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Abstract: In this paper we analyze the quantum control of squeezed states of harmonic
oscillators as well as spin squeezing and its relationship to quadrature squeezed states
of other bosonic fields. Squeezing provides a method for reducing noise below the
quantum limit and provides an example of the control of under-actuated control
systems in the stochastic and quantum context. We consider also the interaction
of a squeezed quantum oscillator with an external heat bath and the problem of
cancellation of squeezed states. Our controls consist of single or multiple pulses.

Keywords: Quantum Systems, Hamiltonians, Squeezing, Control

1. INTRODUCTION

In this paper we consider the problem of squeezing
of harmonic oscillators and spin systems from the
point of view of control theory. Squeezing has
been suggested as a method for reducing noise
in quantum systems below the standard quantum
limit. This can be achieved by using laser pulses
and in that sense may be viewed as a quantum
control problem, although the classical squeezing
problem is also of interest. In the latter case one
is interested in reducing noise induced by random
perturbations.

The quantum control problem has been of great
interest recently, see for example (Brockett and
Khaneja, 1999), (Khaneja, Brockett and Glaser,
2001) (Lloyd, 1996) and (Warren, Rabitz and
Dahleh, 1993), (Ramakrishna, 2001) (Turinici
and Rabitz, 2001) (D’Alessandro, 2003), (Altafini,
2003), and references therein.
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Here we consider squeezing as a control problem
in both the classical and quantum setting. In
the classical case we consider a system subject
to thermal noise while in the quantum case we
consider a system at zero temperature and in the
presence of noise. In both cases the control is given
by an external electromagnetic field and enters the
control equations multiplicatively. A key feature
of squeezing is that it results in a redistribution
of uncertainty between observables.

In this paper we consider a model for phonon
squeezing in solids following the work of (Garret,
Rojo, Sood, Whitaker Merlin, 1997) (see also
(Hu and Nori, 1996) and references therein for
interesting related work), but one can equally
well consider the case of photons in quantum
optics. The control is via a single pulse on a
large ensemble of oscillators and this sense we
are considering under-actuated control systems in
both the classical and quantum case.

In addition we consider spin squeezing and discuss
its relationship to quadrature squeezed states of
other bosonic fields.



We model the effect of dissipation on the classical
system and the effect of coupling to a heat bath
in the quantum setting. This causes the squeezing
effect to gradually moderate.

We remark that squeezed states and their possible
moderation due to dissipation have been proposed
as a method for secure quantum cryptography, see
(Gottesman and Preskill, 2000) and (Gottesman,
Kitaev and Preskill, 2001). Ideally for the codes
discussed in these papers one want states which
are infinitely squeezed in momentum or position
which is of course not possible. In these papers
dissipation is modeled by a master equation. Here
we consider direct coupling to a heat bath mod-
eled by a quantum string.

In the last section of the paper we consider can-
cellation of squeezed states where we need an
additional pulse of appropriate form.

This paper extends work reported in (Bloch and
Rojo, 2000).

2. CLASSICAL SQUEEZING OF THE
HARMONIC OSCILLATOR

In this section we briefly discuss classical squeez-
ing of a set of identical coupled harmonic oscil-
lators. Denote the position of each oscillator by
qi.

The Hamiltonian for the system is of the form:

H =
∑

i

p2
i

2
+

∑

i,j

Kij

2
qiqj , (2.1)

with Kij the dynamical matrix and the oscillators
are assumed to have unit mass and pi = q̇i.

In order to analyze the system we decompose it
into its normal modes. Denoting the normal mode
coordinates by Qi we thus obtain a system of
uncoupled harmonic oscillator equations of the
form Q̈i + Ω2

iQ
i = 0.

The main control mechanism we consider here is
squeezing by pulses. In this case each oscillator
is forced by a pulse at time t = 0 which is
proportional to its displacement, i.e. we have
equations of the form:

Q̈i + Ω2
iQ

i = 2λQiδ(t) (2.2)

where δ(t) is the Dirac delta function and λ is a
constant which is proportional to the frequency
Ω.

Thus we obtain

Q̇i(0+) = Q̇i(0−) + 2λQi(0) . (2.3)

Thus, if one considers the system subject to white
noise,

Q̈i + Ω2
iQ

i = 2λQiδ(t) + αẇi , (2.4)

one sees that while one starts with a spheri-
cal equilibrium distribution which is invariant in
time, after the pulse one has an elliptical distribu-
tion which rotates in time at twice the harmonic
frequency (by the Z2 symmetry of the ellipse). (A
precise analysis is given below in the course of our
treatment of the quantum mechanical case.) Noise
reduction is then achieved by viewing the system
“stroboscopically” when the noise is low.

Actually the above is an idealization: in actuality
the oscillator should be viewed as in equilibrium
with a heat bath which dissipates energy. In the
classical setting one can model this by simple
linear dissipation (in the quantum setting one has
to introduce a heat bath – see below).

Thus we have a system of the form

Q̈i + Ω2
iQ

i = −ηiQ̇
i + Ui(t) + αẇi (2.5)

where ηi is a dissipation constant and Ui(t) is the
control which we can choose to be a single pulse or
a sequence of pulses. Depending on the dissipation
strength an initial squeezing effect will decay away
and we need a continual sequences of pulses to
keep the system in a squeezed state.

It is worthwhile remarking on how the control
enters in our setting: the control is a single pulse
applied overall (and in this sense the system is
under-actuated) while the effect on each (normal
mode) of oscillation is to apply a pulse propor-
tional to displacement (minus the mean displace-
ment). We shall return to the classical squeez-
ing of oscillator by pulses, and in particular a
computation of mean square displacement, after
a discussion of the quantum case below.

3. SQUEEZING OF THE QUANTUM
HARMONIC OSCILLATOR

We now turn to the quantum setting.

Consider the following Hamiltonian

H =
P 2

2m
+
mω2

2
Q2 + λδ(t)Q2, (3.1)

which reflects an impulsive change in the spring
constant and where ω =

√

K/m, K being the
original spring constant.

The variables P and Q, which are operators in
the quantum case, obey canonical commutation
rules [P,Q] = i~. We can rewrite the above
Hamiltonian in terms of creation operators a and
a† defined through

Q =

√

~

2mω
(a+a†), P = i

√

~mω

2
(a†−a), (3.2)

with [a, a†] = 1. Written in terms of the new
variables, the Hamiltonian is

H = ~ω(a†a+ 1/2) + λδ(t)(a+ a†)2. (3.3)



The ground state of the system, for t 6= 0, |0〉,
corresponds to the vacuum of a, (a|0〉 = 0), and
the excited states are of the form (a†)2|0〉.
We now want to study the behavior of the system
at t > 0, given that the system is in its ground
state at t < 0. The wave function at t = 0+

is of the form |ψ(t = 0+)〉 = exp(−iλQ2)|0〉,
and for longer times the system evolves with
the “unperturbed” Hamiltonian: |ψ(t > 0)〉 =

exp(−iH0t)e
−iλQ2 |0〉. Our first quantity of inter-

est is 〈ψ(t)|Q2|ψ(t)〉 ≡ 〈Q2(t)〉. Let us compute it
using the general method of coherent states. We
find

〈Q2(t)〉 = 〈0|eiλQ2

(ae−iωt + a†eiωt)2e−iλQ2 |0〉,
(3.4)

where we have used the fact that eiH0tae−iH0t =
ae−iωt, which states that a† and a respectively
destroy and create eigenstates of H0, and where
Q is defined in units of

√

~/(2mω).

Now we introduce a basis of coherent states |z〉,
which satisfy a|z〉 = z|z〉, 〈z|a† = 〈z|z∗, and
form an overcomplete set of states:

1 =
1

2πi

∫

dz dz∗e−zz∗ |z〉〈z|. (3.5)

Inserting (3.5) in (3.4) we find

〈Q2(t)〉 =
1

2πi

∫ ∫

dz dz∗e−zz∗

(z2e−2iωt + z∗2e2iωt + 2zz∗ − 1)|〈0|eiλx2 |z〉|2.

In order to evaluate the last term we need the
position representation of the ground state (note
that at this point Q is a real number)

〈0|Q〉 =
1

π
1
4

e−Q2/2 (3.6)

and that of the coherent state

〈Q|z〉 =
1

π
1
4

e−Q2/2+
√

2zQ−z2/2. (3.7)

A simple integration gives

〈0|eiλQ2 |z〉=

∫

dx〈0|Q〉〈Q|z〉eiλQ2

(3.8)

=
1√

1 − iλ
eiλz2/2(1−iλ). (3.9)

Changing to the variables z = u+ iv we have

e−zz∗ |〈0|eiλQ2 |z〉|2

=
1√

1 + λ2
e−[v2+(2λ2+1)u2+2λuv]/(1+λ2),(3.10)

and

〈Q2(t)〉 =
4

π
√

1 + λ2

∫ ∞

−∞
du

∫ ∞

−∞
dv

(

u2 cos2 ωt+ v2 sin2 ωt+ uv sin 2ωt− 1

4

)

×e−[v2+(2λ2+1)u2+2λuv]/(1+λ2) (3.11)

= 1 + 4λ2 sin2 ωt+ 2λ sin 2ωt (3.12)

It is interesting to compare this with an ensemble
of classical oscillators with initial conditions taken
from a heat bath. For simplicity let us take ω =
m = kB = T = 1 (kB is Boltzman’s constant).
An arbitrary oscillator will evolve as Q(t) =
u cos t + v sin t, with u and v its initial position
and velocity. If a pulse is applied at t = 0 of the
form treated above Q(t) = u cos t+(v+2λu) sin t.
Now let us average over initial conditions taken
from a measure given by (a thermal bath)

〈Q2(t)〉 ∼
∫

du dv[u cos t+ (v + 2λu) sin t]2e−(u2+v2)

= 1 + 4λ2 sin2 t+ 2λ sin 2t. (3.13)

We note that the two expressions for, respectively,
the quantum oscillator at zero temperature and
the classical oscillator at finite temperature, are
exactly the same. The general time dependence
of the variance for a squeezed harmonic oscillator
with frequency ω can thus be written in the
following form

〈[Q(t)]2〉 =
ε0
K

[

1 +

(

2λ

ω

)

sin 2ωt+

(

2λ

ω

)2

sin2 ωt

]

(3.14)
with ε0 = ~ω/2 for the quantum case and ε0 =
kBT for the classical oscillator at a temperature
T .

The method of coherent states presented above
has the advantage of being suitable for calculating
other quantities. For example, if the oscillators
are atoms within a solid, the scattering amplitude
for an X-ray is decreased by a factor (called
the Debye-Waller factor – see (Ziman, 1972)) ∼
〈exp ikQ(t)〉, with k the wave-vector of the X-ray.
We now ask ourselves what is the time evolution
of the Debye-Waller factor for a squeezed phonon.
This means that we need to compute the following
expression

I(λ, t) = 〈0|eiλQ2

e(ae−iωt+a†e−iωt)e−iλQ2 |0〉

=
1√
e

1√
1 + λ2

1

π

∫

du dv

e
2u cos ωt+2v sin ωt−−[v2+(2λ2+1)u2+2λuv]

(1+λ2)

= e1+4λ2 sin2 ωt+2λ sin 2ωt. (3.15)

For the Debye-Waller factor, we obtain the follow-
ing time dependence



〈eikQ(t)〉 = e−k2〈Q2(t)〉 (3.16)

Measurement of the Debye-Waller factor may pro-
vide a practical method of detecting the squeezing
phenomenon experimentally.

4. SQUEEZING AND DISSIPATION

In this section we consider the squeezing of a
quantum oscillator coupled to a an infinite num-
ber of oscillators representing a “heat” bath. We
show that this causes a decay in the squeezing
oscillation for small time and true damping in the
limit of a continuum of oscillators. This damping
effect of the heat bath is similar to that ana-
lyzed classically in (Lamb, 1900), (Komech, 1995),
(Sofer and Weinstein, 1999) and (Hagerty, Bloch
and Weinstein, 1999). We stress that we are con-
sidering a zero temperature case, and the damping
effects appear due to a) the coupling of a single
variable with a continuum of variables and b)
an “asymmetry” in the initial conditions. The
applied pulse on the oscillator generates outgoing
waves on the continuum system which in turn
gives rise to a positive damping (for a detailed
discussion of negative versus positive damping see
(Keller and Bonilla, 1986)).

We start with a general formulation, and at the
end of this section discuss a specific continuum
example.

The Hamiltonian of the system consists of three
parts: H0 describing the original oscillator:

H0 =
p2
0

2m
+
mω2

0

2
q20 , (4.1)

the Hamiltonian He of the environment:

He =
∑

α

[

p2
α

2m
+
mω2

α

2
q2α

]

, (4.2)

and a linear coupling between the two

Hint =
∑

α

ξαqαq0 . (4.3)

Formally, the total Hamiltonian H = H0 +He +
Hint can be written in terms of its normal mode
coordinates Xν and Pν :

H =
∑

ν

[

P 2
ν

2m
+
mω2

ν

2
X2

ν

]

, (4.4)

and we will consider a situation in which the initial
(before the pulse) wave function corresponds to all
the modes in the ground state:

Ψ0 =
∏

ν

(ων

π~

)1/4

e−ωνX2
ν/2~. (4.5)

At t = 0 a pulse is applied to the (original)
oscillator, the wave function immediately after the
pulse given by:

Ψ0(t = 0+) = eiλq2
0Ψ0 (4.6)

= e
iλ

∑

µν
U0µU0νXµXν Ψ0 , (4.7)

where Uµν is the matrix transforming from the
original (uncoupled) modes to the coupled system
(q0 =

∑

ν U0νXν).

As in previous sections, we are interested in the
fluctuations of the variance of q0, given in this case
by

〈q20(t)〉 =
∑

µν

U0µU0ν〈XµXν〉(t) , (4.8)

and that we will compute by solving the equation
of motion obeyed by the correlations 〈XµXν〉(t).
Since Xµ and Xν correspond to harmonic coor-
dinates, using the quantum mechanical commuta-
tion relations we compute the equations of motion
to be:

d

dt
〈XµXν〉 =

1

m
〈(PµXν + PνXµ)〉

d2

dt2
〈XµXν〉 = −(ω2

µ + ω2
ν)〈XµXν〉 +

2

m2
〈PµPν〉

d

dt
〈PµPν〉 = −m

(

ω2
µ〈XµPν〉 + ω2

ν〈XνPµ〉
)

d2

dt2
〈PµPν〉 = −(ω2

µ + ω2
ν)〈PµPν〉 + 2m2ω2

µω
2
ν〈XµXν〉 .

Note that the above equations are identical to
those of classical harmonic oscillators for the
quantities Xµ(t)Xν(t) etc., with initial conditions
given by the values of the correlations evaluated
for the quantum wave function:

〈XµXν〉(0+) = δµν
~

2mωµ
,

〈PµPν〉(0+) = δµν
~mωµ

2

+2~
2λ2(1 + δµν)

U0µ

mωµ

U0ν

mων
q20

〈(XµPν + PνXµ)〉(0+)

= 4λ~U0µU0ν
~

2m
(

1

ωµ
+

1

ων
)

with q20 ≡ 〈q20(0−)〉 =
∑

α ~U2
0α/2mωα.

Collecting the above equations we obtain

〈q20(t)〉 = q20

{

1 + 4λ2S2(t) +
λ

q20
C(t)S(t)

}

,

(4.9)
with

S(t) =
∑

µ

~U2
0µ

mωµ
sinωµt C(t) =

∑

µ

~U2
0µ

mωµ
cosωµt.

All the information of the evolution of the variance
is contained in the function J(ω), the physical



interpretation of which is that of a local density
of states of the oscillator, defined as

J(ω) =
∑

µ

~U2
0µ

mωµ
δ(ω − ωµ), (4.11)

from which

S(t) =

∫

dωJ(ω) sinωt, C(t) =

∫

dωJ(ω) cosωt.

(4.12)

Note that J(ω) is a sum over delta functions,
giving rise to a superposition of oscillations with
the frequencies ων for both S(t) and C(t). In
the limit of an infinite system, and when the
modes are spatially extended over all space, J(ω)
becomes a continuous function. In that case the
oscillatory behavior acquires a damped compo-
nent, the detailed time dependence being given
by the frequency spectrum of J(ω). A lorenzian
shape for J(ω) will give an exponentially damped
oscillation for both S(t) and C(t). As an illustra-
tion of this point we consider a model for which
J(ω) can be computed explicitly – see the classical
analysis of Lamb and Komech. Consider a one-
dimensional string coupled to our oscillator. The
string is described by a “transverse” displacement
u(x, t). The classical equations of motion of the
system are

utt(x, t) = c2uxx(x, t)

Md2q0(t)/dt
2 =−V q0(t) + T [ux(0+, t) − ux(0−, t)]

q0(t) = u(0, t). (4.13)

The normal modes consist of even and odd (in x)
solutions. The odd solutions do not involve q0 and
are of the form uq,o(x, t) = eicqt sin qx, whereas
the even solutions are of the form uq,e(x, t) =
eicqt cos(q|x| + δq), with δq a phase shift (to be
found). The wave vectors q label the normal
modes, and play the role of the index µ in the
above discussion: ωµ = cq, and U2

µ0 = cos2(δq) (up
to a normalization constant) in the present case.
Substituting this expression in (4.13) we obtain
(ω2

0 = V/M)

tan δq =
Mc

2T

(ω2
0 − ω2

q )

ωq
, (4.14)

from which U2
µ0 = cos2 δq is given by

U2
µ0 =

α2ω2
q

α2ω2
q + (ω2

q − ω2
0)2

≡ U2
q , (4.15)

where we have defined α = 2T/Mc. Note that
Uq represents the transformation matrix that has
to be normalized and since the frequencies form
a continuum we normalize Uq(ωq) to its integral
over ωq. Omitting the index q in ωq, we obtain

U(ω) =
2α

π

ω2

α2ω2 + (ω2 − ω2
0)2

=
mω

~
J(ω).

(4.16)

Substituting (4.16) in (4.12) we obtain

S(t) =
~

mω0
e−Γt sinΩ0t, C(t) =

~

mω0
e−Γt cos Ω0t,

(4.17)
with

Ω0 = ω0

(

1 + [α/ω0]
2
)1/4

cos δ/2, (4.18)

Γ = ω0

(

1 + [α/ω0]
2
)1/4

sin δ/2, (4.19)

where δ = tan−1 α/ω0.

In the realistic limit α � ω0 which corresponds
to a “weak” coupling to the environment) these
expressions take the form:

S(t)∼= (~/(mω0)exp(−Tt/Mc) sinω0t,

C(t)∼= (~/(mω0)exp(−Tt/Mc) cosω0t.

Note that in this model, and in the limit of weak
coupling, the initial variance q20 of the reference
oscillator is unchanged due to the coupling to the
environment, and is given by q20 = ~/2mω0. Our
final result for this section is then

〈q20(t)〉 ∼= q20

{

1 + e−2(T/Mc)t

[

(

2λ~

mω0

)

sin 2ω0t+

(

2λ~

mω0

)2

sinω2
0t

]}

,(4.20)

which reduces simply to (3.13) in the uncoupled
case of T = 0.

In summary we have shown in this section that
the coupling to the environment can be included
in general, giving rise to dissipation, and that the
squeezing effect in the presence of dissipation can
be computed explicitly for the Lamb model.

5. SPIN SQUEEZING

The mechanism of squeezing by the application of
non-linear pulses extends to spin systems, where
the quantum nature of the spatial components Si

is reflected in the commutation relations [Si, Sj ] =
i~εijkSk. Squeezing for spin systems is of topical
interest in quantum information, where quantum
processing protocols require manipulation of en-
tangled systems.

One realization of a string of quantum bits is
an ensemble of two-level atoms, where each atom
can be treated as a spin 1/2. Wineland et. al.
(Wineland, Bollinger, Itano and Moore, 1992)
showed that the resolution in spectroscopic exper-
iments on N two-level atoms is determined by the
factor



ξ =
∆S⊥
|〈S〉| , (5.1)

which measures the quantum noise in a direction
perpendicular to the mean value of the total spin.
Note that ξ measures the precision of a mea-
surement on the rotation of a spin. In this sec-
tion we establish a parallel between the squeezed
states of the harmonic oscillator and those of
spin systems, focusing on the definition of Eq.
(5.1). Note that, depending on the context, other
definitions of spin squeezing can also be used:
starting from the uncertainty relation ∆Sx∆Sy ≥
|〈Sz〉/2| (and cyclic permutations), a possibility
is to define states satisfying ∆2Si < |〈Sj〉/2|
as spin-squeezed(Wodkiewicz and Eberly, 1985).
However, these states don’t have in general a
noise reduced in the direction perpendicular to
the mean spin, and therefore are not relevant to
quantum information.

Consider an ensemble of identical N two-level
atoms with energy splitting ~ω0. We define the
corresponding spin quantization axis in the x
direction so that

H0 = ω0

N
∑

i=1

Sx,i = ω0Sx, (5.2)

where Si is the spin of atom i. The equations
of motion for Sz(t) and Sy(t) are very similar
to those of x and p for a harmonic oscillator of
frequency ω0:

Ṡz(t) = ω0Sy

Ṡy(t) =−ω0Sz, (5.3)

and

d

dt
S2

z (t) = ω0(SySz + SzSy)

d

dt
(SySz + SzSy) = 2ω0(S

2
y − S2

z )

d

dt
S2

y(t) =−ω0(SySz + SzSy) (5.4)

which have also the same structure as the cor-
responding operators for the harmonic oscillator.
Note here that S2

y(t) + S2
z (t) is conserved along

the flow of the equations (5.4).

The solutions for the expectation values are:

〈S2
z (t)〉 =

〈S2
z 〉0 + 〈S2

y〉0
2

+

[

〈S2
z 〉0 − 〈S2

y〉0
2

]

cos 2ω0t−
X0

2
sin 2ω0t,

with X0 = 〈SzSy〉0 + 〈SxSy〉0. If the initial state
|Ψ〉 is an eigenstate of Sx, for example Sx|Ψ〉 =
−(N/2)|Ψ〉, then 〈S2

z 〉0 = 〈S2
y〉0 = N/4, X0 = 0

and

ξ(t) =

√

〈S2
z (t)〉

〈Sx〉
=

1√
N
. (5.5)

This time independent value of ξ corresponds to
the unsqueezed state, and we are interested in
decreasing its value, bringing it as close as possible
to the Heisenberg limit ξ = 1/N (Kitagawa
and Ueda, 1993). Proceeding in analogy with the
harmonic oscillator, we consider the effect of a
pulse acting on the ground state of H0

H ′ = δ(t)λS2
z . (5.6)

The wave function right after the pulse is

|Ψ(t = 0+)〉 = eiλS2
z |Ψ〉0, (5.7)

and the quasiprobability distribution in the (Sz, Sy)
plane is modified as in Figure 5.1. In order to
compute the modified initial conditions in (5.5)
we consider the case of large N . We define boson
creation operators a and a†, with [a, a†] = 1, in
terms of which

H0 = ~ω0

(

N + 1

2
− a†a

)

, (5.8)

in such a way that the spin projections in the x
direction correspond to the occupation number of
the new bosons. The transformation to the S+ and
S− operators from these bosons is the well known
Holstein-Primakov transformation(Kittel, 1987)

S+ = Sz + iSy

=N1/2(1 − a†a/N)1/2a ' N1/2a

S− = Sz − iSy

=N1/2a†(1 − a†a/N)1/2a† ' N1/2a†.

where the approximation is valid as long as the
relative variations of the spin projection are small:

〈a†a〉/N � 1. (5.9)

The operator equivalence between the bosons and
spins implies the following correspondence:

Sz →
√

N

2
x,

Sy → i

√

N

2

d

dx

Sx →−N + 1

2
+

1

2

(

− d2

dx2
+ x2

)

, (5.10)

where x is a new variable, in terms of which the
ground state of H0 is |Ψ〉0 = π1/4 exp−x2/2, and

Ψ(t = 0+)〉 ≡ |Ψλ〉 =
1

π1/4
eiNλx2/2e−x2/2.

(5.11)

The mapping allows us to compute the initial
values:



〈S2
z 〉0 =

N

2
〈Ψλ|x2|Ψλ〉 =

N

4

〈S2
y〉0 = −N

2
〈Ψλ|

d2

dx2
|Ψλ〉 =

N

4

(

1 + (λN)2
)

〈SzSy〉0 + 〈SxSy〉0 =
N

2
〈Ψλ|

(

ix
d

dx
+ i

d

dx
x

)

|Ψλ〉

= −λN
2

2

〈Sx〉0 =
N

2

(

1 − Nλ2

2

)

,

where we stress that these values are exact pro-
vided λ < 1/

√
N (for larger λ the response is

periodic in λ). Notice that the quasiprobability
distribution, which before the pulse is a circle of
radius

√

N/2 in the (Sz, Sy) plane, now becomes
an ellipse as shown in Figure 5.1. With the above
initial values, for t > 0 the distorted distribution
rotates at frequency ω0 and the squeezing factor
evolves as

ξ(t) =
1√
N

[

1 + (λN sinω0t)
2 − λN sin 2ω0t

]1/2

1 −Nλ2/2
.

(5.12)

If we call λ = α0/
√
N , with α0 < 1, we obtain the

minimum squeezing

ξmin =
1

N

1

[1 − α2
0/2]α0

, (5.13)

which scales as 1/N and is reached twice during
the cycle of the rotation of the ellipse of Figure
5.1.

From the development above we can see that the
analysis of dissipation in Section 4 above extends
essentially without change to the spin setting
provided the number of spins N is large.

S

N

1/2

y

z

ω

(N/2)

S

3/2

N/2

0 λ

Fig. 5.1. Quasiprobability distribution in the
(Sz, Sy) plane for N spins, before and af-
ter a pulse H ′ = δ(t)λS2

z is applied on the
lowest eigenstate of H0 = ω0Sx. The re-
sponse is equivalent to the harmonic oscilla-
tor case, with the proviso that the distribu-
tion is bounded by a circle of radius N/2.

6. CANCELLATION OF SQUEEZED STATES

Here we compare the cancellation of squeezing to
that of coherent states as generated by impulsively
excited coherent phonons, as observed in the ex-
periment by Hase et al.(Hase, Mizoguchi, Harima,
Nakashima, Tani, Sakai and Hangyo, 1996). See
also (Merlin and Zhou, 2003). In the case of co-
herent states, a second pulse can cancel the co-
herent state if the separation time between pulses
is matched to the period of the phonon oscilla-
tion. For squeezed states the separation between
the pulses has to be adjusted to the intensity of
the pulse. This can be easily seen graphically or
from the the structure of the propagator of the
harmonic oscillator(Kleinert, 1985):

Ψ(x, t) =

∫

dx′G(x, x′; t)Ψ(x′, t = 0+) (6.1)

with

G(x, x′; t) =
1

√

2πi~ sin(ωt)/mω

exp

{

imω

2~ sinωt

[

(x2 + (x′)2) cosωt− 2xx′
]

}

and where Ψ(x′, t = 0+) = exp(iλ(x′)2)Ψ0(x
′)

and Ψ0(x
′) = Ψ(x′, t = 0−) is the initial (ground)

state of the oscillator.

Note that at times t = tn with

mω

2~
cotωtn = −λ

2
,

mω

2~ sinωtn
=

√

(

λ

2

)2

+
(mω

2~

)2

(6.2)
we have

Ψ(x, tn) ∝ exp
(

−iλx2/2
)

∫

dx′ exp

{(

i
λ

2
− mω

2~

)

(x′)2

−2ixx′

√

(

λ

2

)2

+
(mω

2~

)2







,

which gives

Ψ(x, tn) = exp iδ exp
(

−iλx2
)

Ψ0(x), (6.3)

with δ an overall phase factor.

This means that a second pulse with the same
intensity applied at tn restores the wave function
to the ground state. See Figure 6.1 for a graphical
illustration.
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Fig. 6.1. Graphical rendition of the squeezing
cancellation produced by a second pulse, of
equal amplitude as the first, applied at a time
tn such that mω
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cotωtn = −λ
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