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ABSTRACT. The Helmholtz conditions are necessary and sufficient conditions for a system of second
order differential equations to be variational, that is, equivalent to a system of Euler-Lagrange
equations for a regular Lagrangian. On the other hand, matching conditions are sufficient conditions
for a class of controlled systems to be variational for a Lagrangian function of a prescribed type,
known as the controlled Lagrangian. Using the Helmholtz conditions we are able to recover the
matching conditions from [9]. Furthermore we can derive new matching conditions for a particular
class of mechanical systems. It turns out that for this class of systems we obtain feedback controls
that only depend on the configuration variables. We test this new strategy for the inverted pendulum
on a cart and for the inverted pendulum on an incline.
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1. INTRODUCTION

Assume we are given a system of Euler-Lagrange equations with an unstable equilibrium that we
want to stabilize using feedback controls applied in certain directions. The controlled Lagrangians
techniques provide a method for solving this problem for certain mechanical systems, providing
explicit control laws [9, 6, 7, 5, 15]. The method consists in choosing, among a class of feedback
controls with parameters, ones that transform the controlled system into a Lagrangian form for a
specific type of Lagrangian function that depends on the same parameters as the control. Matching
conditions are sufficient conditions, depending on the system and the parameters, which ensure this
goal is accomplished. Then energy shaping methods can be used to obtain stability.

Trying to put a system of second order differential equations (SODE) into Lagrangian form is
the issue of the inverse problem of the calculus of variations, although no specific form is usually
imposed for the new Lagrangian, see [13, 17, 12, 19]. If a regular Lagrangian function can be found
then the system is called variational. The variationality of a SODE can be characterized through
the Helmholtz conditions, which are a set of necessary and sufficient conditions which depend on a
matrix (g;;) of functions on T'Q), but not on the Lagrangian function itself.

In this paper we will use the Helmholtz conditions in order to recover the matching conditions
from [9] and obtain additional ones for a specific class of systems. The class of allowed controlled
Lagrangians will be slightly extended for this purpose, compared to the controlled Lagrangians used
in [9], where the special matching assumption is made when choosing a new kinetic energy and the
potential energy is not modified. Notice that arbitrary kinetic and potential energies are considered
in [1], but such generality requires solving a system of PDEs for the new multipliers. Throughout
this paper when using the expression matching conditions we refer to the approach from papers
[9, 6], introduced in Section 1.1.

In this section we will first review aspects of the method of controlled Lagrangians and the match-
ing conditions. Then we will introduce the inverse problem and recall the Helmholtz conditions.
Finally we show how both sets of conditions are related.

1.1. Controlled Lagrangians techniques: matching conditions. Consider a configuration
manifold Q) with a Lie group G acting freely and properly on Q. Consider also a Lagrangian function
L on T'Q of mechanical type, that is, of kinetic minus potential energy type. More precisely we have

1
L(Uq) = ig(quvq) - V(Q)v Vq € TqQa
1
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for some Riemannian metric ¢ on @) and some function V : @ — R. We will assume that the
Lagrangian L is invariant under the lifted action of G on T'Q. In this section we will briefly
recall how to construct from L a new Lagrangian function L, , on T'Q), known as the controlled
Lagrangian.

Consider the vertical spaces with respect to the projection 7 : @ — @Q/G, that is, the tangent
spaces to the orbits of the G-action, and the orthogonal complements with respect to the kinetic
energy metric g, which will be referred to as horizontal spaces. Then for each v, € T;() we obtain
a unique decomposition

vg = Horvg + Verv,,

where Verv, € T,0rb(q) and Horv, € T,0rb(q)"s.

Let g denote the Lie algebra of G, £ the infinitesimal generator corresponding to § € g and let
T be a g-valued G-equivariant horizontal one-form on ). We define the T-horizontal projection and
the 7-vertical projection respectively as

Hor, : v, — Horvg — 7(vg)g(q) and  Ver; : vy — Vervy, + 7(vg)g(q) for v, € T,Q.
The freedom in the controlled Lagrangian L, , comes from the following choices:

e A new choice of horizontal space, corresponding to a choice of 7,
e A change g — ¢, of the metric acting on 7-horizontal vectors,
e A change g — g, of the metric acting on vertical vectors.

Once these choices have been made, according to [9, Definition 1.2] the controlled Lagrangian can
be defined as

1
Lro,p(vg) = 5 (90 (Hor7vg, Horrvg) + gp(Verrvg, Verruvg)) — V(q) .

According to [9, Theorem 2.1], if ¢ and g, coincide on the horizontal spaces and further the
horizontal and vertical spaces are g,-orthogonal, then the controlled Lagrangian can be rewritten
as

(1 Lraiplta) = L{vg + 7(00)Q) + 500(r(vg)s (1)) + 5(vy).
where v, € T,Q and w(vy) = (g, — g)(Verr(vq), Verr(vq)).

Assume now that G is Abelian. If we take local coordinates (z%,0%) on @ such that z* are
coordinates on @/G and 6% are coordinates on G, then the given mechanical Lagrangian is written
as

. 1 . 1 ..
L(z®, &%,0%) = igaﬁfcaiﬁ + Gaax™0% + §gab9“9b —V(x®).

In these coordinates, under the same assumptions that provide (1), the controlled Lagrangian be-
comes

) ) 1
Lrgp (2%,47,0°) = L(2%% 6" + 780%) + Sourarhi®s

1 : . . : . .
+§wab (9(1 _’_gacgacxa +Tgwa> (Hb +gbdgﬂdlﬁ +Tﬁbl"3> ,
where o4, @y are the coefficients of the last two terms in (1) and 72 are the coefficients of 7.

As in [9] we will refer to the particular choice g, = g as the special matching assumption and
write the corresponding controlled Lagrangian as L ,. In this case, according to (1), the controlled
Lagrangian L, , becomes

Lr () = Llvg + 7(t)Q) + 500 (r(t0)a: T(t)a)

Now we will compare the solutions of the system of controlled Euler-Lagrange equations

d 0L oL d OL
(2) o 5 e =0, o =,
dt 0xz®  Ox“™ dt Hga
to the solutions of the systems of Euler-Lagrange equations
dOLry OLry _ d 0L,

(3) dt 93 ore 7 dt gpa ’
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iaLT,U,p aLT,mP -0 i% =0

4 :

(%) dt 01> ox?® dt  Hha

where u, is chosen in such a way that the 6% equation in (2) coincides with the §¢ equation in (3)
or (4), depending on whether we are making the special matching assumption or not. We will refer

to the functions u, = u4(t) as control inputs or controls. When ug = u,(z, 0, &,0) we will use the
expression feedback controls.

Consider the following two sets of assumptions, known as matching conditions and simplified
matching conditions respectively:

Assumption M1: 72 = —0%g,,,
Assumption M2: O'bd(O'aCLa + Yada) = 29bd9ad,a )
Assumption MS3: 7'3,/3 — Tﬁba = gdbgad@Tg,
Assumption SM1: o4, = 0gqp for a constant o,
Assumption SM2: gq is constant ,
Assumption SM3: 78 = —(1/0)9"gaa
Assumption SM4: Gaas = Jsa,a s

where , a denotes partial derivative with respect to z©.

In [9, Theorem 2.2] it is shown that under the matching conditions M1-M3 the solutions of (2)
and (3) coincide. In particular, if the simplified matching conditions SM1-SM4 hold, then M1-M3
also hold and therefore the solutions of (2) and (3) coincide.

If the simplified matching conditions do not hold, then we may relax the special matching as-
sumption g, = g and consider controlled Lagrangians of the form L, ,. In this case we can consider
the generalized matching conditions, which provide equivalence of (2) and (4), see [7, Theorem
1.3):

Assumption GM1: 78 = —0%g4q

Assumption GM2: O’bd(Uad@ + gad,a> = 2gbdgad7a ,

Assumption GM3: wgp o =0,

Assumption GM: 73’5 — Tga + wadpbd(CZ,a - Cf{a) - wadpdcgce,gpeng — pdbgadaTg =0,
where (§ 1= g%gac -

So far we have assumed that the original Lagrangian L is invariant under the action of an Abelian
Lie group. If we keep this assumption for the kinetic energy part of the Lagrangian but allow for
symmetry breaking in the potential energy part then we can add an extra condition to the simplified
matching conditions, namely

Assumption SM5: V009984 = V 349G
which ensures that, if we choose g, = pgqp for some constant p, then (2) is equivalent to

(5) i 8LT7U,P7€ _ 6L7707p7€ i M
dt i~ B dt 9o
where

=0, =0,

1 : . g . .
Lrope = Lrg+ 5(p = 1)9ab(0" + 9" gact®™ + T88%)(0° + g"gpad” + T5aP) — Vi(a®,67),

and V. depends on a real parameter ¢, see [6, Theorem IIL.1].

Remark 1.1. All of the above mentioned matching conditions are sufficient conditions to ensure
equivalence of the systems (2) and (3) or (4) or (5), but they are not enough to guarantee stability
of the desired equilibrium. Conditions for obtaining stability are given in [9, 6].

1.2. The inverse problem of the calculus of variations: Helmholtz conditions. Assume we
are given an explicit system of second order differential equations

(6) i =Tq,q), i=1,...,n.



4 MARTA FARRE PUIGGALI, ANTHONY M. BLOCH

The classical multiplier version of the inverse problem of the calculus of variations poses the following
question [13]. Is the system (6) equivalent to a system of Euler-Lagrange equations for some regular
Lagrangian L(q, ¢), that is, to a system of the form

) d <8L> oL

ACI T

where the matrix ( aq‘?f 8%-) is regular? More precisely, we can ask for the existence of a regular
matrix (gi5(q, ¢)), the so-called multiplier matrix, such that
, , d (0L oL
] (i —TI(a.0)) = — o R
(8) 9i5(§ (@:4)) = - <8Ql> g

holds for some regular Lagrangian L. Notice that the requirement (8) coincides with asking for
equivalence of solutions of the two systems (6) and (7). Indeed, if we put (7) in explicit form we get

i PL 0L

where (g%) is the inverse matrix of (%) Then equivalence of solutions to (6) and (7) implies

I'(q.4) = g (— o d® + gg) that is, (8) is satisfied.

Determining if (8) holds for some regular Lagrangian is equivalent to determining the existence
of solutions to the Helmholtz conditions given by Douglas in terms of multipliers in [13]:

9gij _ Ogi
(9) det(gij) #0,  gji = 9ij> 2k~ oq
(10) I'(gij) — Vigik — Vg =0, 9inel = girel,
where
. . %) : 101 k ork ork 191t or*
=gl 1 Tg i), Vi=—-2  h=p(Z )8 2 %2
o0t (¢,9) o Vi s9q ¥ <aqj> od 204 04

A proof of the above statement was given by Douglas in [13].

There is an earlier version of the inverse problem due to Helmholtz which poses the following
question [20]. Given an implicit system of second order differential equations

q)Z(Q7Q7Q):07 izla"'an:

determine whether or not it is possible to find a regular Lagrangian L(q, ¢) such that

L L
Necessary and sufficient conditions for (11) to hold are
P, D,
(12) e ]
0¥ o, 1 08 D,
(13) e o (gq'j _aaq'o 0
. . . A
2 (%) <o

which were provided by Helmholtz in [20], and are also known as Helmholtz conditions. Necessity
can be proved by a straightforward computation and sufficiency was proved by Mayer in [18], see
also [16]. Notice that if the system is given in explicit form

P =690, =G —T'(q,4) =0, i=1,...,n,

where 6 = Id, then we can also try to solve (11). This is the same as requiring that equations
(9)-(10) hold with g = Id. By doing this, equations (12)-(14) are recovered from (9)-(10).

One third possible question is the following. Assume again that we are given an implicit system
of second order differential equations

(I)’L(q7Q7Q):07 izlv'”vnv
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but now we only ask for equivalence of solutions, that is, we don’t require (11) or (8) a priori, (and
. . i i . _ (od) -

we don’t necessarily know the expression ¢* = I"*(q, q)). Assume C = (8—(]) is regular.

For this problem we also have a set of Helmholtz conditions, to which we will refer as implicit
Helmbholtz conditions (IHC). More concretely, in [4, Section 2.1] it is shown that the systems

d L L
q)l(q7q7q>:0 and (a > 8 _0 izl,...,n,

dt \o¢ ) og
admit the same solutions if and only if the equations
OF; OF;
(15) = = =7
o¢J oq¢*
O*F; OF,  O°F OF; OF, 09,
(16) *+ — + §— L = (C1)kr

9oq- " " o9 T 9pioik
82Fi k 82E k 8R 8¢7~
1 - ] - q" — .
(U7 o T ago? ~ o oq

B agk D
ag¢ot? T agog? T B¢k ag

(C—l)kr —

(C—l)kr )

oF;
a¢7
j=1,...,n, instead of (g;;), and correspond to the components of the Legendre transformation for
the sought Lagrangian function. These equations are derived in [4] in analogous fashion to the ones

given in [2] using Lagrangian submanifolds.

admit solutions Fj(q,q), j = 1,...,n, with ( ) nondegenerate. Now the unknowns are Fj(gq, ¢),

1.3. The relationship between matching conditions and Helmholtz conditions. All of the
matching conditions mentioned in Section 1.1 give particular solutions of the Helmholtz conditions
(9)-(10) or equivalently (15)-(17) if we consider the Legendre transformation corresponding to L.,
Lrgpor Lrgpe.

For example, under the matching conditions M1-M3 we obtain a controlled SODE for which L, ;

2
solves the problem (8). Therefore the multipliers g;; = % must satisfy the Helmholtz conditions
(9)-(10), and the components of the Legendre transformation F; = 65;1?” must satisfy the implicit

Helmholz conditions (15)-(17). The same holds for L, , and L, ..

In this paper we will slightly modify the expression of the controlled Lagrangian L, the type
of Lagrangian used in [9]. We will consider instead controlled Lagrangians of the form

-ZT,U = D70 — f/'r,a(l'av 00,) y
where K, denotes the kinetic energy part of L;,, but the potential energy part VT,U does not
necessarily coincide with the one in the original Lagrangian.

We will take the Legendre transformation corresponding to L;, and impose it as a solution of
the implicit Helmholz conditions (15)-(17). Recall that the Helmholtz conditions are necessary
and sufficient conditions for a Lagrangian to exist, but they provide the components of the new
Legendre transformation only. Using them we should be able to recover the matching conditions
M1-M3 (sufficient conditions) as particular solutions, but may find new ones. If we find new solutions
using the Helmholtz conditions then we know a Lagrangian exists, but we still need to solve equation
(8) to find the corresponding potential. Hence we need to account for arbitrary potential functions.
Now the unknowns are the free parameters that appear both in the controlled Lagrangian and the
controlled SODE.

We will follow this approach in Section 2, where we show explicitly how the matching conditions
M1-M3 arise from the Helmholtz conditions (15)-(17) if we choose L, , as the new Lagrangian. The
detailed computations are given in Appendix A.

In Section 3 we use the implicit Helmholtz conditions (15)-(17) for the case of one degree of
underactuation and (g,p) constant to obtain an additional matching condition, alternative to SM3.
In this case we obtain a feedback control which is independent of velocities. This alternative solution
is an ODE system for 7. On the other hand, notice that the simplified matching conditions SM1-
SM4 are algebraic conditions, and the conditions given in [1] include a system of PDEs for the new
multipliers, since arbitrary kinetic and potential energies are considered there instead of choosing a
specific form for the new Lagrangian.
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Finally in Section 4 we will apply the results of Section 3 to obtain a new stabilizing control for
the inverted pendulum on a cart. We will further show how to use the implicit Helmholtz conditions
(15)-(17) to obtain an additional solution for the inverted pendulum on an incline. Stability can be
achieved in both cases by appropriate choice of the free parameters.

2. ARBITRARY DIMENSION WITH SPECIAL MATCHING ASSUMPTION

In this section we will show how the matching conditions M1-M3 arise from the implicit Helmholtz
conditions (15)-(17) using the special matching assumption, that is, choosing a controlled Lagrangian
with g, = g. Since we will use the Legendre transformation of the controlled Lagrangian L. ,, the
potential energy of the new Lagrangian will not play any role in satisfying (15)-(17).

As a starting point consider a given mechanical Lagrangian of the form

. 1 ) ..
(18) L(a®,a%,0%) = <ga5¢%5 F 200ai 0% + gabeaeb) —V(z®),
with corresponding Euler-Lagrange equations given by
1 s A
o, = (gaﬁ,ﬂ/ - igvﬂ,a)w’yxﬁ + (gaap/ - gva,a)x’yga
) | P17
+gaﬂx5 + gaaea - igab,aeaeb + 8? = O,
¢, = goza,'yjf’yi'a + gab,'yiﬁeb + gaaia + gabeb =0.

Now consider a controlled Lagrangian with the special matching assumption g, = g, that is,
L:,(x% 2% 6% = L(z% %0+ 73:%) + iaangTﬁbmaxﬁ ,

and choose controls u, such that the §%-equations for both L and L., coincide, that is,

_ (4 (9L 9L\ _(d (OLro\ 0Lz,
Yo = i \ g ) ~ 900 dt \ 9ge 06

Then the controlled Euler-Lagrange equations (2) are
(20) o, = &,=0,
(21) by = Byt (gub72) 23 + guThE® = 0.

From ® we can compute

é — @ _ Jap Gab
—\ 9§ 9ap + 9ad™§  Gab )’

which is assumed to be regular. If we introduce the notations W := C~1, AaB = gap — gabg“b(gag +
gadrg), where (g?) denotes the inverse matrix of (gap), and also denote the inverse of (Aag) by

(A°P) then
W B WQB Wab _ Aaﬁ _Aa'yg’ydgdb
N < wes e ) N < —(9% g0y + 7)) A g™ + (9"Gay + 75) AV gueg® )
Now we will require that the system (20)-(21) be variational using equations (15)-(17), and we
will impose the solutions given by the components (Fy, F,) of the Legendre transformation of the
controlled Lagrangian L, ,, that is,

Fo = (9ap + GaaT§ + 98aTs + 9avToTh + 0ab7oTh)E% + (gon + gar72)0"

Fa = (gaa + gdaTg)-fa + gabéb .
Keeping in mind that (¢*) = (¢%,¢%) = (2%,6%), we will use subindices ab, a3 or af next to

equations (15), (16) and (17) to denote the subset of equations corresponding to i = a,j = b or
i=ua,j=pori=q«,j= 0 respectively.

If we substitute ®,, P, and the proposed solutions F,, F, into equations (15)-(17) we get the
following:
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e Equation (15): vanishes identically for all indices.
e Equation (16):
* (16)4p vanishes identically,
* (16)qp vanishes identically,
* (16)4p vanishes using M1 and M3 . Alternatively it vanishes if (gqp) is constant and the
system has one degree of underactuation,
* (16)qp vanishes using M1, M2 and M3.
e Equation (17):
* (17)qp vanishes identically,
* (17)qp vanishes identically,
* (17)qp vanishes using M1, M2 and M3. Alternatively it vanishes for systems with one
degree of underactuation.

Detailed computations proving the above statement are given in Appendix A.

3. ARBITRARY DIMENSION UNDER ASSUMPTIONS SM1, SM2 AND WITH ONE DEGREE OF
UNDERACTUATION

Recall that, as mentioned in Section 1.3, when solving the Helmholtz conditions we have used the
Legendre transformation of the controlled Lagrangian L, ,. The Helmholtz conditions guarantee the
existence of a Lagrangian with the same Legendre transformation as the controlled Lagrangian which
we have used, but the potential energy terms need not coincide. Therefore we consider controlled
Lagrangians of the form INDT,U =K;s— V(wa, 6*) with arbitrary V.

Since in this section we deal with systems with one degree of underactuation, we will now use the
notation 7¢ = 7f =: 7%, where a = 2,...,n. We also use a  instead of ; to denote derivative with
respect to zt = z.

Theorem 3.1. Under assumptions SM1, SM2 and with one degree of underactuation, there is a
controlled Lagrangian LTU such that the Fuler-Lagrange equations for LTU are equivalent to the
controlled Euler-Lagrange equations (2) for L if T® satisfies the ODE system

(22)  27%91eg”Ghe + 27°91e(T%) = 70901 + 2911 (1) = 29169 9ar (77) = 2917°(77) = 0,

foralla=2,...,n . In the particular case when dim(Q) = 2 we obtain the new solution

(23) = kv g11(2)g22 — g12(2)?,

where k is an arbitrary constant. Notice that one degree of underactuation implies that SM4 holds
and therefore we are providing an alternative to the solution given by SMS.

Proof. From the computations given in Appendix A (and summarized at the end of Section 2) we
can see that Equation (17) vanishes identically since the assumption of one degree of underactuation
implies that Equation (17),4 is void and also that Equation (16) vanishes for indices ab, a3, and ab.
Now under assumption SM1, that is 0,5 = 0g4p for some constant o, we compute Equation (16) for
indices a3, which are just a = § = 1. This gives an ODE system as an extra solution, alternative
to SM3.

Indeed, the  components vanish identically using that (gqp) is constant and a = 3 = 7, see (45)
in Appendix A. Imposing that the & component also vanishes we get

0 = — (TC — (grat® + UadTaTd)AHglegec> (9’1c + gle + (gea™™®) + (chTd)') T
= (81 + (9107 + Gaar™r ) AY) (ghy + gy — g1
+(g11 + 9107 + 9107 + GaeTITE + 0ea T i
= - (TC — (grat® + UadTaTd)Allglegec> (2910 + 2(9cd7d’)/> 0y
— g2 — (g1a7? + 0qm T AN G d 4 gy i+ (29107 + 9aeTTE + OeqTeT ) &
= —7° (29’1c + 2(gcd7-d)’) &+ (9147 + Oaam T AN g1eg® (2g’1c + 2(gcdrd)’) i
—(g1am? + 0aam*T) AN g1y + (201077 + 201a(TY) + G + 2000 (77T + 20¢a(76) 79)
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= A" ((g1a+ 0aam)7" (9109 (200 + 200a(r?)) = gh1) + 2402 (1a(r?) + Gaa (7))
= AY(g1a+ 00at) (Td <91egec (2910 + Qch(Td)/> - 9’11) + Q(Td)/AH)

= A" (g1a + 0aat®) (2Td91egecgic +27%1(7%) — 7901 + 2911 (77) — 29109%°ger (%) — 291CTC(Td)') :

Therefore we have the two solutions M1 and
2791699l + 27°91e(7%) — 7911 + 2011 (7)) — 2019 9ar (7 = 2017°(r) = 0,
for each a = 2,...,n. Notice that in the case when dim(Q) = 2 the system (22) becomes

22(

9%2(2912915T — Gh19227 + 29119227 — 293,7') =0,

and the solution is given by

7(z) = kv/g11(2)g22 — g12(2)?,

where k is an arbitrary constant. ]

Proposition 3.2. Under the assumptions of Theorem 3.1 and using the new solution given by (22)
we have that the control (19) is independent of velocities.

Proof. Indeed we have that the equations ®; = 0 and ®, = 0 are given by
1

g + g1a6* = —59/1@2 -V,
(gla + gabTb)j + gabéb = 7(9/1(1 + gab(Tb),)j;2 :
Therefore, since C' = P /04 is regular, we have
. 1, . . .
(24) i= Al <—2g’11:132 + g1a9% 914 + qra(t4)'i* — V’>

and the control (19) becomes

. 1, . . .
(25) Uy = _gab(Tb)lng - gabTbAH <_2gilx2 +g1d9deg/16$2 + gld(Td)/$2 o V/> _ gabTbAHV/,

where in the last equality we have used that A11 = g11 — g1 9% (ge1 + geq®) is nonvanishing in order
to get

1
—A119a(7) = g7 <—29/11 + g1a9% g}, + gld(Td)/>

1
= —g119a(7") + 9179 (ger + Geat ) gan(7°) + 59’119@71’ — 0149% 9 e9ab™ — 91a(7Y) gap

1
= Gab (—gn(Tb)’ + 9179 ge1 (7% + gra? (%) + 593176 — 72 9109% g}, — g1d7b(7d)’>

Remark 3.3. After substitution of u, given in Proposition 3.2 into the system ®; = 0, ®, = 0 we

get
z _ o1 —%9/113'32 -V
[ —g1, 3%+ gt ARV )

In dimension 2 this fits into the class of systems considered in [14].
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4. EXAMPLES

In this section we will see two examples in which alternative 7 solutions can be found to the
simplified matching condition SM3. The first example fits into Section 3. We illustrate the new 7
solution for the inverted pendulum on a cart as well as the control given by (25), which is stabilizing
in this case. In the second example, which involves a controlled Lagrangian of type L, ,., the
Helmholtz condition (16),3 provides an additional solution for 7 as in Theorem 3.1. Furthermore,
the Helmholtz condition (17),p, which vanishes identically in Example 4.1, provides now a PDE for
Ve, which is more general than the one provided in [6].

4.1. Inverted pendulum on a cart. We provide a new stabilizing control for the inverted pen-
dulum on a cart using the solution provided by Theorem 3.1. The system consists of a pendulum of
length [ and a bob of mass m attached to the top of a cart of mass M. The configuration manifold
of the system is Q = S x R with coordinates (z, s) which denote the angle of the pendulum with
respect to a vertical line and the position of the cart respectively, as shown in the picture below.
The upright position of the pendulum corresponds to z = 0.

|
|
|
|
|
|
|
!
!
|
|
|
u |
|
|
|
|
!
|
|
|

The Lagrangian is given by
1
L= 3 (ai?® + 285 cos(z) +v8%) + dcos(z),

where o = ml?, 3 = ml,y = m + M and d = —mgl are constants.

If we choose the solution provided by (23), that is,
7(x) = kv/ay — % cos(x)

then from (25) we obtain the control

dy?ksin(z)\/ay — B2 cos?(x)
Bk cos(x)y/ay — B2 cos?(z) — ay + (2 cos?(z) |
We will now check the stability of the upright position of the pendulum with this control. To

this end we will use the energy function corresponding to the new Lagrangian ET,U (with the same
Legendre transformation as L, , but a possibly different potential energy term, as remarked above).

(26) u = QQQTAHV, = —

When written in explicit form, the controlled Euler-Lagrange equations become

sin(z) dy (87 cos? (@) —ar) — %42 cos(x)
(27) P — Bk cos(x)y/ ay—B2 cos?(x)+ay—B2 cos?(z) . F
B ay — 32 cos?(z) Y

B ady’k
Vay — B2 cos?(x) (ﬂ'yk: cos(x)y/ay — B2 cos?(z) — ay + B2 COSQ(LU))
Bd cos(x) N a3’ > .

ay — B2cos?(x)  ay — % cos?(x)

§ = sin(x)

(28) +

We can write the new Lagrangian as

~ 1, . - . ~
Ly, = 5 (gll(x)x2 + 2g12()$ + 92282) —V(x,s),
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where

g11(x) vk* (0 + 1) (ary — B% cos?()) + 2Bk cos(z)/ary — B2 cos?(z) + o
Gio(x) = ~ky/ay — B2cos?(x) 4+ Bcos(x),
G2 = 7.

Then the equivalence conditions (8) are

_ . _ 0qu1 . 2 9912 . 19g11 . 2 8912 oV
gk =926 = Br " + Ox 5 2 O + o T ox
~ ~ ag?l .92 8‘7
—g1F' — g20G W»’U s
from which we get
1% _ d (v?k*o + 1) sin(z) (ay — 52 cos?(z))
or Bk cos(z)\/ay — B2 cos?(x) — ay + B2 cos®(z)
ov
I

Now we impose conditions such that the new multiplier matrix (g;;) will be positive-definite. If we
introduce the notation

D:=gi1g22 — gis and D :=§i1§a2 — Gia

then we have D = D + 0(geo7)?, and therefore we need to choose o > W =

g11 > 0, for which it is enough to take 7 > 0 and g22(1 + o)7 + 2¢12 > 0. Therefore it is enough to
choose 0 > 0 and k > 0.

2 kQ We also need

On the other hand, consider V as a function of z only. Looking at OV /Ox , notice that we have
d<0, ay—p%cos?(z)>0 and ~*k*c+1>0

from the previous choice. Then, in order to get a positive-definite potential energy ‘N/(:U), we need
to impose

Bk cos(x)\/ary — B2 cos(x) — ary + B2 cos?(z) > 0,

which, taking x € (—%, g), reduces to

ay — 32 cos®(x)

29 k )
29 7 Bycos(a)y/ar — o)

(but stability of z = 0 is guaranteed with k£ > ;ﬁ)

By ay—p2

Summing up, we can choose positive o and k to guarantee that the new kinetic energy is positive-
definite and we can further adjust the constant k£ in the control to guarantee that the potential
energy f/(ar) is positive-definite. Then the energy is a Lyapunov function for the relative equilibrium
x=0,2=0,5=0 of (27)-(28). Notice that the requirement (29) corresponds to A;; < 0.

We now fix the parameters of the system to be m = 0.14 kg, M = 0.44 kg and | = 0.215 m as
in [9] and take the initial conditions to be ¢(0) = 7/2 — 0.2 rad, ¢(0) = 0.1 rad/s, s(0) = 0 m, and
5(0) = =3 m/s, also as in [9]. Below there is a MATLAB simulation of this situation with k& = 35
(notice that the cart position s is not stabilized):
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Remark 4.1. The system (27)-(28) fits into the class of systems dealt with in [14] and belongs to
Case IIal from Douglas’ classification since

P2 = dy <2(ﬁ2 — ary) cos(z)/ay — B2 cos?(x) — 26vk(ay + 2 0052(55))) #0.

This is the same case as the controlled systems that appear in [9] and [14] for the example of the
inverted pendulum on a cart.

4.2. Inverted pendulum on a cart on an incline. Consider now the inverted pendulum on a
cart, moving on an incline, and denote by v the angle between the incline and the horizontal. The
Lagrangian is given by

1
L(z,s,z,$) = §(a¢2 + 2B cos(x — )5 + y5%) + dcos(x) + ygsin(y)s,

where the potential energy function is V(z,s) = —d cos(x) — ygsin(y)s.

We will assume g, = pg for a scalar constant p, as in [6], and we will consider the controlled
Lagrangian

Ligpe = %(ozj/:2 + 2B cos(x — )@ (5 + 7&) + (5 + 72)%) + dcos(z) + ygsin(t))s

1 1 2
+§0772$2 + i(p — 1)y (s + fcos(x — )T+ Tﬂb) —Ve(z,s).

If we require that the s equations for both Lagrangians L and L, , . coincide then we obtain the
following control, see [6, Equation (14)]:

p—10V 9V, d

= e T es a0
. 1—0p . B laVe B w12
(30) = vgsin(vy) 05 NTE — T T .

As in Section 2 we require now that the system of controlled Euler-Lagrange equations (2), which
in this case becomes

(31) aZ + fscos(¢ —x) +dsin(z) = 0,

(32) 2 (ﬁ sin(y — ) + 77—’) + (Beos(v — ) +y7)E + S + ;aa‘f — % sin(¢y)) = 0,

be variational for a Lagrangian function of the type L, ,.. Notice that in this case the potential
energy term is already free, in contrast to the case L, , but in similar fashion to L, ,.
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If we write the Helmholtz conditions (15)-(17) for the controlled SODE (31)-(32) and impose as
a solution the components of the Legendre transformation corresponding to L, , ., that is,

A - (orZe-bedoa)

+2Bp1cos(¢p —x) +v(p + 0)72> T

+p(B cos() — 7) +77)3,
By = p(Beos(th —x) + )i + pyé

then we obtain the following:

e Equation (15): vanishes identically for all indices.
e Equation (16):

(16)4p vanishes identically,

(16),45 vanishes identically,

(16) s vanishes identically,

(16)ap becomes the following equation:

& (B cos(p — x) +vo1) (=f%sin(2(¢ — )7 + (B — 2ay + B cos(2(¢ — x))7'))
—ay + B2 cos? (¢ — x) + Bycos(yp — x)T

Therefore we obtain the two solutions

* %X ¥ X

=0.

(33) T = —fa cos(z — ),
(34) T = k‘\/om—BQCOSQ(w—d)),

where k is a constant. The first one corresponds to the simplified matching condition
SM3, while the second one coincides with (23).
e Equation (17):
* (17)ap becomes the following second order linear PDE for V. (z, s):

PV, V.
(35) Alw) 55 + 55 =0,
where
Az) = $B(p — 1) cos(vp — x) (—2ay + B2 cos(2(¢) — z)) + ?)

vp (ay — B cos* (¢ — ) — y7 cos(¢ — x))
By23(p + o)7m2cos(y — ) + ypr (2ﬁ2 cos?(1h) — x) — ory)
vp (ay — B2 cos? (¢ — x) — ByT cos(¢) — x))
If we use the solution (33) to Equation (16),3 we obtain

_Beos( —2)(p(~1+0) — )

Alx) =
(=) Ypo
According to [6], the assumption SM5 implies that the PDE
vV VN[ 1 p-1\ . OV
36 — | — _— A a o =0
(36) <83+83><0+ p)ggd+8x

admits a solution V., which provides the proper adjustment of the potential energy term for the

controlled Lagrangian L, ,.. In this example, if we take a derivative of (36) with respect to s we
edy?y?

25 which is the solution

obtain (35). Therefore as a particular solution to (35) we recover V, =

to (36) given in [6], where y = s + (—% + p;pl) g(sin(x — 1) +sin(v))).

On the other hand if we use the solution (34) to Equation (16)as then we get
B(VK*(p+a) — p+ 1) cos(¢p — x) (ay — 5 cos® (¢ — x))
70 (= vk cos( — w)y/ay — FZeos? (Y — 2) + ay — 52 cos2( — )
Ykpy/oy — B2 cos? (¢ — ) (2% cos? (¢ — ) — a)
7P (—ka cos(¢p — x)y/ay — B2 cos? (¢ — ) + ay — B2 cos? (¢ — ﬂf)) '

A(z) =

_l’_
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In this case we can consider a solution to (35) of the form
. 1
(37) Ve = ~gsin(v)s + 35 sh(z) + G(x) — sps + soh(z),

where h(z) = [ A(r)dr, so is a constant and we assume G'(0) = 0. Then the potential energy term
for L, ,c becomes

1
Vr =V + V. = —dcos(z) + 552 — sh(x) + G(x) — sos + soh(x)

and we have
oVir
ox

oVr

el — -4

z=0,s=s0 r=0,5=s0

that is, with appropriate choice of V. we can get that (z = 0,s = sg) is a critical point of V. We

also have
2Vr  0%Vp
72 8%83
oV 0°Vrp

0xds 0s2

- (42 ),

(1320,8280)

—d+A(0)2

5 in order to

If we take G(z) = ca? for some constant c, then it is enough to choose ¢ >
ensure that the above matrix is positive-definite.

On the other hand, notice that the multipliers (g;;) corresponding to the controlled Lagrangian
L7 p.e are

B*(p— 1) cos’ (¥ — @)

Jgiu = a+ 5 + 28p cos(y —:n)7'+7(p+0)72,
gi2 = p(Beos(yp —x) +~7),
go2 = pvy-

If D= g11922 — 935 then D := g11G22 — 39 = p(D + 0(go27)?). As in the previous example, it is
enough to choose k,0 > 0 and p > 1 in order to ensure that (g;;) is positive-definite.

Summing up, the new energy function, which is

E; = 1(om‘c2 + 2B cos(z — 1)i(3 + 7i) + (5 + 7i)?) — d cos(x) — ygsin(th)s

T,0,p,€ 9

1 1 2

—1—507723'02 + i(p — 1)y (s + s cos(z — )T + T:b) + Ve(z, s),
Y

provides a Lyapunov function for the controlled system (31)-(32) if we make the appropriate choices

of V¢ and parameters k, o and p. More precisely we can choose for instance V, given in (37), k,o > 0

and p > 1. Then Er_, . is a Lyapunov function and therefore (30) is a stabilizing control.

5. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we have used the Helmholtz conditions, which are necessary and sufficient conditions
for a SODE to be equivalent to a system of Euler-Lagrange equations, in order to recover the
matching conditions given in [9]. Using the Helmholtz conditions we can also obtain new matching
conditions for a class of mechanical systems. This strategy may also be used in order to derive
matching conditions in other situations. For instance, in Example 4.2 we have shown by ad hoc
computations how to obtain a new stabilizing control for the inverted pendulum on a cart on an
incline. This suggests that analogous computations to the ones given in Appendix A may also be
carried out for L, ,. in order to obtain a new 7 solution and a more general PDE for V.. The
matching techniques have also been studied for discrete systems [8] and Euler-Poincaré systems [10],
but there are also Helmholtz conditions available in these settings [11, 3, 4], pointing to a possible
application of these Helmholtz conditions to the problem of stabilization of an equilibrium.
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APPENDIX A. MATCHING CONDITIONS M1-M3 FROM HELMHOLTZ CONDITIONS

Here we provide the detailed computations proving the statement at the end of Section 2, regarding
the vanishing of the implicit Helmholtz conditions (15)-(17).

We will need

O _ .
(38) 81'; = (g,b’c,’y + G~e,B + (gchg),’Y + (gcd'ﬂyj),ﬁ> 7 4 gcd,ﬂ9d7
8<I>a d v -~ Ab s
Gy = (.gl/a,’ya + (gadTy)ory)-r "+ Gab,yal 0 +gab,a6
(39) +(g'ya,a + gad,aT»Cyl + gad'rd,oé):i'7 5
0%, 3 ’
(40) 558 = (9Bt 9~ Gyaw)ET + (vas — 9oaw )0,
od . o » .
%;Z = g’yu,namnl' + Gya,pal 0 + Jyw,aT + g’ya,aea
1 . V| 0 0?V
(41) _59117777041'”1'17 - guaﬁamyea - igab,'yaeaab + 835“8357 )
and also the following expressions:
8FOZ g 74014 6FCV Yrav d d d d v
prolld %Wa = (Jay + Jaa™ + gratd + gratdvd + oparird) A7
_(gaa + gdaTg) (gaege'y + T;l) AT
= (ga'y - gaagaege'y + JadTng)Avy
(42) = 0%+ (gaa™ + 0qatiT A
OF, - OF, -
%-:WA/C + ?‘}vaac = (ga’y + gadT;l + gydTg + gdeng;l + O'deang) (_Awngnegec)
+(Jaa + gaa™s) (g“ + (g g+ 18 )A"”gueg“)
= <_ga7 - UadTng + gaagafgf'y)A’yngnegec + Jaag”™ + T§
(43) = To— (gadeg + UadTgT;l)A’mgnegec-

Equation (15) vanishes identically for all indices:

OF, Ok

(15)ab = 60b 86’“ = Gab — Gba = Oa
OF, OF,
(15)aﬁ - ax-g - ?0-5 = 98a T gadTg - (g,Ba + gdaTg) =0,
oF, OF,
(15)045 = axg - 8.%'5 = (goc,é’ + gaaTg + gﬁaTg + gangTﬁb + O—angTﬁb)

*(g,é’a + gﬂaTg + gaaTg + gangTcl; + O-angTg) =0.

Equation (16) vanishes identically for indices ab and af:
PE, , OF, 0°F, , 0F 0F,00, -,
- ] : j° = w— — — W
o6vog o T avagk? 900~ ddk g
25 - .
O°Fy 2 OF, (a(I)CW'yc+ aq)ﬁwwﬁ) _ OF, (a‘I)CWdc+ aq’ﬁwd,(s)

(16)ab =

009z 97\ 90° 06b 00% \ o6° 06°
C i — (G0 4 Gy 22 (G 8 4 G028
Gab,y ay ad 89” ay ad 89b
0P,
= Al — —— =0
Jabr T

?*F, , 0OF, 08°F, , 0F; O0F,090, -,
(16)as = 5i7ag:7 * 028 + 2200 900 ot 0
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= (98a + 9a7) 72" + (gya + 9ab72) 527 + Gab 56"

P, D, - E, (0% -
OF, (a W70+8WW>—8. (a e 4 92 Wd”>

017 \ 93P 0xP opd \ 03P 0xP
= (98a + 9a75) 72" + (ya + 9ab70) 527 + gab 56"
o O, L 0,
—(Coy W + CogW' ™) 55 — (Coy W + CoaW ™) —~ 55
0P,
= (gﬁa + gabTﬂ) 'yx + (g'ya + GabTy ) 0B
(38) 0.

For indices ab Equation (16) vanishes using M1 and M3 . Alternatively it vanishes if (gqs) is constant
and the system has one degree of underactuation:

aQFa k+aﬁa+ 82ﬁa ..k_ﬁﬁb_ﬁl}a(?(i)r = fer
ofvogt ! T 6" T agragr? T 9 T 9gF o6y
_ Pl g, OF OF (M%W . %W) _ 0k, (8% . %W)

(16)ap =

00b dz>  9x7 \ H9gb o6b a0\ 56b oY
_ (?2 E, o OF, [ OF, e 4 aﬁa irac a<;>c [ 0F, v az;a i aq>,,
90Oz Dz o0z a6 L ozl a9 o6Y

= (b + 9av7a) 227 = (99 + G5a7) 0" — God,ab”
— (76 = (Goam + 0aaTaT) AT Geg™) ges it
- (53 + (gadfj + aadfgfg)/ﬂ”) ((gub,'y — Gyp) BT — gdb,Véd> .
The 6 component becomes
(—gvd0 + (04 + (GaeTs + 0aeTaTE)AY™) gany) 0% = (gae + TaeTE)TEAY ga 0%
from which we can clearly see the solution M1 (but there are more). The & component becomes
(gab + gas7a) 73" — (gyb + GoaTy) .at” — (7'2 — (gaat + aadTSTﬁ)A’Yngnegﬂ Gebry 7
- (52 + (gaam + O’adTSTﬁl)AW) (Gubry = Gybo) 7
(44) = <9db (T . = T%) — GhdaT) + (Gad + 0adT)TIA (Gneg™Geby — by + gvbm)) 7,

from where assuming M1 we obtain M3 as a solution.

On the other hand notice that if (g,p) is constant, that is, SM2 holds, and the system has one
degree of underacuation then the equation vanishes identically without imposing M1 nor M3. It is
also enough to assume the simplified matching conditions SM2, SM4 and the matching condition
M3, without assuming M1.

For indices a8 Equation (16) vanishes using M1, M2 and M3:

0*Fo 4  OF.  OPFa ., 0Fs 0F, 09, -,

1 —
(16)as 0iP0¢ Y T 928 T 9abogF ! T oxe Dk 0aP

OF, ~ OFy ~ .\ 09 OF, OFy ~ .\ 09
_ _ QW,YC N 'awac c W o .Ol Wal/ v
< oY 96a ) b ( oY 9ha ) B

. 0F, OF
+(gap + gadTg’ + gﬁdTg + gdeTng + JedeTg)ﬁxV + o 78375

oD, oL
= (et + 00T A 009 ) 5 = (05 (goard + owanis) A™) o
. 0F, OF
+(Gap + JadT§ + 9paTa + 9aeTATE + TeaToT§) 427 + 87:15; - %g

(42)(43) (T;
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(T (gadT + Oadts ﬁ)AWgnegec) (gﬁc,v + Gyes + (9eatd) y + (geat? ),a) i
(T (9adT + GaaTaTy) A gye ) get 50"
~ (6 + (gaart + aadTgT;i)AW) (901 + G = G2.)8"
( + (gaat + oaariTd )A””) (9vs.8 — 9870
+(gaﬂ + gadTg + gﬁdTg + gdeTngz + JedTeTg) ’Y'j{y
+(ga7 + gad'rd + g’yde + GabT, aTb + Oab Ty ) /33} + (gaf + GefTa ) ﬁef
—(98y + 98474 + gyaTh + 9abTETE + 0 TETE) 8T — (985 + GesTS).ab” -
The 6 component becomes
(45) ((gadﬁi + 0adta ) AT (9ned Get5 = Gngp + 981a) + 9ot (Tap = Tha) = Ge f,aTE) 67,
which vanishes with the same assumptions as (44).
The & component becomes
— (r; - (gadTg + Jadrng)AWgnegec) (gﬁc,'y + Gre,8 + (gchg),a, + (gchg),ﬁ) &7

- (53 + (Gaard + UadTng)A’W) (GvBy + Guv,8 — GyB,0)ET
+(gap + gadrg + gngd + gdeTgTe + aedTerg)ﬁjﬂ

+(Gary + GaaT] + g’ydT + gD + 00y TaTh) 527

— (98, + g,ngv + gydTﬁ + gabTﬁT7 + UabTﬁTy)@x

= (gaa'rg) =+ gﬁaTa,»y + gadTgTaa,y =+ (aadTgTﬁd),’y + (gadT ) BT g’ydT B + gab 75
(004 5 — (9847 0 — (99478) 0 — (9abTETD) .0 — (0aaTHTY)
= a7y (Tap = Th.a) + 9pa(Tay = )+ 9ad75(7h 5 = THa) + raTa s~ 95daTy — GabaTHTY

where we have used again M1 and the symmetry of o,q. Now using M3 to cancel the first and last
terms we have

(980 + 9aa™§) (T 4 — T90) + GyaTe 5 — Gpd.aTs

M1,M3
= (gﬁa + gadTﬁ)(g Jfe, an) + Gyd Ty, ﬁ + (UdeTﬁ) OéTd
M1
= gﬁageagfe,a"_f + 7_[3.gfd,o/7—f - UdeTeTa B + Ude,oﬂ_g'r + UdeTg,aT;l
M1

_UahTﬁg gfe an + Tﬁgfd an + 0de aTﬁT + 0qeT d(TIB a7 ,ﬂ)

M3 /

—UahTﬁgeagfe,an{ - JdeT»yg eghf,aTB + (gde,a + O—de,oz)'r»y'réi .

Summing up, for the £ component, using M1 and M3 we get
(46) (9de,a + Ude,a)T:yiTE - Uathgeagfe,aT'{ - Udengfeghf,aTg :
If we use M2, (46) becomes

1 1
(gde,a + O’de@)Tng - O'athgaea(o'de,a + gde,a)T»sl - O'derio'f (Uhf,a + ghf,a)Tg

1 1
i(adh,a + gdh,a)Tfng 2(

That is using all of M1, M2 and M3 we get that the Helmholtz condition (16),3 vanishes.

= (Ydesa + Odea) 775 — Ohda + Ghd,a)THTS = 0.

Equation (17) vanishes identically for indices ab and ab:

o*F, , 0°F, , O0F, 0%, -,  0*F, , 0°F, , OF,0%,

1 = _ _ _ -0 Tkr —

(17)as a0tag ! T agragk! ~ gk g a0eag !~ aoeagd T ag gV TV
0%F, . 0%F, ., OF, 0%, - 0%F, 0%F, .. OF, 09, -

(17)ap b qu+ b -qu_ & b b P bqu_ P b-quJri‘/f P b
00°0q 00°0q aq~ 00 0x*0q 0x*0q oq¢~ Ox
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02007 ~ dzoogk! T gk \ oo 9z
*F, ., K . » o 0, vd o) 004
T oot T axaaqkq + (CIWW + Coc ) Ox® (CIWW + oW ) Ox®

82Fb .~y 82Fb sy 8QFb he 8i’b
— 7 — Y — :
Ox*0x" 0x*0iY orHoe or®

o,
= _(gub + GbeTy ) oz’yx 7 — Y9be oa’yaj 0 - (g'yb + GbeTy ) — Gbe, 0496 81‘a

SO

For indices af Equation (17) vanishes using M1, M2 and M3 or alternatively for systems with one
degree of underactuation, since it is symmetric in « and 5:

*Fy ., PPy 4  PFg . y%,k

17 = _
(17)as 02007 T aPogE T 0zeda”  dwedqk
_aFa 8@7- Wk,r + aﬁﬂ 8(§T
gk 0xP gk Oz
M1 a ‘b = Uy
= (gab + gabTa),ﬂﬁ’e x (gau + gocaT + guaT + GabT, Tu + OabTy ) Byl T
+(gozb + gang),ﬁeb + (ga7 + goza'r»y + gva'ra + Gab T, T + 0T, ) ﬁx’y
_(gﬁb + gabT,;jl),cv’yébi:7 - (gﬁu + g,BaTg + guaTg + gabTﬁTy + 0(1177_57_,/),om/i/‘yi'7
_(gﬁb + gang),aéb - (gﬁ'y + gBaTg + g'yaTg + gangTS + UangTS),aj’y
o0, 0D, 0Dz 0D,
T 008 9B + Ox® s Ox®
(39),(41)

= (Gab + gang),mébiﬂ + (Gav + JoaTy + GuaTs + gabrgrf,’ + aangTfj)ﬁva‘;”jﬂ
+(gab + gang)ﬁéb + (gory + gaaﬂ? + graThy + gangT}; + O'angT,l;),ﬁi'Y
~ (986 + 9ab75).00°8" — (950 + ggaTy, + GuaTh + gawgv” + OwTET,) andE7
—(986 + 9ab78) 0 6b — (987 + 984Ty + GraTh + gabTﬁT + oawbThT, ) oY
~(Gownpd"3” + aavsE 0" + gar,5E” + gaa,50°)
+(98vnat"E” + gapat” 0" + Gpy.ai” + gpand®)
—7&(Guens + (gch ) 53) " EY = T Geh 370"
Gres + Gen 8T8 + gavTh 5) 37 — T gen p0°

—7o(
+Tc(g oo + (gch ) OA’Y):C 7+ ngcb,vai’yéb
(

o
+75(Geia + GebaTo + GebTh.0)EY + T5gebal” -
The 6 component becomes
(gab + 9e75),50° — (986 + 9e75).00” — Gab,50° + gab,00" — T590,80° + T5geb0l” = gen(T55 — T5.0)0" .
The # component becomes
(9ary + GaaTy + GyaTo + GabT, aTb + ot b) BET — (9py + 9gaTy + GraTh + gam'grb + aabTETS)ux
~Gary,5E7 + gﬁ'y odY =T, (gvcﬁ + gcb AT+ 9™ 3)E 4 T5(gveia + GebaT) + gebTh )3
= Gaa ST + JaaTo 5 + GraTa s + JaToTa 5 + (0abTa™o)
—9BaaTS — 9BaTrq gvaTﬁ o — 97T o — (O T§T))a
= (9aaT$)8 + 91aTh 5 + GabTyTe 5 + (OabTaT) 3 — (9870 — G1aTha — JabToTh 0 — (TabTET))a
MU (e + g (7 5 — 7527
The 6 component becomes

(gab + .gab'rg),/379'1):&7 - (gﬁb + gabTE),a'yébiﬁ - gab,'yﬁiﬁéb
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+98b7ad70" — TS Gob ypi 0P + TEGeh 1o i 6"
= (9ab78) 570" — (9a75),0r 0" — ToGeb 727" + T5Geb i 6"

= (gca,y(Tgﬁ —T5.a) T (GeaTa ) .5 — (gcaTgm)’a) 9%37

M3 (a -
— gca’fy(’ré’ﬁ — Téya)ealﬂ/ 5

where in the last equality we have used M3 in the following way:

M3
= _(gca'r»iﬁ + gcaQCdged,BTs),a + (gcaTs,a + gcaQCdged,Osz),/ﬁ

= _(gca,aTs,,B + gcaT»;,Ba + gea,ﬁoﬂ_s + gea,ﬂTs,a)
+gca,57—$,a + gcaT§7a5 + gea,a,BTr)e/ + gea,oﬂ—sﬂ =0.

- (gcaTE;y )a+ (gCllTocc,’y),,B

Finally the & component becomes
(G + GoaTs + GuaTs + GabTaTe + TabTaTS) gy 37
— (980 + 9BaTE + GuaT§ + GabTITL + T THTL) an @’ E7
~JavyBE T + gau 0@ — TG (Gueys + (gchS),Bv)fbyiv + 75(Gveya + (gchzlj),ow)jvyﬂt'AY
= (9ab70) 5Te 4+ (GabTD) AT 5 + JabToTa gy + (JaaTe) By + GvafTary + GranTos
+gl/0«7—g,5'y + (UangTzlj),ﬂ’y - (gabe),aTE,y - (gabTS),'YTg,a - gabTBTg,a'y - <gﬁa73),a7
~Gva,aThy — GranTha — GvaThay — (CabTHTL) ary
= GabTOTE 3y — JabToTh o + Gva8Ter + GranTe 3 + GuaTa gy — GraaThy — GvanThe — GraThary
"‘(gang),ﬁTg,w + (Qaszl/)),'yTg,ﬁ - (gaszlx)),aqu - (Qang),'yTg,a
= (gwm + (QabTﬁ)n)(Tg,ﬁ - Tg,a)
FabToTE gy — GabToTh oy + Gva, 8Ty + GvaTa gy — GvaaThy — GvaTh.ary
+(gab75),/5'7§,'y - (gabe),aT§,7 )
and adding all of the components we get
(1Tap = 975 = 750" + (gve + 9T (75 5 — T5.0)E7 + Gea (TS 5 — 76.0)0%07
H(Gvary + (967)2) (765 = 75,0)3" 8
H(GgabTOTE 5y = GabToTS 0y + GraBTem + GraTe gy — GuaaThny — GraThon
H(9abT0) BT — (JabTD).aTh )3 37
= (55— Tha) T (9abTT8 5y — JabTyTh oy + Gua,8Tany + GvaTa gy = GvaaThey — JaTh.ar
—I-(gazﬂ'll,’),m'i7 - (gang)’aTgﬁ)i'yiﬁ =: i)c(rgﬁ — Tho) + RE"E7.
Next we will show that the term Rz"” vanishes using M1, M2 and M3. First we compute some
expressions that we will need. We will consistently omit writing the term ¥z but will take it into

account and cancel any symmetric terms in v and 7. From M2 we get 04,38 = —gab, 8 + QJbegedgm 8
and therefore

(47) (gab - Uab),B = 2gab,ﬁ - 20beged9ad,ﬂ .
Using g% = —g“ g™ gep o we get
(9" 9eaats) s = (9°9ca.675) 0 = 9" (9ed.asTs + GedaTs g — edpaTy ~ Ged 575 .0)

+9% Ged,aTS — 9 Gea pTS
= 9"(Ged,a™ 5 — 9ed 575 0) — 979" Gen gk 0T
+gea9dhgeh,agkd,57—»]y€ ;
and therefore we have

(gab - O'ab)TB ((gdaged,oﬂ_s),ﬂ - (gdaged,ﬂTs),oJ

= (gab — Oa)To (gda(ged,aT < 5= ed 75 0) — 979" gen IkdaTE + 99" Geh aGra,5TL )
= 709" (GeaaTS 5 — Ged,5T5.0) — 979 9" Gen pIka.aTy + a7 9" Geh aGra,5TS
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— 0T (9" (Jed,aTS 5 — Ged 575 0) — 9“9 Gen,89ka.a™ + 99" GenaGra sy )

= THGeaaTS g — GeasTs0) — 759" Gen,8kdaTh + Teg Geh aGrd 5T
—0a T (9™ (Jed,a™$ 5 — ged,mi,a) 99" genpgraat + 99" gen,aGra sy )
= (ged aT. ﬁ ged,ﬁTe,a) — OabT, g ged aT. 5 + OabT, g ged,,BT'y,a

+0oabT, bgeagdhg h,B9kd, aTk OabT, bgeagdhgeh aJkd ﬁT

M2 1 1

= 1(edaTS 5~ 9ed 5T50) — QaabTﬁada(aedva + Ged.a) Ty + anngada(%d,ﬁ + Ged,3) Ty.a
1
40'ab7'£0'ea(aeh,ﬁ + 9en) 0" (Ohda + Gra,a)TH
1
4O-ab7- o° (Ueh,a + geh,a)adh(akd,ﬁ + gkd,,@)T’I;

_ d e 1 d e 1 d e

= Ty (ged aT 5 ged,ﬂTy,Q) - 57—1/ (Ued,a + ged,a)T%,B + 57—1/ (Ued,ﬁ + ged,B)Ty,a
1 1

+Z7'5(0'eh,ﬁ + 9en8) 0™ (Orda + Graa)Th — 17-5(0'eh,a + Gena) 0™ (Okap + Grap) Ty
1 1
(48) = Tzfl(ged,aTs,B - ged,BTs,a) - 57'3(‘76(1,04 + ged,a)Ts,B + iTle(Ued,B + ged,B)Ts,a

We will also use

~200e9° Gad, 509" Gh,a T + 20469 Gad,aTEG" Gt 5T

M2 1
= _§Ube0'ed(0'ad,ﬂ + 9ad,8)To0" (Tkha + Grna)TH

1 k

+§Ube0'ed(0ad,a + Gada) 700" (Okn,g + Gkn,p)Th

1 1
(49) = —5(oabs + 9ab8) 70" (Oko + Ghha) Ty + 5(0aba + 9ab,a) 70" (Oknp + ghnp)Th = 0.

Now we will finally check that R vanishes using M1, M2 and M3. Recall that in the computation
below we omit the term #¥z7:

M1

R = ((galelj + gya)qu),ﬁ - ((gaszl/) + gl/a)Tg,’y),a = ((gab - Jab) ll/) Ta 'y) B ((gab - Uab)TSqu),a

a

= (900 — 0ab)To (T80 + 9 GedaT9)) 5 — ((9ab — 0ar)TH (TS 5 + 9% 9ea,675))

= (9ab — 0ab) BT, (T'y,oé +g° “Ged,aTy) + (gab — Uab)Ty,g( ya T 9" gea, aTy)

+(gab — 0ab) T (TS0 + 97 Ged.a75) .8 — (Gab — Oab) aTo (T 5 + 97 Gea,575)

—(9ab — Ta) o0 (T8 5 + 9% GeapTS) = (gab — 0ab) (TS 5 + 97 Gea 575

(gab — Tab) T (TS o + 9% Geaa™) + (9ab — 0ab) T 59" Ged,a™S) + (gab — 0ab) o (9 Ged,aTS) 3
—(9ab — Tab) aTo(T4 5 + gdaged,ﬂTry) (gab — 0ab) 70 (97 9ea,575) = (gab — Tab) 7o (9™ Gea,p75)

(L) 29ap 5Tb @ = 20069 Gad pTTE o + 29ab BT, Qdaged,a7$ — 20peg” gad,Bngdaged,aTs
—29ab,aToTS g + 20beg JadaToT 3 = 20ab.aTo9 " Gea, 575 + 20069 Gad.aTo 9™ Gea, 675
78 5GedaTS — OabT 59" Ged,aTS — To0Ged TS + OabT 09" Gea p75
G s~ 00 5T ) — 57 G+ Gea )T+ 5T G + Gt )7
= 2040 Gaa sTETE o + 2Gab BT gdaged,aT§ — 200e9“ Gaa BT f,’gdaged,aTS
+200e9° Gad a0 5 — 20ab.aTo 9™ Ged 575 + 20569 Gad,aT, fgdaged,ﬂT :
—0aT) 59" GedaTS + Oab T 0 9™ Ged 675 — 5T HOeda + ed,a)T5 5 + 57y TH(0eas + Ged,8)T5 0
= 2000 Gad 5TT 0 — 206e9 9ad 79" Ged.aTS + 20069 Jad,aT, 5 + 20060 Gad,a 709" Gea pTE
—0a T} 59" Geda TS + Tab T 0 9™ Ged pTS — ;Ty (Tedo + ged,a)T§,5 + QTV HOedp + 9ed,8)T5 q
(49)

= 2040 9aa s o + 20069 Gad.a T 5 — OabTo5(97 Ged,aTS) + OabTo 0 (97 Ged 675)
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1

1
_iTg(Ued,a + ged,a)Tye”B + 57'5(0@1,[3 + ged,ﬁ)Tf\eha

M2 d b d b
= —0peT” (Uad,,B + gad,ﬂ)TyTia + 0peo” (Uad,a + gad,a)TyT;L,ﬁ

1

1
—iaaleI:ﬁO’da(Ued,a + ged,a)Ts + ioabﬂiaa’da(ded’g + ged,g)Ts

1

1
—573 (Ted,a + Ged,0) TS5 5 + 575 (0ed,8 + Ged,8)T5 0

1 1
= _<Uab,ﬁ + gab,B)TBT»CyL,a + (Uab,a + gab,oz>7_57_$75 - 5 575(Ueb,o< + geb,a)Ts + 57—1[/)704(0—61),6 + geb,ﬁ)'rs

1 1
—575 (Cedor + Ged,a)T5 8 + 573 (Ced,p + ged,8)Ty.a = 0.
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