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Abstract—This paper reports on a novel formulation and eval-
uation of visual odometry from RGB-D images. Assuming a static
scene, the developed theoretical framework generalizes the widely
used direct energy formulation (photometric error minimization)
technique for obtaining a rigid body transformation that aligns
two overlapping RGB-D images to a continuous formulation. The
continuity is achieved through functional treatment of the prob-
lem and representing the process models over RGB-D images in a
reproducing kernel Hilbert space; consequently, the registration
is not limited to the specific image resolution and the framework
is fully analytical with a closed-form derivation of the gradient.
We solve the problem by maximizing the inner product between
two functions defined over RGB-D images, while the continuous
action of the rigid body motion Lie group is captured through
the integration of the flow in the corresponding Lie algebra.
Energy-based approaches have been extremely successful and the
developed framework in this paper shares many of their desired
properties such as the parallel structure on both CPUs and GPUs,
sparsity, semi-dense tracking, avoiding explicit data association
which is computationally expensive, and possible extensions to
the simultaneous localization and mapping frameworks. The
evaluations on experimental data and comparison with the
equivalent energy-based formulation of the problem confirm the
effectiveness of the proposed technique, especially, when the lack
of structure and texture in the environment is evident.

I. INTRODUCTION

Sensor registration is a fundamental task in robotic per-
ception. Modern algorithms for sensor registration rely on
optimization techniques to solve often nonlinear and large-
scale problems [9, 23]. In particular, estimating the rigid body
transformation of a moving sensor such as a camera (or in
combination with other sensors) is of major importance in
robotics and computer vision [8, 12, 15, 17, 30]. Cameras
in both monocular and depth versions are rich sources of
information acquisition and are well-suited for varieties of
real-world applications of autonomous systems that usually
involves solving the Simultaneous Localization and Mapping
(SLAM) problem [10, 13, 21].

A key strength of the successful state-of-the-art visual
perception algorithms is the ability to track the camera pose
accurately with the lowest possible drift. Then, visual place-
recognition algorithms such as the work of Gálvez-López and
Tardos [16] are used to remove the drift by providing place-
revisiting measurements known as loop-closures. Direct vi-
sual odometry methods minimize the photometric error using
the photometric measurements, i.e., image intensity values,
provided by the camera. As opposed to indirect methods,

Fig. 1: The registration of frames 1 and 2 of fr1/desk sequence from RGB-D
SLAM dataset and benchmark [31] using the proposed continuous sensor
registration framework. In the right, the figure shows the sparsity pattern of the
corresponding kernel matrix of the inner product structure. The computation
of this sparse matrix can be done entirely in parallel. Geometrically, the matrix
shows the correlation of each measurement in frame 2 after applying the final
rigid body transformation with other measurements in frame 1.

the information contained in an image is not abstracted into
a set of sparse keypoints or features, e.g., corners; hence,
direct methods can achieve superior performance in tracking
and dense or semi-dense mappings, given a well-calibrated
camera [3, 12, 22]. In addition, direct visual odometry front-
end systems also possess a sparse Hessian structure which
is very similar to the general SLAM structure, leading to
real-time performance. In contrast, indirect methods model
the geometric error and are much more robust to geometric
noise such as a poor intrinsic camera calibration or a rolling
shutter [13].

In this paper, inspired by the fact that (colored) point cloud
measurements constitute discrete sensing information from the
continuous motion of the camera and the idea of avoiding
costly data association between measurements, we formulate
the registration problem in a continuous form that directly op-
erates on a mapping from 3D space to an abstract information
space such as intensity surface. The explicit representation
between color information and 2D/3D geometry (image or
Euclidean space coordinates) is not directly available; hence,
the current direct methods use numerical differentiation for
computing the gradient and are limited to fixed image size
and resolution, given the camera model and measurements
for re-projection of the 3D points. As illustrated in Fig. 1,
we show that the proposed continuous representation can be



sparse or sparsified which means, geometrically speaking, the
local correlation is sufficiently rich to capture the information
available in data. This work has the following contributions:

1) We develop a fundamentally novel formulation of the
sensor registration problem that is continuous and models
the action of an arbitrary Lie group on any smooth
manifold. Our solution uses the integration of the flow
in the Lie algebra by maximizing the inner product
between two functions defined over the fixed and moving
measurements sets. The continuity is achieved through
functional treatment of the problem and representing the
functions in a reproducing kernel Hilbert space.

2) We apply the developed framework to the particular, and
commonly used, case of RGB-D images (depth camera)
and SE(n) matrix Lie group. As a result, the registration
is not limited to the specific image resolution.

3) As opposed to the current direct energy formulation,
which involves computation of the numerical image inten-
sity gradient to be used in conjunction with the analytical
Jacobian of the pose via the chain rule, our framework is
fully analytical and the gradient has a complete closed-
form derivation.

4) We evaluate the proposed algorithm using publicly avail-
able RGB-D benchmark in Sturm et al. [31] and provide
the open-source implementation available at:
https://github.com/MaaniGhaffari/cvo-rgbd

The remainder of this paper is organized as follows. In
§II, the required mathematical preliminaries and notation are
briefly explained. The main theoretical result for the general
problem formulation on any smooth manifold and any Lie
group acting on it is given in §III. The specialized form of
the problem formulation for the special Euclidean group is
derived in §IV. A brief theoretical analysis for the verification
of the idea is provided in §V. The integration of the flow for
SE(n) and for the special case of 3D space, SE(3), to obtain
the solution is explained in §VI. Experimental evaluations of
the proposed method for registration and tracking using RGB-
D images are presented in §VII. Finally, §VIII concludes the
paper and provides suggestions as future work.

II. MATHEMATICAL PRELIMINARIES AND NOTATION

We first review some mathematical preliminaries to establish
the notation and give the paper better flow before stating the
main results.

A. Matrix Lie Group of Motion in Rn

The general linear group of degree n, denoted GLn(R), is
the set of all n × n real invertible matrices, where the group
binary operation is the ordinary matrix multiplication. The n-
dimensional special orthogonal group, denoted

SO(n) = {R ∈ GLn(R)| RRT = In,detR = +1},

is the rotation group on Rn. The n-dimensional special Eu-
clidean group, denoted

SE(n) = {h =

[
R T
0 1

]
∈ GLn+1(R)| R ∈ SO(n), p ∈ Rn},

is the group of rigid transformations, i.e., direct isometries,
on Rn. A transformation such as h ∈ SE(3) is the parameter
space in many sensor registration problems which consists of
a rotation and a translation components. Let h̄ ∈ SE(3) be
an estimate of h. We compute the rotational and translational
distances using ‖log(R̄RT)‖F and ‖T̄ − R̄RTT‖, respectively,
where log(·) is the Lie logarithm map which is, here, the
matrix logarithm. These definitions are consistent with the
transformation distance that can be directly computed using
‖log(h̄h−1)‖F. Here, ‖A‖2F = Tr(ATA) is the Frobenius
norm.

This paper studies not only matrix Lie groups, but also their
actions on manifolds. We have the following definition:

Definition 1. Let G be a group and X a set. A (left)
group action of G on X , denoted as G y X , is a group
homomorphism G → Aut(X) (automorphism of X). If X
is a smooth manifold, the action is smooth if G → Diff(X)
(diffeomorphism of X).

Remark 1. A group action can similarly be viewed as a
function ϕ : G × X → X satisfying two conditions (where
ϕ(g, x) will be denoted by g.x)

1) Identity: If e ∈ G is the identity element, then e.x = x
for all x ∈ X .

2) Compatibility: (gh).x = g.(h.x) for all g, h ∈ G and
x ∈ X .

Remark 2. This paper will be primarily focused on the
standard action of SE(n) on Rn given by (R, T ).x = Rx+T
for R ∈ SO(n) and T ∈ Rn.

B. Hilbert Space

Let V be a vector space over the field of real numbers R.
An inner product on V is a function 〈·, ·〉 : V × V → R that is
bilinear, symmetric, and positive definite. The pair (V, 〈·, ·〉)
is called an inner product space. The inner product induces
a norm that measures the magnitude or length of a vector:
‖v‖ =

√
〈v, v〉. The norm in turn induces a metric that allows

for calculating the distance between two vectors: d(v, w) =
‖v−w‖ =

√
〈v − w, v − w〉. Such a metric is homogeneous;

for a ∈ R, d(av, aw) = |a|d(v, w), and translational invariant;
d(v + x,w + x) = d(v, w). These properties are inherited
from the induced norm. The distance metric is positive definite,
symmetric, and satisfies the triangle inequality. In addition to
measuring distances, it is important to be able to understand
limits. This leads to the definition of a Cauchy sequence and
completeness.

Definition 2 (Cauchy Sequence). A Cauchy sequence is a
sequence {xi}∞i=1 such that for any real number ε > 0 there
exists a natural number n̄ ∈ N such that for some distance
metric d(xn, xm) < ε for all n,m > n̄.

Definition 3 (Completeness). A metric space (M,d) is com-
plete if every Cauchy sequence in M converges in M , i.e., to
a limit that is in M .

https://github.com/MaaniGhaffari/cvo-rgbd
https://github.com/MaaniGhaffari/cvo-rgbd


Such a metric space contains all its limit points. Note that
completeness is with respect to the metric d and not the
topology of the space. Now, we can give a definition for a
Hilbert space.

Definition 4 (Hilbert Space). A Hilbert space, H, is a com-
plete inner product space; that is any Cauchy sequence, using
the metric induced by the inner product, converges to an
element in H.

The reviewed definitions and properties are also valid for
a vector space of functions. Let (H, 〈·, ·〉H) be a real Hilbert
space of functions with the inner product between any two
square-integrable functions f, g ∈ H (or f, g ∈ L2(R, µ))
defined as:

〈f, g〉H :=

∫
f(x)g(x)dµ(x), (1)

where µ is the Lebesgue measure on R. Similarly, the induced
norm by the inner product is ‖f‖H =

√
〈f, f〉H. The Hilbert

space of functions can be thought of as an infinite-dimensional
counterpart of the finite-dimensional vector spaces discussed
earlier.

C. Representation and Reproducing Kernel Hilbert Space

We now move to a more special type called Reproducing
Kernel Hilbert Space (RKHS) which we will use in this work.

Definition 5 (Kernel). Let x, x′ ∈ X be a pair of inputs for
a function k : X × X → R known as the kernel. A kernel is
symmetric if k(x, x′) = k(x′, x), and is positive definite if for
any nonzero f ∈ H (or L2(X , µ)):∫

k(x, x′)f(x)f(x′)dµ(x)dµ(x′) > 0.

Definition 6 (Reproducing Kernel Hilbert Space [4]). Let H
be a real-valued Hilbert space on a non-empty set X . A
function k : X × X → R is a reproducing kernel of the
Hilbert space H iff:

1) ∀x ∈ X , k(·, x) ∈ H,
2) ∀x ∈ X , ∀f ∈ H 〈f, k(·, x)〉 = f(x).

The Hilbert space H (RKHS) which possesses a reproducing
kernel k is called a Reproducing Kernel Hilbert Space or a
proper Hilbert space.

The second property is called the reproducing property;
that is using the inner product of f with k(·, x), the value
of function f is reproduced at point x. Also, using both
conditions we have: ∀x, z ∈ X , k(x, z) = 〈k(·, x), k(·, z)〉.

Lemma 1. Any reproducing kernel is a positive definite
function [4].

Finding a reproducing kernel of an RKHS might seem
difficult, but fortunately, there is a one-to-one relation between
a reproducing kernel and its associated RKHS, and such a
reproducing kernel is unique. Therefore, our problem reduces
to finding an appropriate kernel.

Theorem 2 (Moore-Aronszajn Theorem [4]). Let k be a
positive definite function on X × X . There exists only one

Hilbert space H of functions on X with k as reproducing
kernel. The subspace H0 of H spanned by the function
k(·, x), x ∈ X is dense 1 in H and H is the set of functions
on X which are point-wise limits of Cauchy sequence in H0

with the inner product

〈f, g〉H0
=

n∑
i=1

m∑
j=1

αiβjk(zj , xi), (2)

where f =
∑n
i=1 αik(·, xi) and g =

∑m
j=1 βjk(·, zj).

The important property while working in an RKHS is that
the convergence in norm implies point-wise convergence; the
converse need not be true. In other words, if two functions
in an RKHS are close in the norm sense, they are also
close point-wise. We will rely on this property to solve the
problem discussed in this paper. In Theorem 2, f and g are
defined only in H0. The following theorem known as the
representer theorem ensures that the solution of minimizing
the regularized risk functional admits such a representation.

Theorem 3 (Nonparametric Representer Theorem [28]). Let
X be a nonempty set and H be an RKHS with reproducing
kernel k on X × X . Suppose we are given a training sample
(x1, y1), . . . , (xm, ym) ∈ X × R, a strictly monotonically
increasing real-valued function h on [0,∞), an arbitrary cost
function c : (X ×R2)m → R∪{∞}, and a class of functions 2

F = {f ∈ RX |f(·) =
∑∞
i=1 βik(·, zi), βi ∈ R, zi ∈ X , ‖f‖Hk

<∞}.

Then any f ∈ F minimizing the regularized risk functional

c((x1, y1, f(x1)), . . . , (xm, ym, f(xm))) + h(‖f‖Hk
)

admits a representation of the form

f(·) =

m∑
i=1

αik(·, xi). (3)

III. PROBLEM SETUP

Let M be a smooth manifold and consider two (finite)
collections of points, X = {xi}, Z = {zj} ⊂ M . Also,
suppose we have a (Lie) group, G, acting on M . We want to
determine which element h ∈ G aligns the two point clouds X
and hZ = {hzj} the “best.” To assist with this, we will assume
that each point contains information described by a point in an
inner product space, (I, 〈·, ·〉I). To this end, we will introduce
two labeling functions, `X : X → I and `Z : Z → I.

In order to measure their alignment, we will be turning the
clouds, X and Z, into functions fX , fZ : M → I that live in
some reproducing kernel Hilbert space, (H, 〈·, ·〉H).

Remark 3. The action, G y M induces an action G y
C∞(M) by

h.f(x) := f(h−1x).

Inspired by this observation, we will set h.fZ := fh−1Z .

1A dense subset of M implies the closure of the subset X equals M .
2RX is the space of functions mapping X to R.



Problem 1. The problem of aligning the point clouds can
now be rephrased as maximizing the scalar products of fX
and h.fZ . i.e. We want to solve

arg max
h∈G

F (h), F (h) := 〈fX , h.fZ〉H. (4)

A. Constructing the functions

We first choose a symmetric function k : M × M → R
to be the kernel of our RKHS, H. This allows us to turn the
point clouds to functions via

fX(·) :=
∑
xi∈X

`X(xi)k(·, xi),

fZ(·) :=
∑
zj∈Z

`Z(zj)k(·, zj).
(5)

We can now define the inner product of fX and fZ by

〈fX , fZ〉H :=
∑
xi∈X
zj∈Z

〈`X(xi), `Z(zj)〉I · k(xi, zj). (6)

Remark 4. We note two advantages of measuring the align-
ment of X and Z by (6). The first is that we do not need
identification of which point of X should be paired with what
point of Z. The second is that the number of points in X does
not even need to be equal to the number of points in Z!

B. Building the Gradient Flow

In order to (at least locally) solve (4), we will construct a
gradient flow: ḣ = ∇F (h). Before we can do this, we will
first determine the differential, dF . In order to do this, we
will need the notion of an infinitesimal generator for a group
action (see chapter 4 of [5]).

Definition 7. Suppose that a Lie Group G acts diffeomorphi-
cally on a smooth manifold M via ϕ; that is

ϕ : G → Diff(M)

g 7→ ϕg.
(7)

For a given ξ ∈ g = Lie(G), we denote the vector field ξM
(called the infinitesimal generator) on M given by the rule:

dfx(ξM ) :=
d

dt

∣∣∣∣
t=0

f(ϕexp(tξ)(x)), f ∈ C∞(M). (8)

This lets us compute the differential, dF .

Remark 5. To make notation more concise for the remainder
of this paper, we will denote cij := 〈`X(xi), `Z(zj)〉I .

Theorem 4. Suppose that F (h) = 〈fX , h.fZ〉H as described
above. Then

dFe(ξ) =
∑
xi∈X
zj∈Z

cij · d
(
k̃xi

)
zj

(−ξM (zj)) , (9)

where k̃xi = k(xi, ·).

Remark 6. The notation for the differential of a function used
throughout this paper is dfx(v), where x ∈M and v ∈ TxM :

dfx(v) =
d

dt

∣∣∣∣
t=0

f(c(t)), c(0) = x, c′(0) = v. (10)

Proof. This follows from a straight-forward application of the
chain rule.

dFe(ξ) =
d

dt

∣∣∣∣
t=0

〈fX , exp(tξ).fZ〉H

=
∑

cij ·
d

dt

∣∣∣∣
t=0

k (xi, exp(−tξ)zj)

=
∑

cij · d
(
k̃xi

)
zj
· d
dt

∣∣∣∣
t=0

exp(−tξ)zj

=
∑
xi∈X
zj∈Z

cij · d
(
k̃xi

)
zj

(−ξM (zj)) .

(11)

Which matches equation (9).

Of course, to construct the gradient flow we are interested
in computing dFh instead of just dFe. We will accomplish this
via left-translation. Left-translation is given by the smooth map
`h : G → G where x 7→ hx. Its differential gives rise to an
isomorphism of tangent spaces, (`h)∗ : g

∼−→ ThG.

Corollary 5. Under the identification ThG ∼= (`h)∗g, we have

dFh ((`h)∗ξ) =

=
∑
xi∈X
zj∈Z

cij · d
(
k̃xi

)
h−1zj

(
−ξM (h−1zj)

)
, (12)

where cij = 〈`X(xi), `Z(zj)〉I .

In order to turn the co-vector dFh ∈ T ∗hG into a vector
∇Fh ∈ ThG, we will use a left-invariant metric. This can be
accomplished by defining an inner-product, 〈·, ·〉g on g and
lifting to a (Riemannian) metric on G via left-translation, i.e.

〈(`h)∗η, (`h)∗ξ〉ThG := 〈η, ξ〉g.

This allows us to define the gradient of F as

〈∇Fh, (`h)∗ξ〉ThG = dFh ((`h)∗ξ) . (13)

This allows for a way to obtain a (local) solution to (4) by
following

ḣ = ∇F (h). (14)

IV. SPECIAL EUCLIDEAN GROUP

We will specialize the above treatment for the case where
G = SE(n), the special Euclidean group in n dimensions. We
will likewise let M = Rn on which SE(n) acts in the usual
way: let (R, T ) ∈ SE(n) where R ∈ SO(n) and T ∈ Rn,

(R, T ).x = Rx+ T, x ∈ Rn.

We will also choose the squared exponential kernel for k :
Rn × Rn → R:

k(x, y) = σ2 exp

(
−‖x− y‖2n

2`2

)
, (15)



for some fixed real parameters σ and `, and ‖·‖n is the standard
Euclidean norm on Rn. In order to determine the gradient flow
(14), we need to compute the infinitesimal generators of the
action SE(n) y Rn as well as decide on a left-invariant metric
for se(n) = Lie(SE(n)).

A. Infinitesimal Generator

For a fixed ξ ∈ se(n), it has the form ξ = (ω, v) where ω ∈
so(n) and v ∈ Rn. Because the infinitesimal generator map
g→ X(M) is a Lie algebra homomorphism (where X(M) is
the space of all vector fields over M , see §27 of [32]), we see
that ξM = ωM +vM . A straight forward computation leads to

ξRnx = ω̂x+ v, ω̂ ∈ Skew(n), v ∈ Rn. (16)

B. Metric

We need to choose a metric on se(n) to turn dFh into ∇Fh.
For this example, we will take a multiple of the Killing form
on so(n) and the Euclidean norm on Rn. That is,

〈(ω, v), (η, u)〉se(n) = b2 · 〈v, u〉n − a2
(
n− 2

2

)
· Tr(ωη),

(17)
where 〈·, ·〉n is the standard Euclidean inner product on Rn
(see [25] for a discussion in three dimensions), as well as a
and b are tuning parameters. The reason for the (2 − n)/2
term is because with this normalization (with a = 1) the skew
matrices Eij − Eji are orthonormal. Here Eij denotes the
matrix with only zeros except for a 1 in the (i, j)-coordinate.

C. Calculating the Gradient

Before we find the gradient, let us first determine its
differential (at the identity for simplicity).

dFe(ξ) =
∑
xi∈X
zj∈Z

cij · d
(
k̃xi

)
zj

(−ξM (zj))

=
∑
xi∈X
zj∈Z

cij ·
1

`2
k(xi, zj) · 〈(zj − xi), (−ω̂zj − v)〉n.

(18)
To turn dFe into ∇Fe, we will compute ∇ωFe and ∇vFe
separately:

−a2
(
n− 2

2

)
· Tr [(∇ωFe)ω̂] =∑

xi∈X
zj∈Z

cij ·
1

`2
k(xi, zj) · 〈(zj − xi), (−ω̂zj)〉n,

b2〈(∇vFe), v〉n =∑
xi∈X
zj∈Z

cij ·
1

`2
k(xi, zj) · 〈(zj − xi), (−v)〉n.

(19)

To solve for this in coordinates, we will let {em}nm=1 be the
standard orthonormal basis for (Rn, 〈·, ·〉n) and {Jpq}p<q :=

{Epq − Eqp}p<q be as above. Then, the gradient becomes:

(∇ωFe)pq =
1

a2`2

∑
xi∈X
zj∈Z

cij · k(xi, zj) · 〈(zj − xi), (−Jpqzj)〉n,

(∇vFe)m =
1

b2`2

∑
xi∈X
zj∈Z

cij · k(xi, zj) · 〈(zj − xi), (−em)〉n.

(20)
The above can be simplified by computing the inner product
on the right hand side:

(∇ωFe)pq =
1

a2`2

∑
xi∈X
zj∈Z

cij · k(xi, zj) ·
(
xpi z

q
j − x

q
i z
p
j

)
,

(∇vFe)m =
1

b2`2

∑
xi∈X
zj∈Z

cij · k(xi, zj) ·
(
xmi − zmj

)
.

(21)

Likewise, to translate away from the origin, we note that if
h = (R, T ) ∈ SE(n), (`h)∗(ω̂, v) = (Rω̂,Rv). Then, if we
express the gradient as ∇Fh = (`h)∗(ω̂, v) = (Rω̂,Rv), we
get the following expression for (ω̂, v) ∈ se(n):

ω̂pq =
1

a2`2

∑
xi∈X
zj∈Z

cij · k(xi, z̃j) ·
(
xpi z̃

q
j − x

q
i z̃
p
j

)
,

vm =
1

b2`2

∑
xi∈X
zj∈Z

cij · k(xi, z̃j) ·
(
xmi − z̃mj

)
,

(22)

where z̃j = h−1zj = RTzj −RTT .

V. ANALYSIS AND VERIFICATION OF IDEA

It is important to take a moment and examine when solving
Problem 1 actually causes the clouds to be best aligned. It
is of course impossible to perfectly align two non-identical
clouds. Presented below is a discussion of when the two clouds
are identical, when does the identity element in the group
maximize (4)?

Suppose that Z = X and `Z = `X . Then the identity ideally
should be a fixed-point of (14). This leads to the following:

Theorem 6. Assume that for all h ∈ G and x ∈ M ,
k(hx, hx) ≤ k(x, x). Then the identity is a global maximum
of F .

Proof. We have that

F (h) = 〈fX , h.fX〉H, F (e) = ‖fX‖2H ≥ 0. (23)

Then using the Cauchy-Schwarz inequality we obtain:

|〈fX , h.fX〉H| ≤ ‖fX‖H · ‖h.fX‖H, (24)

which is less than F (e) provided that ‖h.fX‖H ≤ ‖fX‖H.



Computing this, we see that

‖h.fX‖2H =
∑

xi,zj∈X
cij · k

(
h−1xi, h

−1zj
)

≤
∑

xi,zj∈X
cij · k (xi, zj) = ‖fX‖2H.

(25)

Combining everything, we get that

|F (h)| ≤ ‖fX‖H · ‖h.fX‖H ≤ ‖fX‖2H = F (e). (26)

Corollary 7. Suppose k : M × M → R is a stationary
kernel [26, Page 82], that is k(x, y) = k(d(x, y)) for some
distance function d. If G acts isometrically on M , then the
identity is a global maximum of F .

Corollary 8. The identity is a global maximum for the SE(n)
case.

Proof. This follows from the fact that SE(n) acts on Rn
isometrically, i.e. ‖hx− hy‖n = ‖x− y‖n.

Theorem 9. The maximizer of Problem 1, minimizes the angle
between fX and fZ .

Proof. Suppose h∗ ∈ G is the maximizer of Problem 1. Then
〈fX , f∗Z〉 ≥ 〈fX , fZ〉 and ‖f∗Z‖H ≤ ‖fZ‖H. Using Cauchy-
Schwarz inequality:

0 ≤ |〈fX , fZ〉| ≤ |〈fX , f∗Z〉| ≤ ‖fX‖H‖f∗Z‖H ≤ ‖fX‖H‖fZ‖H

dividing by ‖fX‖H‖fZ‖H and replacing ‖fZ‖H in the de-
nominator by ‖f∗Z‖H:

0 ≤ cos(θ) ≤ |〈fX , f∗Z〉|
‖fX‖H‖f∗Z‖H

≤ ‖f
∗
Z‖H
‖f∗Z‖H

≤ 1

0 ≤ cos(θ) ≤ cos(θ∗) ≤ 1

0 ≤ θ∗ ≤ θ ≤ π

2

where cos(θ) = |〈fX , fZ〉|/(‖fX‖H‖fZ‖H).

VI. INTEGRATING THE FLOW FOR THE SPECIAL
EUCLIDEAN GROUP

Now that we know the direction for the flow, what remains
is to determine a way to integrate the flow and to determine
a reasonable step size. We integrate using the Lie exponential
map to preserve the group structure and the step size is
calculated using a 4th-order Taylor approximation in a line
search algorithm.

A. Integrating

We will take care that in integrating (14), our trajectories
will remain on SE(n). This is slightly problematic because
integrating is an additive process and SE(n) is not closed
under addition. To address this, we note that if in (14), (ω̂, v)
is constant in se(n) (i.e. ∇Fh is a left-invariant vector field)
the solution is merely

(R(t), T (t)) = (R0, T0) exp(t(ω̂, v)), (27)

where exp : se(n) → SE(n) is the Lie exponential map
(which is merely the matrix exponential). We will exploit this
by assuming that ω̂ and v are constant over each time step.[

Rk+1 Tk+1

0 1

]
=

[
Rk Tk
0 1

]
· exp

[
tω̂ tv
0 0

]
(28)

=

[
Rk Tk
0 1

] [
∆R ∆T
0 1

]
(29)

=

[
Rk∆R Rk∆T + Tk

0 1

]
(30)

Where explicit formulas for ∆R and ∆T will be discussed
in §VI-C for the special case where n = 3. Combining all of
this, we get our integration step to be

Rk+1 = Rk∆R (31)
Tk+1 = Rk∆T + Tk. (32)

B. Step size

We can use (22) to point in the direction of maximal growth
and (31) to find the updated element in SE(n). However,
we currently have no intelligent way of choosing t. We will
proceed by a Taylor approximation of the solution curve.
If we let G(t) := F (h exp(tξ)), then we want to find the
value of t that maximizes G. We compute a 4th-order Taylor
expansion of G(t) about t = 0 and determine the value of t
that maximizes this polynomial.

G(t) ≈
∑
xi∈X
zj∈Z

cij · eαij
{
g1ijt+ g2ijt

2 + g3ijt
3 + g4ijt

4
}
,

(33)

where

g1ij = βij

g2ij = γij +
1

2
β2
ij

g3ij = δij + βijγij +
1

6
β3
ij

g4ij = εij + βijδij +
1

2
β2
ijγij +

1

2
γ2ij +

1

24
β4
ij

αij =
−1

2`2
‖xi − zj‖n

βij =
−1

`2
〈ω̂zj + v, xi − zj〉n

γij =
−1

2`2
(
‖ω̂zj + v‖2n + 2〈ω̂2zj + v, xi − zj〉n

)
δij =

1

`2
(
〈−ω̂zj − v, ω̂2zj + ω̂v〉n
+〈−ω̂3zj − ω̂2v, xi − zj〉n

)
εij =

−1

2`2
(
‖ω̂2zj + ω̂v‖2n + 2〈ω̂zj + v, ω̂3zj + ω̂2v〉n
+2〈ω̂4zj + ω̂3v, xi − zj〉n

)
(34)

The “optimal” step size is then taken to be the value of t > 0
that maximizes the quartic (33).



C. Special Case: n = 3

When we restrict attention to SE(3), the gradient (22) takes
a special form:

ω =
1

a2`2

∑
xi∈X
zj∈Z

cijk(xi, h
−1zj)

(
xi × (h−1zj)

)
v =

1

b2`2

∑
xi∈X
zj∈Z

cijk(xi, h
−1zj)

(
xi − h−1zj

)
.

(35)

Additionally, an explicit formula for the exponential map exp :
se(3) → SE(3) exists (see [20] and [27] for example). This
gives an exact way to solve (31).

∆R = I +

(
sin tθ

θ

)
ω̂ +

(
1− cos tθ

θ2

)
ω̂2,

∆T =

[
tI +

(
1− cos tθ

θ2

)
ω̂ +

(
tθ − sin tθ

θ3

)
ω̂2

]
v.

(36)

where θ = ‖ω‖3 with ω ∈ R3 and t is taken to maximize
G(t) in equation (33).

VII. EVALUATION AND DISCUSSION

First, we provide a numerical example to justify our choice
of 4th-order Taylor expansion for the step length computation
which in practice proven to be important. Next, we present the
experimental evaluation using RGB-D data collected using the
Microsoft Kinect sensor.

A. Taylor Expansion

This subsection explains (numerically) the reason for taking
the extra complexity in computing the 4th-order approximation
as opposed to a 2nd-order approximation. The following
numerical example uses the point clouds supplied in MAT-
LAB [1]. Here, X is the first picture and Z is the second. The
parameter values used are σ = 0.1, ` = 0.15, and a2 = b2 = 7.

With these chosen set of parameters, the computed gradient
gives

ω̂ =

 0 3.6452 −38.0800
−3.6452 0 −1.2370
38.0800 1.2370 0

 , v =

−9.3792
1.5252
−8.9388

 .
Figure 2 contains the plots comparing the exact function, G(t),
along with its 2nd- and 4th-order Taylor approximation. As can
be seen from the figure, although the 2nd-order approximation
is a reasonable approximation for t < 0.001, it does not
give a meaningful approximation for the maximum of G(t).
However, the 4th-order does.

B. TUM RGBD Benchmark

We performed experiments on four RGB-D image se-
quences of RGB-D SLAM dataset and benchmark [31]. This
dataset was collected indoors with a Microsoft Kinect using a
motion capture system as a proxy for ground truth trajectory.
For all tracking experiments, the entire images were used
sequentially without any skipping, i.e., at full framerate. Also,
the same set of parameters was used for all experiments

Fig. 2: Comparing the exact values of G(t) with its Taylor approximations.
It is clear that the 2nd-order approximation cannot capture the function
behavior and, despite extra complexity, the approximation up to the 4th-order
is necessary to maintain the integration of the flow smooth.

TABLE I: Parameters used for evaluation using TUM RGBD Benchmark,
similar values were chosen for all experiments. The kernel characteristic
length-scale is chosen to be adaptive as the algorithm converges; intuitively,
we prefer a large neighborhood of correlation for each point, but as the
algorithm reaches the convergence reducing the local correlation neighborhood
allows for faster convergence and better refinement.

Parameters Value

transformation convergence threshold ε 1e−5
gradient norm convergence threshold ε 5e−5
kernel characteristic length-scale ` 0.15
kernel characteristic length-scale ` (iteration > 3) 0.10
kernel characteristic length-scale ` (iteration > 10) 0.06
kernel characteristic length-scale ` (iteration > 20) 0.03
kernel signal variance σ 0.1
minimum step length 0.2
color space inner product scale 10e−5
kernel sparsification threshold 1e−3

which are listed in Table I. To improve the computational
efficiency, we adopted a similar approach to Engel et al. [12]
by maintaining a semi-dense point cloud for each scan. In this
work, we simply extracted edges on 2D images and exploited
the one-to-one correspondences in the organized point cloud.

Figure 3 shows the cumulative distribution functions of
position and orientation relative per frame errors. The figure
also shows the top view of the accumulate trajectories in
which the absolute accumulated error can be seen. The initial
transformation always was set to the identity and the kernel
evaluations were sparsified (an example is shown in Fig. 1)
by setting any value less than 1e−3 to zero. The baseline for
comparison is the open source implementation of the direct
RGB-D visual odometry method in Steinbrücker et al. [29]
which is available through OpenCV [2]. The proposed method
performs better than or similar to the baseline, suggesting its
potential for improving the visual front-end systems used for
odometry or SLAM solutions.

Remark 7. Due to the fact that the images are in color, each
point in the cloud has a color associated with it. This is
encoded as a point in R3. Therefore, we will take I = R3

and its inner product to be

〈·, ·〉I =
1

105
〈·, ·〉3. (37)



Fig. 3: Experimental evaluation of the proposed Continuous Visual Odometry (CVO) framework using the RGB-D SLAM dataset and benchmark [31]. The
baseline for comparison is the open source implementation of the Steinbrücker et al. [29] which is available through OpenCV [2]. The cumulative distribution
functions of position and orientation errors shows performance of each method where the relative errors between two registered frames are computed using
metrics defined earlier in II-A. The evaluation is done over the entire trajectories. For CVO, to reduce the number of points and improve the computational
efficiency, a similar approach to Engel et al. [13] is adopted by only maintaining the high gradient points. In this work, we extracted edges on 2D images
and exploited the one-to-one correspondences in the Microsoft Kinect organized point cloud. The proposed method almost always performs better than or
similar to the baseline; however, it is particularly interesting that the difference is significant when the lack of both structure and texture in the environment
is evident (first column from left).

VIII. CONCLUSION AND FUTURE WORK

We developed a continuous and direct formulation and so-
lution for the RGB-D visual odometry problem. The proposed
solution, given a calibrated camera, directly works on 3D
data and possesses a sparse (or sparsified) structure as well
as naturally parallelizable structures. Furthermore, due to the
continuous representation, we neither require the association
between two measurements sets nor the same number of
measurements within each set. Theoretically speaking, given
the promising results presented in this paper, the proposed
method is an alternative to the core module of many modern
visual odometry and tracking systems [13, 14, 24, 33].

Building a visual tracking system such as the work of Engel
et al. [13] is an interesting future direction. Another interesting
idea is guiding the gradient flow of SE(3) using an Inertial
Measurement Unit (IMU) [11, 15, 19] or combined contact-
IMU process models [18, 19]. The propagation of the flow can
be done between any camera frames as the visual data has a
typically lower frequency.

A similar approach to the problem presented in this paper
was studied in [6] and [7]. The authors show that it is possible
to view the differential equation, Ḣ = [H, [H,N ]], where H
and N are elements of some Lie algebra, as a gradient flow
on an adjoint orbit of the corresponding group so long as

the group is compact. This can then be used to solve linear
programming problems where the data is encoded in H(0) and
N . Information about the solution to the linear programming
problem can then be learned from the double bracket structure.
The function which generates the gradient is

F (θ) = κ (Q,AdθN) , θ ∈ G, Q,N ∈ g, (38)

where κ is the Killing form and Ad is the adjoint action. When
the Lie group, G, is compact, the Killing form is negative
definite, i.e. −κ is a nondegenerate, Ad-invaraint inner product
on g. Equation (38) is closely related to Equation (4); however
the group studied here is SE(n) which is noncompact (and
furthermore, there do not exist any Ad-invariant inner products
on se(n)). In future work we shall discuss how this framework
can be used to solve Problem 1 when the group is restricted
to be SO(n).
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