h°, as required.

Finally, we show that (i) = (iii). As in the proof of (iii) = (ii), from Lemma 3.6(iii) we conclude that
Ad}y o C po +8H° for all h € H, ie.,, H - pog C po + h°, which in turn implies that Ady p C po + h° for
any p € H - po and any h € H. Now let p € H - pp. Since pg + h° is obviously closed, it follows that
Ady p € po+bH° C Oy, for any h € H (the second inclusion is the working hypothesis). In particular, p € O,
so the last part of the proof in (iii) = (ii) applies and we get dim(H - p) = dim(uo + h°). Together with
H - p C po + bh°, this shows that H - p is open in pg + h° and hence H - p N H - pg # @, which in turn implies
the existence of some h € H such that p = Adj, uo C H - pio. Thus, H - pg is closed, so (iii) holds. |

Remark 3.8. In Symes [1980], Lie subalgebras h C g satisfying h#o = b and po + h° C 0,, are called
admissible subordinate subalgebras. For exponentially solvable Lie groups, in Symes [1980] there is a concrete
construction of a real polarization satisfying Pukanszky’s condition; we shall verify this in §5.3.

3.2 Pukanszky’s conditions and momentum maps

Below is a reformulation of the results of Duval, Elhadad, and Tuynman [1992] in terms of the setting recalled
in §2.1.

Theorem 3.9 (Pukanszky’s conditions and momentum maps). (Duval, Elhadad, and Tuynman [1992]) Let G
be a Lie group, uo € g*, and denote by O, the coadjoint orbit of uo. Let b C g be a real polarization associated
to po and define H as above. Let v := igpo. Then the following are equivalent:

(i) b verifies Pukanszky’s conditions;
(ii) The reduced momentum map I3 : (T*(G/H),wean — By,) = §* is onto O ;
(iii) The symplectic action of G on T*(G/H) is transitive;

(iv) IR : (T*(G/H),wean — Buy) = (Opy,wo,,) is a symplectic diffeomorphism, where wo,  is the minus
orbit symplectic form, i.e.,

wo,,, (W)(adg p,ady p) = — (u, [§,m)), p €O, &neEg.

Proof. The proof simplifies considerably if one works with the abstract reduced symplectic manifold J Zl (vo)/H
realized as {(g,AdZ (I0+14°)) | g € G} /H (no € g* is an extension of 1y € h* and use (2.18)) instead of the
magnetic cotangent bundle in the statement to which it is symplectomorphic.
(iii) = (ii) is obvious since J'% ([e, ol ) = po-
(iv) = (iii) is obvious.
(i) & (ii). By (2.19) (with 7y = po) it follows that o € rangeJ'Y and hence, again by (2.19), we conclude that
O, C rangeJ}.

If (i) holds, i.e., b satisfies Pukanszky’s condition, we have po +h° C O,,, (see Lemma 3.7(i)) and hence for
any g € G we have Ady(uo +4°) € Ad; O, = O,,, which shows that range J% C O, .

Conversely, assume (ii) holds, which implies, by (2.19), that po + h° C O,,, hence (i).
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(i) = (iv). Assume that b is a real polarization associated to pg satisfying Pukanszky’s condition. By the
equivalence (i) < (ii), it follows that range J'? = O,,,. We will prove first that J7 is injective. Let [g1, Adg, (to+
v)lm, [gg,AdZ1 (o +v2)lg € {(g,Ad; (o + ho)) |ge G} /H, v1,v5 € h°, be such that

Ady, (o + 1) = 35 (g0, Adj, (o +10)] ;) = 3% ([92 Ady, (o + v2)] ) = Ad, (1o + v2).

By Lemma 3.7(ii), there exist hi,ho € H such that po + v1 = Adj, po and g + v2 = Adj,, o, so that from

the relation above we get o = Ad;’;QgQg—lh—l fo, i-e., hagagy *hit € Gy C H (see Definition 3.4(ii)). Therefore
1 1

gggfl € H and the relation above becomes g + v = Ad;g (o + v2). We conclude

g2, Ad, (10 + )]y = [g20 Ay, Ad, s o +v2)]
= (9201 Vg1, Ad;, (1o + 1)), = [91, Ady, (o +11)]

by (2.5) since gog; ' € H, which concludes the proof that J'9 is injective.

Thus, J3? is a smooth bijective map. Since it is an equivariant momentum map, it is Poisson and since
both its domain of definition (T*(G/H),wean — Bu,) and (Op,,wo,, ) are symplectic, it follows that J7 is
a symplectic map. However, any symplectic map is an immersion and since dimO,, = dimg — dimg,, =
2dimg — 2dimb = dim7™*(G/H) by Remark 3.3(iii), we conclude that J7 is a local diffeomorphism, hence a
symplectic diffeomorphism. |

4 The Flaschka transformation is a momentum map

As we shall see in this section, there is a remarkable equivalence relation on coadjoint orbits verifying Pukan-
szky’s condition. The associated quotient space turns out to be the base space G/H of the cotangent bundle
diffeomorphic to the coadjoint orbit, see Theorem 3.9. Such a realization is possible for exponential solvable Lie
algebras, since in this case, there is an explicit construction of real polarization verifying Pukanszky’s condition,
via Vergne’s algorithm, as explained in Symes [1980]. We then define the abstract Flaschka map by following
the construction of Symes [1980] and Kirillov [1974], and show that its definition requires the choice of a smooth
section s,, of the submersion associated to the equivalence relation on the coadjoint orbit. Finally, we prove
the main result of this section, namely that the abstract Flaschka map is the inverse of the reduced momentum
map J7. The choice of the section s,, is equivalent to the choice of the one-form ay,, verifying (2.9) and is
needed to identify the symplectic reduced space with a magnetic cotangent bundle. From this and Theorem
3.9(iv), we obtain the result that the abstract Flaschka map is a symplectic diffeomorphism from the coadjoint
orbit to a magnetic cotangent bundle.

4.1 The Pukanszky homogeneous space G/H

In this paragraph we first review, following Symes [1980], an equivalence relation on coadjoint orbit. This
relation is associated to a real polarization satisfying Pukanszky condition. Then we show that the quotient
space is diffeomorphic to a homogeneous space G/H.

Let G be a Lie group, up € g*, and h(ug) := h C g a real polarization associated to pg and verifying
Pukanszky’s condition. Recall that H,, = H by Lemma 3.6(ii). Let O,, = {Adj uo | g € G} be the coadjoint
orbit containing .

For an arbitrary p = Ad; o € O,,,, define the Lie subalgebra

Moo

b(p) = b (Ady o) == Adg-1 (h(po)) - (4.1)

It easy to check that h(u) is a real polarization associated to p verifying Pukanszky’s condition p+ h(n)° C O,
in Lemma 3.7(1). It is worth noting that the statement in Lemma 3.7(ii) reads

Ad*Hu/f":M“"h(/’é)a where H" := g_nga

Note that the Lie algebra of H* is h(u) + g, = b(p).
Consider the relation ~ on the coadjoint orbit O, defined, for v,y € O, by:

v~ ifandonly if vey+h(y)°. (4.2)
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Note that, for v,y € O,,, Lemma 3.7(ii) implies that
v~y & veAdjy,y, where HY := g 'Hyg, for g € G, satisfying v = Ady po. (4.3)
This is an equivalence relation. The associated quotient space is denoted N, := O,/ ~, with quotient map

To * Opo = Nygy > WMO(/,&) =t [u]~.
In particular, as a subset in O, we have [uo]~ = Ad} po, by (4.3). Note that, for g € G and p € O,,,, we have

[Ad} p] = Adj[p]~ = {Adjv |v e [u.}. (4.4)
Indeed, using (4.3), and defining p := Adj o, we can write
[Ad} po] = Adp p = A1 gy, o = Ady AdGy po = Ad o]~
and hence, if v = Ad} o, we have
[Adz v] = [Ad}g o] = Ady}, (o] = Adj Ad [po] . = Adj [Ad} o] = Ady [v] .-

Theorem 4.1. Let G be a connected Lie group, po € g, and h C g a real polarization associated to py verifying
the Pukanszky condition. Then the map given by

Y:G/H — Ny, Hg=lglg— [V]~:=[Ad; o] _ (4.5)

is a well-defined bijection. The quotient space N, carries a unique smooth manifold structure relative to which
the quotient map m, : Ouy — Ny, 5 a smooth submersion. Moreover, relative to this differentiable structure
on N, , the bijection X is a diffeomorphism.

Proof. Since for any h € H and g € G, we have

[Adj, o] =" Ady Adj o] . ) Ady Ad} Ady a0 = Ady Ady o = [Ad o] .
the map ¥ is well-defined. It is clearly surjective. To show that it is injective, let g1,92 € G, be such that
[Ad;1 po| = [Ad;2 to] . By (4.4), this is equivalent to Ad;lggl[,uo]w = [po]~, that is, Ad;ggl Adj;po =
Ad}; po, because of (4.3). This proves that there exist hy, hg € H, such that hlglgglhgl € G,, C H, and hence
[91] = [92]m-

Let us consider the quotient maps mg g : G — G/H and GGy ' G — G/G,,, which are smooth surjective
submersions. Since, for all g1, g2 € G, we have 7¢ g, (91) = 7,6, (92) = 76,1 (91) = 7G,1(g2), it follows that
the quotient map p,, : G/G, 3 76,6, (9) = mG,u(9) € G/H is smooth (see, e.g., Abraham, Marsden and
Ratiu [1988, Prop. 3.5.21]). Moreover, since Puo © TG,G,y = TG,H is a submersion and GGy is onto, it follows
that p,, is a smooth surjective submersion (see, e.g., Abraham, Marsden and Ratiu [1988, Ex 3.5-5(iv)]). This
implies that 7,, = X o pu, : G/Gpy ~ Oy — Ny, is a smooth surjective submersion which shows that the
manifold structure of N, is the quotient manifold structure induced by 7, (see, e.g., Abraham, Marsden and
Ratiu [1988, Prop. 3.5.21]). [ |

Remark 4.2. (1) From this theorem, and Theorem 2.1, it follows that the action of G on T*N,,, has the form
Yoo f=@F () +C (Vs f)
where ®7 denotes the cotangent lifted action of the right action of G on Ny, given by
0 ([M)-) = [Ad} 0]
The momentum map defined by this action is
IR TNy = 0% IR (V12) = Jean (Vp)2) + @ (V) - (4.6)

Here, C ([V]~, f) :== C([gu, [) and @, ([V]~) := @, ([9]zr), Where [v]~ and [g]g are related by the diffeomor-
phism (4.5).
(2) By the results of Duval, Elhadad, and Tuynman [1992] recalled in §3, we know that

IR (T* Ny, Qean — Buy) = (Opgsw0,,) (4.7)

~

is a symplectic diffeomorphism; recall that we, —is the (—)-orbit symplectic form.
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4.2 Momentum map interpretation of the Flaschka transformation

In this section, we recall the abstract formulation of the Flaschka transformation given by Symes [1980]. To
make this map well defined in general, we need to introduce a smooth section s,, : Ny, — O, C g* of the
surjective submersion 7, : O,y — N,,. Then we show that the momentum map J7 : T*(G/H) = O,, C g*
obtained in §2.1 and §3 is the inverse of the abstract Flaschka map. In the process, we show that there is a a
bijective correspondence between such sections s,, and one-forms Qi g verifying (2.9).

Remark 4.3. Historically, Flaschka (Flaschka [1974a,b]) and Manakov (Manakov [1975]) independently intro-
duced this transformation starting with a cotangent bundle in order to obtain a Lax equation for the Toda
system (Toda [1970]). At the time, the link between Lax equations and Hamiltonian systems on Lie-Poisson
spaces was not known. We have adopted here the definition given in Symes [1980] which defines the Flaschka
transformation as a map from the coadjoint orbit to a cotangent bundle, i.e., it is the inverse of the original
map. The motivation for this definition is based on one of the major challenges in the study of Lie-Poisson
Hamiltonian systems (integrable or not): determine which coadjoint orbits are (magnetic) cotangent bundles
and identify classes of Lie algebras for which the generic coadjoint orbits are (magnetic) cotangent bundles. We
shall give examples of both situations in subsequent sections.

The abstract Flaschka map. The abstract Flaschka map F : O,, — T* N, is defined by its restrictions
F|j,).. to the equivalence classes [u]~ C O,,, that is, by the collection of maps

Fly s [~ = Ty Nyo- (4.8)
Given a section s,, : Ny, — Oy, the map F|j,;_ is, in turn, defined by

<F|[M]~ (S}J«o([:u’]f\/) + U)v U[,u]~> = <Ua €> ) (49)
where £ € g is such that
Ol = Tty (adg 1), 1= s ([1])- (4.10)

Note that the section s,, is used to choose a particular element in the equivalence class [11]~, so that any element
7 € [u]~ can be uniquely written as 7 = s, ([1]~) + o, where o € h(z)°.

Let us show that the map F' is well defined, that is, it does not depend on the choice of £ such that (4.10)
holds.

Suppose that vy, = Tpmy, (adf i) = Tpm,, (adg fi). Since 7, 0 ¢ = ¥ o py,, where ¢ : G/G ., — Oy, is
the diffeomorphism defined by ¥(G,,,9) := Adj po, we have

0= Thamp (adZ—g’ ﬁ) =Thg% (TGuogpNO (Tﬂd’_l(ad;g’ ﬂ))) )
which implies that T, 40y, (Tpy~*(adi_¢ 1)) = 0. Let us compute the kernel of TG, 9Puo- We have
ker (TGILogp/"O) = {TQWG,G;LO (vg) | TGNOgPuo (TgWGyG“O (vg)) = 0}

= {TgﬂG,G,A,O (vg) | Tymg u(vg) = 0}
={Tymc.c,,(n9) | 1 € Huo)}

Therefore, we have
ad; ¢ i = Tg,, o¥ (Tymc.c,, (n9) = Ty(¢ o ma.a,, ) (ng) = Ty Ad* pio(ng).
However, since
Ty Ad” pio(ng) = Te(Ad” po o Ry)(n) = Te(Ady o Ad” po)(n) = Adg ad; po
= ad}ldf1 . Ad; 1o = adjgdf1 a b € TpOy,

we conclude § — & — Adg-1n € gy for some 1 € h(po) and hence § — & € b(n) + gz = b(n). Therefore,
(0,€) = (0,&') since o € h(1)°. So we have shown that the definition does not depend on the choice of £ € g
verifying (4.10).
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The diagram below illustrates the various maps used in the definition of F'. The group G acts on the right
on each of these spaces and all arrows represent G-equivariant maps.

TG, G "
G GGy~ O, (4.11)
\p“oi \Lﬂuo
TG,H
G/H T N;U«O

Momentum map interpretation. In order to give the momentum map interpretation of the abstract
Flaschka transformation, we show that there is a a bijective correspondence between the sections s,,, of m,, and
one-forms a;: ,, verifying (2.9).

Lemma 4.4. Let py € g* and b be a real polarization associated to py and verifying the Pukanszky condition.
Define vy := ipto € b*, where iy : h < g is the inclusion. Then there is a bijective correspondence between the
sections S, of mu, and one-forms o, verifying (2.9), given by

S0 ([1]~) = 9™ o, (9) = i (9], (4.12)

where g € G is such that p = Adj po.

Proof. Let o, € Q'(G) satisfy conditions (2.9) and define s,,([Ad} po]~) := g~ ', (g). Using the diffeo-
morphism (4.5) and the H-invariance of «,,, one verifies that the map s, is well-defined. We will show that
Suo ([Ady po]~) € Ady o + b (Ad;, 1o)° = [Ad} p10]~ C Oy, Indeed, we have the following equivalences:

Iz, (9)) = vo = iy, (9)9™") = vo = igho
> ay,(9)9~" € po + b(po)°
= g ay,(g) € Ad} po + Ad} b(uo)°
= 5, ([Ad} 0] ~) € Ad] o + b (Ad po)”

(4.13)

which shows that Jz(a.,(g)) = v is equivalent to s,, being a section of 7.
Conversely, let s, be a section of m,, and define

Qg (g)(vg) = <95uo ([Ad; :U’U]N) ,’Ug> = <SI~LO ([Ad; /J'O]N) ’g—lvg>,

for any vy, € TyG. We show that «,, is H-invariant. We have

a, (hg)(hvy) = <8Mo ([Ad; Adj, MO]N) ag_lvg>
= (5o ([Ady (o + N]~) g vg), A€ b(po)°
= (5o ([Ad} po]~) , 97 vg) = sy (9) (1)

In the second equality we used Lemma 3.7(ii). In the third equality, we used the fact that Ady A € h (Ad, wo)®.
From the equivalences (4.13) we conclude that Jz(ay,(9)) = vo. |

We now use Lemma 4.4 and Theorem 4.1 to prove the following result.

Theorem 4.5. Let pg € g* and b a real polarization associated to o verifying the Pukanszky condition.
Define vo 1= igpo € h*. Fiz a one-form oy, € QNG verifying the conditions (2.9) and consider the abstract
Flaschka transformation F : O,, — T*(G/H) associated to the section s, = @, o X ~'. Then F is a smooth
diffeomorphism whose inverse is the reduced momentum map associated to the symplectic reduction of T*G by
H at vy, that is,

Fh=J% :T*(G/H) — O,,.

Therefore, F' is a symplectic diffeomorphism relative to the minus coadjoint orbit symplectic form on O, and
the magnetic form ween — By, on T*(G/H), as defined in §2.1.
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Proof. From Theorem 3.9(iv), we know that J}7 is a symplectic diffeomorphism. We shall verify that its
inverse is F'. It suffices to show that J7} o F' = ido,, -
The infinitesimal generator of the G-action on O,,, and N, read, respectively,
o,,(v)=adiv and &n, ([V]~) =T,m,, (adfv)

)

(see diagram (4.11)), so the cotangent lift momentum map is (Jean (V1) &) = (V1o Tomuo (adg v)).
We thus have, on [u]~ C O,,, choosing s, := @, and denoting i := @, ([¢]~),

(IR 0 Fli.) (i+0),6) = (Jean (Fly. (i +0)) + i1, €)
= (Flp (i + ), Tamu, (adg 2)) + (5, €)
= (0,8) + (11, €)
= (i +0,¢).

Thus J¥ o F = ido,, - [ ]

5 The Flaschka transformation for the Toda systems

In this section we discuss the Flaschka transformation for the Toda system (introduced in Toda [1970]) which
was the setting for the original mapping defined independently in Flaschka [1974a,b] and Manakov [1975].
We also present the Flaschka map for the full Lie algebraic generalizations of the Toda flow as proposed by
Bogayavlensky [1976] and Kostant [1979]. In these cases, the magnetic term in the symplectic structure on the
cotangent bundle vanishes. Finally, in order to illustrate the geometric nature of the Flaschka map (in the sense
that it provides canonical variables for all Hamiltonian systems on the coadjoint orbit), we consider free rigid
body systems on the Toda coadjoint orbit as well as the canonical Flaschka variables for these systems by using
the general theory developed earlier.

5.1 Preliminaries

We present the essential background and notation for Lie-Poisson equations on duals of Lie subalgebras and
the classical structure theory of semisimple complex and real split Lie algebras.

Lie-Poisson equations on subalgebras. We begin by recalling various formulas used in the theory of
integrable systems on duals of Lie subalgebras of real semisimple Lie algebras (see, e.g. Ratiu [1980], Reyman
and Semenov-Tian-Shansky [1994], Symes [1980]). Let g be a real Lie algebra admitting an invariant symmetric
bilinear non-degenerate form « : g x g — R. For example, if g© is a complex semisimple Lie algebra, recall that
its (complex valued) Killing form is given by

k(&,m) :==Tr(ad¢oad,), &ne€ gc.

If g is the normal real form of g€ then we choose y := Klgxg- If [ is the compact real form of g® then we choose
v = Im K|
Identify the dual space g* with g using ~. Relative to this pairing, the infinitesimal coadjoint operator is
given by
adf ¢ =—[¢,¢], &Ceu

The Lie-Poisson bracket of F, H € C*°(g) is given by

{F,H}() = £ (& [VF(§), VH(S)])

and the Hamiltonian vector field has the expression

Xu(§) = F& VHE)] = Fadl . &

where VH (&) denotes the gradient of H relative to 7. Thus, a function C' € C*°(g) is is in the center of the
Lie-Poisson algebra of g* = g, i.e., is a Casimir function on g* = g, if and only if [VC((),¢] =0 for all € g.
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Let s and £ be two Lie subalgebras of g and assume that we have the vector space direct sum decomposition
g=50D¢L (5.1)
Denote by w5 : g — s and 7 : g — € the associated projections. We get the natural identifications

s'=thi={¢cgly(&n) =0 met}, E=s":={Ccg|y((0)=0, Voe<s}

Denote by m,1 : g — s+ and mp. : g — € the projections associated to the direct sum g = s+ @ €+.

We now write the Lie-Poisson equations on s* = £L. First, we compute the coadjoint representation
(ads)' : s x £+ — &L of the Lie algebra s on its dual €' in terms of the bracket on g, i.e., the operators
(adﬁ)z 5t =t 5" =t for £ €5. Given &,¢ € s and ) € s* = £+, we have

7 ((ada)fn, ¢) = (1, 1,¢)) = =7 (&1, €) = = (mex (1&,1]), ©),

and hence
(ads)f n = —mes (€, 7)) (5.2)

Second, if h : 5* = £ — R, the functional derivative of h at u € §* = £ relative to the duality pairing between

s and £ given by 7, has the expression
oh

i
where Vh(u) € g is the gradient relative to . Third, from the general theory of Lie-Poisson systems (see, e.g.
Marsden and Ratiu [1999, §10.7]) and (5.2), (5.3), the (F) Lie-Poisson equations on £+ are

7s(Vh(p)), (5.3)

Oupr = £ (ade)y p = Oupr = Fee ([ma(Vh(1). ) (5.4)
where p(t) € €4
Let us compute the Lie-Poisson equations on s* = ¢* in the particular case when the Hamiltonian A is the
restriction to &4 of a Casimir function on g* = g, i.e., [VA((),¢] = 0 for all ¢ € g. Therefore, [75(Vh(¢)),(] =
[VA(C) — me(Vh(C)),¢] = — [me(Vh(C)),¢]. Note that [¢, u] € €L for all £ € € and p € &4, Thus the Lie-Poisson
equations (5.4) on £+ become

Oppp = Frer ([ms(VA(p)), pl) = £ [me(VA (1), 1] -

For example, consider the Hamiltonian h : g* = g — R defined by h(¢) = $7v(¢,¢). We have VA(¢) = ¢
and therefore h is a Casimir function on g*. Its restriction to §* = & gives hence rise to the (F) Lie-Poisson
equations

O =+ [me(n), ], pes =t (5.5)

also knowns as the full Toda equations.

Root space decomposition and real forms. We summarize the relevant facts about semisimple Lie alge-
bras that will be used later on. We fix terminology, conventions, and notation, since these are not uniform in the
literature. Our sources are Cahn [1984], Humphreys [1980], Knapp [2002], and Samelson [1989] (even though
they do not follow the same conventions; for example the Cartan matrix in Knapp [2002] is the transpose of
the one in Humphreys [1980] while Cahn [1984] tends to prefer the compact real form associated to a Dynkin
diagram). We follow the conventions in Humphreys [1980] for the Dynkin diagrams and the Cartan matrices.
Our goal here is to bring all this background information, which is necessary for the remaining developments in
this paper, together in a uniform fashion.

Let g© be a complex semisimple Lie algebra and select a Cartan subalgebra ¢©. Let r := dimc ¢© be the
rank of the Lie algebra. The Killing form x is nondegenerate on ¢. For every A € (¢©)” (the complex dual of
¢®) there exists a unique element ¢, € ¢© such that (\,n) = x(tx,7), for all € ¢©, where (,) : (cc)* x ¢ —C
is the natural duality pairing. Thus we get a symmetric bilinear form on (CC)*, also denoted by x, namely
KA, ) = K(tx, ty).

For a € (¢©)7, write g5 = {¢ € ¢ | ad, & = (a,n) &, Y € ¢}. Welet A = {a € () a0, gS # {0}}
be the space of roots. Then A is a finite subset of (cc)*, 0¢ A, spanc A = (c(c)*, and if both «, za € A for some
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z € C then z = +1 (the only multiples of a root a which are also roots are +«). In addition, if o, 8 € A, then
B — 2B a)a € A where 228:% ¢ 7 are the Cartan integers and k(B,a), k(a,a) € Q. For all @ € A, we have

/{(a ) “k(a,Q)

dim¢ ga =1; ga is the a-root space. The Q-vector space spang A is a Q-subspace of (cc)* (viewed as a Q-vector
space) and dimg spang A = r. In addition, & : spang A x spang A — Q is positive definite. This implies that
(spanR A =R ®q spang A, /*6) is a real inner product space of real dimension r» whose complexification is (CC)*.

Choose a fundamental set of roots, or a base, Il = {aq, ....,a,} of A, i.e., Il is a basis of spany A (and hence
also of the complex vector space (cc)*) such that any o € A can be written as o = 22:1 m;a;, where m; € Z
and either all m; > 0, or all m; < 0. Since the only roots having only one m;, = 1 and all other m; = 0,
i # g, are the elements of II, the elements of the base II are also called simple roots. If & = >"._, m;«;, the
number Y., m; € Z is the height of the root a € A. Thus the only roots of height one are the simple roots.
If a, 8 €I, @ # B, then k(« B)<Oanda—B¢A

Denote by Ay := {a =3 mia; € Amy = O7 Vi=1,... ,r} the subsets of positive, resp. negative roots.

We have A_ = —A, and the corresponding root space decomposition of g& (a vector space direct sum) is
o“=co J] o, (5.6)
aEA L
The spaces g5 and g% are k-orthogonal unless 3 = —a; ¢* is s-orthogonal to all g§ and m|gg xg¢ = 0. In addition,

K/(nlan) = Z <Oé7’l71> <aan2>7 for all n, N2 € C(C-
a€A

If o € A, the only multiples of o which are roots are +a. If o, 8, + 8 € A, then [ga,gﬁ} = ga+5 and g©

generated as a Lie algebra by the root spaces {gg | a € A}; dim¢ [gg7 gga] =1 and a|[ o, does not vanish
identically.

Given a € A, define h,, := K(fj‘}a) € ¢© and let h; := hy, € €. For every &, € g, £, # 0, there exists a
unique ¢, € g€, such that [£,,€ o] = ha. If @, 8 € A, the Cartan integers have the alternate expressions

2k(8, a) k(5,B)
k(a, a) 2

= (B, ha) = K(hoshp) €Z

and 8 — (B, hqe) o € A.
If a,8 € A, B # +a, let p,g € N, p,q > 0, be the largest integers for which 8 — pa, 8 + gao € A. Then
{B+ja€eA|j=—p,...,q} is the a-string through B; it is uninterrupted,

pP—q= <B7h0z> = Oai17:|:2a :t37 (57)
and contains at most four roots. In addition, at most two root lengths occur in this string and if ¢ > 1, then

kla+ B,a+ 8)
w(B,B)

Fix a Chevalley basis of g€ associated to II, i.e., a basis {hi, ea|i=1,.,r a €A, e4 € ga} of g€ satisfying
the additional conditions

ptl=gq

o [eq, 0] =hy foralla e A

o if @,0,a+ 3 € A, then the structure constants N, g defined by [eqn,es] = Ny geats, satisfy Ny g =
~N-a,-p

The structure constants relative to the Chevalley basis necessarily lie in Z and h,, is a Z-linear combination of
hi,...,h.. Moreover, we have

26(a, B) 2 2 _ wla+B,a+p)

[hweﬁ] = H(Oc,oz) €a ﬁ(eaae—a) = m ) Noz,B q(p+ 1) H(ﬁ,ﬁ) ; (5'8)

where 8 — pa, ..., + qa is the a-string through S. In addition,

¢g=0=[eq,e3] =0 and ¢>1= [eq,e5] =£(p+1)eass, ie., Niﬁ =(p+ 1)2. (5.9)
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The Chevalley basis is not unique but there is little room to change it. Once the fundamental set of roots II
of A is chosen, the basis {h,...,h,} of ¢* is completely determined. The e, can be multiplied with arbitrary
non-zero constants ¢, € C, as long as they satisfy the conditions coc_o = 1 and cocg = £coyp for any
a,B,a+ 3 € A. The signs £ in (5.9) are also determined up to multiplication of N, 3 = £(p + 1) by the
factor eqegeq+p, where e, = £1 is an arbitrary coefficient of e, subject to the condition e_, = &, for all
a,fB,a+ p € A.

Note that for any basis {hi, e li=1,..,1, a €A e, € ga} of g€ (in particular, a Chevalley basis), the
root space decomposition (5.6) can be written as

g© =spanc{hi,...,h,} ® H Cleq+e-a)- (5.10)

aEA L
The Cartan matriz associated to g® is, by definition, the matrix in GL(r,Z) with entries

26y, Ko, o
YRR

The Cartan matrix depends only on the ordering of the simple roots {a1,...,a.} = II; it does not depend on
the base II. Note that Cj; = 2, Cy; <0, Cj; = 0 if and only if Cj; = 0, for all ¢,57 = 1,...,r, ¢ # j, and if

D := diag (x//-@(oq, 1), ... \/ Ko, ozT)), then

DleD = |2k N
[ (\/Ki(ai»ai) \/’ﬁ%‘»%‘))]

is a symmetric positive definite r x r matrix. Fix the standard basis given by the column vectors {(1,0,...,0)7,
...,(0,...,0,1)T} C C" in which the Cartan matrix C has the entries (5.11). The dual basis is then formed by
the row vectors {(1,0,...,0),...,(0,...,0,1)} € (C")*. The simple roots of g*, expanded in this dual basis of
(Cy* = (CC)*, are the row vectors of C.

There is a simple algorithm that determines all the roots of g* from the Cartan matrix and the identity
(5.7). Of course, it suffices to construct the positive roots. Start with a height one root «;, i.e., a simple root.
Then necessarily p = 0 in the oj-string through o;, where a; is another simple root, since o; — o is never a
root. Thus, by (5.7), we get

= _2/{(0[170@) —
K(ay, o)
So, in order that this string exist, which means that at least o; + ; € A, we must have Cj; # 0. If this
happens, then a; + a; equals the sum of the it" and j** row of C. If not, then «; + a; ¢ A. This determines a
height two root. One proceeds now in the same way for all 7 to obtain all height two roots. Assume, recursively,

that 8 =>""_, mjay, m; €Z,is a height k:=3I_,m; > 0 positive root. But then, for o; a simple root, the

fragment of the string 5,8 — .. — pa; is already known, i.e., p > 0 is determined. By (5.7),
26(8, a ) - 2k( al,aJ
—_— = — 47 = m; m
pP—q /i(ozj,ozj) ; i a]’aj Z iU

which shows that if 8+ o € A, then ¢ = p — Y_._, m;C;; > 0. If this happens, then one adds the jth row of
C' to the root 8 expressed in the dual basis associated to the matrix representation (5.11) to obtain the root
B+ «a;. If not, then 5+ a; ¢ A. One proceeds to do this for all roots of height k and obtains the roots of height
kE+1.

Fix a Chevalley basis {h;,eq | i = 1,...,7, a € A} of g€. The normal real form of g* is the real Lie algebra
g :=spang{h;,eq | i =1,...,7, a € A}. Then ¢ := spang{h; | i = 1,...,r} is a real Cartan subalgebra of g and
we have the root space decomposition

g=c¢® H (go D g—a) = spang{hi,..., h,} & H R(eq+€-a), (5.12)

acAy aE€A

where g, = Re,, for all &« € A, i.e., the real Lie algebra g is split. In addition, the complexification of g is g€,
ie., g€ =g®r C=gaigand, similarly, <€ = ¢®r C = ¢ P ic.
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It is useful to think of g as the fixed point set of an anticomplex involution on g&. A map s : g — g
a complex (respectively anticomplex) Lie algebra involution if s o 3c = id, (£ + 1) = #(§) + »(n), »([¢, 77])
[5(€), 5¢(n)], and »(2€) = z5(€) (respectively s(2€) = z3(€)) for all £,n € g© and 2z € C. Define the anticomplex
Lie algebra involution 7 : g¢ — g* by specifying its values on the basis {hi,exq | i = 1,...,7, @ € AL} of
g%, namely, 7(h;) = h;, T(e+a) = €4a, foralli = 1,...,7, a € Ay, and then extend it to g© by anticomplex
linearity. Then g = {¢ € g© | 7(¢) = €} and ¢ = {n € < | 7(n) = n}. For example, if g* = sl(r + 1,C), then the
anticomplex involution 7 defined above is given by 7(¢) = £ for all £ € sl(r + 1,C) and hence g = sl(r + 1,R),
as expected.

There are two important real vector space decompositions of g€ and g, respectively. As usual, fix a Chevalley
basis {hi,eq | i = 1,...,7, a € A} of g€. Define the complex nilpotent Lie subalgebras n§ := [Haea, Ceq of gC.
Then b(zct = ng @ ¢ are Borel subalgebras, i.e., maximal solvable Lie subalgebras of g€. Define the compact real
form of g€ by

[:= lzajh + ) walea—e—a)+i D Yalea+e—a) | aj,Ta,ya ER 3 (5.13)

a€EA L a€EA L

[ is a real compact Lie algebra (i.e., the Killing form s is negative definite on [), ic is its Cartan subalgebra,
[®r C = g% and [ is the fixed point set of the anticomplex involution o : g¢ — g€ given on the Chevalley
basis by o(h;) = —h; and o(e,) = —e_, for all j = 1,...,r, o € A. For example, if g© = sl(r + 1,C), then
o(§) = —(&)7 for all £ € sl(r +1,C), and [ = su(r + 1).

For an arbitrary complex Lie algebra a denote by ag the same Lie algebra but thought of as a real Lie algebra;
thus, dim ag = 2dimc a. Thus, we have the vector space direct sum decomposition (the Iwasawa decomposition
of g© viewed as a real Lie algebra)

(QC)R =locd (n(E)R' (5.14)

The projections associated to this direct sum are:

Uy ((ak + lbk)hk + (.’E ot iyfa)efoz + (1'04 + iya)ea)

= ibghg + Tala — €—a) + 1Ya(a + €_a) (5.15)
e ((a + ibg)hg + (T—o +1Y—a)e—a + (Ta + Ya)ea) = arhy (5.16)
T(ne), ((ar +1bp )b + (X —o +1Y—a)e—a + (Ta + 1Ya)ea)

= ((Ta +2-0) = i(Ya = Y-a)) €—a (5.17)

where k=1,...,r, « € Ay, ak, bk, To, Yo € R.
The imaginary part of the Killing form of g%, i.e., Ims : (g%)r x (§)r — R, is a nondegenerate palrmg
by which we identify the dual ((gC)R)* with (g%)g. Wlth this identification, the dual space to ¢ @ ( )R is

identified with [° = [+ = [ and the dual space to [ with (c (n‘E)R)" = (c ® (nf)R)L =cd (nf)R. Thus we

have
(@°)R) =@ )r=tece (),

In addition, the imaginary part Im & of the Killing form is a real symmetric nondegenerate invariant bilinear
form on (g%),, Imk(I,1) = Imrk (¢ & (n), ,c® (n€),) = 0 and hence [ and ¢ & (n®), are dual to each other
relative to Imk;, i.e., [* = ¢® (n€ )., an isomorphism of real vector spaces.

The anticomplex Lie algebra involutions ¢ and 7 commute and hence oo7 is a complex Lie algebra involution.
Its fixed point-set coincides with the complexification of the compact normal Lie algebra € := [Ng. For example,
if g¢ = sl(r +1,C), then (0 07)(¢) = —¢T so that its fixed point set is so(r + 1, C) which is the complexification
of so(r + 1,R) =sl(r + 1,R) Nsu(r + 1).

Next, we turn to the Iwasawa decomposition of g. Define the real nilpotent Lie subalgebrasny := [] . A, Req
of g. Then by :=ny & ¢ are Borel subalgebras, i.e., maximal solvable Lie subalgebras of g. We have the direct
sum (Iwasawa decomposition of the real normal form g of g©)

g=b_dt=n_dcpt (5.18)
This direct sum induces a decomposition of the dual

gt =g="btaot
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where g* is identified with g via the real valued symmetric invariant nondegenerate bilinear form &|gxg4, the
orthogonal spaces are also relative to x|gx4, and

bo= J] Rea® ][R =06Ng t= J] Rlea—e-a)=1INg
aEA i=1 aEA
= o (5.19)
bl = J] Re, b* =et =[[R @ ] Riea+e_a)
aEA =1 a€EAL

The projections associated to these direct sum decompositions are

To_ (Ckhk + an€o + a—n_n) = chy + (aq +a_q)e—_q (
Te(ckhy + anla + a—ne_o) = an(eq — e—q) (

s (Ckhk + anCa + a_a_o) = ckhi + an(en + €_4) (5.22
) (

L (Chk + aaa + A_nl_q (a—q — Q)€

where k =1,...,r,a € Ay, and ¢, aq,a_o € R. Note that while (n‘E)R
cP (n‘E)R # (b%)R since (bC)g contains the imaginary part of the Cartan algebra cC.

Since the Lie algebra is semisimple, we have the isomorphisms g ~ ady = Derg, that is, the ideal ady :=
{ade | £ € g} of inner derivations on g coincides with the Lie algebra Der g of all derivations on g. Therefore,
the connected Lie group with Lie algebra g is G := I(g) := {e¢ | ¢ € g}, the connected component of the Lie
group of all Lie algebra automorphisms A(g) of g. An automorphism of the root space A is, by definition, a linear

automorphism ¢ : ¢* — ¢* such that ¢(A) = A. This implies that :Eig;i%z;g = Zggzg for any o, 3 € A. Let

A(M) := {¢ automorphism of A | ¢(II) = II}; this is a subgroup of the automorphism group of A isomorphic
to the automorphism group of the Dynkin diagram. The exact sequence of group homomorphisms

is a nilpotent Lie sub algebra of (gC)R,

1—1I(g) — A(g) — A1) — 1

splits, i.e., there is a group homomorphism section A(IT) — A(g). For the Dynkin diagrams A, B,., C,, Ga,
F4, E7, Eg, we have A(II) = {1}. For the Dynkin diagrams A, with » > 2, D, with » > 5, and Eg, we have
A(IT) = Z/2Z. Finally, the Dynkin diagram D4 has A(II) = &3, the group of permutations of three elements.
The exponential map exp : g — G = I(g) is given by exp& = e®¢. Let B_ := {e®¢ | ( € b_} C G be the
connected Lie subgroup with Lie algebra b_. The coadjoint action of the Lie group B_ on the dual b* = £+
of its Lie algebra b_, expressed in terms of the Lie group structure of G via the pairing defined by the Killing
form k, is given by
(Adp )iy =mei (Ady-1 ), be B, peb* =th (5.24)

Indeed, for any n € b_ we have
K ((AdB_)Zu, 77) =k (1, Adp 1) = K (Ady-1 1, 1) = K (Ter (Adp—1 1) 1) -

5.2 The real split normal form Toda equations on a coadjoint orbit

Fix a Chevalley basis of g* and work with the Iwasawa decomposition (5.18) of the normal real form g of g,
i.e., in the decomposition (5.1) we take s = b_ and v = &, the Killing form of g. Using the same notations as
before, we consider the element

Ho = Z (elli + 6—041‘,) €b” = EJ_~ (525)

a,; €11

We have the following result due to Kostant [1979] for a different representation of the Jacobi orbit.

Theorem 5.1. The B_-coadjoint orbit of o in b* s the 2r-dimensional manifold

Oy = {ZcihiJr Z ai(eq; +€—0;)| i ER, a; >0, Vi= 1,...,r}.

=1 a,; €11
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Proof. Let p € b* be an element of the form pu=._, ¢;h; + Zaiel‘l ai(eq; +€—a,;), with a; >0, =1,..,r
We shall show that p € O,,, by constructing an element b € B_ such that (Adgf)z,u = pp. Let A := {e™e | € €
¢} C B_ be the Lie group associated to the Cartan subalgebra c.

Consider the linear system

Z)\ a;, hi) =loga;, fori=1,.. r. (5.26)

Since the matrix of the system is the Cartan matrix of g, it is invertible and hence this system has a unique
solution Ay, ..., A\,. We define £ :=>""_, A\jh; € cand h:=exp € A.

Jj=1
We now choose 1 € n_ such that n = — Y _7_, ¢;e_q, + ¢, where ¢ € [n_,n_] is arbitrary, and define

b:=hexpne B_

which implies

24
(Adp_ )b 1 1o (524) el (Adpexpn tt0) = Tet (Adp Adexpp flo) = e (eadﬁead”uo) )
We observe that
N o 1 T
Yig =Y 71 (ady Vo = po + [0, o] + pr = o+ > _ cihi + p1,
k=0 i=1

where p; € n_ and in the last equality we used

r

77 MO Zcze—ou + C Z €a; + e—ozj = - Z C; [e—amea] +p2 = chh =+ P2,

ij=1

where p € n_. We now compute e*deddnyy = eade (g + 21:1 cih; + p1). Since & = 22:1 Ajh; € ¢, we

have e*dce_,, = Y77, %adlg €a; = P4 EM_, > ooy %ad]g p1 =: ps € n_, so, using the identity [{,eqn,] =

Yz Ajlhgsea,] = 30521 Aj (i, hy) ea, (.29 (log a;)eq,, we get

edde Z(eai +e_q, + cih; + /)1) = Z <Z E adg €q,; T+ Z A adE €_q; +¢i Z A ad£ h; + Z i adg p1>

i=1 i=1 \k=1 = k=1 k=1
T oo 1 T T o0 1
— k ) — adk ,
- ZZ kl adZ;:mhj Cai TPt ZClZZ k! ady;p, hi + ps
i=1 k=1 i=1  j=1k=1

T

T
:Z eai'i_ZAj (€as»r j) €a; + 2'22)\;)\ ;s hj) (€ass i) €a; + -+ | 4 cihi + pa + ps

=1 Jj=1 Jj=11=1
r .
— Z (e j=1 Aj <eai7hj>6ai + Cihi —+ P4 + p5>
i=1

(eshi + €50, + s

(cihi + aseq,) + ps3,

i=1
i=1
where ps := ps + ps € n_. Therefore,

. 5.22)
(Adp )f_ipo =D mer (cihi + aiea, + p3) 2 D (cihi+ai (ea, +€-a,) = e (5.27)

i=1 i=1

We have thus shown that any element of the form p = >"\_, ¢;h; +2a,em @il€a; te—a,), witha; > 0,i=1,...,7
is in the coadjoint orbit of pg.
Conversely, the same computation shows that any element in O, has this form. |
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For p € O, we have

(5.21)
me(p) =Y ailea, —e—a,);

a,; €11

so that the (—) Lie-Poisson equations (5.5) on O, C ¢4 recover the Toda lattice equations on semisimple Lie
algebras in standard notation (L = p and P = me(p)):

OL=[P,L, L=Y chi+ Y ailea, +e a,), P=Y_ ailea, — e q,) (5.28)
i=1

a; €11 ag €Il

The Hamiltonian, evaluated on O,,, is

CiCi‘C' 2
h(p) = im(u,u) = Z .J £ Za?TAQ. (5.29)

We close this section by explicitly computing the Toda equations (5.28) in the coordinates given by the
choice of the base IT of A. We have

[P, L] = Z ai(€a; — €-a;), chhj + Z aj(€a; +e—ay;)
j=1

a; eIl OLjEH
T
— Z Zaicj [ea; — €—ays hj] + Z Z a;a; [em —€_a;€a; T e_aj]
a; €Il j=1 a; €11 ajEH
Since 20 ) 2n( )
(5.8) k(ay, oy k(aj, —ay (5.11)
hil—=le_g, hi] = ———L"Le, + ——L——Le =" —Cj; . o
[ea%, ]] [e s ]} n(aj,ozj) a; H(aj,ozj) € ij (em—ﬁ-e Oéz)

and, using the properties of the Chevalley basis, we get

E E : i [em — € ;s Ca; T 6—0‘1‘]

a; €Il a; €Il
= a?feq, — € €a; +€—a,| + aia; [eq, — € €a;, +€—a,]
- 7 (673 — Q) YOy —Q (2l (67} — Q0 (th —Ot]'
a,; €11 ai7éaj€n

T
= 2d}h;.
i=1
Indeed, the second term vanishes, because it equals

Z aia; ([eawe%'] + [eawe—%‘} - [e—awe%‘] - [e_ai,e_aj]) =0;
a;Fog €11

the second and third summands vanish since o; — a; is not a root and the sum of the first and last summands
is [eai,eaj} — [e_ai,e_aj] = Naiﬂjeaﬁa? — N_a“_aje_at_aj = Nahaj (eaﬁaj + e_ai_aj) and hence

E : i@ Na; o, (eaiJraj +e*az‘*0ﬁ)

aﬁéajel'[
= E aiajNai,aj (eai-&-aj + e—CE»;—Oéj) + E a’ia’jNCEi,Oéj (eai—i-aj + e—()(i—aj) = O
i<j i>j
because Nu, o; = —Na,,a;- Thus, the Toda equations on 0, are

éi = 20412, C.LIL' = —a; Z(Jijcj, 1= 1, Y (530)
j=1
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5.3 Real polarization and Flaschka map

We continue to work with the chosen Chevalley basis of g©. Let us show that (B_),, = exp[n_,n_] and therefore
(b-)u, = [n—,n_]. Take b € B_ such that (AdB)Zuo = 9. We can write b = hexpn, where n € n_ and h € A.
Using the same notations and computations as in Lemma 5.1, we conclude from (5.27) that

r

Z (cihi + ai (€a; +€—a;)) = Z (ea +e—a)-

i=1 aEA L

Therefore, ¢; = 0 and a; = 1 for all ¢ = 1,...;7. This shows that b € exp[n_,n_].

The nilpotent Lie subalgebra n_ = Za€A+ Re_,, is a real polarization associated to uo (so we will work
from now on with h(po) = h = n_ in Definition 3.2 and §4.1). Indeed, the conditions in Remark 3.3(iii) are
satisfied and (AdB)J(rB Y e = e™n-min_ = n_. We have n® = ¢ (remember that the annihilator is taken

o

in b_). The connected subgroup H, in Definition 3.4(i) with Lie algebra n_ is H, = N_ = expn_, the lower
unipotent group. Therefore, the group H in Definition 3.4(ii) is, in this case, H = H,(B_),, = N_. The real
polarization n_ satisfies the Pukanszky condition in Lemma 3.7(i) since pg + ¢ C Oy, from Lemma 5.1.

Since Adp_n_ = ¢™-n_ = n_ it follows that h(u) = h(ug) = n_, for all u € O,, (see (4.1) for the
notation). Therefore, the equivalence relation (4.2) is in this case: p ~ v if and only if 4 — v € n® = ¢ if and
only if the coefficients of e,, of i and v coincide. Therefore, we have the diffeomorphism

T

O/L[)/ ~ — R, ) [.u“}’\/ = chh7 + Zai(eai + 6—Ozi) = (a17---7ar)'

=1 i=1 ~

Recall that 7, : Oy 2 = mu (1) =: [#]~ € Ny, denotes the quotient projection.

In order to define the Flaschka map F': O,, — T*R’,, we need to fix a section s,, : R}, — O, (see (4.9)).
We will choose s, (at,...,ar) := >.i_; ai(€a; + €_q;). From (4.10), given (vy,...,v,) € R", we need to find
¢ € b_ such that Tﬂﬂo((adbf)gﬂ) = (V1,0 vp). For £ =30 &hyand =Y ._; a;(eq, + €_q,), we have

_(5.2)
(adb,)z.u = —Tgl E ,U' Z gja7 ij eoz +e_q )

7,7=1

where [C;;] is the Cartan matrix of g€, and hence we have

T?T#O ((adbf)zﬂ) =1|ay,..,a-,—a Zlfjclj, veey — Qi Zlfjcrj
J= J=

We choose &1, ..., & as the unique solution of the linear system Z;Zl §iCij = —o+. For o = >y cih; € ¢ and
using (4.10), we have

T

<F|[#]~(ﬂ+o—>7 (U17"'7v7‘)> = 5(075) = Z czf] hwh Z Cz Oéz Oéz) CZ]

1,j=1 4,5=1

:_E Cz )
auaz az

i=1

so we proved the following statement.

Proposition 5.2. The Flaschka map F': O,y — TR is given by

T T
2 C1 2 Cr
F il illa, —ay = sy Ay — ey, — — 1, 5.31
(;c —i—;a(e e l)> <a1 ol 4 v |2 m) (5.31)

where |o;|? = k(ay, ;). The inverse is

1 4 \Oéi|2ui7)i .
F7 U, ey Upy U1, ey Uy) = — Z Thi + Zui(eai +e_q,) (5.32)
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5.4 Momentum maps and symplectic structures

The goal of this section is to prove that the B_- coadjoint orbit O, given in Theorem 5.1 is symplectically
diffeomorphic to the standard (i.e., zero magnetic term) cotangent bundle T*R’, = T*(B_/N_).

Lemma 5.3. Consider the section s,, = a,, : Rl — O, used above in the definition of the Flaschka map F,
that is,

,
Qy, (a1, ...,a,) = Zai (eq; +€—q;)-
i=1

Let o, € QY(B_) be the associated one-form given by au,(b) := ba,, ([(AdB,)lMO} ) Then day,, = 0 and
hence By, =0 (in Theorem 3.9).
Proof. Let £,1 € b_ and denote by ¢&, n” the associated left invariant vector fields on B_. We have

d (o, (€1) 1)) = 5

d Q T
% Y K (Oéyo (ﬂ'/t() ((AdB, )b exp(sn)luo))7 E)

= & (7@ © 7o) ((ads )} (Ad )} 0). )

(5.2)

(aw, (€5) (bexp(ne))

e=0

-k ((alfo o 77/10)(71—?1- ([777 :U’]))v 5) >

where we denoted p := (Adp_ )2: 1o and used the linearity of the map

(@yy © Tpo) (Z cihi + a;(eq, + eai)> = Z ai(eq; +€—a;) (5.33)
i=1

i=1

when regarded as a map on b* = &+. Denoting £ = Y7, @ih; + > ;1 &e—a, +E € b and np = >, yihi +
> i1 Mi€—a, + 1 € b_, where £,7] € [n_,n_], and using the properties of the Chevalley basis, we have

WEL([T]a ,U]) = - Znia‘ihi + Z Yiay <aja hl> (eOtj + e—Otj)? (534)
=1

ij=1

so that

d (OZVo (gL)) nL(b) = —K ((auo o Wﬂo)(WEL([n7ﬂ]))7§) = — Z K (yiaj <aj7 h7,> (eaj + efaj)yf)
= — Z yiajgj <C¥j, hz> K (eajvefaj) .

We also compute

Sl == winj o, hi)e—a, + > vi&j (g, hi)ea, + ¢, C€[n,n_]

ij=1 i.j=1
= zr:l(yigj —xin;) (o, hi) e—a, + ¢,
so that Ny
() ([€5,1%]) () = (@, 0 ) (1), [€,1)) "2 Z a5 (i€ — wa1;) {01, ha) (eary s o)
and we get :

dov, (€5, 0") = d (aw, (n")) €8 — d (0w, (€7)) 0" — au, ([€5,07]) =0,
as stated. |
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Using the same notations as above, the (—)-orbit symplectic form on O, is

w0, (1) ((ado_) s (ads ) 1) = —(1s, €, 1))
2

e (5.35)

S Z a;j(yi&j — xing) (aj, hi) —

1
ij=1

where we used (5.8).
Using formula (5.32), we compute the push-forward of wo,, to T*RY as follows.

(F*wouo)(ul, ey Uy U1y ey V) (((5u17 ey 00, (U, .. gvr))
= wouo (F_l(ulv ~'~7v7‘)) (T(ul,...,vT)F_l((sula “wévr)vT(ul,...,vT)F_l(gulv ...,5’[%«))

- Q5 Quivi
= Wo,, (Z <_||2hi + ui(eai + eai)))

. |ail?
- (0uv; + uidvi )by + oug(en; +e—a;) | s
i=1

T i 2 B _ -
(_ |0621| (5Uivi + Uai(S’Uz‘)hi + 5%‘(6% + e—m))) .
i=1
From formula (5.34), we deduce that the vectors above are of the form (adbf)g,u, (adbf):gu, respectively, if
E=>_wihi+&e o, +& n=2"1_  Yihi + mie_a, + 17, where £,7 € [n_,n_] and
o

1y
gj o 2Uj

loy? = <
(Ou;vj + u;6v;) nj = = (Bujv; + u;6v))
J

ZCijZ = 5”] ZCjzyz = 5uj

Uj

(5.36)

With this choice, the expression above becomes

r 2 _ _ 5 . -
- </J’7 [ga 77]> = - Z m%/i(eamefai)(éuiavi - 5”7,6“*2) (:8) - Z(5u25v2 - (51)1'(5114'),

i=1 =1

proving that
T
Fuwo,, = Z du; N dv;,

which is the canonical symplectic form on T*R’, written in the Darboux coordinates u;,v;. If one wants to
identify the orbit O,, with T*R", the following symplectic diffeomorphism

ET'RY S (ur, ooy Upy V1500, 0) —
(¢1 :==loguq,...,q =logu,,p1 = wiv1,...,pr = upv,) € T*R" (5.37)

produces Darboux coordinates, i.e., (2o F).wo, = >-i_,dg; A dp;. The inverse of (5.37) has the expression
w, =€t v, =pe i g=1...,r

Theorem 5.4. The map Eo F : O,, — T*R" given by (5.531) and (5.37) is a symplectic diffeomorphism
between the coadjoint orbit O, endowed with the (—)-orbit symplectic form (5.35) and the canonical phase
space (T*R"™, Y"1 dg; A dp;).

Remark 5.5. When g = sl(r 4+ 1,R), the map (Eo F)~! : T*R" — O,,, is the original Flaschka transformation
if the total linear momentum of the Toda system is set equal to zero.

In terms of the variables (g;, p;), the Hamiltonian (5.29) reads

hai- i) = ZPZ Cigpylas|” +Z€2% szpa i, aj +Z:embz BN
3

1]1 'LJl
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We now change variables to rewrite the first term in the classical form 1 Z?zl p3.

The 7 x r matrix K;; = k(a;, ;) = 1Cyj|a;]?, where C := [Cy;] is the Cartan matrix, is positive definite
and therefore we can form its square root vV K—!. (The list of the matrices K for all simple Lie algebra is given
in the appendix.) We define the symplectic change of variables

(q,p) € T*R" — (Q,P) := (VK-1q,VKp) € T*R"

obtained by cotangent-lift of the linear map q — v K~1q. In the new variables, the Toda Hamiltonian reads
1 < . 2
MQ,P) ==Y P? 2(VEQ): )
(Q ’ ) 2 ; 7 + ; e |ai‘2

This is one possible form of the generalized Toda system associated to a semisimple Lie algebra, as presented
in Kostant [1979, formula (0.1.7)].

5.5 The Toda equations on compact real forms

The Toda system has a formulation using the Iwasawa decomposition (5.14) of g©, i.e., (gC)R =1dcd (n(E)R,
where the phase space is a coadjoint orbit of the real Lie subgroup of G¢ whose real Lie algebra is ¢ ® (n(g) R
As we shall see, the equations of motion are identical. This formulation of the Toda system has been used
before in Bloch, Flaschka, and Ratiu [1990] and it admits an infinite dimensional analogue in the study of the
dispersionless Toda PDE, as will be shown later.

The Toda orbit in the compact real form. In the general theory presented at the beginning of Section
5.1, we take the decomposition (5.14), i.e., (gC)R =[DcD (n‘g)R, and for -y the real non-degenerate symmetric

bilinear form Imx : (g%)r x (g%)r — R that identifies (gC)R with its dual. Let
B_={e|teca(nt),}

be the connected Lie group with Lie algebra ¢ @ (n€),. We note that b_ =c@n_ C c® (nf), < (b%)g and
that B_ C #_.

The dual I* : (¢ @ (nC)g)* = [ — (b_)* = £+ of the Lie algebra inclusion I : b_ = c®n_ — ¢ @ (n®)g given
by

T

T* Ziskhk—i— Z (Jca(ea—e,a)—i—iya(ea—i—e,a))

k=1 aEAy

= skhit+ D Yalea + e a)- (5.38)
k=1

a€A

is a surjective linear Poisson map I* : [ — ¢+ .
Given any vy € (c S (n(E)R)* = [, the #_-coadjoint orbit is

Oy, = {(Adggf)Zz/o Ibe %_} — {m(Ady o) |bE B}
In particular, the phase space of the Toda system is the orbit through
voi= Y ilea, +ea,) € (c® (nE)p)" =1 (5.39)
ap €Il
N
Note that I*(vg) = po € t—.

In the following theorem, we endow the coadjoint orbits O, , O, with their respective minus orbit symplectic
forms.
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Theorem 5.6. The B_-coadjoint orbit of vy in [ is

0,/0 = {lekhk + Z Rki(eak + e—ak)

k=1 ap€ell

sk €R, R >0, VkZl,...,’l‘}. (5.40)

In addition, I*|Ou0 1 Oy = Oy 15 a symplectic diffeomorphism.

Remark 5.7. More generally, Bloch, Flaschka, and Ratiu [1996] consider coadjoint orbits of elements of the

form vy =, o Ok(eeq, — e %e_y,), where 6; € {0,1}. In this case

O,, = {Ziskhk + Z S Rri(e%%eq, —e e )

i=k ap€ll

sk € R, Rk>07v1€=1,...,7’}.

Proof. The proof is done in several steps.

Step 1. The following formula holds
Oyo = {71'[ Ady vy | be B_} . (541)

The key point of this formula is that it is enough to consider the coadjoint action of B_ on v instead of the
larger subgroup %_.
Since any element in Z_ is of the form e®dé+n where £ € b_ := ¢@n_ and n € in_, it suffices to show that

Ty (ead“" Uo) = T (ead§ l/()) . (542)

To do this, we express the left hand side using the exponential series and we get

=1
| (eadHn V) = (Vo + Z %l (adg¢ + adn)k VO) - (eadél’o) +mf (5 m),
k=1

where
f(gvn):adCladC2"'adeV07 p:1127"'1
and each (; is either & or n but there is at least one 1. Since £ € ¢ ® n_, it follows that

[&,v0] €1 ( H O, @c@n)

am €1l

and hence

adgV0€i<H gamGBCEDn), Va=1,2,.... (5.43)
am €11
Since 1 € in_, we have [, 1] € ¢ ® n_ we get
adlvgecdnt, Va=1.2,.... (5.44)
By (5.43), it follows ad, ad¢ vp € c®n_ for all a = 1,2,,..., and hence, from (5.43), we conclude that
adg, ---ade, ady adg vp € ¢ @ n€ (5.45)

for all a,p = 1,2,..., and (; equal to { or . Finally, since ad¢ ady vy € ¢ @ nC, relations (5.43), (5.44), and
(5.45), imply that f(¢,1) € c&nC. However, by (5.15), we have mf(£,n) € m (¢ @ nC) = 0 which proves (5.42).

Step 2. Since (Adg_), ol =1Io (Adp_),, for all b € B_, using the expressions of the coadjoint action, and
I*(vg) = po, dualizing the previous identity, we get

I* (mi Ady1 o) = I* ((Ad@_)z 1/0) — (Adp )} jto = mpr Ady1 o, Wb e B_. (5.46)
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This shows that I*[o, :O,, — Oy, is surjective since

. 5.41 5.24
I (0,,) P2 (s Adyor o | be B_} 2V 0,,,.

Step 3. We show now that the map I*|(9V0 is injective. By Step 1, an arbitrary element of O, is of the form
m Adp vy, where b € B_. Let my Ady, vo, 7 Adp, 1o € O,, be such that

(5.46) (5.46)

Tel Adb1 Ho I* (71'[ Adb1 V(]) = I* (7T[ Adb2 I/()) TeL Adb2 Mo,

which means Ady, pi9 — Ady, po € ker mer =n_ by (5.22). Since b; = e™ei with &9 = hJ + Sy 526_% +¢0 e
b_:=cdn_, W €c¢, and {7 € [n_,n_], this is equivalent to

T

Z (eadsleaj _ oade2 ea]_) cn_ . (5.47)

j=1

A direct computation shows that if £ = h + 22:1 €re_qa, +C €b_, where h € ¢, € [n_,n_], and & € R, then
for each fixed j = 1,...,r, we have

eitca; = el ea, - (aj, h) (e< - 1) Sty + A

where A € n_, hj := [eq,,e_a,]. Therefore, (5.47) becomes

- i ht s h2 e<0‘j’hl>_1 . e<aj,h2> 1 ,
2 <<e< et ) o, - ( B9 T (ag ) €j> hj) =0.

j=1

This implies <aj, h' — h2> =0 forall j =1,...,7r, and hence h' = h2. Since the function x ++ (e* — 1)/z is
strictly positive for € R, from the second summand in the expression above we conclude that 5} = 5]2, for
all j = 1,...,7, which shows that ¢! — &2 € [n_,n_]. This implies that 7 Ad,, vo = m Ady, v because for any
Aecd ][} 0 a,, p € [n_,n_], we have

m (ead“f’ 1/0) = (eadA 1/0)

which is easily seen by counting the heights of the roots whose corresponding root spaces contain the elements
A and p.

Step 4. At this point we have the necessary information to show that I*|o, is a diffeomorphism. By Steps 2
and 3, the map I*|@V0 is bijective. The map I* : [ — &+ is clearly smooth as the dual of a linear map. Endow
the coadjoint orbits O,, and O, with their natural manifold structures (that makes them diffeomorphic to
the quotient of the group giving the orbit by the stabilizer subgroup). These orbits are initial manifolds (see
Ortega and Ratiu [2004, §1.1.8 and Proposition 2.3.12] or Michor [2008, §2]), and hence necessarily injectively
immersed. Therefore, the composition *|(9VO : Oy, < [ — £+ is smooth. However, the range of this map is the
initial submanifold O, and hence, by the definition of an initial submanifold, the map I*|o, : O,, = Oy, is
smooth. Since the (connected components of) coadjoint orbits are the symplectic leaves of Lie-Poisson spaces
and I* is Poisson, it follows that I *\OUO is symplectic, in particular an immersion. We shall prove below that
dim O,, = 2r. Since dimO,, = 2r by Theorem 5.1, this implies that I*|OV0 : 0y, = O, is a symplectic
diffeomorphism.

To compute the dimension of O,, we check by a direct computation that the isotropy subalgebra of vy in
¢c®(nS)yis {€ecd (nf), | m(ade o) = 0} = [n_,n_]@®in_ which has dimension dim (¢ ® (n€),) —2r. Thus
dim O, = 2r.

Step 5. The formula of O, follows directly from the expression of I*. |

The Flaschka map on O,,. With these preliminaries, we compute the Flaschka map for the #_-coadjoint
orbit O,,. We begin by noting that h(1g) := (n%), is a real polarization associated to 1 € [. Indeed, condition

(i) in Definition 3.2 holds with (#_), = {e*¢ | ¢ € [n_,n_]@in_}, as an easy direct verification shows. Instead
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of checking condition (ii) in Definition 3.2, we show (iii) in Remark 3.3. If > . x, (o + 1ya)e—a € (n) g, we
find that

Imk | vo, Z (To + 1Ya)e—as Z (xg+iygle—g| | =0.
aEA L BEAL

Next, let |A | denote the number of positive roots of g&. Then
2dim (n%), = 4A4| = (r +2]A4]) + (2]A4] —7) = dim (¢ ® (n%) ) + dim ([n_,n_] B in_),
which proves both conditions in Remark 3.3(iii).

Using the explicit expression (5.40) of O,, and the fact that the annihilator of (n(E)]R in [ is ic, we conclude
that vo+ ((nE)R)° C Oy, which verifies condition (i) in Lemma 3.7, i.e., the polarization h(ry) = (n ), satisfies
the Pukanszky condition.

An easy verification shows that Ad%_(ng)R = (n(E)R so that h(v) = b)) = (n(E)]R for all v € O,,.
Consequently, p,v € O,, satisfy p ~ v, ie., p —v € ic, if and only if they have the same coeflicients of
i(eq, + €—q,). Therefore the map

OVO/N =) [V]N — (R1, . ,Rk) S R:,

where v := 37, iskhi + 22, i Bri(€ay, +€-a,), R > 0, is a diffeomorphism. Recall that m,, : O, > v
Ty (V) =: [V]~ € N,, denotes the quotient projection.

To define the Flaschka map F' : O,, — TR, we choose the section s,, : R, — O,, (see (4.9)), given by
Suo(R1, .oy Ry) i= > 1y iRk (€, + €—q,). From (4.10), given (v1,...,v,) € R”, we need to find £ € ¢ ® (n‘E)R
such that —T'm,, (m ade 7) = (v1, ..., v,). For £ =3, | &hy and v =Y, _ iRk (eq, + €—a, ), We have

71-[[5717] =i Z ijkaj(eak +€,ak),

k=1

where [Cy;] is the Cartan matrix of g*, and hence we have

*Tﬂuo (’N[[f, 17]) = Rl, . RT, —R; ijclj, ey —R, ZﬁjC’m—
j=1

Jj=1

We choose &, ..., &, as the unique solution of the linear system >-7_, §;Cx; = —7. Foro = 1Yy skhi € ic

and using (4.10), we have

<F|[V]N(D+O.)?(U17"'7U7')> = Imh}(U,g) = Z Skgj h'kH Z Sk#fjck‘]

kj—1 kj—1 Kok, o)

__Z Uk
k(o ar) Ry’

which shows that the Flaschka map F': O,, — T*(B_/H) = T*R’, is

S .T 2 5 2 s,
F h Ri(ea, +6-0.) | = Ry, s Ry ——- 2L 2 _5r ) 5.48
(1];513 k+1kz=:1 k(eay +e k)> ( 1 e ENE R'r) (5.48)

where |a|? := k(ay, ax). The inverse F~1: T*(%_/H) — O, C lis
" Jag Pugv 2
F‘*l(ul7 ey Uy V1 vy Uy ) = — Z M#hk + z_:uk(eak +e_ay)- (5.49)

Note that the Flaschka map (5.48) is obtained by composing (5.31) with I* on the right. The considerations
above prove the following result.

Corollary 5.8. Let vy € | be given by (5.39) and O, its B_-coadjoint orbit (see (5.40)) endowed with the (—)
orbit symplectic form. The Flaschka symplectic diffeomorphism I : Oy, — T*R’, onto the canonical cotangent
bundle is given by (5.48) with inverse (5.49).

One can pass to the canonical cotangent bundle T*R” with global coordinates (g;, p;), as before, by defining
¢; == log R; and p; := —2s;/|;|?.
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The Toda equations on O,,. Define k:0,, — R by

k(v):=h(I*(v)) = %m([*(u),]*(u)) = —%n(l/, v) €R. (5.50)

*

Note that k extends to the function v — —4 Re s(v,v), where v € (g%), which we shall also call k : (g%), =

]1; since it is bi-invariant. We have Vk(v) = —iv, where the gradient

is taken relative to Im x and hence the Lie-Poisson equations (5.5) on (c S3) (n(g)

(gC)R — R; k is a Casimir function on (gc)

* . .
R) =~ [ become in this case

v=—|m(iv),v]. (5.51)

On the #_-coadjoint orbit O,, C [ these equations are identical to (5.30) which is seen by setting s = ¢ and
Ry = ai,. Equations (5.51) are the full Toda equations on the compact real form | of g&. Note that (5.51) is
not obtained by simply pulling back by I* : [ — €% the full Toda equations (5.5) associated to the normal real
form of g©; however, due to Theorem 5.6, equations (5.51) on O,,, are the pull back by I* of the Toda equations
(5.30) on O,,.

5.6 The free rigid body system on the Toda orbit O,

Work on integrable systems on Borel subalgebras of semisimple Lie algebras can be found in Arhangel’skii
[1980], Trofimov [1980]; for an excellent survey see Trofimov and Fomenko [1987]. However, we want to point
out that the system considered in this section is not the one studied in the papers just cited. We present a
family of Hamiltonian systems generated by the restriction of the kinetic energy function defined in Mishchenko
and Fomenko [1976, 1982] for any complex semisimple Lie algebra g€ to the real Borel subalgebra b_ of the
normal real normal form g. Our goal is to find Flaschka variables for these systems using the general theory
developed earlier.

Consider the decomposition of the dual of the lower Borel subalgebra b* = £t into its Cartan subalgebra
component and the rest, i.e., u € €1 is decomposed as j = 1 + pio, where p; € HQGA+ R(eq +e—q) and pg € c.
We take the Hamiltonian A : b* — R given by

h(p) = %H(MaSDa,b,D(:u))v (5.52)

where ¢4 p : b* — b* has the form

¢ab,0(1) = ady ' ady(u1) + D(p2).
Here a,b € ¢, and a is a semisimple regular element, that is, («,a) # 0 for all « € A, and D : ¢ — ¢ is an
arbitrary real linear operator symmetric relative to . In coordinates, this means that Y, _, D¥x(h;, hy) =
iy Df/i(hi7hk), for all 7,5 = 1,...,r, where the matrix [Df} of D in the basis {hy,...,hi} is defined, as
customary, by D(h;) =: thj.
We now consider the Jacobi orbit through po and we write any € O, as p=Y_:_; ¢;h; + a;(ea, + €—q,)-
Using the expression (5.11) of the entries of the Cartan matrix, the Hamiltonian (5.52) becomes

h(p) = %K(M%D(MQ)) + Z af gz;?)

¢iCixDkc; a? (a;,b)
_ 2 : 1T ) 2 : 7y

<ai7 a’)

K(€a;s €—a;)

Note that VA(u) = @app(p). If a = b and D’ = §7, we recover the Toda Hamiltonian (5.29) on O, .
We now compute the (—) Lie-Poisson equations

Oy = —mer [To_(Pap,0(1)), 1] (5.54)

on the orbit O, (see (5.4); note that this is not a Lax equation). This is just the rigid body system on the
Toda orbit. We have

<aia b>

<O‘iv a>

Pap,p (1) = ad, " ady(p1) + D(p2) = Z a; (€a; +€—a,) + D(p2),
i=1
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so that i,
(5.20) i, b
mo_($ap,n(p) = ZQai <<a- aie—ai + D(p2)
i=1 v
and hence
(5.22) — o {a, b)
mer ([mo_ (Pap.p(); 1)) = —2a; (o, ) hi + a; (@i, D(p2)) (€a; +€—a,) | -
i=1 v

Thus Hamilton’s equations are

<ai7 b>
w;,a)

5 8tai = a; <051', D(/LQ» = a; Z CikD;?Cj. (555)
7,k=1

2
8tci = 720%

In terms of the Flaschka variables (¢;,p;) € T*R", the Hamiltonian (5.53) becomes

1 « L
h(gi, pi) = 1 Z piCir D% o |°p; + 2262‘11
04, k=1 i=1

<O‘i’ b>
o[ (i, a)
Note that the matrix with entries S;; :== >, _, CikDﬂaj\Q is symmetric.
Example. For g = sl(3,R), the most general operator D : ¢ — ¢, symmetric relative to &, has the form

2D? —d  Dj}
D? 2D} —d

for any D?, D3,d € R. The Hamiltonian (5.53) has the form

2B; — B 2By — B
h(cy,co,a1,a9) = 3((3D% —2)\)c? + 2dcicp + (3D3 — 2d)c§> +6 (a2 1 2 g 4b2 1)

194, — A, " 294, — A,

and the associated equations of motion are

) 2B, — B .
& = —2ai50—- a1 = a1 ((3DF — 2d)ey + des)
) 2By, — B .
Gy = —2a§ﬁ , as = as ((3D} — 2d)ca + dcy ) .

In canonical Flaschka variables (g;, p;), the Hamiltonian has the form

1
h(q1,q2,p1,p2) 12 ((3Df —2d)p} + 2dpip2 + (3D3 — Qd)Pg)

2B, - By 2B, - By
6 | 21 242 ]
* (e 24, — A, € 2A2—A1> ¢

It is known that the Toda system on O,, coincides with the gradient system on the (co)adjoint orbit in [
containing vy relative to the normal metric and the height function given by f(v) = (v, 1), where § := 25:1 Aj
and A; are defined by k(\;, h;) = 6;; for all 4,5 = 1,...7; see Bloch [1990]; Bloch, Brockett, and Ratiu [1990,
1992]. A direct lengthy computation leads to the following result.

Proposition 5.9. The rigid body equation (5.54) on the Toda orbit O,, is gradient relative to the normal metric
on the coadjoint orbit of | containing vy (for any function) if and only if Yap.p is a multiple of the identity,
i.e., the rigid body equations are the Toda system up to a reparametrization of time.

As in the case of the Toda system, there is a formulation of the free rigid body on the coadjoint orbit O,,
given in (5.40). The Hamiltonian on O,, reads

k(v) = %K (Ganp(I°V), I*V) = —%/@((pmb,[)(y),y). (5.56)
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We extend this function to (g%), and call it also k by defining k(v) := —5 Re s (¢a.p,0(¥),v) for all v € (g°),.
Hamilton’s equations (5.4), where s = ¢ @ (n%), and - = [, become hence
U= —T [ﬂ-t@(ﬂg)k (i@a,b,D(V)) sV, (557)

where the projections m; and Tegp(nC ), X given by (5.15)—(5.17). These are the full rigid body equations on
—/R

[, the generalization of the full Toda system in the symmetric form associated to sl(r + 1,R) studied in Deift
et al. [1992].

6 The Flaschka map and the diffeomorphism group of the annulus

There is a natural generalization of the Toda flow to a Hamiltonian system, the dispersionless Toda PDE,
on the Lie algebra of the Fréchet Lie group SDiff(A) of measure preserving diffeomorphisms of the annulus
A = S1 x [0,1]. The flow of this evolutionary PDE arises physically by letting the lattice space in the finite
Toda system tend to zero in a suitable fashion (see Brockett and Bloch [1990], Bloch, Flaschka, and Ratiu
[1993], Bloch, Flaschka, and Ratiu [1996], Deift and McLaughlin [1992], Bloch, Golse, Paul, and Uribe [2003]).
In this section we derive the Flaschka map in this infinite dimensional setting and carry out the same program
for the corresponding solvable rigid body PDE.

We remark that while SDiff (A) behaves in many ways like a compact group (in fact like the special unitary
group) it has no natural complexification — see e.g. Lempert [1997], Neretin [1996], Pressley and Segal [1986],
Bloch, Flaschka, and Ratiu [1993], Bloch, Flaschka, and Ratiu [1996], Bloch, El Hadrami, Flaschka, and Ratiu
[1997]. In this paper we work exclusively with the Lie algebra, which has a complexification.

6.1 The Flaschka map for the dispersionless Toda PDE

The Lie algebra of the Fréchet Lie group SDiff(A) of the annulus A = S! x [0,1] consists of divergence free
vector fields X on A tangent to the boundary. The line integral of X on each component of the boundary
vanishes because X is tangent to the boundary. Thus, using Stokes’ Theorem, the integral on any closed loop
also vanishes because the divergence of X is zero. Consequently, X admits a stream function z, i.e., X is a
Hamiltonian vector field relative to the area form on A and its stream function z is the Hamiltonian.

Since X is tangent to the boundary, we have

%(20,9) =0, for z=0,1. (6.1)

Recall that the operation that produces the Hamiltonian vector field from a function is a Lie algebra (anti)homo-
morphism. However, this linear operation has a kernel, namely the constants. Thus we can identify the set of
functions modulo R with the Lie algebra of SDiff(.A). This isomorphism is best realized by working only with
Hamiltonian functions z with zero average on A. Since the average of the Poisson bracket of any two functions
vanishes, the linear map that associates to a function with zero average its Hamiltonian vector field is a Lie
algebra (anti)homomorphism.

Thus, we will work from now on with

F(AR) = {x € C*(A,R) gz(zoﬁ) =0, for zo = 0,1 and / z(z,0)dzdf = O} (6.2)
A
endowed with the Lie bracket 9z & Bu 8
. 9rdy  gyox
{x7y}(230) A 89 az 69 82 9 (6.3)

for all x,y € F(A,R).
The complexification of this Lie algebra is

ox

FAC) = {x €CT40) ’ %0

(20,0) = 0, for zp =0, 1 and / x(z,0)dzdf = O} (6.4)
A
endowed with the same bracket (6.3). We shall work with Fourier series expansion of elements of (A, C) and

various subalgebras, i.e., we write
oo

x(z,0) = Z Ty (2)e?™ Y

n=—oo
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where, in view of (6.2), we have x,,(0) = x,(1) =0 for all n € Z and fol xo(z)dz = 0.
Note that we have the formula

{xn(z)e%i”e, xm(z)e%ime} = 2mi (nay, (2)a), (2) — ma!, (2) @ (2)) 2™ m)o (6.5)

We think of a complex valued function on the annulus z(z, ) as an infinite matrix indexed by two indices:
a discrete one n € Z and a continuous one z € [0,1]. The index n encodes the “diagonal” on which the element
lies; it is the analogue of the height of a root in the root space decomposition of a complex semisimple Lie
algebra. The index z “counts” how many root vectors one has for a given height n. At the “index (n,z)” we
write the “matrix element” iz, (z).

The Cartan subalgebra of F(A, C) is ([0, 1], C). Hence the roots of the complex Lie algebra F (A, C) are the
linear maps a, , : F([0,1],C) — C, v, » = 27ind,, with corresponding root space spang e>™"? where the a, .
are thought of as linear functionals on F ([0, 1], C). Viewed as distributions, the roots are o, »(s) = 2mind’(s—z),
where z,s € [0,1] and n € Z. (See Saveliev and Vershik [1989], Bloch, Flaschka, and Ratiu [1996], Bloch, El
Hadrami, Flaschka, and Ratiu [1997].)

Regarded as a real Lie algebra, F(A, C) is denoted by F(A, C)g. Define the Lie subalgebra

F_(AC) = {x(z,@) = _Z z,(2)e2™ ¢ F(A,C)

n—=—oo

xn(z) € (C} .

In Bloch, Flaschka, and Ratiu [1996] it was argued that the infinite dimensional generalization of the de-
composition into real Lie subalgebras

(QC)R =cd (n(E)R el
is
F(A,C)r = F([0,1],iR) & F_ (A, C)r & F(A,R), (6.6)
where we impose the boundary conditions (6.1) and the averages of the functions in each space above is zero.
A weakly nondegenerate invariant bilinear symmetric form on F(A,C) is

k(x1,x2) 1= —/ x1(z, 0)x2(z,0)dzd0,
A

i.e., we have
K ({71, 22}, 23) = £ (21, {2, 73})

an identity which is obtained by integration by parts whose boundary terms vanish because of (6.1) and the
periodicity of the functions involved. The sign on the right hand side of  is chosen such that  is negative
on [ = F(A,R), in complete analogy with the fact that the Killing form is negative definite on the compact
real form of a finite dimensional complex Lie algebra. Note that, as expected,  is positive on the “Cartan
subalgebra” ¢ = F([0, 1],iR).

We use Imk : F(A,C)g x F(A,C)g — R to identify the dual (F(A,C)g)" with F(A,C)g. With this
identification, the dual of the real Lie algebra F(A,iR) @& F_(A,C) is [ := F(A,R). The projections associated
to the direct sum decomposition (6.6) are

0 < Z mn(z)GQﬂ'i’l’L9> _ w + Z (xn(z)eQTrinO _’_En<z)e—2win9) (6.7)

- 2in, _ (Z) — X (Z)
" <n_zmx"(z)e 0) =" (68)
W(nc )K < Z xn(z)62w1n0> _ i (2 (2) — x_n(z))e%rine. (6.9)

The (—) Lie-Poisson bracket on [ = F(A,R) is given by

(F.G}up(z) = Irn/Ax(z,@) {‘;i ‘;f} (2, 0)d= b, (6.10)
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where F, G : F([0,1],R) — R and the functional derivatives are computed using the paring Im .
We use the analogies from the finite dimensional case and take vy(z, 0) := 2 cos(270) and

1
O, = {u(z) + 2v(z) cos(2m0) |u(z),v(z) € R, /0 u(z)dz =0,

v(z) > 0 for z € ]0,1[ and v(0) = v(1) —O}. (6.11)

It was shown in Bloch, Flaschka, and Ratiu [1996, Theorem 4.3] that O,, is a Poisson submanifold of the
Lie-Poisson space I. Define

Y = {u,v :[0,1] = R /1 u(z)dz =0, v(z) > 0 for v € ]0,1] and v(0) = v(1) = O}
0

and endow it with the Poisson bracket

{f. g} (u,v) = 277/0111 (gia (gz) ﬁgaz (gi)) dz, (6.12)

where the functional derivatives are computed using the L2-pairing on 2. In Bloch, Flaschka, and Ratiu
[1996, Theorem 4.3] it was shown (with different sign conventions and up to a factor of 27) that the map
O : 0, 3 u(z) + 2v(z) cos(2m0) — (u(z),v(z)) € U is a Poisson diffeomorphism, i.e.,

{fag}’ﬂoq):{foq)agoq)}LP fag‘n*)]R
Define

W :={w,v:[0,1] > R|w(0) =w(l) =0, v(z) >0forve]0,1] and v(0) = v(1) = 0}

and ¥ : ¥ — 0 by ¥ (fo s)ds,v). Since for f : ¥ — R, we have
d(fol) of 6(fow) LsF
v v and ou 5w( s)ds,

z

it follows that the push forward of (6.12) by ¥ is

L (858 5§
{f, gtan(w,v) = 727r/0 v (55{0 - (sf;&i’)) dz (6.13)

where £, : 2 — R. For a given function £ : 20 — R, the Hamiltonian vector field relative to the Poisson
bracket (6.13) has the expression

ok ok
Xp(w,v) =27 (v&}, —v5w> . (6.14)
Note that, formally, the Poisson bracket (6.13) is associated to the weak symplectic form Qgy given by
IR
Qop (w, v) ((dwy, dv1), (dws, dvg)) = %/ @ (dw(2)dva(z) — dv1(2)dwe(2)) dz. (6.15)
0

The pull back of Qgy to O, is

(®o \I/) Qm) (u + 2v cos(270)) (duq + 20v1 cos(2m8), Sug + 26vy cos(270))

b [ g ([ oo ([ i) mis)ec

We shall prove now that this symplectic form coincides with the orbit symplectic form

wo,, (u+2vcos(2m0)) (m{z,u + 2vcos(2m0) }, m{y, u + 2v cos(270) })

= Im/ )+ 2v(z) cos(2m9)) {x, y}(z,0)dz db , (6.17)
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induced by the Lie-Poisson bracket on O,,, where z(z,0) = izg(2) + Y, .o xn(2)e™, y(z,0) = iyo(z) +

Y om0 yn(2)e?™ 0 ¢ ¢ (n«i)R, ie., zo(2),y0(z) € R.
A direct computation, using (6.7), yields (we denote, for convenience, sometimes ' := 9,)

(mi{z,u+ 2vcos(2m0)}) (2,0) = 2 ((vIm(z_1)" + 2vz( cos(2mh))
1
[ () + 20(2) cos(20)) (.9 e, 0)d d = 27 [ 0(2) (h(hya(2) 5D (2) d
A 0
which shows that

wo,, (u+2vcos(27t)) (r{x,u + 2v cos(2m0) }, mi{y, u + 2v cos(270) })
= wo,, (u+2vcos(2m0)) (27 ((vIm(z_1)" + 2vx( cos(276)) , 2 ((vIm(y—1)" + 2vy, cos(270)))

1
= —27r/0 v(2) (2y(2) Imy_1(2) — yo(2) Imz_1(2)) dz.

Defining
1 z
ouy =27 (vax_l)' = Imzx_; = —/ ouy(s)ds
27(-7) 0

1 z
Sug := 27 (vImy_ ;) = Imy_, = —/ dug(s)ds
2mv 0

1
vy = 2mvz, = xh = —0v
! 0 07 9mp !

1
dvg 1= 2wy = yh = 2—61}2
v

the previous formula becomes

- /O 1 ﬁ (( /0 ’ 6u1(s)ds> Sua(z) — ( /0 ’ 6u2(8)ds> (5v1(z)) iz

which proves that (® o ¥)* Qg = wo,, - We summarize the considerations above in the following theorem.

Theorem 6.1. The submanifold O,, = {u + 2v cos(270) | u,v : [0,1] = R,v(z) >0 forz # 0,1, v(0) =v(1) =
0} is a Poisson submanifold of the (—)-Lie-Poisson space F(A,R) (see (6.10)). The Poisson structure arises
formally from the weak (—)-orbit symplectic form (6.17). On the space W = {(w,v) | w,v : [0,1] = R,v(z) >
0 for v €]0,1] and v(0) = v(1) = 0}, the (—)-Lie-Poisson bracket takes the more convenient form (6.13), the
expression of the Hamiltonian vector field is (6.14), and the associated weak symplectic form is (6.15).

At this point we have all the ingredients to compute the Flaschka map. We begin with the computation
of the isotropy Lie algebra of vo. If z(z,0) = izo(2) + Y, o 2n(2)e*™ € ¢ ® (nC),, where zo(z) € R and

R?
xn(z) € C, using the formula for the coadjoint action

ad} vy = —m{x, o},

of c® (n(E)R on [, we get

(co (n(i)R)uo

I
——
8

L

X
|
¥
3,
I

_|_

Z T, (2)e?™ | 21 (2) €R, xa(2) € (C}
n<—1

which is the analogue of [n_,n_] @ in_ in finite dimensions.
Let Z_ be the formal adjoint group with Lie algebra ¢ @ (n%)_. Its adjoint action on ¢ & (n%)

> iy
k=0

R 18 hence

where x,y € ¢ ® (n(E)R and ad, y := {z,y}.
Now we verify that h(vp) := (n(E)R is a polarization associated to vy = 2 cos(276). Using (6.5) and the formal
exponential series, one can see immediately that the conditions in Definition 3.2 hold. Since the annihilator



6.1 The Flaschka map for the dispersionless Toda PDE 35

((nC)R)O in [ equals F([0,1],R), it is clear that vy + F([0,1],R) C O,,, i.e., this polarization satisfies the

Pukanszky condition (see Lemma 3.7). The associated equivalence relation is hence
u1(2) 4 2v1(2) cos(2m0) ~ uz(z) + 2v2(2) cos(2m0) <= v1(2) = va(2).

Thus, N, = O,,/~ = {v(z) | v(z) > 0}.

To define the Flaschka map F : O,, — T*F([0,1],R;) = F([0,1],Ry) x F([0,1],R), we choose the section
Spo ¢ F([0,1],R4) — O,,, given by (s,,(v)) (z) := 2v(z) cos(278). Given f € F([0,1],R), we need to find
rECD (n(E)R such that —T'm,, (m; ({z,2vcos(270)})) = f. For x(z,0) = izg(2), zo(z) € R, we have

™ ({2, 2vcos(2m0)}) = m( (2maf(2)v(z) (2™ — e72™17)) g Az (2)v(z) cos(2m0).
Thus we get
Try, (1 ({z,2vcos(270)})) = 2wz, (2)v(2)
and hence the desired x is
*fs)

x(z,0) =izo(z) = —% ; @ds

Recall that w'(z) = u(z). Thus, following the general theory in finite dimensions, the Flaschka map is given by

(F, (2vcos(2m8) + u), :—Im/ (= (‘)dzde——/ </ fj ds)

o s [ [ 20a]”
1 f(2)

w( ) dz

27 J, v(z)

since w(1) = 0, which yields

Fy(20 cos(270) + u) = (v(z),—Qﬂi 5 /0 ’ u(s)ds) .

This map F is, formally, a symplectic diffeomorphism between (O,,wwoyo) and the weak symplectic vector
space (T*F([0,1],R4+) = F([0,1],R4+) x F([0,1],R), Qcan), as can also be shown by a direct verification. This
formula is the analogue of (5.31) for the finite dimensional normal real form and (5.48) for the compact real
form.

Proceeding as in the finite dimensional case, we define

q(z) :=logu(z),  p(z) = —5-w(2) (6.18)
Note that ¢(0) = ¢(1) = —oo and p(0) = p(1) = 0. We require (¢,p) € T*Q, where
Q:={q:[0,1] = R [q(0) = ¢(1) = —oc}
and hence
P =0 { 01—>R’/ z)dz < oo, quQ} T*Q =Q x P.

Note that all elements of P necessarily satisfy p(0) = p(1) = 0. It is readily verified (like in the finite dimensional
case at the end of Section 5.4) that the diffeomorphism (6.18) is symplectic relative to the canonical forms on
T*F([0,1],R;) and T*Q. Taking into account Theorem 6.1, this proves the following result, extending the
Flaschka map from the finite Toda system to the dispersionless Toda PDE.

Theorem 6.2. The diffeomorphism O,, 3 u + 2vcos(2m0) — (¢,p) := (log v, —% foz u(s)ds) € T*Q is sym-
plectic relative to the minus orbit symplectic form on O,, and the canonical symplectic form on T™Q.
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Therefore, this map transforms the Lie-Poisson system

0k Sk
Oyw = 27‘('1)%, O = —271'11% (6.19)

with Hamiltonian £ on the coadjoint orbit O, to a canonical Hamiltonian system for the transformed Hamil-
tonian h(g,p) = A(w,v). The Hamiltonian for the Toda PDE (the analogue of (5.50)) is

1
H(u+ 2vcos(2m0)) = % / (u + 2v cos(276))?dz df = % / (v +20%) dz
A 0
1 ! 2 2
=3 ; (w')? + 20%) dz (6.20)

and the associated equations of motion are
Orw = 47T’l)2, Ov = 27m)8§w.

Taking into account that w’ = u, the above equations become the standard Toda PDE, up to a factor of 27
(Takasaki and Takebe [1991], Bloch, Flaschka, and Ratiu [1996])

Oyu = 470, (v?), Ov = 2mv0,u.

In terms of the canonical variables (¢q,p) € T*Q, the Hamiltonian is

1 [
hiq,p) = 5/ ((27rp’)2 + 2€2q) dz
0
and hence Hamilton’s equations are
Orqg = —(2m)202p, Op = —2e%.

Eliminating p, we get
O}q = 8292 (e*9).

6.2 The Flaschka map for the solvable rigid body PDE

We shall study a Hamiltonian PDE which is the continuum analogue of the rigid body equation on the Toda
orbit presented in Subsection 5.6.
We begin by computing the sectional operator. If a € ¢ = F([0,1],iR) and x € (gC)R = F(A, C)g, then

adg x = {a, 2} = —0,a(2)0px(z,0).

As expected, the f-Fourier expansion of ad,, 2 does not have a constant term (i.e., it has no “Cartan component”).
To invert the adjoint operator, i.e., solve the equation ad, x = y for x, where both x,y do not have a constant
term in the Fourier expansion we need d,a(z) # 0 for all z € [0, 1] and then

1 (4 1 1 [4
o | w5 | ( / y(z7¢)dw> .

Note that the constant appearing in the second summand is chosen such that

(aud;1 y) (2,0) = —

/01 (aud;1 y) (2,0)do = 0,

ie., (ad;ly) (2,0) does not have a constant term in the #-Fourier expansion, as required. Thus, if a,b €
F([0,1],iR) and 0,a(z) # 0 for all z € [0,1], we have

(ad, ' ady ) (2,0) = g:s (az(z, 0) — /01 z(z, 9)d9>
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and hence the sectional operator associated to a,b € F([0,1],iR) and a L?-symmetric linear operator D : ¢* :=
F(]0,1],C) — F([0,1],C) has the expression

Gan.p()(2,0) = g:s (z(z,@) - /Olz(z,t?)cw) +D (/01 1:(~,0)d9> (2). (6.21)

Note that on the coadjoint orbit O,, (see (6.11)), the sectional operator simplifies to

©a.b, 0 (U(2) + 2v(2) cos 2m8) = Du(z) + gzb%(z) cos 276,

.G
Therefore the rigid body PDE Hamiltonian (the analogue of (5.56)) is

1
h(u+ 2vcos27wl) = — w(z) + 2v(z) cos 2m0) w4 p.p (u(z) + 2v(z) cos 2m0) dzdb
2 Y
A

1 1
1 d.b 1 9.b

/0 <2uDu + 8zav2> dz = /0 <2w’D(w’) + azavz) dz = h(w,v).

As expected, if D is the identity operator and a = b, this Hamiltonian coincides with the Toda PDE Hamiltonian

(6.20). Thus, Hamilton’s equations (6.19) become in this case

50,0
0.a

Oy = 470, (v ) , Opv = 2700, (Du).

In terms of the Flaschka canonical variables (6.18),

h( _Lr 2y DEmy) + 22202 ) 4
q,p)—20 mp' D(2mp’) + 5.0¢ 2,

the associated Hamilton’s equations are

dvq = —(2m)?0. (DI.p),  Op = —2%&(1.

- Q

0,b
8t2q = 8729, (D (82 (8za62Q)>) .

7 The Flaschka map for semidirect products

Eliminating p, we get

So far, we have found Flaschka maps for coadjoint orbits of various Lie subalgebras of semisimple Lie algebras.
We present below the Flaschka map for a very different class of coadjoint orbits, namely those in semidirect
products that are topologically cotangent bundles. This time around, the target of the Flaschka map is a
magnetic cotangent bundle.

Recall from Sections 2 and 4 some crucial results. Let G be a Lie group, po € g*, G, the coadjoint
isotropy subgroup of pg, and b a real polarization associated to uo (Definition 3.2). Let H, be the connected
Lie subgroup whose Lie algebra is h. Let H := H,G, and recall (Lemma 3.6) that both H, and H are closed
Lie subgroups of G' and that H,, = H, where vy = iguo € h* and ip : h < g is the inclusion. Assume that b
satisfies Pukanszky’s conditions (Lemma 3.7). Then we have the following symplectic diffeomorphisms

J0
/—\.
(37 (00) [ H, wy) —22% (T*(G/H), Wean — By) (Ou-wa,, ) - (7.1)
S
F

where wguo is the negative orbit symplectic form. In this section, we apply these results for G = M ©V, the
semidirect product of a Lie group M with a left representation space V.
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7.1 Semidirect product reduction

Let M be a Lie group and V a left representation space of M, where the action of M on V is denoted by
concatenation. Form the semidirect product M ©V with multiplication given by

(ma,u1)(mae, ug) = (Mima, w1 + mius),

where my,mo € M and uj,us € V. Its Lie algebra is the semidirect product Lie algebra m(@©V whose Lie
bracket is

[(§1,v1), (2, v2)] := ([€1, &2, E1v2 — 2v1)

where £1,& € m, v1,v3 € V, and nw = %}t:o (exptn)w is the induced m-representation on V for n € m,
w € V. The adjoint and coadjoint actions of M Q) V are

Ad(p ) (&, v) = (Adp §, mu — (Ady, §u)
Adzm,u)*l (.u“’ a) = (Ad:n*1 Bt (ma)v ma) )

where m € M, £ e m, v € V, p € m*, a € V*; the operation ¢ : V x V* — m* is defined by (wob,n) :=
(b,nw) = — (nb,w) for any w € V, b € V*, n € m. Note that the coadjoint orbit O, ¢y = O, x {0}, where O,
is the M-coadjoint orbit containing p € m*.

The coadjoint action of Mm@V on (m@® V)* has the expression

ad(e ) (1, a) = (adf p—voa,ta).
Let 7 : T*(M®V) = (m@ V)7,
T 1,0) = (amm ™+ uoaa)

be the momentum map of the cotangent lifted left translation; the sign 4 indicates that 7y, is a Poisson map if one
chooses the plus Lie-Poisson bracket on (m® V)*. Then, by standard reduction theory (Marsden and Weinstein
[1974], Abraham and Marsden [1978, §4.3], Ortega and Ratiu [2004, §6.2]), the reduced symplectic manifold
Ty a)/(M® V) (u,a) is symplectically diffeomorphic to O, ,) endowed with the minus orbit symplectic form
wawa); this symplectic diffeomorphism is induced on the quotient by the momentum map Jg : T*(M ®V) —
(m@®V)* of the lifted right translation,

JIr(m,u,a) = (m_lam,m_la) .

Let J7 : T*M — m} be the momentum map of the cotangent lift of left translation on M of the isotropy
subgroup M, = {m € M | ma = m}, m, = {{ € m | {a = 0} the Lie algebra of M,, and po = pt|m,. Its
expression is

jﬁ(am) = (amm_l) |ma
The semidirect product reduction theorem (see Guillemin and Sternberg [1984], Marsden, Ratiu and Wein-
stein [1984a,b], Ratiu [1981, 1982], Marsden et al [2007, §4.3]) states that the reduced symplectic manifold
(jf)—l (a)/(Mq),, is symplectically diffeomorphic to ((’)(Ma),w(}(“ a)); here (M), is the coadjoint isotropy
subgroup of M, at p, € m7.

We conclude this subsection by showing that

(jf)_l (ta)/(Ma)p, = (J%)_l(ﬂav a)/(Ma@)V)(Ma’a)

as reduced symplectic manifolds, where J§ : T*(M ® V) — (m,®V)* is the momentum map of the cotangent
lifted action of M, (®V by left translations on M ©V, i.e.,

J%(aﬂ’wuva’) = (ammil +’LL<>CL,(1) |m,,,®V :

To see this, we first note that (Mo ®V)(u,,a) = (Ma)u, ®V since i} (v o a) = 0, where i, : mg — m is the
inclusion. Using again i} (v o a) = 0, it is easily seen that (Jf)fl (tta) x V x {a} = (J%)~(1ta, a) which proves
the claim.

We summarize the considerations above in the following proposition.
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Proposition 7.1. The reduced symplectic manifold (J$)™"(pa,a)/(Ma®V)(4,,a) is symplectically diffeomor-
phic to (O(ma)’wa(u,a))'

The semidirect product reduction theorem gives additional information (see Ratiu [1981, 1982], Marsden
et al [2007, Theorem 4.3.2] on the structure of the coadjoint orbits. There is a symplectic embedding of the
reduced manifold

(TE) ™" (o) (Ma), into (T* (M/(Ma),) s wean = By,
where B,,, is the closed two-form on T* (M/(M,),,) obtained as the pull-back of a closed two-form on the
base, induced by day,, € Q*(M); a,,, € Q' (M) is chosen such that it is left (M,),, -invariant and has values in
(Jf)_l (#1a). This embedding is a symplectic diffeomorphism if and only if mq = (m,),, .

7.2 The Flaschka map

We investigate the sequence of symplectic diffeomorphisms (7.1) for the case of a semidirect product. We take
G:=MQOV, u = (pn,a) € (m®V)*. The coadjoint isotropy subgroup is (M ®V)(,.q) = {(m,u) € MOV |
m e M,, uoa = p—Ad,, 1 p}. If (mg),, = m,, the Lie subalgebra b := m, ©®V is a polarization associated to
(t,a). Indeed, an easy direct verification shows that the condition in Definition 3.2(i) holds. Next we check the
condition in Remark 3.3(ii). Let (§,v), (n,w) € muy® V. Then, denoting by iy, : m, < m the inclusion, we get

(1, @), [(&;0), (m,w)]) = (s (& ml) + (@, Ew = nv) = (p,im,, [§,1]) — (€@, w) + (na, v)
= ((adw, )} rasn) =0

where in the third equality we used &, € m, and in the fourth (m,),, = m,. We showed that ({,v) e m, @V
implies ((p,a), [(§,v), (n,w)]) =0 for all (n,w) € m,; @ V. Conversely, suppose that this identity holds, that is,

<ad2 Hy 77> + <77a7 7]> - <£aa w> =0

for all n € my, and w € V. The second term vanishes because € m,. If n = 0 this implies £ € m, and hence
(§,v) €my®V. Knowing that { € m, = (m,), we conclude that the first term also vanishes.

Let H, be the connected Lie subgroup with Lie algebra m,®V, that is, H, = (M,)o ®V, where (M,) is
the connected component of the identity of M,. Thus, the group H = H,G,, in the general theory (see §3)
equals

((Ma)o@)v)(M@V)(u,a) =
{(mlm%ul +miug) | mp € (My)o, u1 €V, mag € My, ugoa=p— Adjnz—l ,u} =M, V.

Let ip : mg®V < m@®V be the inclusion, so vy = ifuo = (Ka,a), where pg := plm,. By Lemma 3.6(ii), we
have (M, ® V) (.,0) = Ma® V. Since the coadjoint action of H = M, ®V is

(AdE) (-1 () = (ig, (Ady,—1 v +uomb),mb),

where m € Mo, u € V, v €mg, b e V", we have (Mo ® V), o = (Ma),, ®V since iy (uoa) = 0. This shows
that (M,),, = Ma.

The polarization m, @V associated to (p,a) satisfies Pukanszky’s condition in Lemma 3.7(i). Indeed, since
(M ®V)° =m x {0}, for any v € mg, we have

(1, a) 4+ (1,0) € O(y0) = {(Ad}, -1+ woma,ma) | (m,u) € MOV} .

This can be seen by choosing m = e and invoking the identity m$ = {uoa | u € V} (see, e.g. Marsden et al
[2007, Lemma 4.2.7]).

Note that if a = 0 then p, = p, so that we have M,, = M. All such coadjoint orbits are points. So, without
loss of generality, we shall assume below that a # 0, even though, formally the results hold for a = 0.

Since ( M®V)/(M,®V) = M/M, = Ma, Proposition 7.1 and (7.1) imply that we have the following
symplectic diffeomorphisms

Jpar)
/\
(31102 0)) (Ma ©V) s, ) > (T (M) — By, ) (O w.,)
\_/

F
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in agreement with Marsden et al [2007, Theorem 4.3.2]. We note that the map ¥ in Theorem 4.1 has, in this
case, the expression O, 4y/ ~ 3 [V,b]~ + b € Ma. We show now that its inverse is given by

Ma>bw [Ady, -1 p,0] € O(q)/ ~, where m € M is such that b= ma.

Indeed, given (v,0) € O, q) thereis (m,u) € M ®V such that (v,b) = Ad(,, , -1 (1, a) = (Ad}, -1 gt + uo (ma), ma),
which is equivalent to b = ma and v = Ad}, -1 p+uob. Since mj = {uob | u € V} (see, e.g. Marsden et

al [2007, Lemma 4.2.7]), we conclude that (v,b) € (Ad}, -1 p,0) + (my x {0}) = (Ad), 1 p,b) + (MO V) (v,b)°
which means that [v,b]. = [Ad},—1 u,b]_.

It remains to compute the magnetic term for each (u,a) € (M ®V)*. Recall from Section 4.2 that the
magnetic term By, o) and the Flaschka map F' are constructed from a one-form o, ) € QY (M ®V) which is
M, ® V-left invariant and takes values in (J%)~!(uq,a). Imposing these conditions it follows that O(p,,a) has
the expression

Apaa) (M) = (ay, (M), u,a), (7.2)

where a,,, € QY(M) is M,-left invariant and takes values in (T8 " (1a). Since (Mg)y, = M,, these are
exactly the hypotheses of the semidirect product reduction theorem that guarantee that the coadjoint orbit
O(u,a) € (m@®V)* is symplectically diffeomorphic to a magnetic cotangent bundle; see the comments at the
end of §7.1.

We know from Lemma 4.4 that there is a bijective correspondence between sections s(,, 4) : Ma = M /M, =
(MOV)/(Ma®V)(ua,a) = Owuay/ ~ = O(u,a) (recall that (Mo ® V), o) = (Ma),, ©V and (Ma)u, = M,

by §7.1) and one-form o, .) € Q' (M ®V) are are left M, ® V-invariant and take values in (J‘z)_1 (hay @).
Using (7.2) and (4.12) we obtain a bijective correspondence between the sections s(, ,) and the one-forms
a,, € Q' (M) that are left M,-invariant and take values in (J%) ! (u,) given by

S(u,a)(b) = (m'a,,(m),b), where m € M issuchthat m 'a=b.

One-forms a,,, € Q!'(M) with the properties indicated above are obtained as j,-components of principal
connection one-forms on M — M/M,. For example, if one chooses an arbitrary inner product on m, such
connections are constructed explicitly in Marsden et al [2007, Theorem 4.3.3] (mechanical connections). If
1 = 0, there is no magnetic term in the cotangent bundle.

On the other hand, if there is a vector space direct sum m = m, @ b with Ad,,, b = b for all m € M,, we can
define the section s, q) : Ma = O(,q) by S(u,a)(b) = (Ad},-1 11, D), where ma = b and (11,& 4+ 1) = (14, &) for
all £ em, and n € b.

To explicitly write the Flaschka map F': O, ) — T*(Ma) we use formulas (4.9) and (4.10). Since in this
case, b is identified with [v, ], formula (4.9) reads

<F|b (S(u,a)(b) + (07 O)) ’Ub> = <(07 0)7 (§7U)> )

where o € my and (§,v) € m@®V is such that v, = T(-14,, (m)5)T (ad(m,) (mflaua(m),b)) = —£&b, since
7 O(y,a) — Ma is given by 7(v,b) = b. Thus

(F(v,b), &by = <m71a#a (m) — V,§> . where m~la=b. (7.3)
We summarize the discussion in this subsection in the following statement.

Theorem 7.2. Given the left representation of a Lie group M on the vector space V, let a € V*, m, =
{€em|ta=0}, pem®, pg = pilm,, and (Mgy),, = {{ emyg | adz o = 0}. Assume that (mg),, = m,. Then
the Lie subalgebra m,®V of m@®V is a polarization associated to (u,a) € (m@V)* satisfying Pukanszky’s
condition. The Flaschka map F : ((’)(u,a),wg)(“ a)) — (T*(Ma),wc,m - B(#a’a)) is given by (7.3) and it is a

symplectic diffeomorphism. The magnetic term By, o) € Q*(T*(Ma)) is the pull back by the cotangent bundle
projection T*(Ma) — Ma of B(,,.q) € O%(Ma), which in turn is determined by the identity P Blua,a) = A(u,a)5
where p : M — Ma is the orbit map. The set of one-forms o, ) € QY M ®V) is in bijective correspondence
with the the set of forms oy, € QY(M), both with their corresponding invariance properties explained above, and
the set of sections s(,, q) : Ma — O(,.q). If doy,, o) =0, then By, o) =0 (in particular, if p=0).



7.3 Coadjoint orbits of the Euclidean group 41

7.3 Coadjoint orbits of the Euclidean group
Recall that the special Euclidean group SE(3) = SO(3) ®R? > (A, a) has multiplication

(A1,a1)(A2,a2) = (A1Az, Ajas + ai).
Its Lie algebra se(3) is identified with R? @ R? with Lie bracket

[(x1,¥1), (X2,¥2)] = (X1 X X2,X1 X y2 — X2 X 1), X1,¥1,X2,¥2 € R3.
It’s dual is also identified with R? x R? relative to the dot product taken component-wise:
(w,v),(x,y)):=u-x+v-y, uv,xyecR’
With this identification, the coadjoint action of SE(3) on se(3)* = R x R3 has the expression
Ad{p a)-1(u,v) = (Au+ax Av,Av)
and hence the induced coadjoint action of se(3) is
ad(x (W, V) = (U X X+ V X y,V X X).
The only zero dimensional orbit is the origin. The two-dimensional orbits are of the form
O(e,O) = {(Ae7 O) | A€ 50(3)} = Sﬁew € 7& 0,
with symplectic form given by
w(u, 0)(ad)(kx1,y1) (uv 0)3 ad?xZ,yg)(u? 0)) =—-u- (Xl X XQ)
which is —1/]|e]| times the area element of the sphere Sﬁe | of radius [|e[|. All the other orbits are four dimensional,
they are topologically equal to cotangent bundles of spLeres and, generically, the symplectic form is magnetic.

For an elementary direct proof of these statements see Marsden and Ratiu [1999, §14.7]. We shall recover these
results below using the Flaschka map.

In what follows we shall use the Lie algebra isomorphism ~ : (R3, x) — (s0(3),[,]) given by G(v) :==u x v,
for any u,v € R3. Its inverse is denoted by v : (s0(3),[,]) — (R3, x).

Given o = (e,f) € s¢(3)* = R?® x R3, with f # 0, we know that h := s0(3) ®R? = RF@R? is a real
polarization associated to (e, f) verifying Pukanszky’s condition, because so(3)s is an Abelian Lie algebra. Note
that ef = ﬁf € Rf (er is the analogue of u, in the general theory).

Thus, by Theorem 7.2, the Flaschka map F' : (O(e,f%w(;(e f)) — (T*Sﬁf”,wcan — B(eﬁf)) is a symplectic
diffeomorphism. As we have seen in Theorem 7.2, we still need to choose the one-form on SO(3) with certain

invariance properties in order to compute the magnetic term B¢, ¢). Define the one-form ae, € QY(SO(3)) by

<aef (A), A> = ﬁf-(AA‘l)v7 where A € SO(3) and A € TA SO(3), or, equivalently, ae, (A) = ﬁA(A/—l\f)

It is easily verified that e, is left SO(3)f = S = {69? | & € R}-invariant and that it takes values in
(TE) " (eg), where Jf(aa) = (aA™!) so(3),> aa € T SO(3). In addition, we have

e-f

dae, (A) (Al,AQ) = I

£. ((AlA‘l)V x (AQA—I)V) :

This equality follows from the general formula da(g)(ug, vg) = (g0, [ugg™", v49 1), when a(g)(ug) = (1o, ugg™")
on any Lie group G. Therefore, (e, f) € 0? (SﬁfH) has the expression

e-f
Bleg,£)(V)(X1 X vV, X2 X V) 1= WV (%1 X X2), VE Sﬁf”, X1,Xs € R3.

The magnetic term B, r) is the pull back of S, ¢) by the cotangent bundle projection T"‘SﬁfH — Sﬁf”.
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Finally, the Flaschka map F': O £) — T*Sﬁf” is given by

Indeed, since (u,v) € O(e 1), there exist A € SO(3) and a € R3 such that u = Ae+a x Af and v = Af, which
shows that e - f = u-v. By (7.3), we have

Flu,v)- (x x v) = (ﬁf'”gv—u) x = (‘|1f'HZv—u> x

for all x € R3, that is, v x F(u,v) = #v — u. Knowing that F'(u,v) € TjS’ﬁf”, which means F(u,v)-v =0,
taking the cross product with v on the left, we get the desired formula.
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