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Abstract. The Helmholtz conditions are necessary and sufficient conditions for a system of second
order differential equations to be variational, that is, equivalent to a system of Euler-Lagrange
equations for a regular Lagrangian. On the other hand, matching conditions are sufficient conditions
for a class of controlled systems to be variational for a Lagrangian function of a prescribed type,
known as the controlled Lagrangian. Using the Helmholtz conditions we are able to recover the
matching conditions from [9]. Furthermore we can derive new matching conditions for a particular
class of mechanical systems. It turns out that for this class of systems we obtain feedback controls
that only depend on the configuration variables. We test this new strategy for the inverted pendulum
on a cart and for the inverted pendulum on an incline.
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1. Introduction

Assume we are given a system of Euler-Lagrange equations with an unstable equilibrium that we
want to stabilize using feedback controls applied in certain directions. The controlled Lagrangians
techniques provide a method for solving this problem for certain mechanical systems, providing
explicit control laws [9, 6, 7, 5, 15]. The method consists in choosing, among a class of feedback
controls with parameters, ones that transform the controlled system into a Lagrangian form for a
specific type of Lagrangian function that depends on the same parameters as the control. Matching
conditions are sufficient conditions, depending on the system and the parameters, which ensure this
goal is accomplished. Then energy shaping methods can be used to obtain stability.

Trying to put a system of second order differential equations (SODE) into Lagrangian form is
the issue of the inverse problem of the calculus of variations, although no specific form is usually
imposed for the new Lagrangian, see [13, 17, 12, 19]. If a regular Lagrangian function can be found
then the system is called variational. The variationality of a SODE can be characterized through
the Helmholtz conditions, which are a set of necessary and sufficient conditions which depend on a
matrix (gij) of functions on TQ, but not on the Lagrangian function itself.

In this paper we will use the Helmholtz conditions in order to recover the matching conditions
from [9] and obtain additional ones for a specific class of systems. The class of allowed controlled
Lagrangians will be slightly extended for this purpose, compared to the controlled Lagrangians used
in [9], where the special matching assumption is made when choosing a new kinetic energy and the
potential energy is not modified. Notice that arbitrary kinetic and potential energies are considered
in [1], but such generality requires solving a system of PDEs for the new multipliers. Throughout
this paper when using the expression matching conditions we refer to the approach from papers
[9, 6], introduced in Section 1.1.

In this section we will first review aspects of the method of controlled Lagrangians and the match-
ing conditions. Then we will introduce the inverse problem and recall the Helmholtz conditions.
Finally we show how both sets of conditions are related.

1.1. Controlled Lagrangians techniques: matching conditions. Consider a configuration
manifold Q with a Lie group G acting freely and properly on Q. Consider also a Lagrangian function
L on TQ of mechanical type, that is, of kinetic minus potential energy type. More precisely we have

L(vq) =
1

2
g(vq, vq)− V (q), vq ∈ TqQ ,

1
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for some Riemannian metric g on Q and some function V : Q −→ R. We will assume that the
Lagrangian L is invariant under the lifted action of G on TQ. In this section we will briefly
recall how to construct from L a new Lagrangian function Lτ,σ,ρ on TQ, known as the controlled
Lagrangian.

Consider the vertical spaces with respect to the projection π : Q −→ Q/G, that is, the tangent
spaces to the orbits of the G-action, and the orthogonal complements with respect to the kinetic
energy metric g, which will be referred to as horizontal spaces. Then for each vq ∈ TqQ we obtain
a unique decomposition

vq = Horvq + Vervq ,

where Vervq ∈ TqOrb(q) and Horvq ∈ TqOrb(q)⊥g .
Let g denote the Lie algebra of G, ξQ the infinitesimal generator corresponding to ξ ∈ g and let

τ be a g-valued G-equivariant horizontal one-form on Q. We define the τ -horizontal projection and
the τ -vertical projection respectively as

Horτ : vq 7−→ Horvq − τ(vq)Q(q) and Verτ : vq 7−→ Vervq + τ(vq)Q(q) for vq ∈ TqQ .
The freedom in the controlled Lagrangian Lτ,σ,ρ comes from the following choices:

• A new choice of horizontal space, corresponding to a choice of τ ,
• A change g → gσ of the metric acting on τ -horizontal vectors,
• A change g → gρ of the metric acting on vertical vectors.

Once these choices have been made, according to [9, Definition 1.2] the controlled Lagrangian can
be defined as

Lτ,σ,ρ(vq) =
1

2
(gσ(Horτvq,Horτvq) + gρ(Verτvq,Verτvq))− V (q) .

According to [9, Theorem 2.1], if g and gσ coincide on the horizontal spaces and further the
horizontal and vertical spaces are gσ-orthogonal, then the controlled Lagrangian can be rewritten
as

(1) Lτ,σ,ρ(vq) = L(vq + τ(vq)Q) +
1

2
gσ(τ(vq)Q, τ(vq)Q) +

1

2
$(vq) ,

where vq ∈ TqQ and $(vq) = (gρ − g)(Verτ (vq),Verτ (vq)).

Assume now that G is Abelian. If we take local coordinates (xα, θa) on Q such that xα are
coordinates on Q/G and θa are coordinates on G, then the given mechanical Lagrangian is written
as

L(xα, ẋβ, θ̇a) =
1

2
gαβẋ

αẋβ + gαaẋ
αθ̇a +

1

2
gabθ̇

aθ̇b − V (xα) .

In these coordinates, under the same assumptions that provide (1), the controlled Lagrangian be-
comes

Lτ,σ,ρ

(
xα, ẋβ, θ̇a

)
= L

(
xα, ẋβ, θ̇a + τaαẋ

α
)

+
1

2
σabτ

a
ατ

b
βẋ

αẋβ

+
1

2
$ab

(
θ̇a + gacgαcẋ

α + τaαẋ
α
)(

θ̇b + gbdgβdẋ
β + τ bβẋ

β
)
,

where σab, $ab are the coefficients of the last two terms in (1) and τaα are the coefficients of τ .

As in [9] we will refer to the particular choice gρ = g as the special matching assumption and
write the corresponding controlled Lagrangian as Lτ,σ. In this case, according to (1), the controlled
Lagrangian Lτ,σ becomes

Lτ,σ(vq) = L(vq + τ(vq)Q) +
1

2
gσ(τ(vq)Q, τ(vq)Q) .

Now we will compare the solutions of the system of controlled Euler-Lagrange equations

d

dt

∂L

∂ẋα
− ∂L

∂xα
= 0 ,

d

dt

∂L

∂θ̇a
= ua ,(2)

to the solutions of the systems of Euler-Lagrange equations

d

dt

∂Lτ,σ
∂ẋα

− ∂Lτ,σ
∂xα

= 0 ,
d

dt

∂Lτ,σ

∂θ̇a
= 0 ,(3)
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d

dt

∂Lτ,σ,ρ
∂ẋα

− ∂Lτ,σ,ρ
∂xα

= 0 ,
d

dt

∂Lτ,σ,ρ

∂θ̇a
= 0 ,(4)

where ua is chosen in such a way that the θa equation in (2) coincides with the θa equation in (3)
or (4), depending on whether we are making the special matching assumption or not. We will refer

to the functions ua = ua(t) as control inputs or controls. When ua = ua(x, θ, ẋ, θ̇) we will use the
expression feedback controls.

Consider the following two sets of assumptions, known as matching conditions and simplified
matching conditions respectively:

Assumption M1 : τ bα = −σabgαa ,
Assumption M2 : σbd(σad,α + gad,α) = 2gbdgad,α ,

Assumption M3 : τ bα,β − τ bβ,α = gdbgad,ατ
a
β ,

Assumption SM1 : σab = σgab for a constant σ ,

Assumption SM2 : gab is constant ,

Assumption SM3 : τ bα = −(1/σ)gabgαa ,

Assumption SM4 : gαa,δ = gδa,α ,

where , α denotes partial derivative with respect to xα.

In [9, Theorem 2.2] it is shown that under the matching conditions M1-M3 the solutions of (2)
and (3) coincide. In particular, if the simplified matching conditions SM1-SM4 hold, then M1-M3
also hold and therefore the solutions of (2) and (3) coincide.

If the simplified matching conditions do not hold, then we may relax the special matching as-
sumption gρ = g and consider controlled Lagrangians of the form Lτ,σ,ρ. In this case we can consider
the generalized matching conditions, which provide equivalence of (2) and (4), see [7, Theorem
1.3]:

Assumption GM1 : τ bα = −σabgαa ,
Assumption GM2 : σbd(σad,α + gad,α) = 2gbdgad,α ,

Assumption GM3 : $ab,α = 0 ,

Assumption GM4 : τ bα,δ − τ bδ,α +$adρ
bd(ζaα,δ − ζaδ,α)−$adρ

dcgce,δρ
ebζaα − ρdbgad,ατaδ = 0 ,

where ζaα := gacgαc .

So far we have assumed that the original Lagrangian L is invariant under the action of an Abelian
Lie group. If we keep this assumption for the kinetic energy part of the Lagrangian but allow for
symmetry breaking in the potential energy part then we can add an extra condition to the simplified
matching conditions, namely

Assumption SM5 : V,αag
adgβd = V,βag

adgαd ,

which ensures that, if we choose gρ = ρgab for some constant ρ, then (2) is equivalent to

d

dt

∂Lτ,σ,ρ,ε
∂ẋα

− ∂Lτ,σ,ρ,ε
∂xα

= 0 ,
d

dt

∂Lτ,σ,ρ,ε

∂θ̇a
= 0 ,(5)

where

Lτ,σ,ρ,ε = Lτ,σ +
1

2
(ρ− 1)gab(θ̇

a + gacgαcẋ
α + τaαẋ

α)(θ̇b + gbdgβdẋ
β + τ bβẋ

β)− Vε(xα, θa) ,

and Vε depends on a real parameter ε, see [6, Theorem III.1].

Remark 1.1. All of the above mentioned matching conditions are sufficient conditions to ensure
equivalence of the systems (2) and (3) or (4) or (5), but they are not enough to guarantee stability
of the desired equilibrium. Conditions for obtaining stability are given in [9, 6].

1.2. The inverse problem of the calculus of variations: Helmholtz conditions. Assume we
are given an explicit system of second order differential equations

(6) q̈i = Γi(q, q̇) , i = 1, . . . , n .
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The classical multiplier version of the inverse problem of the calculus of variations poses the following
question [13]. Is the system (6) equivalent to a system of Euler-Lagrange equations for some regular
Lagrangian L(q, q̇), that is, to a system of the form

(7)
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 ,

where the matrix
(

∂2L
∂q̇i∂q̇j

)
is regular? More precisely, we can ask for the existence of a regular

matrix (gij(q, q̇)), the so-called multiplier matrix, such that

(8) gij(q̈
j − Γj(q, q̇)) =

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi

holds for some regular Lagrangian L. Notice that the requirement (8) coincides with asking for
equivalence of solutions of the two systems (6) and (7). Indeed, if we put (7) in explicit form we get

q̈i = gij
(
− ∂2L

∂q̇j∂qk
q̇k +

∂L

∂qj

)
,

where (gij) is the inverse matrix of
(

∂2L
∂q̇i∂q̇j

)
. Then equivalence of solutions to (6) and (7) implies

Γi(q, q̇) = gij
(
− ∂2L
∂q̇j∂qk

q̇k + ∂L
∂qj

)
, that is, (8) is satisfied.

Determining if (8) holds for some regular Lagrangian is equivalent to determining the existence
of solutions to the Helmholtz conditions given by Douglas in terms of multipliers in [13]:

det(gij) 6= 0, gji = gij ,
∂gij
∂q̇k

=
∂gik
∂q̇j

,(9)

Γ(gij)−∇kj gik −∇ki gkj = 0, gikϕ
k
j = gjkϕ

k
i ,(10)

where

Γ := q̇i
∂

∂qi
+ Γi(q, q̇)

∂

∂q̇i
, ∇ij := −1

2

∂Γi

∂q̇j
, ϕkj := Γ

(
∂Γk

∂q̇j

)
− 2

∂Γk

∂qj
− 1

2

∂Γi

∂q̇j
∂Γk

∂q̇i
.

A proof of the above statement was given by Douglas in [13].

There is an earlier version of the inverse problem due to Helmholtz which poses the following
question [20]. Given an implicit system of second order differential equations

Φi(q, q̇, q̈) = 0 , i = 1, . . . , n ,

determine whether or not it is possible to find a regular Lagrangian L(q, q̇) such that

(11) Φi(q, q̇, q̈) =
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
.

Necessary and sufficient conditions for (11) to hold are

∂Φi

∂q̈j
− ∂Φj

∂q̈i
= 0 ,(12)

∂Φi

∂qj
− ∂Φj

∂qi
− 1

2

d

dt

(
∂Φi

∂q̇j
− ∂Φj

∂q̇i

)
= 0 ,(13)

∂Φi

∂q̇j
+
∂Φj

∂q̇i
− d

dt

(
∂Φi

∂q̈j
+
∂Φj

∂q̈i

)
= 0 ,(14)

which were provided by Helmholtz in [20], and are also known as Helmholtz conditions. Necessity
can be proved by a straightforward computation and sufficiency was proved by Mayer in [18], see
also [16]. Notice that if the system is given in explicit form

Φi := δijΦj = q̈i − Γi(q, q̇) = 0 , i = 1, . . . , n ,

where δij = Id, then we can also try to solve (11). This is the same as requiring that equations
(9)-(10) hold with g = Id. By doing this, equations (12)-(14) are recovered from (9)-(10).

One third possible question is the following. Assume again that we are given an implicit system
of second order differential equations

Φi(q, q̇, q̈) = 0 , i = 1, . . . , n ,
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but now we only ask for equivalence of solutions, that is, we don’t require (11) or (8) a priori, (and

we don’t necessarily know the expression q̈i = Γi(q, q̇)). Assume C =
(
∂Φ
∂q̈

)
is regular.

For this problem we also have a set of Helmholtz conditions, to which we will refer as implicit
Helmholtz conditions (IHC). More concretely, in [4, Section 2.1] it is shown that the systems

Φi(q, q̇, q̈) = 0 and
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 i = 1, . . . , n ,

admit the same solutions if and only if the equations

∂Fi
∂q̇j

=
∂Fj
∂q̇i

,(15)

∂2Fi
∂q̇j∂qk

q̇k +
∂Fi
∂qj

+
∂2Fi
∂q̇j∂q̇k

q̈k − ∂Fj
∂qi

=
∂Fi
∂q̇k

∂Φr

∂q̇j
(C−1)kr ,(16)

∂2Fi
∂qj∂qk

q̇k +
∂2Fi
∂qj∂q̇k

q̈k − ∂Fi
∂q̇k

∂Φr

∂qj
(C−1)kr =

∂2Fj
∂qi∂qk

q̇k +
∂2Fj
∂qi∂q̇k

q̈k − ∂Fj
∂q̇k

∂Φr

∂qi
(C−1)kr .(17)

admit solutions Fj(q, q̇), j = 1, . . . , n, with
(
∂Fi
∂q̇j

)
nondegenerate. Now the unknowns are Fj(q, q̇),

j = 1, . . . , n, instead of (gij), and correspond to the components of the Legendre transformation for
the sought Lagrangian function. These equations are derived in [4] in analogous fashion to the ones
given in [2] using Lagrangian submanifolds.

1.3. The relationship between matching conditions and Helmholtz conditions. All of the
matching conditions mentioned in Section 1.1 give particular solutions of the Helmholtz conditions
(9)-(10) or equivalently (15)-(17) if we consider the Legendre transformation corresponding to Lτ,σ,
Lτ,σ,ρ or Lτ,σ,ρ,ε.

For example, under the matching conditions M1-M3 we obtain a controlled SODE for which Lτ,σ

solves the problem (8). Therefore the multipliers gij =
∂2Lτ,σ
∂q̇i∂q̇j

must satisfy the Helmholtz conditions

(9)-(10), and the components of the Legendre transformation Fi =
∂Lτ,σ
∂q̇i

must satisfy the implicit

Helmholz conditions (15)-(17). The same holds for Lτ,σ,ρ and Lτ,σ,ρ,ε.

In this paper we will slightly modify the expression of the controlled Lagrangian Lτ,σ, the type
of Lagrangian used in [9]. We will consider instead controlled Lagrangians of the form

L̃τ,σ = Kτ,σ − Ṽτ,σ(xα, θa) ,

where Kτ,σ denotes the kinetic energy part of Lτ,σ, but the potential energy part Ṽτ,σ does not
necessarily coincide with the one in the original Lagrangian.

We will take the Legendre transformation corresponding to Lτ,σ and impose it as a solution of
the implicit Helmholz conditions (15)-(17). Recall that the Helmholtz conditions are necessary
and sufficient conditions for a Lagrangian to exist, but they provide the components of the new
Legendre transformation only. Using them we should be able to recover the matching conditions
M1-M3 (sufficient conditions) as particular solutions, but may find new ones. If we find new solutions
using the Helmholtz conditions then we know a Lagrangian exists, but we still need to solve equation
(8) to find the corresponding potential. Hence we need to account for arbitrary potential functions.
Now the unknowns are the free parameters that appear both in the controlled Lagrangian and the
controlled SODE.

We will follow this approach in Section 2, where we show explicitly how the matching conditions
M1-M3 arise from the Helmholtz conditions (15)-(17) if we choose L̃τ,σ as the new Lagrangian. The
detailed computations are given in Appendix A.

In Section 3 we use the implicit Helmholtz conditions (15)-(17) for the case of one degree of
underactuation and (gab) constant to obtain an additional matching condition, alternative to SM3.
In this case we obtain a feedback control which is independent of velocities. This alternative solution
is an ODE system for τ . On the other hand, notice that the simplified matching conditions SM1-
SM4 are algebraic conditions, and the conditions given in [1] include a system of PDEs for the new
multipliers, since arbitrary kinetic and potential energies are considered there instead of choosing a
specific form for the new Lagrangian.
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Finally in Section 4 we will apply the results of Section 3 to obtain a new stabilizing control for
the inverted pendulum on a cart. We will further show how to use the implicit Helmholtz conditions
(15)-(17) to obtain an additional solution for the inverted pendulum on an incline. Stability can be
achieved in both cases by appropriate choice of the free parameters.

2. Arbitrary dimension with special matching assumption

In this section we will show how the matching conditions M1-M3 arise from the implicit Helmholtz
conditions (15)-(17) using the special matching assumption, that is, choosing a controlled Lagrangian
with gρ = g. Since we will use the Legendre transformation of the controlled Lagrangian Lτ,σ, the
potential energy of the new Lagrangian will not play any role in satisfying (15)-(17).

As a starting point consider a given mechanical Lagrangian of the form

(18) L(xα, ẋα, θ̇a) =
1

2

(
gαβẋ

αẋβ + 2gαaẋ
αθ̇a + gabθ̇

aθ̇b
)
− V (xα) ,

with corresponding Euler-Lagrange equations given by

Φα = (gαβ,γ −
1

2
gγβ,α)ẋγ ẋβ + (gαa,γ − gγa,α)ẋγ θ̇a

+gαβẍ
β + gαaθ̈

a − 1

2
gab,αθ̇

aθ̇b +
∂V

∂xα
= 0 ,

Φa = gαa,γ ẋ
γ ẋα + gab,γ ẋ

γ θ̇b + gαaẍ
α + gabθ̈

b = 0 .

Now consider a controlled Lagrangian with the special matching assumption gρ = g, that is,

Lτ,σ(xα, ẋα, θ̇a) = L(xα, ẋα, θ̇a + τaαẋ
α) +

1

2
σabτ

a
ατ

b
βẋ

αẋβ ,

and choose controls ua such that the θa-equations for both L and Lτ,σ coincide, that is,

ua =

(
d

dt

(
∂L

∂θ̇a

)
− ∂L

∂θa

)
−
(
d

dt

(
∂Lτ,σ

∂θ̇a

)
− ∂Lτ,σ

∂θa

)
=

d

dt

(
∂L

∂θ̇a
− ∂Lτ,σ

∂θ̇a

)
=

d

dt

(
−gabτ bβẋβ

)
= −(gabτ

b
β),γ ẋ

βẋγ − gabτ bβẍβ .(19)

Then the controlled Euler-Lagrange equations (2) are

Φ̃α := Φα = 0 ,(20)

Φ̃a := Φa + (gabτ
b
β),γ ẋ

βẋγ + gabτ
b
βẍ

β = 0 .(21)

From Φ̃ we can compute

C̃ :=

(
∂Φ̃

∂q̈

)
=

(
gαβ gαb

gaβ + gadτ
d
β gab

)
,

which is assumed to be regular. If we introduce the notations W̃ := C̃−1, Aαβ := gαβ−gαbgab(gaβ +

gadτ
d
β ), where (gab) denotes the inverse matrix of (gab), and also denote the inverse of (Aαβ) by

(Aαβ) then

W̃ =

(
W̃αβ W̃αb

W̃ aβ W̃ ab

)
=

(
Aαβ −Aαγgγdgdb

−(gabgbγ + τaγ )Aγβ gab + (gadgdγ + τaγ )Aγνgνeg
eb

)
.

Now we will require that the system (20)-(21) be variational using equations (15)-(17), and we

will impose the solutions given by the components (F̃α, F̃a) of the Legendre transformation of the
controlled Lagrangian Lτ,σ, that is,

F̃α = (gαβ + gαaτ
a
β + gβaτ

a
α + gabτ

a
ατ

b
β + σabτ

a
ατ

b
β)ẋβ + (gαb + gdbτ

d
α)θ̇b ,

F̃a = (gαa + gdaτ
d
α)ẋα + gabθ̇

b .

Keeping in mind that (qi) = (qα, qa) = (xα, θa), we will use subindices ab, aβ or αβ next to
equations (15), (16) and (17) to denote the subset of equations corresponding to i = a, j = b or
i = a, j = β or i = α, j = β respectively.

If we substitute Φ̃α, Φ̃a and the proposed solutions F̃α, F̃a into equations (15)-(17) we get the
following:
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• Equation (15): vanishes identically for all indices.
• Equation (16):

* (16)ab vanishes identically,
* (16)aβ vanishes identically,
* (16)αb vanishes using M1 and M3 . Alternatively it vanishes if (gab) is constant and the

system has one degree of underactuation,
* (16)αβ vanishes using M1, M2 and M3.

• Equation (17):
* (17)ab vanishes identically,
* (17)αb vanishes identically,
* (17)αβ vanishes using M1, M2 and M3. Alternatively it vanishes for systems with one

degree of underactuation.

Detailed computations proving the above statement are given in Appendix A.

3. Arbitrary dimension under assumptions SM1, SM2 and with one degree of
underactuation

Recall that, as mentioned in Section 1.3, when solving the Helmholtz conditions we have used the
Legendre transformation of the controlled Lagrangian Lτ,σ. The Helmholtz conditions guarantee the
existence of a Lagrangian with the same Legendre transformation as the controlled Lagrangian which
we have used, but the potential energy terms need not coincide. Therefore we consider controlled
Lagrangians of the form L̃τ,σ = Kτ,σ − Ṽ (xα, θa) with arbitrary Ṽ .

Since in this section we deal with systems with one degree of underactuation, we will now use the
notation τaα = τa1 =: τa, where a = 2, . . . , n. We also use a ′ instead of ,1 to denote derivative with
respect to x1 =: x.

Theorem 3.1. Under assumptions SM1, SM2 and with one degree of underactuation, there is a
controlled Lagrangian L̃τ,σ such that the Euler-Lagrange equations for L̃τ,σ are equivalent to the
controlled Euler-Lagrange equations (2) for L if τa satisfies the ODE system

(22) 2τag1eg
ecg′1c + 2τag1e(τ

e)′ − τag′11 + 2g11(τa)′ − 2g1cg
dcgd1(τa)′ − 2g1cτ

c(τa)′ = 0 ,

for all a = 2, . . . , n . In the particular case when dim(Q) = 2 we obtain the new solution

(23) τ(x) = k
√
g11(x)g22 − g12(x)2 ,

where k is an arbitrary constant. Notice that one degree of underactuation implies that SM4 holds
and therefore we are providing an alternative to the solution given by SM3.

Proof. From the computations given in Appendix A (and summarized at the end of Section 2) we
can see that Equation (17) vanishes identically since the assumption of one degree of underactuation
implies that Equation (17)αβ is void and also that Equation (16) vanishes for indices ab, aβ, and αb.
Now under assumption SM1, that is σab = σgab for some constant σ, we compute Equation (16) for
indices αβ, which are just α = β = 1. This gives an ODE system as an extra solution, alternative
to SM3.

Indeed, the θ̇ components vanish identically using that (gab) is constant and α = β = η, see (45)
in Appendix A. Imposing that the ẋ component also vanishes we get

0 = −
(
τ c − (g1dτ

d + σadτ
aτd)A11g1eg

ec
)(

g′1c + g′1c + (gcdτ
d)′ + (gcdτ

d)′
)
ẋ

−
(
δ1

1 + (g1dτ
d + σadτ

aτd)A11
)

(g′11 + g′11 − g′11)ẋ

+(g11 + g1dτ
d + g1dτ

d + gdeτ
dτ e + σedτ

eτd)′ẋ

= −
(
τ c − (g1dτ

d + σadτ
aτd)A11g1eg

ec
)(

2g′1c + 2(gcdτ
d)′
)
ẋ

−g′11ẋ− (g1dτ
d + σadτ

aτd)A11g′11ẋ+ g′11ẋ+ (2g1dτ
d + gdeτ

dτ e + σedτ
eτd)′ẋ

= −τ c
(

2g′1c + 2(gcdτ
d)′
)
ẋ+ (g1dτ

d + σadτ
aτd)A11g1eg

ec
(

2g′1c + 2(gcdτ
d)′
)
ẋ

−(g1dτ
d + σadτ

aτd)A11g′11ẋ+ (2g′1dτ
d + 2g1d(τ

d)′ + g′deτ
dτ e + 2gde(τ

d)′τ e + 2σed(τ
e)′τd)ẋ
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= A11
(

(g1d + σadτ
a)τd

(
g1eg

ec
(

2g′1c + 2gcd(τ
d)′
)
− g′11

)
+ 2A11(g1d(τ

d)′ + σda(τ
d)′τa)

)
= A11(g1d + σadτ

a)
(
τd
(
g1eg

ec
(

2g′1c + 2gcd(τ
d)′
)
− g′11

)
+ 2(τd)′A11

)
= A11(g1d + σadτ

a)
(

2τdg1eg
ecg′1c + 2τdg1e(τ

e)′ − τdg′11 + 2g11(τd)′ − 2g1cg
ecge1(τd)′ − 2g1cτ

c(τd)′
)
.

Therefore we have the two solutions M1 and

2τag1eg
ecg′1c + 2τag1e(τ

e)′ − τag′11 + 2g11(τa)′ − 2g1cg
dcgd1(τa)′ − 2g1cτ

c(τa)′ = 0 ,

for each a = 2, . . . , n. Notice that in the case when dim(Q) = 2 the system (22) becomes

g22(2g12g
′
12τ − g′11g22τ + 2g11g22τ

′ − 2g2
12τ
′) = 0 ,

and the solution is given by

τ(x) = k
√
g11(x)g22 − g12(x)2 ,

where k is an arbitrary constant.

Proposition 3.2. Under the assumptions of Theorem 3.1 and using the new solution given by (22)
we have that the control (19) is independent of velocities.

Proof. Indeed we have that the equations Φ̃1 = 0 and Φ̃a = 0 are given by

g11ẍ+ g1aθ̈
a = −1

2
g′11ẋ

2 − V ′ ,

(g1a + gabτ
b)ẍ+ gabθ̈

b = −(g′1a + gab(τ
b)′)ẋ2 .

Therefore, since C̃ = ∂Φ̃/∂q̈ is regular, we have

(24) ẍ = A11

(
−1

2
g′11ẋ

2 + g1dg
deg′1eẋ

2 + g1d(τ
d)′ẋ2 − V ′

)
and the control (19) becomes

(25) ua = −gab(τ b)′ẋ2 − gabτ bA11

(
−1

2
g′11ẋ

2 + g1dg
deg′1eẋ

2 + g1d(τ
d)′ẋ2 − V ′

)
= gabτ

bA11V ′ ,

where in the last equality we have used that A11 = g11−g1fg
ef (ge1 +gedτ

d) is nonvanishing in order
to get

−A11gab(τ
b)′ − gabτ b

(
−1

2
g′11 + g1dg

deg′1e + g1d(τ
d)′
)

= −g11gab(τ
b)′ + g1fg

ef (ge1 + gedτ
d)gab(τ

b)′ +
1

2
g′11gabτ

b − g1dg
deg′1egabτ

b − g1d(τ
d)′gabτ

b

= gab

(
−g11(τ b)′ + g1fg

efge1(τ b)′ + g1dτ
d(τ b)′ +

1

2
g′11τ

b − τ bg1dg
deg′1e − g1dτ

b(τd)′
)

(22)
= 0 .

Remark 3.3. After substitution of ua given in Proposition 3.2 into the system Φ̃1 = 0, Φ̃a = 0 we
get (

ẍ

θ̈a

)
= C−1

(
−1

2g
′
11ẋ

2 − V ′
−g′1aẋ2 + gabτ

bA11V ′

)
.

In dimension 2 this fits into the class of systems considered in [14].
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4. Examples

In this section we will see two examples in which alternative τ solutions can be found to the
simplified matching condition SM3. The first example fits into Section 3. We illustrate the new τ
solution for the inverted pendulum on a cart as well as the control given by (25), which is stabilizing
in this case. In the second example, which involves a controlled Lagrangian of type Lτ,σ,ρ,ε, the
Helmholtz condition (16)αβ provides an additional solution for τ as in Theorem 3.1. Furthermore,
the Helmholtz condition (17)αb, which vanishes identically in Example 4.1, provides now a PDE for
Vε, which is more general than the one provided in [6].

4.1. Inverted pendulum on a cart. We provide a new stabilizing control for the inverted pen-
dulum on a cart using the solution provided by Theorem 3.1. The system consists of a pendulum of
length l and a bob of mass m attached to the top of a cart of mass M . The configuration manifold
of the system is Q = S1 × R with coordinates (x, s) which denote the angle of the pendulum with
respect to a vertical line and the position of the cart respectively, as shown in the picture below.
The upright position of the pendulum corresponds to x = 0.

s

x

u

l

The Lagrangian is given by

L =
1

2

(
αẋ2 + 2βṡẋ cos(x) + γṡ2

)
+ d cos(x) ,

where α = ml2, β = ml, γ = m+M and d = −mgl are constants.

If we choose the solution provided by (23), that is,

τ(x) = k
√
αγ − β2 cos2(x) ,

then from (25) we obtain the control

(26) u = g22τA
11V ′ = −

dγ2k sin(x)
√
αγ − β2 cos2(x)

βγk cos(x)
√
αγ − β2 cos2(x)− αγ + β2 cos2(x)

.

We will now check the stability of the upright position of the pendulum with this control. To
this end we will use the energy function corresponding to the new Lagrangian L̃τ,σ (with the same
Legendre transformation as Lτ,σ but a possibly different potential energy term, as remarked above).

When written in explicit form, the controlled Euler-Lagrange equations become

ẍ =

sin(x)

(
dγ(β2 cos2(x)−αγ)

−βγk cos(x)
√
αγ−β2 cos2(x)+αγ−β2 cos2(x)

− β2ẋ2 cos(x)

)
αγ − β2 cos2(x)

=: F ,(27)

s̈ = sin(x)

− αdγ2k√
αγ − β2 cos2(x)

(
βγk cos(x)

√
αγ − β2 cos2(x)− αγ + β2 cos2(x)

)
+

βd cos(x)

αγ − β2 cos2(x)
+

αβẋ2

αγ − β2 cos2(x)

)
=: G .(28)

We can write the new Lagrangian as

L̃τ,σ =
1

2

(
g̃11(x)ẋ2 + 2g̃12(x)ẋṡ+ g̃22ṡ

2
)
− Ṽ (x, s) ,
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where

g̃11(x) = γk2(σ + 1)
(
αγ − β2 cos2(x)

)
+ 2βk cos(x)

√
αγ − β2 cos2(x) + α ,

g̃12(x) = γk
√
αγ − β2 cos2(x) + β cos(x) ,

g̃22 = γ .

Then the equivalence conditions (8) are

−g̃11F − g̃12G =
∂g̃11

∂x
ẋ2 +

∂g̃12

∂x
ṡẋ−

(
1

2

∂g̃11

∂x
ẋ2 +

∂g̃12

∂x
ṡẋ+

∂Ṽ

∂x

)
,

−g̃21F − g̃22G =
∂g̃21

∂x
ẋ2 − ∂Ṽ

∂s
,

from which we get

∂Ṽ

∂x
= −

d
(
γ2k2σ + 1

)
sin(x)

(
αγ − β2 cos2(x)

)
βγk cos(x)

√
αγ − β2 cos2(x)− αγ + β2 cos2(x)

,

∂Ṽ

∂s
= 0 .

Now we impose conditions such that the new multiplier matrix (g̃ij) will be positive-definite. If we
introduce the notation

D := g11g22 − g2
12 and D̃ := g̃11g̃22 − g̃2

12 ,

then we have D̃ = D + σ(g22τ)2, and therefore we need to choose σ > −D
(g22τ)2

= −1
γ2k2

. We also need

g̃11 > 0, for which it is enough to take τ > 0 and g22(1 + σ)τ + 2g12 > 0. Therefore it is enough to
choose σ > 0 and k > 0.

On the other hand, consider Ṽ as a function of x only. Looking at ∂Ṽ /∂x , notice that we have

d < 0, αγ − β2 cos2(x) > 0 and γ2k2σ + 1 > 0

from the previous choice. Then, in order to get a positive-definite potential energy Ṽ (x), we need
to impose

βγk cos(x)
√
αγ − β2 cos2(x)− αγ + β2 cos2(x) > 0 ,

which, taking x ∈
(
−π

2 ,
π
2

)
, reduces to

(29) k >
αγ − β2 cos2(x)

βγ cos(x)
√
αγ − β2 cos2(x)

,

(but stability of x = 0 is guaranteed with k > αγ−β2

βγ
√
αγ−β2

).

Summing up, we can choose positive σ and k to guarantee that the new kinetic energy is positive-
definite and we can further adjust the constant k in the control to guarantee that the potential
energy Ṽ (x) is positive-definite. Then the energy is a Lyapunov function for the relative equilibrium
x = 0, ẋ = 0, ṡ = 0 of (27)-(28). Notice that the requirement (29) corresponds to A11 < 0.

We now fix the parameters of the system to be m = 0.14 kg, M = 0.44 kg and l = 0.215 m as
in [9] and take the initial conditions to be φ(0) = π/2− 0.2 rad, φ̇(0) = 0.1 rad/s, s(0) = 0 m, and
ṡ(0) = −3 m/s, also as in [9]. Below there is a matlab simulation of this situation with k = 35
(notice that the cart position s is not stabilized):
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Remark 4.1. The system (27)-(28) fits into the class of systems dealt with in [14] and belongs to
Case IIa1 from Douglas’ classification since

Φ2
2 = dγ

(
2(β2 − αγ) cos(x)

√
αγ − β2 cos2(x)− 2βγk(αγ + β2 cos2(x))

)
6= 0 .

This is the same case as the controlled systems that appear in [9] and [14] for the example of the
inverted pendulum on a cart.

4.2. Inverted pendulum on a cart on an incline. Consider now the inverted pendulum on a
cart, moving on an incline, and denote by ψ the angle between the incline and the horizontal. The
Lagrangian is given by

L(x, s, ẋ, ṡ) =
1

2
(αẋ2 + 2β cos(x− ψ)ẋṡ+ γṡ2) + d cos(x) + γg sin(ψ)s ,

where the potential energy function is V (x, s) = −d cos(x)− γg sin(ψ)s.

We will assume gρ = ρg for a scalar constant ρ, as in [6], and we will consider the controlled
Lagrangian

Lτ,σ,ρ,ε =
1

2
(αẋ2 + 2β cos(x− ψ)ẋ(ṡ+ τ ẋ) + γ(ṡ+ τ ẋ)2) + d cos(x) + γg sin(ψ)s

+
1

2
σγτ2ẋ2 +

1

2
(ρ− 1)γ

(
ṡ+

β

γ
cos(x− ψ)ẋ+ τ ẋ

)2

− Vε(x, s) .

If we require that the s equations for both Lagrangians L and Lτ,σ,ρ,ε coincide then we obtain the
following control, see [6, Equation (14)]:

u =
ρ− 1

ρ

∂V

∂s
− ∂Vε

∂s
− d

dt
(γτẋ)

=
1− ρ
ρ

γg sin(ψ)− 1

ρ

∂Vε
∂s
− γτẍ− γτ ′ẋ2 .(30)

As in Section 2 we require now that the system of controlled Euler-Lagrange equations (2), which
in this case becomes

αẍ+ βs̈ cos(ψ − x) + d sin(x) = 0 ,(31)

ẋ2
(
β sin(ψ − x) + γτ ′

)
+ (β cos(ψ − x) + γτ)ẍ+ γs̈+

1

ρ

∂Vε
∂s
− gγ

ρ
sin(ψ) = 0 ,(32)

be variational for a Lagrangian function of the type Lτ,σ,ρ,ε. Notice that in this case the potential

energy term is already free, in contrast to the case Lτ,σ,ρ but in similar fashion to L̃τ,σ,ρ.
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If we write the Helmholtz conditions (15)-(17) for the controlled SODE (31)-(32) and impose as
a solution the components of the Legendre transformation corresponding to Lτ,σ,ρ,ε, that is,

F1 =

(
α+

β2(ρ− 1) cos2(ψ − x)

γ
+ 2βρτ cos(ψ − x) + γ(ρ+ σ)τ2

)
ẋ

+ρ(β cos(ψ − x) + γτ)ṡ ,

F2 = ρ(β cos(ψ − x) + γτ)ẋ+ ργṡ ,

then we obtain the following:

• Equation (15): vanishes identically for all indices.
• Equation (16):

* (16)ab vanishes identically,
* (16)aβ vanishes identically,
* (16)αb vanishes identically,
* (16)αβ becomes the following equation:

ẋ (β cos(ψ − x) + γστ)
(
−β2 sin(2(ψ − x))τ + (β2 − 2αγ + β2 cos(2(ψ − x))τ ′)

)
−αγ + β2 cos2(ψ − x) + βγ cos(ψ − x)τ

= 0 .

Therefore we obtain the two solutions

τ = − β

γσ
cos(x− ψ) ,(33)

τ = k
√
αγ − β2 cos2(x− ψ) ,(34)

where k is a constant. The first one corresponds to the simplified matching condition
SM3, while the second one coincides with (23).

• Equation (17):
* (17)αb becomes the following second order linear PDE for Vε(x, s):

(35) A(x)
∂2Vε
∂s2

+
∂2Vε
∂s∂x

= 0 ,

where

A(x) =
1
2β(ρ− 1) cos(ψ − x)

(
−2αγ + β2 cos(2(ψ − x)) + β2

)
γρ (αγ − β2 cos2(ψ − x)− βγτ cos(ψ − x))

+
βγ2(ρ+ σ)τ2 cos(ψ − x) + γρτ

(
2β2 cos2(ψ − x)− αγ

)
γρ (αγ − β2 cos2(ψ − x)− βγτ cos(ψ − x))

.

If we use the solution (33) to Equation (16)αβ we obtain

A(x) = −β cos(ψ − x)(ρ(−1 + σ)− σ)

γρσ
.

According to [6], the assumption SM5 implies that the PDE

(36) −
(
∂V

∂s
+
∂Vε
∂s

)(
− 1

σ
+
ρ− 1

ρ

)
gadgαd +

∂Vε
∂x

= 0

admits a solution Vε, which provides the proper adjustment of the potential energy term for the
controlled Lagrangian Lτ,σ,ρ,ε. In this example, if we take a derivative of (36) with respect to s we

obtain (35). Therefore as a particular solution to (35) we recover Vε = εdγ2y2

2β2 , which is the solution

to (36) given in [6], where y = s+
(
− 1
σ + ρ−1

ρ

)
β
γ (sin(x− ψ) + sin(ψ)).

On the other hand if we use the solution (34) to Equation (16)αβ then we get

A(x) =
β(γ2k2(ρ+ σ)− ρ+ 1) cos(ψ − x)

(
αγ − β2 cos2(ψ − x)

)
γρ
(
−βγk cos(ψ − x)

√
αγ − β2 cos2(ψ − x) + αγ − β2 cos2(ψ − x)

)
+

γkρ
√
αγ − β2 cos2(ψ − x)

(
2β2 cos2(ψ − x)− αγ

)
γρ
(
−βγk cos(ψ − x)

√
αγ − β2 cos2(ψ − x) + αγ − β2 cos2(ψ − x)

) .
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In this case we can consider a solution to (35) of the form

(37) Vε = γg sin(ψ)s+
1

2
s2 − sh(x) +G(x)− s0s+ s0h(x) ,

where h(x) =
∫ x

0 A(r)dr, s0 is a constant and we assume G′(0) = 0. Then the potential energy term
for Lτ,σ,ρ,ε becomes

VT := V + Vε = −d cos(x) +
1

2
s2 − sh(x) +G(x)− s0s+ s0h(x)

and we have

∂VT
∂x

∣∣∣∣
x=0,s=s0

= G′(0) = 0 ,
∂VT
∂s

∣∣∣∣
x=0,s=s0

= h(0) = 0 ,

that is, with appropriate choice of Vε we can get that (x = 0, s = s0) is a critical point of VT . We
also have (

∂2VT
∂x2

∂2VT
∂x∂s

∂2VT
∂x∂s

∂2VT
∂s2

)∣∣∣∣∣
(x=0,s=s0)

=

(
d+G′′(0) −A(0)
−A(0) 1

)
.

If we take G(x) = cx2 for some constant c, then it is enough to choose c > −d+A(0)2

2 in order to
ensure that the above matrix is positive-definite.

On the other hand, notice that the multipliers (ḡij) corresponding to the controlled Lagrangian
Lτ,σ,ρ,ε are

ḡ11 = α+
β2(ρ− 1) cos2(ψ − x)

γ
+ 2βρ cos(ψ − x)τ + γ(ρ+ σ)τ2 ,

ḡ12 = ρ(β cos(ψ − x) + γτ) ,

ḡ22 = ργ .

If D = g11g22 − g2
12 then D̄ := ḡ11ḡ22 − ḡ2

12 = ρ(D + σ(g22τ)2). As in the previous example, it is
enough to choose k, σ > 0 and ρ > 1 in order to ensure that (ḡij) is positive-definite.

Summing up, the new energy function, which is

ELτ,σ,ρ,ε =
1

2
(αẋ2 + 2β cos(x− ψ)ẋ(ṡ+ τ ẋ) + γ(ṡ+ τ ẋ)2)− d cos(x)− γg sin(ψ)s

+
1

2
σγτ2ẋ2 +

1

2
(ρ− 1)γ

(
ṡ+

β

γ
cos(x− ψ)ẋ+ τ ẋ

)2

+ Vε(x, s) ,

provides a Lyapunov function for the controlled system (31)-(32) if we make the appropriate choices
of Vε and parameters k, σ and ρ. More precisely we can choose for instance Vε given in (37), k, σ > 0
and ρ > 1. Then ELτ,σ,ρ,ε is a Lyapunov function and therefore (30) is a stabilizing control.

5. Conclusions and future directions

In this paper we have used the Helmholtz conditions, which are necessary and sufficient conditions
for a SODE to be equivalent to a system of Euler-Lagrange equations, in order to recover the
matching conditions given in [9]. Using the Helmholtz conditions we can also obtain new matching
conditions for a class of mechanical systems. This strategy may also be used in order to derive
matching conditions in other situations. For instance, in Example 4.2 we have shown by ad hoc
computations how to obtain a new stabilizing control for the inverted pendulum on a cart on an
incline. This suggests that analogous computations to the ones given in Appendix A may also be
carried out for Lτ,σ,ρ,ε in order to obtain a new τ solution and a more general PDE for Vε. The
matching techniques have also been studied for discrete systems [8] and Euler-Poincaré systems [10],
but there are also Helmholtz conditions available in these settings [11, 3, 4], pointing to a possible
application of these Helmholtz conditions to the problem of stabilization of an equilibrium.
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Appendix A. Matching conditions M1-M3 from Helmholtz conditions

Here we provide the detailed computations proving the statement at the end of Section 2, regarding
the vanishing of the implicit Helmholtz conditions (15)-(17).

We will need

∂Φ̃c

∂ẋβ
=

(
gβc,γ + gγc,β + (gcdτ

d
β ),γ + (gcdτ

d
γ ),β

)
ẋγ + gcd,β θ̇

d ,(38)

∂Φ̃a

∂xα
= (gνa,γα + (gadτ

d
ν )αγ)ẋγ ẋν + gab,γαẋ

γ θ̇b + gab,αθ̈
b

+(gγa,α + gad,ατ
d
γ + gadτ

d
γ,α)ẍγ ,(39)

∂Φ̃ν

∂ẋβ
= (gνβ,γ + gνγ,β − gγβ,ν)ẋγ + (gνa,β − gβa,ν)θ̇a ,(40)

∂Φ̃γ

∂xα
= gγν,ηαẋ

ηẋν + gγa,ναẋ
ν θ̇a + gγν,αẍ

ν + gγa,αθ̈
a

−1

2
gνη,γαẋ

ν ẋη − gνa,γαẋν θ̇a −
1

2
gab,γαθ̇

aθ̇b +
∂2V

∂xα∂xγ
,(41)

and also the following expressions:

∂F̃α
∂ẋγ

W̃ γν +
∂F̃α

∂θ̇a
W̃ aν = (gαγ + gαdτ

d
γ + gγdτ

d
α + gfdτ

f
ατ

d
γ + σfdτ

f
ατ

d
γ )Aγν

−(gαa + gdaτ
d
α)
(
gaegeγ + τaγ

)
Aγν

= (gαγ − gαagaegeγ + σadτ
a
ατ

d
γ )Aγν

= δνα + (gαdτ
d
γ + σadτ

a
ατ

d
γ )Aγν ,(42)

∂F̃α
∂ẋγ

W̃ γc +
∂F̃α

∂θ̇a
W̃ ac = (gαγ + gαdτ

d
γ + gγdτ

d
α + gfdτ

f
ατ

d
γ + σfdτ

f
ατ

d
γ ) (−Aγηgηegec)

+(gαa + gdaτ
d
α)
(
gac + (gafgfη + τaη )Aηνgνeg

ec
)

= (−gαγ − σadτaατdγ + gαag
afgfγ)Aγηgηeg

ec + gαag
ac + τ cα

= τ cα − (gαdτ
d
γ + σadτ

a
ατ

d
γ )Aγηgηeg

ec .(43)

Equation (15) vanishes identically for all indices:

(15)ab =
∂F̃a

∂θ̇b
− ∂F̃b

∂θ̇a
= gab − gba = 0 ,

(15)aβ =
∂F̃a
∂ẋβ

−
∂F̃β

∂θ̇a
= gβa + gadτ

d
β − (gβa + gdaτ

d
β ) = 0 ,

(15)αβ =
∂F̃α
∂ẋβ

−
∂F̃β
∂ẋα

= (gαβ + gαaτ
a
β + gβaτ

a
α + gabτ

a
ατ

b
β + σabτ

a
ατ

b
β)

−(gβα + gβaτ
a
α + gαaτ

a
β + gabτ

a
β τ

b
α + σabτ

a
β τ

b
α) = 0 .

Equation (16) vanishes identically for indices ab and aβ:

(16)ab =
∂2F̃a

∂θ̇b∂qk
q̇k +

∂F̃a
∂θb

+
∂2F̃a

∂θ̇b∂q̇k
q̈k − ∂F̃b

∂θa
− ∂F̃a
∂q̇k

∂Φ̃r

∂θ̇b
W̃ kr

=
∂2F̃a

∂θ̇b∂xγ
ẋγ − ∂F̃a

∂ẋγ

(
∂Φc

∂θ̇b
W̃ γc +

∂Φβ

∂θ̇b
W̃ γβ

)
− ∂F̃a

∂θ̇d

(
∂Φc

∂θ̇b
W̃ dc +

∂Φβ

∂θ̇b
W̃ dβ

)
= gab,γ ẋ

γ − (C̃aγW̃
γc + C̃adW̃

dc)
∂Φc

∂θ̇b
− (C̃aγW̃

γβ + C̃adW̃
dβ)

∂Φβ

∂θ̇b

= gab,γ ẋ
γ − ∂Φa

∂θ̇b
= 0

(16)aβ =
∂2F̃a
∂ẋβ∂qk

q̇k +
∂F̃a
∂xβ

+
∂2F̃a
∂ẋβ∂q̇k

q̈k −
∂F̃β
∂θa
− ∂F̃a
∂q̇k

∂Φ̃r

∂ẋβ
W̃ kr
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= (gβa + gabτ
b
β),γ ẋ

γ + (gγa + gabτ
b
γ),βẋ

γ + gab,β θ̇
b

−∂F̃a
∂ẋγ

(
∂Φ̃c

∂ẋβ
W̃ γc +

∂Φν

∂ẋβ
W̃ γν

)
− ∂F̃a

∂θ̇d

(
∂Φ̃c

∂ẋβ
W̃ dc +

∂Φν

∂ẋβ
W̃ dν

)
= (gβa + gabτ

b
β),γ ẋ

γ + (gγa + gabτ
b
γ),βẋ

γ + gab,β θ̇
b

−(C̃aγW̃
γc + C̃adW̃

dc)
∂Φ̃c

∂ẋβ
− (C̃aγW̃

γν + C̃adW̃
dν)

∂Φν

∂ẋβ

= (gβa + gabτ
b
β),γ ẋ

γ + (gγa + gabτ
b
γ),βẋ

γ + gab,β θ̇
b − ∂Φ̃a

∂ẋβ

(38)
= 0 .

For indices αb Equation (16) vanishes using M1 and M3 . Alternatively it vanishes if (gab) is constant
and the system has one degree of underactuation:

(16)αb =
∂2F̃α

∂θ̇b∂qk
q̇k +

∂F̃α
∂θb

+
∂2F̃α

∂θ̇b∂q̇k
q̈k − ∂F̃b

∂xα
− ∂F̃α
∂q̇k

∂Φ̃r

∂θ̇b
W̃ kr

=
∂2F̃α

∂θ̇b∂xγ
ẋγ − ∂F̃b

∂xα
− ∂F̃α
∂ẋγ

(
∂Φ̃c

∂θ̇b
W̃ γc +

∂Φ̃ν

∂θ̇b
W̃ γν

)
− ∂F̃α

∂θ̇a

(
∂Φ̃c

∂θ̇b
W̃ ac +

∂Φ̃ν

∂θ̇b
W̃ aν

)

=
∂2F̃α

∂θ̇b∂xγ
ẋγ − ∂F̃b

∂xα
−

(
∂F̃α
∂ẋγ

W̃ γc +
∂F̃α

∂θ̇a
W̃ ac

)
∂Φ̃c

∂θ̇b
−

(
∂F̃α
∂ẋγ

W̃ γν +
∂F̃α

∂θ̇a
W̃ aν

)
∂Φ̃ν

∂θ̇b

(42),(43)
= (gαb + gdbτ

d
α),γ ẋ

γ − (gγb + gbdτ
d
γ ),αẋ

γ − gbd,αθ̇d

−
(
τ cα − (gαdτ

d
γ + σadτ

a
ατ

d
γ )Aγηgηeg

ec
)
gcb,γ ẋ

γ

−
(
δνα + (gαdτ

d
γ + σadτ

a
ατ

d
γ )Aγν

)(
(gνb,γ − gγb,ν) ẋγ − gdb,ν θ̇d

)
.

The θ̇ component becomes(
−gbd,α +

(
δνα + (gαeτ

e
γ + σaeτ

a
ατ

e
γ )Aγν

)
gdb,ν

)
θ̇d = (gαe + σaeτ

a
α)τ eγA

γνgdb,ν θ̇
d ,

from which we can clearly see the solution M1 (but there are more). The ẋ component becomes

(gαb + gdbτ
d
α),γ ẋ

γ − (gγb + gbdτ
d
γ ),αẋ

γ −
(
τ cα − (gαdτ

d
γ + σadτ

a
ατ

d
γ )Aγηgηeg

ec
)
gcb,γ ẋ

γ

−
(
δνα + (gαdτ

d
γ + σadτ

a
ατ

d
γ )Aγν

)
(gνb,γ − gγb,ν) ẋγ

=
(
gdb

(
τdα,γ − τdγ,α

)
− gbd,ατdγ + (gαd + σadτ

a
α)τdγA

γη (gηeg
ecgcb,γ − gηb,γ + gγb,η)

)
ẋγ ,(44)

from where assuming M1 we obtain M3 as a solution.

On the other hand notice that if (gab) is constant, that is, SM2 holds, and the system has one
degree of underacuation then the equation vanishes identically without imposing M1 nor M3. It is
also enough to assume the simplified matching conditions SM2, SM4 and the matching condition
M3, without assuming M1.

For indices αβ Equation (16) vanishes using M1, M2 and M3:

(16)αβ =
∂2F̃α
∂ẋβ∂qk

q̇k +
∂F̃α
∂xβ

+
∂2F̃α
∂ẋβ∂q̇k

q̈k −
∂F̃β
∂xα

− ∂F̃α
∂q̇k

∂Φ̃r

∂ẋβ
W̃ kr

=

(
−∂F̃α
∂ẋγ

W̃ γc − ∂F̃α

∂θ̇a
W̃ ac

)
∂Φ̃c

∂ẋβ
+

(
−∂F̃α
∂ẋγ

W̃ γν − ∂F̃α

∂θ̇a
W̃ aν

)
∂Φ̃ν

∂ẋβ

+(gαβ + gαdτ
d
β + gβdτ

d
α + gdeτ

d
βτ

e
α + σedτ

e
ατ

d
β ),γ ẋ

γ +
∂F̃α
∂xβ

−
∂F̃β
∂xα

(42),(43)
= −

(
τ cα − (gαdτ

d
γ + σadτ

a
ατ

d
γ )Aγηgηeg

ec
) ∂Φ̃c

∂ẋβ
−
(
δνα + (gαdτ

d
γ + σadτ

a
ατ

d
γ )Aγν

) ∂Φ̃ν

∂ẋβ

+(gαβ + gαdτ
d
β + gβdτ

d
α + gdeτ

d
βτ

e
α + σedτ

e
ατ

d
β ),γ ẋ

γ +
∂F̃α
∂xβ

−
∂F̃β
∂xα
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= −
(
τ cα − (gαdτ

d
γ + σadτ

a
ατ

d
γ )Aγηgηeg

ec
)(

gβc,γ + gγc,β + (gcdτ
d
β ),γ + (gcdτ

d
γ ),β

)
ẋγ

−
(
τ cα − (gαdτ

d
γ + σadτ

a
ατ

d
γ )Aγηgηeg

ec
)
gcf,β θ̇

f

−
(
δνα + (gαdτ

d
γ + σadτ

a
ατ

d
γ )Aγν

)
(gνβ,γ + gνγ,β − gγβ,ν)ẋγ

−
(
δνα + (gαdτ

d
γ + σadτ

a
ατ

d
γ )Aγν

)
(gνf,β − gβf,ν)θ̇f

+(gαβ + gαdτ
d
β + gβdτ

d
α + gdeτ

d
βτ

e
α + σedτ

e
ατ

d
β ),γ ẋ

γ

+(gαγ + gαdτ
d
γ + gγdτ

d
α + gabτ

a
ατ

b
γ + σabτ

a
ατ

b
γ),βẋ

γ + (gαf + gefτ
e
α),β θ̇

f

−(gβγ + gβdτ
d
γ + gγdτ

d
β + gabτ

a
β τ

b
γ + σabτ

a
β τ

b
γ),αẋ

γ − (gβf + gefτ
e
β),αθ̇

f .

The θ̇ component becomes(
(gαdτ

d
γ + σadτ

a
ατ

d
γ )Aγη (gηeg

ecgcf,β − gηf,β + gβf,η) + gef
(
τ eα,β − τ eβ,α

)
− gef,ατ eβ

)
θ̇f ,(45)

which vanishes with the same assumptions as (44).

The ẋ component becomes

−
(
τ cα − (gαdτ

d
γ + σadτ

a
ατ

d
γ )Aγηgηeg

ec
)(

gβc,γ + gγc,β + (gcdτ
d
β ),γ + (gcdτ

d
γ ),β

)
ẋγ

−
(
δνα + (gαdτ

d
γ + σadτ

a
ατ

d
γ )Aγν

)
(gνβ,γ + gνγ,β − gγβ,ν)ẋγ

+(gαβ + gαdτ
d
β + gβdτ

d
α + gdeτ

d
βτ

e
α + σedτ

e
ατ

d
β ),γ ẋ

γ

+(gαγ + gαdτ
d
γ + gγdτ

d
α + gabτ

a
ατ

b
γ + σabτ

a
ατ

b
γ),βẋ

γ

−(gβγ + gβdτ
d
γ + gγdτ

d
β + gabτ

a
β τ

b
γ + σabτ

a
β τ

b
γ),αẋ

γ

M1
= (gαaτ

a
β ),γ + gβaτ

a
α,γ + gadτ

d
βτ

a
α,γ + (σadτ

a
ατ

d
β ),γ + (gαdτ

d
γ ),β + gγdτ

d
α,β + gabτ

b
γτ

a
α,β

+(σadτ
a
ατ

d
γ ),β − (gβdτ

d
γ ),α − (gγdτ

d
β ),α − (gabτ

a
β τ

b
γ),α − (σadτ

a
β τ

d
γ ),α

= gabτ
b
γ(τaα,β − τaβ,α) + gβa(τ

a
α,γ − τaγ,α) + gadτ

d
β (τaα,γ − τaγ,α) + gγdτ

d
α,β − gβd,ατdγ − gab,ατaβ τ bγ

where we have used again M1 and the symmetry of σad. Now using M3 to cancel the first and last
terms we have

(gβa + gadτ
d
β )(τaα,γ − τaγ,α) + gγdτ

d
α,β − gβd,ατdγ

M1,M3
= (gβa + gadτ

d
β )(geagfe,ατ

f
γ ) + gγdτ

d
α,β + (σdeτ

e
β),ατ

d
γ

M1
= gβag

eagfe,ατ
f
γ + τdβgfd,ατ

f
γ − σdeτ eγτdα,β + σde,ατ

e
βτ

d
γ + σdeτ

e
β,ατ

d
γ

M1
= −σahτhβ geagfe,ατ fγ + τdβgfd,ατ

f
γ + σde,ατ

e
βτ

d
γ + σdeτ

d
γ (τ eβ,α − τ eα,β)

M3
= −σahτhβ geagfe,ατ fγ − σdeτdγ gfeghf,ατhβ + (gde,α + σde,α)τdγ τ

e
β .

Summing up, for the ẋ component, using M1 and M3 we get

(46) (gde,α + σde,α)τdγ τ
e
β − σahτhβ geagfe,ατ fγ − σdeτdγ gfeghf,ατhβ .

If we use M2, (46) becomes

(gde,α + σde,α)τdγ τ
e
β − σahτhβ

1

2
σea(σde,α + gde,α)τdγ − σdeτdγ

1

2
σfe(σhf,α + ghf,α)τhβ

= (gde,α + σde,α)τdγ τ
e
β −

1

2
(σdh,α + gdh,α)τdγ τ

h
β −

1

2
(σhd,α + ghd,α)τhβ τ

d
γ = 0 .

That is using all of M1, M2 and M3 we get that the Helmholtz condition (16)αβ vanishes.

Equation (17) vanishes identically for indices ab and αb:

(17)ab =
∂2F̃a
∂θb∂qk

q̇k +
∂2F̃a
∂θb∂q̇k

q̈k − ∂F̃a
∂q̇k

∂Φ̃r

∂θb
W̃ kr − ∂2F̃b

∂θa∂qk
q̇k − ∂2F̃b

∂θa∂q̇k
q̈k +

∂F̃b
∂q̇k

∂Φ̃r

∂θa
W̃ kr = 0 ,

(17)αb =
∂2F̃α
∂θb∂qk

q̇k +
∂2F̃α
∂θb∂q̇k

q̈k − ∂F̃α
∂q̇k

∂Φ̃r

∂θb
W̃ kr − ∂2F̃b

∂xα∂qk
q̇k − ∂2F̃b

∂xα∂q̇k
q̈k +

∂F̃b
∂q̇k

∂Φ̃r

∂xα
W̃ kr
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= − ∂2F̃b
∂xα∂xγ

ẋγ − ∂2F̃b
∂xα∂q̇k

q̈k +
∂F̃b
∂q̇k

(
∂Φ̃ν

∂xα
W̃ kν +

∂Φ̃d

∂xα
W̃ kd

)

= − ∂2F̃b
∂xα∂xγ

ẋγ − ∂2F̃b
∂xα∂q̇k

q̈k +
(
C̃bγW̃

γν + C̃bcW̃
cν
) ∂Φ̃ν

∂xα
+
(
C̃bγW̃

γd + C̃bcW̃
cd
) ∂Φ̃d

∂xα

= − ∂2F̃b
∂xα∂xγ

ẋγ − ∂2F̃b
∂xα∂ẋγ

ẍγ − ∂2F̃b

∂xα∂θ̇c
θ̈c +

∂Φ̃b

∂xα

= −(gνb + gbcτ
c
ν),αγ ẋ

ν ẋγ − gbc,αγ ẋγ θ̇c − (gγb + gbcτ
c
γ)ẍγ − gbc,αθ̈c +

∂Φ̃b

∂xα

(39)
= 0 .

For indices αβ Equation (17) vanishes using M1, M2 and M3 or alternatively for systems with one
degree of underactuation, since it is symmetric in α and β:

(17)αβ =
∂2F̃α
∂xβ∂xγ

ẋγ +
∂2F̃α
∂xβ∂q̇k

v̇k −
∂2F̃β
∂xα∂xγ

ẋγ −
∂2F̃β
∂xα∂q̇k

v̇k

−∂F̃α
∂q̇k

∂Φ̃r

∂xβ
W̃ kr +

∂F̃β
∂q̇k

∂Φ̃r

∂xα
W̃ kr

M1
= (gαb + gabτ

a
α),βγ θ̇

bẋγ + (gαν + gαaτ
a
ν + gνaτ

a
α + gabτ

a
ατ

b
ν + σabτ

a
ατ

b
ν),βγ ẋ

ν ẋγ

+(gαb + gabτ
a
α),β θ̈

b + (gαγ + gαaτ
a
γ + gγaτ

a
α + gabτ

a
ατ

b
γ + σabτ

a
ατ

b
γ),βẍ

γ

−(gβb + gabτ
a
β ),αγ θ̇

bẋγ − (gβν + gβaτ
a
ν + gνaτ

a
β + gabτ

a
β τ

b
ν + σabτ

a
β τ

b
ν),αγ ẋ

ν ẋγ

−(gβb + gabτ
a
β ),αθ̈

b − (gβγ + gβaτ
a
γ + gγaτ

a
β + gabτ

a
β τ

b
γ + σabτ

a
β τ

b
γ),αẍ

γ

−∂Φα

∂xβ
− τ cα

∂Φ̃c

∂xβ
+
∂Φβ

∂xα
+ τ cβ

∂Φ̃c

∂xα

(39),(41)
= (gαb + gabτ

a
α),βγ θ̇

bẋγ + (gαν + gαaτ
a
ν + gνaτ

a
α + gabτ

a
ατ

b
ν + σabτ

a
ατ

b
ν),βγ ẋ

ν ẋγ

+(gαb + gabτ
a
α),β θ̈

b + (gαγ + gαaτ
a
γ + gγaτ

a
α + gabτ

a
ατ

b
γ + σabτ

a
ατ

b
γ),βẍ

γ

−(gβb + gabτ
a
β ),αγ θ̇

bẋγ − (gβν + gβaτ
a
ν + gνaτ

a
β + gabτ

a
β τ

b
ν + σabτ

a
β τ

b
ν),αγ ẋ

ν ẋγ

−(gβb + gabτ
a
β ),αθ̈

b − (gβγ + gβaτ
a
γ + gγaτ

a
β + gabτ

a
β τ

b
γ + σabτ

a
β τ

b
γ),αẍ

γ

−(gαν,ηβẋ
ηẋν + gαa,νβẋ

ν θ̇a + gαν,βẍ
ν + gαa,β θ̈

a)

+(gβν,ηαẋ
ηẋν + gβa,ναẋ

ν θ̇a + gβν,αẍ
ν + gβa,αθ̈

a)

−τ cα(gνc,γβ + (gcbτ
b
ν),βγ)ẋν ẋγ − τ cαgcb,γβẋγ θ̇b

−τ cα(gγc,β + gcb,βτ
b
γ + gcbτ

b
γ,β)ẍγ − τ cαgcb,β θ̈b

+τ cβ(gνc,γα + (gcbτ
b
ν),αγ)ẋν ẋγ + τ cβgcb,γαẋ

γ θ̇b

+τ cβ(gγc,α + gcb,ατ
b
γ + gcbτ

b
γ,α)ẍγ + τ cβgcb,αθ̈

b .

The θ̈ component becomes

(gαb + gcbτ
c
α),β θ̈

b − (gβb + gcbτ
c
β),αθ̈

b − gαb,β θ̈b + gβb,αθ̈
b − τ cαgcb,β θ̈b + τ cβgcb,αθ̈

b = gcb(τ
c
α,β − τ cβ,α)θ̈b .

The ẍ component becomes

(gαγ + gαaτ
a
γ + gγaτ

a
α + gabτ

a
ατ

b
γ + σabτ

a
ατ

b
γ),βẍ

γ − (gβγ + gβaτ
a
γ + gγaτ

a
β + gabτ

a
β τ

b
γ + σabτ

a
β τ

b
γ),αẍ

γ

−gαγ,βẍγ + gβγ,αẍ
γ − τ cα(gγc,β + gcb,βτ

b
γ + gcbτ

b
γ,β)ẍγ + τ cβ(gγc,α + gcb,ατ

b
γ + gcbτ

b
γ,α)ẍγ

= gαa,βτ
a
γ + gαaτ

a
γ,β + gγaτ

a
α,β + gabτ

b
γτ

a
α,β + (σabτ

a
ατ

b
γ)β

−gβa,ατaγ − gβaτaγ,α − gγaτaβ,α − gabτ bγτaβ,α − (σabτ
a
β τ

b
γ)α

= (gαaτ
a
γ )β + gγaτ

a
α,β + gabτ

b
γτ

a
α,β + (σabτ

a
ατ

b
γ)β − (gβaτ

a
γ )α − gγaτaβ,α − gabτ bγτaβ,α − (σabτ

a
β τ

b
γ)α

M1
= (gγc + gcbτ

b
γ)(τ cα,β − τ cβ,α)ẍγ .

The θ̇ẋ component becomes

(gαb + gabτ
a
α),βγ θ̇

bẋγ − (gβb + gabτ
a
β ),αγ θ̇

bẋγ − gαb,γβẋγ θ̇b
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+gβb,γαẋ
γ θ̇b − τ cαgcb,γβẋγ θ̇b + τ cβgcb,γαẋ

γ θ̇b

= (gabτ
a
α),βγ θ̇

bẋγ − (gabτ
a
β ),αγ θ̇

bẋγ − τ cαgcb,γβẋγ θ̇b + τ cβgcb,γαẋ
γ θ̇b

=
(
gca,γ(τ cα,β − τ cβ,α) + (gcaτ

c
α,γ),β − (gcaτ

c
β,γ),α

)
θ̇aẋγ

M3
= gca,γ(τ cα,β − τ cβ,α)θ̇aẋγ ,

where in the last equality we have used M3 in the following way:

−(gcaτ
c
β,γ),α + (gcaτ

c
α,γ),β

M3
= −(gcaτ

c
γ,β + gcag

cdged,βτ
e
γ ),α + (gcaτ

c
γ,α + gcag

cdged,ατ
e
γ ),β

= −(gca,ατ
c
γ,β + gcaτ

c
γ,βα + gea,βατ

e
γ + gea,βτ

e
γ,α)

+gca,βτ
c
γ,α + gcaτ

c
γ,αβ + gea,αβτ

e
γ + gea,ατ

e
γ,β = 0 .

Finally the ẋẋ component becomes

(gαν + gαaτ
a
ν + gνaτ

a
α + gabτ

a
ατ

b
ν + σabτ

a
ατ

b
ν),βγ ẋ

ν ẋγ

−(gβν + gβaτ
a
ν + gνaτ

a
β + gabτ

a
β τ

b
ν + σabτ

a
β τ

b
ν),αγ ẋ

ν ẋγ

−gαν,γβẋγ ẋν + gβν,γαẋ
γ ẋν − τ cα(gνc,γβ + (gcbτ

b
ν),βγ)ẋν ẋγ + τ cβ(gνc,γα + (gcbτ

b
ν),αγ)ẋν ẋγ

= (gabτ
b
ν),βτ

a
α,γ + (gabτ

b
ν),γτ

a
α,β + gabτ

b
ντ

a
α,βγ + (gαaτ

a
ν ),βγ + gνa,βτ

a
α,γ + gνa,γτ

a
α,β

+gνaτ
a
α,βγ + (σabτ

a
ατ

b
ν),βγ − (gabτ

b
ν),ατ

a
β,γ − (gabτ

b
ν),γτ

a
β,α − gabτ bντaβ,αγ − (gβaτ

a
ν ),αγ

−gνa,ατaβ,γ − gνa,γτaβ,α − gνaτaβ,αγ − (σabτ
a
β τ

b
ν),αγ

= gabτ
b
ντ

a
α,βγ − gabτ bντaβ,αγ + gνa,βτ

a
α,γ + gνa,γτ

a
α,β + gνaτ

a
α,βγ − gνa,ατaβ,γ − gνa,γτaβ,α − gνaτaβ,αγ

+(gabτ
b
ν),βτ

a
α,γ + (gabτ

b
ν),γτ

a
α,β − (gabτ

b
ν),ατ

a
β,γ − (gabτ

b
ν),γτ

a
β,α

= (gνa,γ + (gabτ
b
ν),γ)(τaα,β − τaβ,α)

+gabτ
b
ντ

a
α,βγ − gabτ bντaβ,αγ + gνa,βτ

a
α,γ + gνaτ

a
α,βγ − gνa,ατaβ,γ − gνaτaβ,αγ

+(gabτ
b
ν),βτ

a
α,γ − (gabτ

b
ν),ατ

a
β,γ ,

and adding all of the components we get

(17)αβ = gcb(τ
c
α,β − τ cβ,α)θ̈b + (gγc + gcbτ

b
γ)(τ cα,β − τ cβ,α)ẍγ + gca,γ(τ cα,β − τ cβ,α)θ̇aẋγ

+(gνa,γ + (gabτ
b
ν),γ)(τaα,β − τaβ,α)ẋν ẋγ

+(gabτ
b
ντ

a
α,βγ − gabτ bντaβ,αγ + gνa,βτ

a
α,γ + gνaτ

a
α,βγ − gνa,ατaβ,γ − gνaτaβ,αγ

+(gabτ
b
ν),βτ

a
α,γ − (gabτ

b
ν),ατ

a
β,γ)ẋν ẋγ

= Φ̃c(τ
c
α,β − τ cβ,α) + (gabτ

b
ντ

a
α,βγ − gabτ bντaβ,αγ + gνa,βτ

a
α,γ + gνaτ

a
α,βγ − gνa,ατaβ,γ − gνaτaβ,αγ

+(gabτ
b
ν),βτ

a
α,γ − (gabτ

b
ν),ατ

a
β,γ)ẋν ẋγ =: Φ̃c(τ

c
α,β − τ cβ,α) +Rẋν ẋγ .

Next we will show that the term Rẋν ẋγ vanishes using M1, M2 and M3. First we compute some
expressions that we will need. We will consistently omit writing the term ẋν ẋγ but will take it into
account and cancel any symmetric terms in ν and γ. From M2 we get σab,β = −gab,β + 2σbeg

edgad,β
and therefore

(47) (gab − σab),β = 2gab,β − 2σbeg
edgad,β .

Using gda,α = −geagdhgeh,α we get

(gdaged,ατ
e
γ ),β − (gdaged,βτ

e
γ ),α = gda(ged,αβτ

e
γ + ged,ατ

e
γ,β − ged,βατ eγ − ged,βτ eγ,α)

+gda,β ged,ατ
e
γ − gda,α ged,βτ eγ

= gda(ged,ατ
e
γ,β − ged,βτ eγ,α)− geagdhgeh,βgkd,ατkγ

+geagdhgeh,αgkd,βτ
k
γ ,

and therefore we have

(gab − σab)τ bν
(

(gdaged,ατ
e
γ ),β − (gdaged,βτ

e
γ ),α

)
= (gab − σab)τ bν

(
gda(ged,ατ

e
γ,β − ged,βτ eγ,α)− geagdhgeh,βgkd,ατkγ + geagdhgeh,αgkd,βτ

k
γ

)
= gabτ

b
νg
da(ged,ατ

e
γ,β − ged,βτ eγ,α)− gabτ bνgeagdhgeh,βgkd,ατkγ + gabτ

b
νg
eagdhgeh,αgkd,βτ

k
γ
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−σabτ bν(gda(ged,ατ
e
γ,β − ged,βτ eγ,α)− geagdhgeh,βgkd,ατkγ + geagdhgeh,αgkd,βτ

k
γ )

= τdν (ged,ατ
e
γ,β − ged,βτ eγ,α)− τ eνgdhgeh,βgkd,ατkγ + τ eνg

dhgeh,αgkd,βτ
k
γ

−σabτ bν(gda(ged,ατ
e
γ,β − ged,βτ eγ,α)− geagdhgeh,βgkd,ατkγ + geagdhgeh,αgkd,βτ

k
γ )

= τdν (ged,ατ
e
γ,β − ged,βτ eγ,α)− σabτ bνgdaged,ατ eγ,β + σabτ

b
νg
daged,βτ

e
γ,α

+σabτ
b
νg
eagdhgeh,βgkd,ατ

k
γ − σabτ bνgeagdhgeh,αgkd,βτkγ

M2
= τdν (ged,ατ

e
γ,β − ged,βτ eγ,α)− 1

2
σabτ

b
νσ

da(σed,α + ged,α)τ eγ,β +
1

2
σabτ

b
νσ

da(σed,β + ged,β)τ eγ,α

+
1

4
σabτ

b
νσ

ea(σeh,β + geh,β)σdh(σkd,α + gkd,α)τkγ

−1

4
σabτ

b
νσ

ea(σeh,α + geh,α)σdh(σkd,β + gkd,β)τkγ

= τdν (ged,ατ
e
γ,β − ged,βτ eγ,α)− 1

2
τdν (σed,α + ged,α)τ eγ,β +

1

2
τdν (σed,β + ged,β)τ eγ,α

+
1

4
τ eν (σeh,β + geh,β)σdh(σkd,α + gkd,α)τkγ −

1

4
τ eν (σeh,α + geh,α)σdh(σkd,β + gkd,β)τkγ

= τdν (ged,ατ
e
γ,β − ged,βτ eγ,α)− 1

2
τdν (σed,α + ged,α)τ eγ,β +

1

2
τdν (σed,β + ged,β)τ eγ,α .(48)

We will also use

−2σbeg
edgad,βτ

b
νg
hagkh,ατ

k
γ + 2σbeg

edgad,ατ
b
νg
hagkh,βτ

k
γ

M2
= −1

2
σbeσ

ed(σad,β + gad,β)τ bνσ
ha(σkh,α + gkh,α)τkγ

+
1

2
σbeσ

ed(σad,α + gad,α)τ bνσ
ha(σkh,β + gkh,β)τkγ

= −1

2
(σab,β + gab,β)τ bνσ

ha(σkh,α + gkh,α)τkγ +
1

2
(σab,α + gab,α)τ bνσ

ha(σkh,β + gkh,β)τkγ = 0 .(49)

Now we will finally check that R vanishes using M1, M2 and M3. Recall that in the computation
below we omit the term ẋν ẋγ :

R = ((gabτ
b
ν + gνa)τ

a
α,γ),β − ((gabτ

b
ν + gνa)τ

a
β,γ),α

M1
= ((gab − σab)τ bντaα,γ),β − ((gab − σab)τ bντaβ,γ),α

M3
= ((gab − σab)τ bν(τaγ,α + gdaged,ατ

e
γ )),β − ((gab − σab)τ bν(τaγ,β + gdaged,βτ

e
γ )),α

= (gab − σab),βτ bν(τaγ,α + gdaged,ατ
e
γ ) + (gab − σab)τ bν,β(τaγ,α + gdaged,ατ

e
γ )

+(gab − σab)τ bν(τaγ,α + gdaged,ατ
e
γ ),β − (gab − σab),ατ bν(τaγ,β + gdaged,βτ

e
γ )

−(gab − σab)τ bν,α(τaγ,β + gdaged,βτ
e
γ )− (gab − σab)τ bν(τaγ,β + gdaged,βτ

e
γ ),α

= (gab − σab),βτ bν(τaγ,α + gdaged,ατ
e
γ ) + (gab − σab)τ bν,β(gdaged,ατ

e
γ ) + (gab − σab)τ bν(gdaged,ατ

e
γ ),β

−(gab − σab),ατ bν(τaγ,β + gdaged,βτ
e
γ )− (gab − σab)τ bν,α(gdaged,βτ

e
γ )− (gab − σab)τ bν(gdaged,βτ

e
γ ),α

(47),(48)
= 2gab,βτ

b
ντ

a
γ,α − 2σbeg

edgad,βτ
b
ντ

a
γ,α + 2gab,βτ

b
νg
daged,ατ

e
γ − 2σbeg

edgad,βτ
b
νg
daged,ατ

e
γ

−2gab,ατ
b
ντ

a
γ,β + 2σbeg

edgad,ατ
b
ντ

a
γ,β − 2gab,ατ

b
νg
daged,βτ

e
γ + 2σbeg

edgad,ατ
b
νg
daged,βτ

e
γ

+τdν,βged,ατ
e
γ − σabτ bν,βgdaged,ατ eγ − τdν,αged,βτ eγ + σabτ

b
ν,αg

daged,βτ
e
γ

+τdν (ged,ατ
e
γ,β − ged,βτ eγ,α)− 1

2
τdν (σed,α + ged,α)τ eγ,β +

1

2
τdν (σed,β + ged,β)τ eγ,α

= −2σbeg
edgad,βτ

b
ντ

a
γ,α + 2gab,βτ

b
νg
daged,ατ

e
γ − 2σbeg

edgad,βτ
b
νg
daged,ατ

e
γ

+2σbeg
edgad,ατ

b
ντ

a
γ,β − 2gab,ατ

b
νg
daged,βτ

e
γ + 2σbeg

edgad,ατ
b
νg
daged,βτ

e
γ

−σabτ bν,βgdaged,ατ eγ + σabτ
b
ν,αg

daged,βτ
e
γ −

1

2
τdν (σed,α + ged,α)τ eγ,β +

1

2
τdν (σed,β + ged,β)τ eγ,α

= −2σbeg
edgad,βτ

b
ντ

a
γ,α − 2σbeg

edgad,βτ
b
νg
daged,ατ

e
γ + 2σbeg

edgad,ατ
b
ντ

a
γ,β + 2σbeg

edgad,ατ
b
νg
daged,βτ

e
γ

−σabτ bν,βgdaged,ατ eγ + σabτ
b
ν,αg

daged,βτ
e
γ −

1

2
τdν (σed,α + ged,α)τ eγ,β +

1

2
τdν (σed,β + ged,β)τ eγ,α

(49)
= −2σbeg

edgad,βτ
b
ντ

a
γ,α + 2σbeg

edgad,ατ
b
ντ

a
γ,β − σabτ bν,β(gdaged,ατ

e
γ ) + σabτ

b
ν,α(gdaged,βτ

e
γ )
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−1

2
τdν (σed,α + ged,α)τ eγ,β +

1

2
τdν (σed,β + ged,β)τ eγ,α

M2
= −σbeσed(σad,β + gad,β)τ bντ

a
γ,α + σbeσ

ed(σad,α + gad,α)τ bντ
a
γ,β

−1

2
σabτ

b
ν,βσ

da(σed,α + ged,α)τ eγ +
1

2
σabτ

b
ν,ασ

da(σed,β + ged,β)τ eγ

−1

2
τdν (σed,α + ged,α)τ eγ,β +

1

2
τdν (σed,β + ged,β)τ eγ,α

= −(σab,β + gab,β)τ bντ
a
γ,α + (σab,α + gab,α)τ bντ

a
γ,β −

1

2
τ bν,β(σeb,α + geb,α)τ eγ +

1

2
τ bν,α(σeb,β + geb,β)τ eγ

−1

2
τdν (σed,α + ged,α)τ eγ,β +

1

2
τdν (σed,β + ged,β)τ eγ,α = 0 .
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