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ABSTRACT

This paper presents a generalized treatment of Type I planetary migration in

the presence of stochastic perturbations. In many planet-forming disks, the Type

I migration mechanism, driven by asymmetric torques, acts on a short time scale

and compromises planet formation. If the disk also supports MHD instabilities,

however, the corresponding turbulent fluctuations produce additional stochastic

torques that modify the steady inward migration scenario. This work studies

the migration of planetary cores in the presence of stochastic fluctuations us-

ing complementary methods, including a Fokker-Planck approach and iterative

maps. Stochastic torques have two main effects: [1] Through outward diffusion,

a small fraction of the planetary cores can survive in the face of Type I inward

migration. [2] For a given starting condition, the result of any particular realiza-

tion of migration is uncertain, so that results must be described in terms of the

distributions of outcomes. In addition to exploring different regimes of parame-

ter space, this paper considers the effects of the outer disk boundary condition,

varying initial conditions, and time-dependence of the torque parameters. For

disks with finite radii, the fraction of surviving planets decreases exponentially

with time. We find the survival fractions and decay rates for a range of disk

models, and find the expected distribution of locations for surviving planets. For

expected disk properties, the survival fraction lies in the range 0.01 < pS < 0.1.

Subject headings: MHD — planetary systems — planetary systems: formation

— planets and satellites: formation — turbulence
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1. INTRODUCTION

The past decade has led to tremendous progress in our understanding of extrasolar

planets and the processes involved in planet formation. These advances include both ob-

servations, which now include the detection of nearly 300 planets outside our Solar System

(see, e.g., Udry et al. 2007 for a recent review), along with a great deal of accompanying

theoretical work. One surprise resulting from the observations is the finding that extrasolar

planets display a much wider range of orbital configurations than was anticipated. Planets

thus move (usually inward) from their birth sites, or while they are forming, in a process

known as planet migration (e.g., see Papaloizou & Terquem 2006 for a recent review).

The migration process is especially rapid when the planets have small masses, less than

∼30 M⊕, so they cannot clear gaps in the disks (Goldreich & Tremaine 1979, 1980). This

phase is often called Type I migration (Ward 1997ab, Tanaka et al. 2002) and can cause a

forming planet to be accreted onto its central star in about 0.1 – 1 Myr, time scales shorter

than the expected time (1 – 10 Myr) required for Jovian planets to attain their final masses

(e.g., Lissauer & Stevenson 2007). However, if a growing planet can attain a mass greater

than ∼30 – 100 M⊕ before accretion, it can clear a gap in the disk, and its subsequent

migration rate is much smaller (this latter process is known as Type II migration). We

note that the mass required for gap clearing depends on viscosity, scale height, and other

disk parameters, so that a range of values is expected (for further detail, see Ward 1997a,

especially Figure 14). In any case, the forming planet must grow massive enough — quickly

enough — in order to survive. The problem is made more urgent because the Type I migrate

rate increases with increasing planetary mass until the gap-clearing threshold is reached. This

dilemma is generally known as the “Type I Migration Problem” and can be alleviated by

the action of stochastic torques produced by disk turbulence. These torques drive random

walk behavior that allows some fraction of the growing planetary cores to survive. The goal

of this paper is to study Type I migration in the presence of stochastic torques in order to

assess the expected survival rates for forming planets and to elucidate the physics of this

mechanism.

A significant body of previous work exists. Initial explorations of the effects of turbulence

on Type I migration showed that stochastic torques can dominate the steady inward torques

and thus have the potential to allow more planets to survive (Laughlin et al. 2004, hereafter

LSA; Nelson & Papaloizou 2004, hereafter NP). Subsequent numerical studies demonstrated

the corresponding random walk behavior of the migrating planets and explored the possible

range of turbulent fluctuation amplitudes and correlation times (Nelson 2005, Papaloizou

et al. 2007). Due to computational limitations, however, full numerical simulations that

simultaneously include MHD turbulence and planetary migration can only be carried out for
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hundreds of orbits, whereas the expected time scale of interest is millions of years (and hence

millions of orbits). As a result, long term behavior must be studied using analytical and

statistical methods. Preliminary results were given in LSA, and then a more comprehensive

treatment using Fokker-Planck methods was developed (Johnson et al. 2006, hereafter JGM).

This latter work showed that only a small fraction of the planet population is expected to

survive in the long term, and also considered the effects of disk structure on the results (e.g.,

departures from power-law surface density and temperature profiles — see also Menou &

Goodman 2004). This present paper also adopts an analytical/statistical approach in order

to study the long-term outcome of this migration mechanism. Our goal is thus to generalize

the previous analyses of LSA and JGM.

This paper extends previous work in several ways: We explore the effects of the outer

boundary condition. In particular, if the disk has an outer edge, as expected for young

star/disk systems (typically with rdisk ∼ 30− 100 AU), the outer boundary condition affects

the dynamics by enforcing exponential decay in the number of surviving planets. In contrast,

the survival fraction decays as a power-law decay in the limit where rdisk → ∞. We also

consider the effects of the initial conditions on the survival rates; planets formed in the

outer disk have a much greater chance of survival, compared with those formed in the inner

disk, with the boundary close to r ∼ 10 AU (near the expected locations for planetary

cores to form). Next we consider the possible effects of time dependence on the migration

torques. Over the time span of interest, millions of years, the disk mass and the disk

surface density decrease with time, whereas the mass of the migrating planetary core will

grow. Both of these effects lead to time varying torque parameters, which are modeled

herein. In the long time limit, we find the distribution of surviving planets by solving for the

lowest-order eigenfunction of the Fokker-Planck equation. The dynamics of this migration

problem are surprisingly rich. For example, although turbulent torques lead to random

walk behavior and allow planets to survive, large amplitude fluctuations actually reduce the

survival fraction; we explore the interplay between these competing outcomes and solve the

corresponding optimization problem. Finally, we present an iterative map approach. In

addition to providing an alternate description for the dynamics of the migration problem,

this approach easily allows for the inclusion of eccentricity variations and large fluctuations.

This paper is organized as follows. We present our formulation of the Type I migration

torques and turbulent forcing in Section 2. Section 3 develops a Fokker-Planck approach to

the dynamics, including the basic formulation, analytic results for the cases where inward

migration and diffusion are considered in isolation, as well as a self-similar model. Numerical

solutions to the Fokker-Planck equation are presented in Section 4, which contains the main

astronomical results (outlined above). The paper concludes in Section 5 with a summary

of our results and a discussion of their implications. The Appendix presents an alternate
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approach to the migration problem using an iterative mapping scheme; this treatment not

only adds to our understanding of the underlying dynamics, it can also be used to include

larger stochastic perturbations, different boundary conditions, and additional variables.

2. FORMULATION

2.1. Basic Disk Properties

In order to explore the wide range of possible effects that arise in this coupled migration

problem, we consider simple power-law disk models. Specifically, the surface density and

temperature distribution of the disks are taken to be power-laws in radius,

Σ(r) = Σ1

(r1

r

)p

and T (r) = T1

(r1

r

)q

. (1)

The normalization constants are determined by the total disk mass and total effective disk

luminosity, respectively. In this formulation, we take r1 = 1 AU, so the coefficients Σ1 and

T1 correspond to their values at 1 AU. The index p is expected to lie in the range p = 1

– 2, with a typical value p = 3/2. This latter value arises from the Minimum Mass Solar

Nebula (e.g., Weidenschilling 1977). Considerations of disk formation during protostellar

collapse produce indices in the range p = 3/2 – 7/4 (Cassen & Moosman 1981, Adams &

Shu 1986). The normalization for the surface density has a benchmark value of Σ1 ≈ 4500

g/cm2 (e.g., Kuchner 2004, Weidenschilling 1977). The power law index of the temperature

profile is expected to be q ≈ 3/4 for a viscous accretion disk (e.g. Pringle 1981) and

a flat reprocessing disk (Adams & Shu 1986), whereas q ≈ 1/2 for a flared reprocessing

disk (Chiang & Goldreich 1997). The latter value also applies to the early solar nebula

(Weidenschilling 1977).

The disk is assumed to be purely Keplerian, and the orbits are taken to be circular, so

that the orbital angular momentum j is given by

j = mP (GM∗r)
1/2 . (2)

Further, the disk scale height H is given by H = aS/Ω, where aS is the sound speed, which

is in turn determined by the disk temperature profile. As shown below, the formulation of

this paper requires specification of the scale height, rather than the temperature distribution

itself, and we adopt the form

H

r
=

(
H

r

)

1

(
r

r1

)(1−q)/2

. (3)

A benchmark value for the scale height at r1 = 1 AU is H/r = 0.1.
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2.2. Turbulent Forcing

The net effect of turbulence is to provide stochastic forcing perturbations. We first

specify the time scale τT required for the disk to produce an independent realization of the

turbulent fluctuations. Previous work (LSA, NP, Nelson 2005) indicates that this time scale

is approximately an orbit time, so we parameterize the time scale according to

τT = fα
2π

Ω
, (4)

where Ω is the Keplerian rotation rate and where fα is a dimensionless parameter of order

unity. Note that this time scale varies with radial location in the disk.

Next we need to determine the amplitudes [(∆j)/j]k of the angular momentum pertur-

bations due to turbulent forcing. In general, the torque exerted on a planet by the disk will

be a fraction of the benchmark scale TD given by

TD = 2πGΣrmP , (5)

where Σ is the disk surface density (e.g., JGM). The amplitude for angular momentum

variations is thus given by

∆j = fT TDτT , (6)

where τT is the time over which one independent realization of the turbulence acts. The total

torque produced by the turbulence is a fraction fT of the benchmark scale given by equation

(5). These turbulent forcing amplitudes have been estimated using MHD simulations (e.g.,

LSA, NP, Nelson 2005), which show that fT ∼ 0.05 (with a range of variation about this

typical value). The relative fluctuation amplitude is then given by

(
∆j

j

)

T

= fαfT (2π)2Σr2

M∗
. (7)

With fT = 0.05 and fα = 1, the leading numerical coefficient becomes π2/5 ∼ 2. The

expression in equation (7) determines the fluctuation amplitude. The actual changes in

angular momentum over a given time scale τT are thus given by

∆j

j
=

(
∆j

j

)

T

ξ = fαfT (2π)2Σr2

M∗
ξ , (8)

where the random variable ξ has zero mean and unit variance. In this work, we assume that

ξ has a gaussian distribution.

Note that this treatment also assumes that the planet is small enough so that it has no

back reaction on the disk. Since we are primarily interested in planetary cores in the mass
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range mP = 1 – 30 M⊕, this assumption is expected to be valid. Planets of larger mass are

likely to clear gaps in their immediate vicinity within the disk (Goldreich & Tremaine 1980),

however, and hence the turbulent torques are reduced in such systems (this reduction can

be included in the formalism; see Adams et al. 2008).

For power-law disks, the relative fluctuation amplitude varies with radius according to
(

∆j

j

)

T

∝ r2−p . (9)

For a typical value of the power-law index is p = 3/2, the relative fluctuations [(∆j)/j] ∼
r1/2 ∼ j.

2.3. Type I Migration

The strength of Type I torques are given by

T1 = f1

(
mP

M∗

)2

πΣr2(rΩ)2
( r

H

)2

, (10)

where f1 is a dimensionless (constant) parameter (Ward 1997a). Over the same time scale

τT used to evaluate the changes in angular momentum due to turbulence, the corresponding

changes due to Type I torques are given by
(

∆j

j

)

1

= f1fα2π2

(
mP

M∗

)
Σr2

M∗

( r

H

)2

. (11)

For power-law disks, the Type I angular momentum increments vary with radius according

to (
∆j

j

)

1

∝ r1+q−p . (12)

For typical indices p = 3/2 and q = 3/4, the Type I angular momentum increments vary

relatively slowly with radius, i.e., [(∆j)/j] ∼ r1/4 ∼ j1/2. For the particular values p = 3/2

and q = 1/2, often used to model the early solar nebula, the relative fluctuation [(∆j)/j] is

a constant with respect to radius r. For typical values of the input parameters, the constant

amplitude of the angular momentum increment is given by [(∆j)/j] ∼ 10−5.

2.4. Comparison of Time Scales

The Type I migration torques provide a steady inward forcing on the planets, whereas

the turbulent torques are stochastic. At a given radial location in the disk, or equivalently
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at a given value of angular momentum j, the ratio of the time scales for the two types of

torques to move the planet is given by

t1
tT

=
[(∆j)/j]2T
[(∆j)/j]1

=
8π2fαf 2

T

f1

(
ΣH2

mP

)
. (13)

The expected value of the leading coefficient is ∼ 1/5. For power-law disks, this ratio of

time scales varies with radius according to

t1
tT

∝ r3−p−q . (14)

As a result, the time scale ratio grows (approximately) linearly with radius. More signifi-

cantly, the power-law index is always positive, even for the most extreme parameters expected

in planet-forming disks, so that the outer disk is dominated by turbulent migration, while

the inner disk is dominated by Type I migration.

The above discussion motivates the definition of a dimensionless parameter Qm that

determines the characteristics of planetary migration at a given radial location in the disk:

Qm ≡ 8π2f 2
T ΣH2

mP
, (15)

where we have ignored the parameters f1 and fα since they are expected to be close to unity.

For Qm > 1, turbulent torques dominate and migration behaves as a random walk. For

Qm < 1, Type I torques dominate and planets migrate steadily inward. For typical disk

parameters, we expect Qm ∼ 0.1 near r = 1 AU. Keep in mind that the value of Qm depends

on both the radial location in the disk and on time. As the disk and planet evolve, the

surface density Σ grows smaller, while the planetary core mass mP grows larger, so that Qm

is generally a decreasing function of time.

On a related note, we can estimate the time required for the two migration mechanisms

to move planets from a given starting point in the disk to either the inner or outer disk

edge. The time required for Type I migration to move a planet inward to the star from

a starting angular momentum value j0 is approximately given by tI ≈ j0/[3T1(j0)]. To fix

ideas, we take the starting radius to be 10 AU. For typical values of the torque parameters,

the Type I time scale for inward migration is tI ∼ 1 Myr. For comparison, we can estimate

the time required for diffusion to transport planets to the outer disk edge. The timescale

for the distribution to spread to the outer edge is given by tT ≈ NτT ≈ 〈τT 〉[jdisk/(∆j)T ]2,

where jdisk is the angular momentum at the outer disk edge rdisk. If we take rdisk = 100

AU, with corresponding angular momentum jdisk, the timescale tT ∼ 8 Myr. However, the

time required for the first planet to reach the outer edge can be much shorter (∼ 0.1 Myr).
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Edge effects start to be important at an intermediate time scale, i.e., about 1 Myr (from the

geometric mean).

These time scales thus frame the problem: Since the Type I migration time scale is

roughly comparable to — but shorter than — the outward diffusion time scale, the population

of planetary cores is expected to be highly depleted, even though diffusion acts to save some

fraction of them. In addition, the diffusion time scale is comparable to expected disk lifetimes,

so that the outer disk edge will have an important impact on the results. Keep in mind that

the time scales quoted here depend on the starting radius, the outer disk radius, and the size

of the torque parameters, so that a range of values will be applicable to the actual population

of planet-forming disks. In particular, if the starting radius is larger (than 10 AU as assumed

above), the outward diffusion time scale will decrease and the inward Type I migration time

will increase.

3. FOKKER-PLANCK TREATMENT: ANALYTIC RESULTS

After formulating this planet migration problem in terms of a Fokker-Planck equation

(Section 3.1), we explore analytic solutions. If we consider either Type I migration torques

(Section 3.2) or the turbulent diffusion (Section 3.3) acting alone, the resulting dynamics can

be solved exactly. We also construct a self-similar model of the diffusion process (Section

3.4) that applies in the absence of an outer edge to the disk. These cases – exact solutions to

partial versions of the problem – provide us with an understanding of the relevant physical

mechanisms. On the other hand, they do not provide reliable estimates for the planetary

survival probabilities; these quantities are thus determined numerically in Section 4.

3.1. Formulation

Let P (j, t) denote the distribution of an ensemble of planets as a function of time. The

general form of the Fokker-Planck equation (e.g., Risken 1984) for this problem is given by

∂P

∂t
− ∂

∂j
[T1(j)P ] =

∂2

∂j2
[D(j)P ] , (16)

where T1(j) is the Type I migration torque and D(j) is the appropriate diffusion parameter

due to turbulent fluctuations. In this problem (see also JGM), the diffusion constant is

defined to be D ≡ (∆J)2
T /τT , where the fluctuation amplitude (∆J)T and the time scale

τT over which the turbulent perturbations are independent are specified in Section 2.2 (see
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equations [4 – 7]). Notice also that the minus sign in the Type I term is included so that T1

is the magnitude of the torque.

Next we want to formulate the problem in terms of simplified quantities. We define a

dimensionless angular momentum variable

x ≡ j/j1 , (17)

where j1 is the angular momentum at a convenient reference location; for the sake of defi-

niteness we take j1 = j(r1), where r1 = 1 AU. For most cases of interest, both the torque

T1(j) and the diffusion “constant” D(j) are functions of angular momentum. If we specialize

to the case where the disk surface density and temperature profile are power-laws in radius

(equation [1]), we can write T1 ∝ j−a and D ∝ jb, where a = 2 and b = 1 for standard disk

parameters. In general, the indices are given by

a = 2(p − q) and b = 7 − 4p , (18)

where p and q are the power-law indices of the disk surface density and temperature profiles,

respectively. Next we define a reduced Type I torque constant γ and a reduced diffusion

constant β,

γ ≡ T1(j1)

j1

and β ≡ D(j1)

j2
1

. (19)

The general form of the Fokker-Planck equation thus becomes

∂P

∂t
= γ

∂

∂x

[
x−aP

]
+ β

∂2

∂x2

[
xbP

]
. (20)

Note that both of the constants γ and β are rates, i.e., they have units of (time)−1. The

Type I migration parameter γ takes the form

γ =

[
πf1

(
mP

M∗

) ( r

H

)2 GΣr√
GM∗r

]

1AU

, (21)

where the subscript specifies that all quantities are evaluated at r = 1 AU. For typical values

of the surface density at 1 AU, Σ1 = 4500 g/cm2, the scale height (H/r)1 = 0.1, and for

mP =
√

10M⊕, the parameter γ ≈ 10−5 yr−1 = 10 Myr−1. The reduced diffusion parameter

β has the form

β =

[
fαf 2

T (2π)3

(
Σr2

M∗

)2

Ω

]

1AU

. (22)

For the same disk parameters quoted above, the value of the diffusion parameter β ≈ 10−6

yr−1 = 1 Myr−1. The corresponding time scales are thus given by 1/γ ∼ 0.1 Myr and 1/β ∼
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1 Myr. Notice that the ratio of the Type I torque parameter to the diffusion parameter is

the ratio of time scales given by equation (13) so that β/γ = Qm (see equation [15]).

In this treatment, the Fokker-Planck equation (20) does not contain a source term.

Although a given circumstellar disk may produce multiple planetary cores, it will not pro-

duce a statistically significant distribution of cores. The distribution function P (t, x) thus

represents the output from a large ensemble of planet-forming disks, all with the same prop-

erties. Since this treatment does not include planet-planet interactions, multiple cores in a

particular disk will act (statistically) as part of this same ensemble.

In addition to specifying the disk properties, we must also specify the initial conditions,

which is determined by the initial distribution of planets P (t = 0, x). For most of this work,

we take the initial distribution to be a narrow gaussian centered on a given value of angular

momentum x0. Realistic disks will produce planetary cores at a range of radial locations

and hence a range of x0. By taking the initial conditions to be a narrow gaussian, we are

thus studying the effects of one starting point at a time.

Finally, we must specify the boundary conditions. At the outer edge of the disk, corre-

sponding to the maximum value xmax of dimensionless angular momentum, we assume that

the probability current S(x, t) must vanish. This condition is equivalent to that of requiring

“zero flux” through the outer boundary and can be written in the form

S(xmax, t) = −
[
γx−aP + β

∂

∂x

(
xbP

)]

xmax

= 0 , (23)

where the current S(x, t) is determined by the right hand side of the Fokker-Planck equation

(20). In physical terms, this boundary condition assumes that no planets can migrate beyond

the regions where disk material resides, and that no planets enter the disk from large radii

(see JGM for further discussion of this issue). At the inner boundary, we use the simple

ansatz P = constant, the form appropriate for an “absorbing wall” (Risken 1984). This

inner boundary condition thus assumes that planetary cores are accreted once they reach

the star.

The survival probability for planets, and other results of interest, depend on this choice

for the outer boundary condition, as well as the location of the outer boundary. For the

special case of self-similar solutions (Sections 3.4 and 4.2), we take the limit xmax → ∞ and

apply the boundary condition (23) there. For disks with a finite radial extent, our boundary

condition at the outer disk edge represents a “reflecting wall” (Risken 1984). Note that it

remains possible for planetary cores near the outer edge to be scattered outside the disk by

turbulence. Once outside the disk material, these planets would become stranded. If the

disk edge moves out with time, due to viscous spreading, stranded planets could be pushed
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further outwards. Although planetary cores could be “saved” in this manner, they would

be unlikely to form giant planets because of the lack of gas and the long orbit times (both

of which inhibit giant planet formation). In addition, the relative amplitude is small at the

outer edge, ([∆J ]/J)T ≈ 10−2 (see equation [7]), so that such events could be rare. However,

if Type I migration can reverse its direction and move planets outward (as suggested by

Paardekooper & Mellema 2006), then this mechanism could be important. To include this

effect in the calculations, one would use an absorbing boundary condition at the outer edge

(or a partial barrier); this choice would allow more planetary cores to survive, but would

result in the formation of fewer giant planets. For the relatively short timescales of interest

here (∼ 10 Myr), the choice of boundary condition produces modest differences; however,

the predicted survival probabilities would be affected over sufficiently long times.

As written, equation (20) contains two parameters (γ, β) that set the strength of the

torques and two indices (a, b) that determine their radial dependence. Although this formu-

lation thus results in a four-dimensional parameter space, its size can be reduced. First, we

note that the indices (a, b) have relatively limited ranges, and that the effects of turbulence

always grow with radius compared to Type I torques. As a result, we fix the indices to their

“standard” values (a, b) = (1, 2) for much of our exploration. For given values of the indices,

one of the remaining variables can be scaled out of the problem by changing the definition

of time. For example, let t → γt, and β → β/γ = Qm. In this case, time is measured in

units of the Type I migration time (typically several Myr) and Qm = β/γ defines the level

of turbulence relative to the Type I torque strength (at 1 AU). In this reduced view, the

Fokker-Planck equation has a one parameter family of solutions, and that parameter can be

taken to be Qm as defined by equation (15). In the limit Qm → 0, Type I torques dominate

the migration process, and fully analytic solutions can be obtained (see Section 3.2). In the

opposite limit Qm → ∞, turbulent torques dominate, and analytic solutions can once again

be constructed (Section 3.3).

3.2. Solutions with Only Inward Migration

This section considers the limit Qm → 0 where Type I torques dominate. In terms of

the reduced quantities defined above, the Fokker-Planck equation in the absence of diffusion

has the form
∂P

∂t
= γ

∂

∂x

[
P

xa

]
. (24)
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General solutions of this equation can be found by making the following transformation of

both the angular momentum variable x and the function P itself:

z ≡ xa+1

a + 1
and f(z, t) = x−aP [x(z), t] . (25)

With this change of variables, the equation of motion becomes

∂f

∂t
= γ

∂f

∂z
, (26)

which has solutions of the form

f = f(z + γt) and P = xaf(z + γt) , (27)

where z is related to x through equation (25). The form of the function f is specified by the

initial condition, so that

f(z) = x−aP (x, 0) . (28)

To illustrate this type of solution, we consider the case where the initial distribution of

angular momentum has a gaussian form, i.e.,

P (x, 0) =
1

σ
√

π
exp

[
−(x − x0)

2

σ2

]
, (29)

where x0 is the angular momentum at the peak of the initial distribution. Note that the

distribution is normalized over positive angular momentum values x and has width given by

σ. The time-dependent solution thus has the form

P (x, t) =
1

σ
√

π

xa

[xa+1 + (a + 1)γt]a/(a+1)
exp

[
−

{
[xa+1 + (a + 1)γt]1/(a+1) − x0

}2

σ2

]
. (30)

The probability pS(t) of planet survival can be found by integrating the solution given by

equation (30) over all positive values of x. In the limit where the width of the initial distri-

bution is small compared to the peak, and the time of observation is long, the parameters

of the problem obey the ordering

[(a + 1)γt)]1/(a+1) ≫ x0 ≫ σ . (31)

In this limit, the survival probability can be written in the form

pS(t) =
1

2
Erfc

[
[(a + 1)γt)]1/(a+1)

σ

]
≈ σ

2
√

π[(a + 1)γt)]1/(a+1)
exp

[
− [(a + 1)γt)]2/(a+1)

σ2

]
,

(32)

where Erfc(x) is the complementary error function (AS), and where the second approximate

equality holds in the asymptotic limit.
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3.3. Solutions with Only Diffusion

This section considers the opposite limit where Qm → ∞, i.e., we neglect the Type I

migration torques so that γ = 0. We make the additional restriction to the case where the

diffusion constant D(j) ∝ j (so that b =1 ); as a result, this treatment is not as general as

that of Section 3.2. If we redefine the time variable so that t → βt, the diffusion equation

for the probability distribution takes the form

∂P

∂t
=

∂2

∂x2
[xP ] . (33)

Note that t is a dimensionless time variable, or, equivalently, time is measured in units of

the diffusion timescale.

If we separate the diffusion equation so that P (x, t) = G(t)F (x), the temporal solutions

take the form

G(t) = exp [−λt] , (34)

where λ is the separation constant, and the remaining differential equation for F (x) becomes

x
d2F

dx2
+ 2

dF

dx
+ λF = 0 . (35)

After some rearrangement, the solution to equation (35) can be written in the form

F (x) =
1√
λx

J1

(
2
√

λx
)

, (36)

where J1(x) is the Bessel Function of the first kind of order one (Abramowitz & Stegun

1970; hereafter AS). This solution is chosen to be finite at the origin x = 0. To apply the

outer boundary condition, we require that the flux at the outer edge of the disk vanish. This

location corresponds to a maximum value xmax of the dimensionless angular momentum.

After defining ξ ≡ 2
√

λx, the outer boundary condition (see equation [23]) takes the form

d

dx
[xF (x)] = 0 ⇒ d

dξ
[ξJ1(ξ)] = 0 = ξJ0(ξ) , (37)

where we have used the properties of Bessel functions (AS) to obtain the final equality. The

separation constant must be chosen so that the outer boundary occurs at a zero of the zeroth

order Bessel function J0. If we denote the zeroes of J0 by ξν, the separation constants λν are

given by

λν = ξ2
ν/4xmax . (38)

The general solution thus takes the form

P (x, t) =

∞∑

ν=1

Aν exp [−λνt]
1√
λνx

J1

(
2
√

λνx
)

, (39)



– 14 –

where the λν are given by equation (38). Suppose we are given an initial distribution f(x)

at t = 0, i.e.,

P (x, t = 0) =
∞∑

ν=1

Aν
1√
λνx

J1

(
2
√

λνx
)

= f(x) . (40)

Next we multiply both sides of the equation by
√

x J1(2
√

λµx) and then integrate:

∞∑

ν=1

Aν√
λν

∫ xmax

0

dxJ1

(
2
√

λνx
)

J1

(
2
√

λµx
)

=
∞∑

ν=1

Aν√
λν

Iν =

∫ xmax

0

dx
√

x f(x) J1

(
2
√

λµx
)

.

(41)

The integrals Iν in the sum can then be rewritten by changing variables to u2 = x/xmax, so

they take the form

Iν = 2xmax

∫ 1

0

u du J1(ξνu)J1(ξµu) , (42)

where the ξk are zeroes of the J0 functions. After applying the recursion relations for Bessel

functions and integrating by parts, we find

Iν = 2xmax
ξν

ξµ

∫ 1

0

u du J0(ξνu)J0(ξµu) = xmax [J1(ξν)]
2 δνµ . (43)

The coefficients Aν can now be evaluated:

Aν =

√
λν

[J1(ξν)]
2

1

xmax

∫ xmax

0

dx
√

x f(x) J1

(
2
√

λνx
)

. (44)

As one example, we consider the case in which all of the planets start at the same radius,

or angular momentum, so that the starting distribution f(x) = δ(x − x0), and the Aν take

the form

Aν =

√
λνx0

xmax [J1(ξν)]
2J1

(
2
√

λνx0

)
=

ξν

√
x0/xmax

2xmax [J1(ξν)]
2J1

(
ξν

√
x0/xmax

)
. (45)

Next, we can find the total survival probability by starting with the full time dependent

solution of equation (39) and integrating over all angular momentum values,

pS(t) =

∫ xmax

0

P (x, t)dx =

∞∑

ν=1

Aν exp [−λνt]

∫ xmax

0

dx√
λνx

J1

(
2
√

λνx
)

=

∞∑

ν=1

4xmaxAν

ξ2
ν

exp [−λνt] .

(46)

For example, for the particular case in which the starting angular momentum distribution is

a delta function, so that the coefficients Aν are given by equation (45), the probability takes

the form

pS(t) =

∞∑

ν=1

2u0J1(ξνu0)

ξν [J1(ξν)]
2 exp [−λνt] , (47)
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where u0 ≡ (x0/xmax)
1/2.

In this problem, the flux at the outer boundary vanishes, and the flux into the origin is

given by

F0 = − ∂

∂x
(xP )

∣∣∣∣
x=0

= −
∞∑

ν=1

Aν exp [−λνt]
1√
λν

∂

∂x

[
x1/2J1

(
2
√

λνx
)]

x=0

= −
∞∑

ν=1

Aν exp [−λνt]

[
J1 (xν)

xν
+

dJ1

dx

]

xν=0

= −
∞∑

ν=1

Aν exp [−λνt] , (48)

where xν = 2
√

λνx. For comparison,

dpS

dt
= −

∞∑

ν=1

Aν
4xmaxλν

ξ2
ν

exp [−λνt] = −
∞∑

ν=1

Aν exp [−λνt] . (49)

Thus, dpS/dt = F0, as expected.

At late times, only the leading term survives in the series that describes the solutions.

As a result, the first term of equation (39) determines the probability distribution in the long

time limit. As a result, the distribution of locations for surviving planetary cores is given

by the first order Bessel function of the first kind. Similarly, the total survival probability is

given by the first term in equation (47). The first three zeroes (of the zeroth Bessel function

of the first kind) are ξ1 ≈ 2.40482, ξ2 ≈ 5.52007, and ξ3 ≈ 8.65372 (AS); if we take the

outer boundary to be xmax = 10 (corresponding to an outer disk radius of 100 AU), the first

three eigenvalues (see equation [38]) are approximately λ1 ≈ 0.145, λ2 ≈ 0.762, and λ3 ≈
1.87. After one diffusion time scale (roughly 1 Myr), the first term is about twice as large

as the second. After 10 diffusion times (about 10 Myr), the first term is almost 500 times

larger. In the (expected) case in which the planetary core population is severely depleted,

the distributions are thus determined primarily by the leading order terms. We exploit this

property of the solutions in Section 4.3, which determines the lowest order eigenfunctions

and eigenvalues for the full problem, including Type I migration.

3.4. Self-Similar Solutions

In the absence of an outer disk edge, self-similar solutions to the Fokker-Planck equation

exist (JGM). Although we expect the disk radius to be finite, with typical radii rdisk ∼ 30

– 100 AU, we can use self-similar solutions as an analytic model of the dynamics to gain

further insight into the problem. One should keep in mind, however, that these solutions

overestimate the probability of planetary survival.
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In the limit of long times, the surviving planets tend to reside in the outer disk where

inward migration due to Type I torques is relatively unimportant compared with diffusion.

As shown previously, self-similar solutions exist in this regime when the Type I torques

vanish (JGM). However, we can include an inward torque term, and still retain self-similarity,

provided that we use an averaged torque so that the Fokker-Planck equation takes the form

∂P

∂t
= 〈γ〉∂P

∂x
+ β

∂2

∂x2
(xP ) , (50)

where 〈γ〉 is now an appropriate average over the disk (to remove the additional x-dependence

in the torque term). Since Type I torques remove planets from the inner disk on a short time

scale (compared with the disk lifetime), the effective value 〈γ〉 should be representative of the

outer disk; as a reference point, we expect γ ≈ β (0.1 β) at r ≈ 10 AU (100 AU). Although

this model equation is simpler than the full problem, it retains the crucial feature that the

relative importance of diffusion (compared with Type I migration) increases outwards. In

addition, an analytic solution can be found (see below) and the optimization calculation (see

Section 4.2) can be done explicitly.

This version of the Fokker-Planck equation (50) has the solution

P (x, t) = A(βt + σ)−(2+〈γ〉/β) exp[−x/(βt + σ)] , (51)

where σ is a constant that is determined by the initial width of the distribution, and where A

is a normalization constant. For standard normalization, the expectation value of the initial

state is given by 〈x0〉 = σ. For planets starting near r = 10 AU, we expect σ ∼ x0 ∼
√

10 ∼ 3.

As written, the solution extends to spatial infinity (x → ∞), where the distribution function

obeys a zero-flux outer boundary condition (equation [23]). Keep in mind that the solution

given in equation (51) is the simplest member of a sequence of self-similar solutions.

In this model, the probability of a planet remaining in the disk is given by integrating

the above solution over all values of x,

pS(t) =

∫ ∞

0

dxP (x, t) =
A

(βt + σ)1+〈γ〉/β
≈ (1 + βt/σ)−(1+〈γ〉/β) , (52)

where A is a normalization constant, and we have normalized the solution in the final equality

so that the total probability is unity at t = 0. This result provides an exact solution

to the simplified problem posed by equation (50), but is only an approximation to the

original physical problem (with spatially varying Type I torques) because the true solution

is expected to approach the self-similar form of equation (51) only at late times. As a result,

the normalization (defined here at t = 0) can be different.

In the limit 〈γ〉 → 0, the survival fraction approaches the form pS ∝ 1/t (see JGM).

When Type I torques are included, the power-law steepens and hence fewer planets survive.



– 17 –

Notice that this solution represents an upper bound on the true survival fraction for two

reasons: The inclusion of the outer boundary (at the disk edge) enforces exponential decay

in the long term (see Sections 3.3, 4.3, and Figures 2 and 3). In addition, the Type I torques

are approximated here with no spatial dependence, and hence take on the value appropriate

in the outer disk; including the spatial dependence will increase their efficacy and hasten the

removal of planets from the inner disk.

Nonetheless, we can obtain a working estimate for the survival fraction. For typical

values β = 1 Myr−1, 〈γ〉/β = 0.3, distribution width σ = 3 = 〈x0〉, and time t = 10 Myr, we

find pS ≈ 0.15. For this time scale, we thus find that planetary survival is only moderately

rare, at the level of ten percent, roughly consistent with the numerical calculations of the

previous section. This estimate is somewhat higher, however, primarily due to the absence

of the outer boundary.

4. FOKKER-PLANCK TREATMENT: NUMERICAL RESULTS

We can directly solve the Fokker-Planck equation using standard numerical methods;

here we use a fully implicit method (e.g., see Press et al. 1990). The boundary conditions

play an important role in determining the fraction of surviving planets as a function of time.

For the calculations of this section, we adopt a standard set of boundary conditions and initial

conditions in order to determine how the planet survival fractions depend on time and on the

torque parameters γ and β. The inner boundary is fixed at x = x∗ = 0.1 (r = 0.01 AU) and

the outer boundary is fixed at x = xmax = 10 (r = rdisk = 100 AU). The distribution function

P is chosen to have a constant value at the inner boundary; note that a constant value of

P allows for nonzero flux through the inner boundary. At the outer boundary, we use the

zero-flux condition, which in this formulation is given by equation (23). The initial condition

is chosen to be a narrow gaussian distribution centered on x = xp =
√

r0, corresponding to

radius r0. We use r0 = 10 AU as a benchmark value, but explore varying values.

Through numerical experimentation, we find that the width of the initial gaussian has

relatively little effect, provided that it is much narrower than the disk size. The location of the

peak determines two important time scales for the evolution of the probability distribution:

(1) the time required for the Type I torques to move planets from the peak location inward

to the star, and (2) the time required for diffusion to spread the distribution to the outer

disk edge, where the outer boundary affects the dynamics.



– 18 –

4.1. Basic Numerical Results

The evolution of the probability distribution is illustrated in Figure 1. The torque

parameters are chosen to be near the center of the range of expected values with 1/γ = 0.1

Myr and 1/β = 1 Myr. The figure shows the distribution P (r, t) as a function of radius r.

Note that the calculations are done in terms of dimensionless angular momentum x, so that

the function P represents the probability density in x, i.e., P = dp/dx. In the figures of this

paper, however, we plot the function P versus radius r = x2 AU (because we have better

intuition for the meaning of radial locations in these disks). As expected, the distribution

spreads out with time, and its area decreases as planets are lost through accretion onto the

central star. The peak of the distribution actually moves outwards with time, even though

Type I migration acts to move planets inward. Here, at the relatively late times shown,

any planets that diffuse into the inner regions of the disk are quickly swept into the star,

and thus do not contribute to the distribution at small radii. Notice that the edge of the

probability distribution reaches the outer boundary in only about 1 Myr, so the effect of

the outer disk edge plays an important role in determining planet survivability on this time

scale (and longer).

For a given distribution P (x, t) at a specific time, the fraction of surviving planets pS(t)

is given by the integral

pS(t) =

∫ xmax

x∗

P (x, t)dx . (53)

Figure 2 shows the total probability of planet survival as a function of time for varying values

of the Type I migration torques and fixed amplitude of the turbulent torques (with β = 1

Myr−1). Figure 2 is presented as a log-linear plot, so that exponential decay corresponds to

straight lines in the diagram. Note that all of the curves become straight lines asymptotically

with time, so that the decay rate is in fact well-defined.

The solutions depicted in Figure 2 provide estimates for the survival probability. In

the absence of diffusion, the angular momentum of migrating planets decreases according

to x(t) = x0(1 − 3γt/x3
0)

1/3. Using a typical Type I migration rate (γ−1 = 0.1 Myr) and

the initial conditions of the numerical simulations (where x0 ≈ xp =
√

10), the angular

momentum reaches zero (planets are accreted) in time tacc = x3
0/(3γ) =

√
10/3 ≈ 1.1 Myr.

For comparison, when turbulent fluctuations are included at the “standard” level (so that

β−1 = 1 Myr), the survival fraction is pS ≈ 0.36 at time t = 1 Myr and pS ≈ 0.19 at time t

= 2 Myr. The planetary survival fraction falls to pS = 0.10 at time t ≈ 3.6 Myr. Turbulence

thus allows planets to survive several times longer than they would otherwise. Nonetheless,

in the long time limit, few planets survive: only about 1 percent (pS ≈ 0.01) of the starting

population is still present at t = 10 Myr.
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Fig. 1.— Distributions of radial locations of migrating planets from numerical solution to the

Fokker-Planck equation. The solution P is the distribution function for the dimensionless

angular momentum x, so that P = dp/dx, but the result is plotted versus radius r ∝ x2.

The solutions are shown at six sampling times: 0, 1, 2, 3, 4, and 5 Myr, from top to bottom

in the figure. The torque parameters are chosen to be γ = 10 Myr−1 and β = 1 Myr−1.

Recall that γ ∝ mP Σ/H2 (see equation [21]) and that β ∝ Σ2 (see equation [22]).
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Fig. 2.— Time evolution of the fraction of surviving planets from numerical solution to the

Fokker-Planck equation. The curves show the results using varying values of the parameter

γ that sets the rate of Type I migration relative to the level of turbulence. The values are

γ = 0, 1, 3, 5, 10, and 20 from top to bottom (in units of Myr−1). The Type I migration

parameter γ scales linearly with both the planetary core mass mP and with the disk surface

density Σ.
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For the same disk torque parameters used to construct Figure 2, the decay rate λ

is shown as a function of the parameter γ in Figure 3. For the sake of definiteness, the

decay rates λ = d ln pS/d ln t are evaluated at time t = 20 Myr. Figure 2 shows that little

curvature remains in the survival fractions at times of 20 Myr, so that the decay rates have

nearly reached their asymptotic values. One should keep in mind, however, that some longer

term evolution is possible. In the limit γ = 0, the decay rate approaches the value λ ≈ 0.16,

in agreement with the leading order result λ1 ≈ 0.15 derived in Section 3.3 using roots of

the Bessel function.

As another way to view these systems, we can plot the survival fraction pS as a function

of time for fixed Type I torque parameter γ and varying values of the diffusion parameter

β. One set of results is shown in Figure 4 for γ = 10 and diffusion parameter in the range

0.1 ≤ β ≤ 10. For relatively “large” diffusion parameters, corresponding to high levels of

turbulence, the survival curves show the same exponential behavior as in Figure 2. For β ≈
0.3, however, the curves show more structure, and larger fractions of the planetary population

survive. For even smaller values of the diffusion parameter (not shown in the Figure),

turbulence has little effect, and steady disk torques sweep (almost) the entire population of

planets into the star on the Type I migration timescale. This behavior suggests that for a

fixed value of γ, there exists an optimum value of the diffusion parameter β that maximizes

the number of surviving planets. This optimum value depends on the time of observation

and is taken up in Section 4.2.

All of the results shown thus far correspond to the same initial distribution of angular

momentum, i.e., a narrow gaussian centered on the angular momentum appropriate for a

circular orbit at r0 = 10 AU. We expect the planetary survival rate depend on the starting

location. As outlined in Section 2, for typical torque parameters, the time scale for inward

Type I migration and that for turbulent diffusion are comparable for radii near 10 AU. For

smaller radii, Type I torques are dominant, and fewer planets should survive. For larger

radii, turbulence dominates. To study this issue, we have performed a series of simulations

in which the starting location is a narrow gaussian centered on an angular momentum value

corresponding to a range of radial locations from 1 AU to the outer disk edge. The results

are shown in Figure 5 for four sampling times (1, 3, 5, and 10 Myr). Notice that the four

curves display a sharp corner near r0 ∼ 10 AU. For smaller radii, the survival fraction pS

drops precipitously. For larger radii, the fraction pS is a fairly flat function of radius at a

given sampling time.



– 22 –

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

Fig. 3.— Exponential decay rate λ for planet survival as a function of Type I migration

parameter γ for fixed diffusion parameter (here β = 1), where all quantities are given in

units of Myr−1. The decay rates are evaluated from the numerical solutions at an evolution

time of 20 Myr.
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Fig. 4.— Time evolution of the fraction of surviving planets from the Fokker-Planck equation

using varying values of the diffusion parameter β. The curves correspond to values of β =

0.1 (dots), β = 0.3 (dashes), β = 0.5 (dot-dashes), β = 1 (solid), β = 3 (dot-long-dashes),

and β = 10 (dots marked by open squares). The diffusion parameters are given in units of

Myr−1.
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Fig. 5.— Planet survival fraction as a function of starting location. In each of these simula-

tions, the initial distribution of angular momenta is taken to be a narrow gaussian centered

on a value given by x0 = [r0/(1AU)]1/2. The fraction of surviving planets is plotted as

function of r0 for four sampling times: t = 1 Myr, 3 Myr, 5 Myr, and 10 Myr (from top to

bottom in the figure).
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4.2. Optimization of Survival Probability

For a given Type I migration rate and a given time, there exists an optimum value of the

diffusion constant that provides the greatest number (fraction) of surviving planets. This

claim can be seen as follows: In the limit of no diffusion D → 0, the planets all migrate

inward. For times greater than the Type I migration time, essentially all of the planets are

accreted by the central star, and the number of surviving planets approaches zero. In the

opposite limit where the diffusion constant is large, the random walk in angular momentum

introduced by the diffusion process would lead to crossings of the origin (where j → 0,

r → 0, and accretion takes place) in only a few steps. Given the one-way barrier at the

stellar surface, the fraction of surviving planets also vanishes in the limit of large D. As a

result, an optimum value of the diffusion constant can occur in the intermediate regime.

Figure 6 shows the results of numerically exploring this optimization problem. At fixed

sampling times, the fraction of surviving planets is shown as a function of the diffusion

constant for a fixed value of the Type I migration torque (γ = 10 Myr−1). At early times

(the uppermost curve in the figure at t = 1 Myr), the Type I migration process has not had

time to remove all of the planets, and the result of increasing the diffusion constant is to

decrease the number of surviving bodies. At all later times shown, however, a maximum

appears in the survival fraction at intermediate values of the diffusion constant. Note that

this maximum occurs for values of the diffusion parameter near those expected from “typical”

turbulent torques, although a wide range of such parameters are possible.

The optimum value of the diffusion parameter depends on the other properties of the

system: Here we have used the expected value of the Type I migration parameter γ = 10

Myr−1 and used initial conditions where the planetary cores are formed near r = 10 AU.

However, notice that with the general form of the Fokker-Planck equation (20), one can

absorb the parameter γ into the definition of time, so that the results depend only on the

ratio β/γ = Qm (see equation [15]). Further, Qm depends on the physical properties of the

systems according to Qm ∝ ΣH2/mP .

To illustrate this optimizing behavior, we consider the simplified, self-similar version of

the problem developed in Section 3.4. Specifically, we use the self-similar solution of equation

(51) as a model for the dynamics. This treatment does not include the outer disk boundary,

and hence overestimates the survival probability. On the other hand, it provides an analytic

understanding of how the parameter space of Type I torque strength (given here by 〈γ〉) and

diffusion constant β contains a local maximum in the fraction of surviving planetary cores.

Given the normalized solution of equation (52) for the survival fraction pS as a function

of time, we can find the optimum value of the diffusion parameter β for fixed time t and
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Fig. 6.— Total survival fraction as a function of the diffusion parameter β (the value of the

diffusion constant at r = 1 AU in units of Myr−1). The Type I migration parameter γ is

kept constant at a value of 10 Myr−1. The curves shown correspond to times of 1 Myr (top),

3 Myr, 5 Myr, 10 Myr, and 20 Myr (bottom). The initial distribution of angular momentum

for this set of simulations was a narrow gaussian centered at x =
√

10, i.e., r = 10 AU.
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migration parameter 〈γ〉. The extremal value occurs where dpS/dβ = 0, which implies the

constraint

〈γ〉 ln [1 + βt/σ] =
βt/σ

1 + βt/σ
(β + 〈γ〉) . (54)

Equation (54) has a solution provided that the parameter α ≡ 〈γ〉t/σ ≥ 2 (at the point of

equality, the solution corresponds to β = 0). When this condition is met, the solution to

equation (54) determines the optimum value of the diffusion constant for which the maximum

fraction of planetary cores survive.

The resulting optimized survival fraction is shown in Figure 7 as a function of the

parameter α = 〈γ〉t/σ. Notice that for small values of α < 2 the optimization condition (54)

has no solution. For the regime where α = 〈γ〉t/σ < 2, the fraction of planetary cores is a

decreasing function of the diffusion constant β; in this regime, the Type I migration has not

had time to completely deplete the planetary population, so that increasing the diffusion

constant leads to loss of planets rather than helping to save them. For the same choice of

parameters used above (〈γ〉 = 0.3 Myr−1, σ = 1, and time t = 10 Myr), the optimal survival

fraction is about pS ≈ 0.064 (compared to the value of pS ≈ 0.044 obtained previously with

β = 1 Myr−1).

4.3. Long Time Limit

The most important outcome of the diffusion process considered herein is the fraction

of surviving planets and their distribution of positions (given by their angular momentum

in this formulation). These quantities are determined by the solutions to the Fokker-Planck

equation. Although one can find numerical solutions (see above), analytic or simplified

descriptions can greatly add to our understanding of the issues. The analytic treatment

developed in Section 3.3, where the Type I migration torques were turned off, can be gen-

eralized to provide a full solution. For the full problem, including the Type I migration

term, one can separate variables and find an analogous series solution. In this case, how-

ever, the spatial eigenfunctions F (x) are hypergeometric functions (AS), rather than Bessel

functions, and hence are cumbersome to work with. Fortunately, in the long time limit, the

problem simplifies greatly. In this asymptotic limit, only the lowest order term in the expan-

sion survives, and the distribution is determined by the solution to the following eigenvalue

problem

β
d2

dx2

(
xbF

)
+ γ

d

dx

(
F

xa

)
+ λ1F = 0 , (55)

where λ1 is the lowest order eigenvalue and F (x) is the corresponding eigenfunction. Note

that we can absorb one of the parameters. For example, we can divide equation (55) by γ
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Fig. 7.— Fraction pS of surviving planets as a function of α = 〈γ〉t/σ, where the diffusion

constant has been optimized using the self-similar solution of Section 3.4. Notice that for

α < 2, no optimizing solution exists; in this regime, diffusion acts to reduce the number

of surviving planets. For α > 2, diffusion acts to increase the probability pS of planetary

survival.
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and work in terms of a relative diffusion constant β̃ = β/γ. The scaled eigenvalue λ̃ = λ1/γ

will then be dimensionless.

Figure 8 shows the distributions calculated from our numerical treatment of the Fokker-

Planck equation in the long time limit. In this case, the standard form of the Fokker-Planck

equation (with a = 2, b = 1, β = 1 Myr−1, and γ = 10 Myr−1) was integrated out to 100

Myr. The five solid curves shown in the figure correspond to times of 10, 20, 30, 40, and

50 Myr, from top to bottom in the figure. Notice that the five curves are nearly parallel to

each other and exhibit nearly equal spacing. As a result, the distributions have reached an

asymptotic form, and are decreasing in amplitude with a well-defined decay rate. The lowest

order eigenfunction calculated from equation (55) is also shown as a dashed curve, just above

the uppermost solid curve. If this eigenfunction is plotted with the same normalization as the

distributions resulting from the Fokker-Planck equation, the functions are indistinguishable.

This figure thus demonstrates that the lowest order eigenfunction provides a good description

of the solution in the long time limit. Furthermore, this limit is reached on a time scale less

than 10 Myr.

Given that the solutions can be described by the lowest order eigenfunctions, we can

estimate the probable locations for surviving planetary cores. For given values of the Type

I migration parameter γ and the diffusion parameter β, we can find the eigenvalues and

corresponding eigenfunctions for equation (55). The results are shown in Figure 9 for a fixed

value of the Type I migration parameter γ and for three values of the diffusion parameter:

β/γ = 0.01, 0.1, and 1; note that only the ratio β/γ = Qm (see equation [15]) is needed to

determine the form of the solutions. As expected, these probability distributions peak in the

outer part of the disk. As the diffusion parameter increases, the distributions become wider,

and hence have more support at smaller radii. The three distributions shown in Figure 9

are normalized to have the same integrated value. For larger β and fixed γ, however, the

survival probability is a decreasing function of the diffusion parameter in this regime (see

Figure 6).

This procedure also specifies the eigenvalues, which in turn determine the decay rates

for planet survival in the long term. For fixed Type I migration parameter γ = 10, and for

diffusion parameters β = 0.1 , 1, and 10, the lowest order eigenvalues are λ1 ≈ 0.1098, 0.3400,

and 2.022, respectively (where all quantities are in units of Myr−1). For diffusion parameter

β = 1, corresponding to the expected center of parameter space, this eigenvalue compares

favorably with those calculated from numerical solutions to the Fokker-Planck equation (see

Figures 2 and 3).
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Fig. 8.— Distributions P (r, t) in the long time limit. The solid curves show the distributions

resulting from numerically integrating the standard form of the Fokker-Planck equation at

five times: 10 Myr (top curve), 20 Myr, 30 Myr, 40 Myr, and 50 Myr (bottom curve).

The lowest order eigenfunction from equation (55) is plotted as a dashed curve just above

the uppermost solid curve. This eigenfunction has almost exactly the same shape as the

distributions predicted by the Fokker-Planck equation (the eigenfunction must be offset

from the numerically determined distribution to be visible in the plot).
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Fig. 9.— Eigenfunctions for the lowest order mode solution to the Fokker-Planck equation.

In the long time limit, these functions provide the distribution of angular momentum, and

hence radial position, for surviving planetary cores. The three curves shown here correspond

to a fixed Type I migration parameter γ and varying values of the diffusion parameter given

by β/γ = 0.01 (dashed curve), 0.1 (solid curve), and 1 (dotted curve). As shown, the three

eigenfunctions are normalized to the same (arbitrary) value.
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4.4. Time Dependent Torque Parameters

Both the Type I migration torque and the stochastic torques due to turbulent forcing

depend on the surface density of the disk. Since the disk mass is expected to be a decreasing

function of time, the normalization of the disk surface density will, in general, be time

dependent. To gain some understanding of how this time dependence affects the migration

problem considered herein, we assume that the disk surface density maintains the same

power-law form, but the disk mass decreases with time. Toward this end, we introduce a

normalization function s(t) such that the disk mass is given by Md(t) = Md(0)s(t). Although

the form of s(t) is not known, observations show that circumstellar disks lose their mass on

time scales of order 3 – 10 Myr (Haisch et al. 2001, Hernandez et al. 2007, Hillenbrand

2008). More specifically, the observational sample shows that about half of the stars lose

their disks by age ∼ 3 Myr, and that only about 1/e ∼ 1/3 of the disks remain at 5 Myr.

For the sake of definiteness, we use a simple exponential form for s(t), i.e.,

s(t) = exp[−t/t0] , (56)

where we expect the time scale t0 = 1 − 10 Myr.

Next we note that the Type I migration torque is proportional to the surface density

Σ(r), whereas the effective diffusion constant from the turbulent torques scales like Σ2. When

the Fokker-Planck equation is modified to include this time dependence, it takes the form

∂P

∂t
= γs(t)

∂

∂x

(
P

x2

)
+ βs2(t)

∂2

∂x2
(xP ) , (57)

where we have used the standard radial dependence of the surface density and temperature

(and the standard x-dependence of the torques). Note that γ and β are defined by equation

(19).

In this formulation, the two terms on the right hand side of the Fokker-Planck equation

(57) display different types of time dependence. For purposes of illustration, we can consider

one term at a time. For the case in which only one of the torque terms is operational, we

can define a new time variable τ according to dτ1 = s(t)dt or dτ2 = s2(t)dt. With the former

substitution, the Type I migration dynamics becomes the same as that considered in Section

3.2, with the time t replaced by τ1. Similarly, the diffusion dynamics becomes the same as

that considered in Section 3.2, with t replaced by τ2. With time dependence surface density,

however, the effective time variables τj(t) reach finite values in the limit t → ∞, i.e.,

τ1(t) = t0
[
1 − e−t/t0

]
→ t0 and τ2(t) =

t0
2

[
1 − e−2t/t0

]
→ t0

2
. (58)

Thus, the net effect of decreasing disk mass is to limit the operation of Type I torques to

an effective time of t0, and to limit the operation of diffusion to an effective time of t0/2.
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On one hand, the result that decreasing disk mass implies a finite time for torques to act is

expected. Further, the effective time depends on the function s(t) that describes the time

dependence. On the other hand, the two types of torques depend on disk mass – and hence

on s(t) – in different ways and hence have different effective duty cycles. For exponential

decay in disk mass, Type I migration torques act over a time span that is effectively twice

as long as that of turbulent diffusion.

For a given version of the Fokker-Planck equation, and a given time dependence s(t) for

the surface density and disk mass, we can find numerical solutions. The result is shown in

Figure 10 for the standard choice of power-law disk parameters. The time dependence of the

disk mass has the exponential form given by equation (56) with different values of the decay

time: t0 = 1, 3, 10, 30, and the limit of constant disk mass t0 → ∞. For each case, the survival

fraction is shown as a function of time. For finite t0, both types of torques become ineffective

over a sufficiently long span of time, and the survival fraction asymptotically approaches a

constant value. Moreover, for expected values of the disk lifetime, these asymptotic values

are pS ≈ 0.04 − 0.16.

The Type I torque parameter also depends on the mass of the growing planetary core,

and this time dependence can also be included. Here we present a simple working model to

illustrate the type of behavior introduced by this time dependence. At early times, when

the planetary mass mP < 10M⊕, the Type I torque parameter depends linearly on the mass

(see equation [21]). For larger masses mP ∼ 30−100M⊕, however, the planet clears a gap in

the disk, and the migration torques become much smaller. We represent this general trend

by taking the torque parameter γ to have the simple form

γ = Γ(mP /M⊕) exp[−mP /mC ] . (59)

The function γ(mP ) attains its maximum value at mP = mC . For the sake of definiteness,

here we take mC = 10M⊕. The corresponding maximum value is then given by γ = 10Γ/e.

If we use Γ = 10 Myr−1, the maximum value of γ ≈ 30 Myr−1, a typical Type I migration

parameter expected for mP ≈ 12M⊕ (see equation [21]). At the expected gap clearing mass

of mP ∼ 30M⊕, the Type I migration parameter γ ∼ 15 Myr−1, and it decreases rapidly

with further increases in mP .

Next we need to specify the mass of the planetary core as a function of time. At relatively

small masses, the core grows with accretion rate Ṁ ∝ R2, where R is the radius of the planet

(e.g., Lissauer & Stevenson 2007). For constant planetary density, the mass grows with time

according to mP ∝ t3. At later times, when the planet is large enough for gravitational

focusing to become important, the accretion rate approaches the form Ṁ ∝ R4 and the

mass increases rapidly. Once the planetary core reaches this phase, however, it becomes

large enough to clear a gap and the Type I torques are significantly less important. We thus
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Fig. 10.— Survival fraction as a function of time for systems where the disk mass decreases

with time. The curves shown here correspond to different exponential time constants for

disk mass evolution: t0 = 1, 3, 10, 30, and the limit t0 → ∞ (from top to bottom).
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Fig. 11.— Survival fraction pS as a function of time for systems where the Type I torque

parameter is time dependent and the disk mass decreases with time. The torque parameter

is taken to have the form given by equation (59), where the planetary mass mP increases

with time according to mP = m1(t/1Myr)3. The disk mass decreases with time constant t0
= 5 Myr. The curves shown here correspond to m1/M⊕ = 1 (lower solid curve), 0.3 (dotted

curve), 0.01 (dashed curve), 0.003 (dot-dashed curve), and 0.001 (upper solid curve). The

lower curve marked by open squares shows the result with a constant value γ = 10 Myr−1.
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concentrate on the early phase, and hence allow the planetary mass to grow according to

mP = m1(t/1Myr)3. The parameter m1 depends on the surface density of solids in the disk

and the radius of core formation. Here we take this mass scale to lie in the range m1/M⊕

= 0.01 – 1. For this range, the corresponding time required for a growing planetary core to

reach the threshold value of mP = 10 M⊕ is t ∼ 2 − 10 Myr.

Using the above time dependence for the Type I torque parameter, the Fokker-Planck

equation can be integrated as before, also including the decrease in disk surface density

through the function s(t). The result is shown in Figure 11 for a disk evolutionary timescale

of t0 = 5 Myr, and for m1 = 0.01 – 1 M⊕. The curve for γ = 10 Myr−1 = constant is also

shown (for the same timescale t0). In the scenario with time dependent planetary mass,

the Type I torque parameter is smaller than our assumed constant value at early times,

but larger at later times. To leading order, the time dependence tends to cancel out. Since

planetary core masses grow rapidly, however, the systems spend more time with lower torque

parameter values, so that the inclusion of this time dependence allows more planetary cores

to survive (see Figure 11). We can understand this result by defining an effective duty cycle

τ3 for the Type I torques, analogous to those in equation (58), by including both the time

evolution of the planetary mass and the disk surface density. For the parameters used here,

this time scale lies in the range τ3 ≈ 4.2 − 5.6 Myr. These timescales are close to that for

disk evolution only, τ1 = t0 = 5 Myr, indicating that the smaller values of γ at early times

nearly cancel the larger values at later times. This (approximate) cancellation is reflected in

the survival fractions, which are confined to the range pS ≈ 0.1 – 0.2 for the cases shown in

Figure 11.

5. CONCLUSION

This work reinforces and extends the general results obtained in previous studies (LSA,

NP, JGM): Turbulence transforms Type I migration from a steady inward progression into a

diffusive process. As a result, turbulence allows some fraction of the population of planetary

cores to survive beyond the Type I migration timescale. However, the outcome of any

particular migration episode is uncertain because of extreme sensitivity to initial conditions

— due to chaos — so that the results must be described in terms of probability distributions

(see Figures 1, 8, 9, and 12). This survival problem, where steady inward migration is

coupled to stochastic behavior, and where the torques associated with both effects can vary

with time, allows for a rich diversity of behavior. A more specific description of our results are

summarized below (Section 5.1) along with a discussion of their implications and limitations

(Section 5.2).
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5.1. Summary of Results

Stochastically driven diffusion, due to turbulent torques, can act to save planetary cores

from accretion due to Type I migration. For torque strengths near the center of the expected

range of parameter space (specifically, γ = 10 Myr−1, β = 1 Myr−1, and active disk lifetime

t = 3 Myr), and for planets starting near r = 10 AU, the survival fraction pS ≈ 0.1 (see

Figures 2, 4, and 6). Note that this “lifetime” can be the time required for the planetary

core to reach the threshold required for gap clearing, so that migration slows down. For

longer timescales, the fraction of surviving bodies is much smaller. For the same torque

parameters, the survival fraction pS ≈ 0.01 at t = 10 Myr and pS ≈ 0.0004 at t = 20 Myr.

Keep in mind that these survival fractions are modified when the torque parameters exhibit

time dependence (see below).

The outer boundary condition in the disk plays an important role in determining the

fraction of surviving planets. A finite disk edge causes the fraction of surviving planets pS(t)

to experience exponential decay (see Figure 2, Sections 3.3 and 4.3), whereas a disk with

infinite extent displays power-law decay (see Section 3.4 and JGM). In most cases of interest,

the expected disk outer radius (rdisk ∼ 30−100 AU) is small enough that planets can diffuse

to the outer boundary during the active disk lifetime, so that edge effects are important and

exponential decay is realized. Typical decay rates lie in the range λ = 0.1 – 0.5 Myr−1, and

are found from both analytic calculations (Sections 3.3 and 4.3) and numerical simulations

(Figures 2 and 3).

The probability of planet survival is sensitive to the initial conditions. The most favor-

able locations for forming planetary cores lie just outside the snow-line in circumstellar disks,

i.e., in the radial range 5 – 10 AU. For typical torque parameters, this regime also marks

the boundary between the outer disk, where turbulent torques dominate, and the inner disk,

where inward Type I migration torques dominate. As a result, planetary cores starting their

migration within this annulus are particularly sensitive to the specifics of their evolution.

Planets forming at somewhat larger radii are much more likely to survive, whereas planets

that form at smaller radii have little chance of survival (Figure 5).

For a given value of the Type I inward migration torque amplitude, there exists an

optimum value of the diffusion constant that leads to the maximum number of surviving

planets. This extremum depends on the effective disk lifetime. For sufficiently short lifetimes

(shorter than the nominal Type I migration time), diffusion acts to reduce the fraction of

surviving planets and the optimum value of the diffusion constant is zero. For longer disk

lifetimes, diffusion acts to save planets, and a maximum develops in the survival curve (see

Figure 6). The optimum value of the diffusion constant corresponds to an optimum level of

turbulence. Furthermore, this optimum level of turbulence is relatively near that found in
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previous MHD simulations (LSA, NP, Nelson 2005). The existence of an optimal value of

the diffusion constant can be derived analytically using the self-similar limiting form of the

problem (see Section 4.2, Figure 7, and equations [52, 54]).

In the long time limit, the distributions of angular momenta for surviving planets ap-

proach a well-defined form (see Figure 8), with the amplitude (normalization) decreasing at

a well-defined decay rate. The form of this asymptotic distribution is given by the lowest

order eigenfunction of the spatial part of the Fokker-Planck equation (see Figure 9), and

the decay rate is given by the corresponding eigenvalue (see equation [55]). The distribution

of surviving planets peaks in the outer disk and provides the initial conditions for the later

stages of planetary growth.

The time dependence of the disk mass and surface density leads to corresponding time

dependence in the torque parameters, and can be incorporated into this formulation of the

diffusion problem (Section 4.4). Because the two types of torques depend on different powers

of the surface density, the effective duty cycle of the Type I migration torque is longer than

that due to turbulence. When the time dependence of the disk surface density is included,

the survival probability of planets approaches a well-defined asymptotic value (Figure 10)

that depends on the disk evolutionary timescale t0 (equation [56]). For standard torque

parameters and t0 = 3 Myr (5 Myr) — consistent with observed disk timescales (Hernandez

et al. 2007) — the survival fraction has values pS ≈ 0.16 (0.10). The Type I torque parameter

also depends on the mass of the planetary core, which grows with time. The inward migration

torques are thus smaller than average at early times and larger at later times. When this

time dependence is included, the net survival probability is increased by a modest amount

(see Figure 11), with typical values pS = 0.1 – 0.2.

For completeness, we have developed an alternate description of the dynamics using an

iterative map formalism (given in the Appendix). Although this treatment gives the same

results as the Fokker-Planck equation for the same input physics, an iterative map can be

useful in several ways: The mapping provides another way to derive — and hence under-

stand — the way in which a finite disk edge enforces an exponentially decreasing survival

probability (Section A.3). The Fokker-Planck treatment is limited to small diffusion steps,

whereas the iterative map can accommodate large fluctuations. Since boundary conditions

are implemented in different ways in the two treatments, some boundary conditions are eas-

ier to model with the mapping approach. Finally, the iterative map can easily be generalized

to include eccentricity variations and other complications. While the iterative map approach

is flexible and instructive, it is very computationally intensive: To obtain each of the distri-

butions shown in Figure 12, we needed to perform 100,000 random-walk experiments. This

large number is required, in part, because the survival rate is low. In any case, this find-
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ing underscores the necessity of using complementary methods such as the Fokker-Planck

equation.

5.2. Discussion

One of the interesting results of this study is the complicated nature of the Type I

migration epoch. In particular, the formation and survival of planetary cores involves a

series of compromises: [A] In disks with typical properties, Type I torques dominate in the

inner disks where r < 10 AU, and stochastic torques dominate in the outer disk (r > 10

AU). The planetary cores are most easily formed just outside the snow-line, near 5 AU for

solar-type stars and typical disks; core formation at larger radii is increasingly difficult (as r

increases) due to the slower orbit time. As shown here, however, the survival of these cores

is enhanced if they start migration at larger radii (Figure 5). [B] Next we find that although

turbulence allows planetary cores to survive in spite of Type I migration (Figures 1, 2, and

4), the survival fraction decreases if the diffusion constant becomes too large (Figure 6). [C]

We also find that decreasing the disk surface density with time allows for more planetary

cores to survive (Figures 10 and 11); if the surface density decreases too quickly, however,

the disk will not have enough gas left to make giant planets. [D] Similarly, the surviving

cores are most likely to reside in the outer disk, near ∼ 30 AU (Figure 9); however, planet

formation proceeds much more slowly at large radii and the outer portion of the disk is

most susceptible to mass loss through photoevaporation (e.g., Adams et al. 2004). Because

of these compromises, the survival of planetary cores depends on the interplay between a

large number of ingredients, and the Type I migration epoch results in a wide distribution of

possible outcomes. These complications, in turn, imply that the resulting planetary systems

will display a great deal of diversity.

Although this paper generalizes previous work, a number of additional issues remain

to be addressed. We first note that the parameter space for studying the Type I migration

problem is huge: In addition to the magnitude of the torque parameters, and their variations

with radius, the time dependence of the disk surface density and the planets also play an

important role. Next, the true nature of turbulence in circumstellar remains under study, so

that its effects on planet migration could vary from system to system and could otherwise

alter the assumptions used herein. One important issue is that the numerical simulations

that predict turbulence are not fully converged, so that changes in numerical predictions are

possible (e.g., Fromang & Papaloizou 2007). The formulation presented here separates the

Type I migration torque from the stochastic turbulent torques and “derives” their amplitudes

independently. In practice, however, the presence of turbulence is likely to affect the structure
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of the disk near the forming planet and can thus alter the Type I torques (e.g., Papaloizou

et al. 2007). Fortunately, our formulation of the migration problem is sufficiently general to

address these issues. If, for example, turbulence alters the size of the Type I migration torque,

or even if it produces a net torque with nonzero mean, this effect can be incorporated by

using the proper value of γ. Another unresolved issue is the correlation time of the turbulence

(taken here to be one orbit time). This issue affects the value of the diffusion constant β.

Another issue that affects the survival of planetary cores is the possible presence of

“dead zones”, i.e., regions in the disk where MRI is not active because of insufficient ioniza-

tion (Gammie 1996). In these zones, turbulence is absent and hence the diffusion constant

vanishes. Since Type I torques continue to operate in these regions, planetary cores migrate

inward and can be lost. Although the structure and radial extent of dead zones in disks are

not fully understood, these zones are expected in the annulus from about 0.3 to 3 AU. In the

extreme case, the outer edge of the dead zone (∼ 3 AU) would provide the effective inner

boundary for the diffusion problem addressed in this paper — all planets that reach this

location would quickly be swept inward by Type I torques and eventually accreted by the

star. However, this picture contains many complications: The outer (top/bottom) layers of

the disk remain ionized, and hence turbulent. These regions provide some (highly reduced)

torques (Oishi et al. 2007), and allow for turbulent mixing that can enliven the dead zones

(Ilgner & Nelson 2008, Inutsuka & Takayoshi 2005). In addition, the lower viscosity in the

dead zone can allow the planet to open a gap at lower masses and thereby reduce its inward

speed (e.g., Matsumura et al. 2007). These issues render the migration scenario complex,

and should be addressed in future work.

Finally, we note that this paper only addresses the survival of planetary cores. Many

additional steps are required to produce fully formed giant planets. After the planetary

cores reach a sufficiently large mass (30 – 100 M⊕), they clear gaps in the disks and migrate

more slowly. This study shows that the planetary cores that survive the embedded phase

of migration will reside in the outer disk (Figure 9). If the planets did not migrate after

clearing gaps, the results of this model would predict many more giant planets in wide orbits

(a = 10 – 30 AU) compared with those in close orbits (a ≈ 0.1 AU); the outer planets would

be more abundant by a factor of 6 to 100, depending on the values of the torque parameters

(see Figure 9). However, the surviving cores will move inward through Type II migration as

they continue to grow. This later migration phase is not calculated herein, but it will act to

move the distribution of semi-major axes inward, and should be considered in future work.

The basic issue addressed in this paper is that Type I migration tends to move plan-

etary cores inward too rapidly, before they can clear gaps and before they can grow into

giant planets. Building on previous work (LSA, NP, JGM), we have explored a solution to
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this Type I migration problem where the planetary cores experience a random walk due to

turbulent perturbations. Although this solution is successful in many ways, other physical

processes can contribute. If the planetary orbit is eccentric, for example, the Type I torques

are weaker (Papaloizou & Larwood 2000); migration can thus be slowed down if some process

can maintain orbital eccentricities. Similarly, the torques are weaker if the disk itself main-

tains global (non-axisymmetric) distortions (Papaloizou 2002). Another contributing factor

is the detailed structure of the disk, which can depart from the power-law forms considered

here. Opacity transitions affect the disk structure and hence the migration rates (Menou &

Goodman 2004); for sufficiently high opacities, the migration can even be directed outwards

(Paardekooper & Mellema 2006). Strong magnetic fields can dominate over Type I torques

(Terquem 2003), moving planets both inward and outward. Finally, the inner disk can be

truncated by magnetic effects (Shu et al. 2007) so that planetary cores cannot migrate all

the way to the stellar surface. In closing, the challenge left for the future is to determine

how all of these processes — and others — work together to extend the time required for

Type I migration and thereby allow giant planets to form.
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A. AN ITERATIVE MAPPING SCHEME FOR MIGRATION

As an alternative to the Fokker-Planck treatment presented in the text, this Appendix

develops an simple iterative mapping approach. The evolution of planetary angular momen-

tum evolution can be described by an iterative map that includes both the Type I inward

migration and the stochastic changes due to turbulent forcing. The map can thus be written

in the form

jk+1 =

[
1 −

(
∆j

j

)

1

]

k

[
1 +

(
∆j

j

)

T

]

k

jk , (A1)

where the subscript labels the step number. Note that the angular momentum increments

occur over the time scale τT on which the turbulent fluctuations are independent (roughly

an orbit time). As a result, we must include a second map to track the time, i.e.,

tk+1 = tk + (τT )k = tk +
2πfα

Ωk
. (A2)
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The full map can be written in terms of an ordered product. The angular momentum at

orbit number N becomes

jN = j0

N∏

k=1

[
1 −

(
∆j

j

)

1

]

k

[
1 +

(
∆j

j

)

T

]

k

, (A3)

where j0 is the starting value. Note that the factors, in general, depend on angular momen-

tum and are evaluated at the previous step. As a result, the order of the product matters.

Although the random parameter ξ that determines the realization of the turbulent torque is

independently distributed, the angular momentum increments due to turbulence are not.

A.1. An Aside on Mapping Approximations

In the treatment given above, we made the approximation such that the angular mo-

mentum increments are small per orbit. In particular, we have multiplied the torque by the

orbit time scale 2πfα/Ω instead of integrating over the same time interval. For power-law

disks, one can easily perform the integration and obtain more accurate formulae. In practi-

cal terms, however, the uncertainties in the turbulent forcing are larger than the accuracy

gained. In order to understand the relationship between the iterative map and the Fokker-

Planck treatments, however, we need the integrated result. For the benchmark case where

[(∆j)/j] is constant, we thus obtain

dj = −T1dt = −[T1]k

(
j

jk

)−2
2π

Ω
dn = −[T1]k

2π

Ωk

j

jk
dn , (A4)

where the subscript k denotes that the quantities are to be evaluated at the beginning of the

kth time interval. Here, dn is the increment of the number of orbits, so we need to integrate

from n = 0 to n = fα. After integrating, the change in angular momentum over the time

scale τTk (for the current radial location) takes the form

1 −
(

∆j

j

)

1

= exp

{
− [T1]k

jk
τTk

}
. (A5)

Note that the product of many such factors takes the form

Π(N) =

N∏

k=1

[
1 −

(
∆j

j

)

1

]

k

=

N∏

k=1

exp

{
− [T1]k

jk
τTk

}
= exp

{
−

N∑

k=1

[T1]k τTk

jk

}
. (A6)

For this case, [T1] ∝ j−2 and τT ∝ Ω−1 ∝ j3 so that [T1]τT /j is a constant (the same for each

cycle). As a result, we can write the product in the form

Π(N) = exp

{
−

N∑

k=1

[T1]0 τTk

j0

}
= exp

{
− [T1]0 τTk

j0
N

}
=

[
exp

{
− [T1]0 τTk

j0

}]N

, (A7)
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where the subscript zero denotes that the quantities are to be evaluated at the beginning of

the migration epoch (t = 0).

A.2. Example

As a working example, we consider the standard disk where q = 1/2 and p = 3/2. In this

case, the relative angular momentum changes due to Type I migration are independent of

j, i.e., the planet loses a fixed fraction of angular momentum per orbit (or per time interval

τT ). The effect of Type I migration on the planet is just a constant factor F1 in the iterative

map. Here we take

(
∆j

j

)

1

= 10−5 ⇒ F1 = exp
[
−10−5

]
. (A8)

For this same disk model, the relative angular momentum perturbations due to turbulent

fluctuations are linear in j, and the iterative map takes the form

jn+1 = F1 [1 + Aξ(jn/j0)]n jn , (A9)

where ξ is a random variable and A sets the amplitude. Here we take ξ to follow a gaussian

distribution with zero mean and unit variance. The amplitude is set to A = 10−3, which

corresponds to our standard value β = 1 in the Fokker-Planck equation (see Section 4). The

scale j0 is the angular momentum for a circular orbit at a = 1 AU around a solar type star

(M∗ = 1.0 M⊙).

The starting radii are taken to be distributed in a narrow gaussian centered on x =√
30, corresponding to the angular momentum appropriate for a circular orbit at r = 30 AU.

The resulting distributions of radial locations are shown in Figure 12 for times t = 1, 3, and

5 Myr. These distributions are both qualitatively and quantitatively like those produced

by solutions to the Fokker-Planck equation (see the main text). Compared to the Fokker-

Planck solutions, these distributions have a slightly smaller height near the outer boundary.

This discrepancy is due to the different ways in which the outer boundary condition is

implemented in the two methods. In the Fokker-Planck treatment, we use a standard zero-

flux condition at the disk edge. For this iterative map approach, the migrating planet is not

allowed to cross the radius corresponding to the disk edge. This latter boundary condition

is thus implemented in a “one planet at a time” manner and does not exactly produce the

smooth (zero-derivative) solutions of the Fokker-Planck equation.
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Fig. 12.— Distributions of migrating planetary cores at three times: 1 Myr, 3 Myr, and 5 My

(from top to bottom). These results provide an example of the iterative mapping scheme

developed in this Appendix. Here, the initial condition is taken to be a narrow gaussian

distribution centered on x =
√

30, i.e., the angular momentum appropriate for a circular

orbit at radius r = 30 AU.
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A.3. Heuristic Argument for Exponential Decay

We can use this iterative map formalism to show that the number of surviving planetary

cores is a decaying exponential function. This argument applies when the disk has a well-

defined outer edge.

We consider only late times, when most planets would be swept into the star by Type

I migration in the absence of diffusion. In this regime, most of the surviving planets will

be piled up in the vicinity of the outer disk edge. The change in angular momentum due

to turbulent torques, which in general depend on the planet’s location, can be simplified

by evaluating the torque amplitude at a constant value near the disk edge. The change in

angular momentum due to Type I migration is already (in the standard case) a constant. As

a result, the net effect of one cycle of the iterative map is to change the angular momentum

by the factor

F = F1FT =

[
1 −

(
∆j

j

)

1

] [
1 +

(
∆j

j

)

T

ξ

]
, (A10)

where ξ is a random variable of zero mean and unit variance, and the other factors are now

constant. After N iterations, the accumulated angular momentum can be written as the

product

j(N) = j0 FN
1

N∏

k=1

[
1 +

(
∆j

j

)

T

ξk

]
, (A11)

which can be rewritten in the more convenient form

ln
[
j(N)/j0

]
= N lnF1 +

N∑

k=1

ln

[
1 +

(
∆j

j

)

T

ξk

]
. (A12)

Working to leading order, we simplify the sum so that the angular momentum variable takes

the form

ln
[
j(N)/j0

]
= N lnF1 +

(
∆j

j

)

T

N∑

k=1

ξk , (A13)

which is correct to the same order as the Fokker-Planck treatment (see below). The final

sum in equation (A13) is the sum of random variables. In the limit of large N , the long

time limit, the composite variable ζN =
∑

ξk will have a distribution that approaches a

normal form (due to the Central Limit Theorem, e.g., Richtmyer 1978). Further, since the

individual variables ξk have unit variance, the composite variable ζN has variance σ2
ζ = N .

Survival of the planetary core requires that the angular momentum remain larger than

that of the star, i.e.,

j(N) > j∗ ≡ j0 FK
1 , (A14)
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where the second equality defines K, the number of steps required for Type I migration

to reduce the angular momentum of the starting state j0 to that of the stellar surface j∗.

Combining the above results implies the following requirement for planetary survival

ζN >
(N − K) lnF−1

1

(∆j/j)T

≈ (N − K)
(∆j/j)1

(∆j/j)T
≡ ζ∗ . (A15)

The probability of planetary survival pS is thus given by the integral

pS(N) = A

∫ ∞

ζ∗

exp[−ζ2/2N ]dζ , (A16)

where A is a normalization constant. Note that the planetary cores do not necessarily have

a gaussian distribution in their initial state, so that the constant A can be less than that

corresponding to the standard normalization at t = 0. In the regime of interest, at late times

when N is large, the integral in equation (A16) can be evaluated asymptotically to obtain

pS(N) = A
N

ζ∗
exp[−ζ2

∗/2N ]

[
1 − N

ζ2
∗

+
3N2

ζ4
∗

+ . . .

]
. (A17)

In the extreme limit N ≫ K, the survival probability can be written in the form

pS(N) =
A

R exp[−(R2/2)N ] , (A18)

where R ≡ (∆j/j)1/(∆j/j)T . Since Type I migration dominates in the inner disk, but

the torques increase their amplitude relative to Type I torques as the radius increases, we

expect the ratio R to be order unity in the outer disk. In addition, since the parameter N

counts orbits, but the orbits in question are those near the outer disk edge, the parameter

N is proportional to time. Thus, the above result shows that the survival probability decays

exponentially with time.

The decay rate is overestimated in the above analysis because we have taken the limit

N ≫ K. In practice, orbits will decay due to Type I torques in K ∼ 105 orbits, typically

a few Myr, so that N will be comparable to (but still larger than) K. This correction does

not change the result that the fraction of surviving planets decays exponentially, but it does

lower the decay rate. Operationally, N should be replaced by (N −K)2/N in the argument

of the exponential in equation (A18).
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