

3/25/2020

Online Lecture:

Posted § 4.3 - Soln's to wksht

In GOOGLE DRIVE

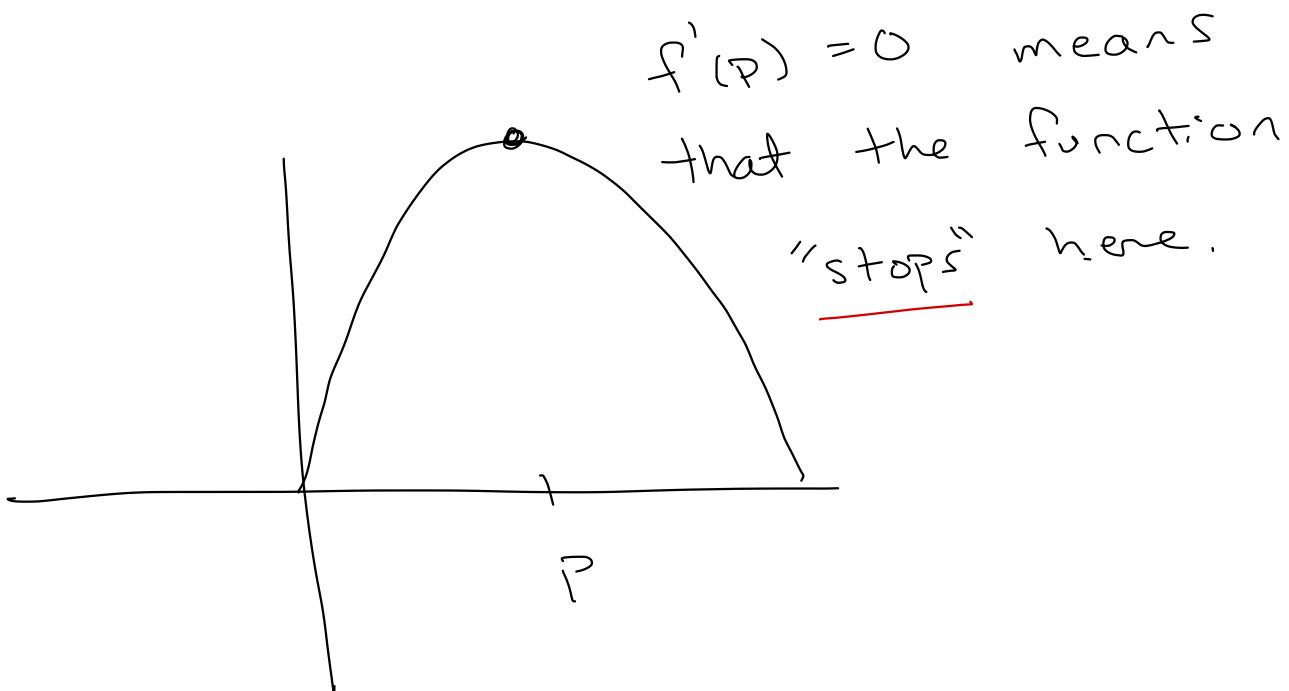
Also has corrections to
the worksheet problems

- Derivative Rules
- Linear & Quadratic approx.
- Theorems:
 - differentiability
 - continuity
 - MVT
 - ...
- Qualitative Derivatives:
 - critical pts.
 - increasing / decreasing
 - inflection points
 - second derivatives (concavity)
- Optimization:
 - local and global max/min
 - Real world modeling

A not-necessarily-exhaustive list of exam topics

What is a critical point?

P is a critical point of a function f if $f'(P) = 0$ or $f'(P)$ is undefined.

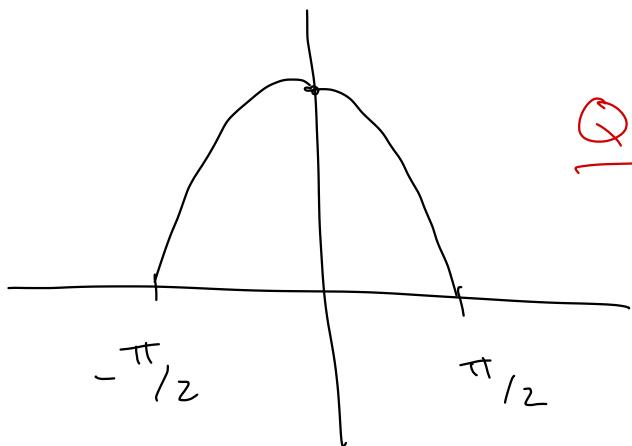


The more useful interpretation is that critical points are "extremes" for local max and min.

Eg:

Let $f(x) = \cos(x)$, on $(-\frac{\pi}{2}, \frac{\pi}{2})$

$$f'(x) = -\sin(x)$$



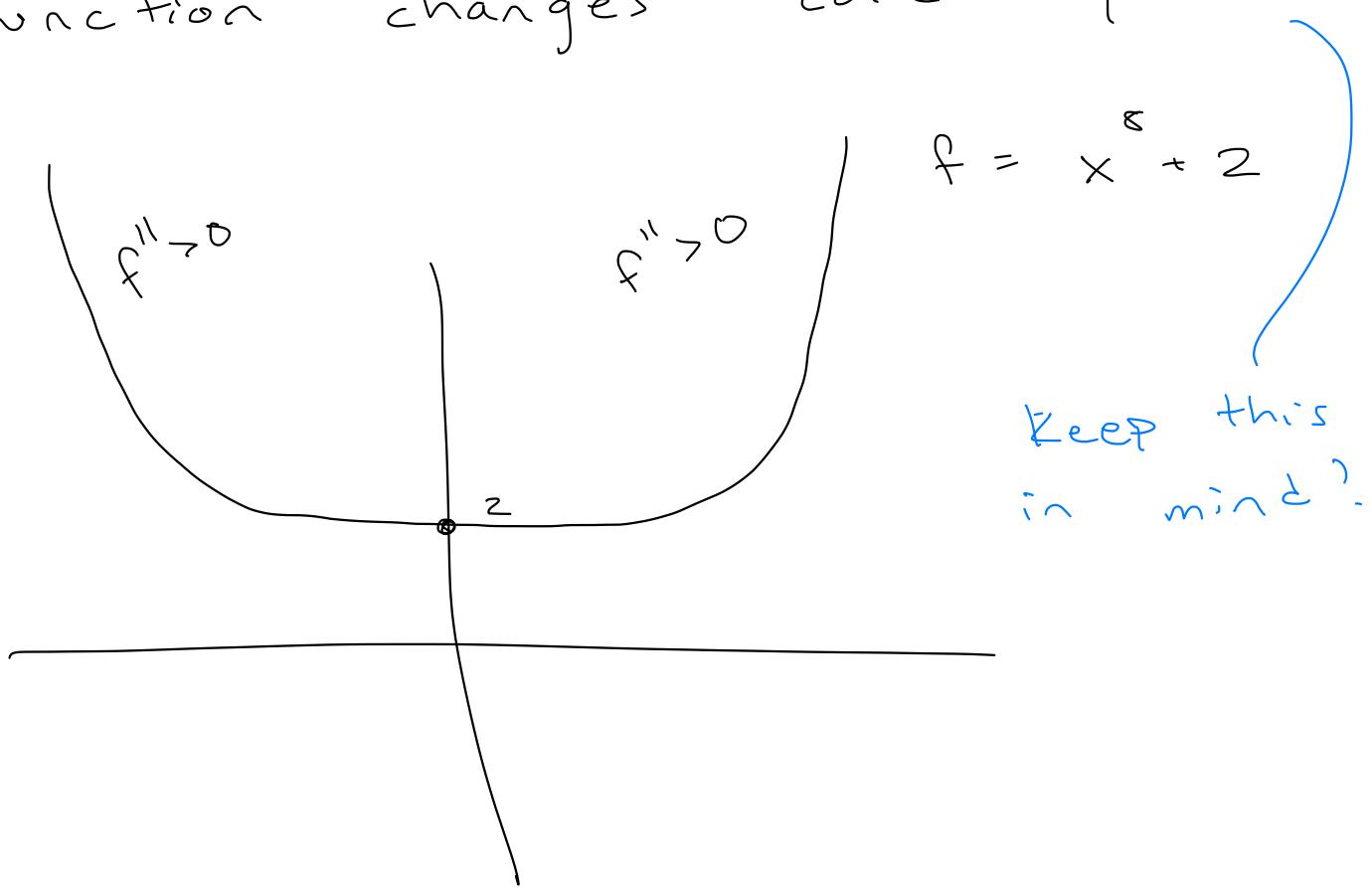
Q: where is f' undefined?

A: the domain of $\sin(x)$ is all real #'s, so $f'(x)$ is never undefined.

Q: where is f' equal to 0?

A: $-\sin(0) = 0$ so 0 is a critical point.

An inflection point is a point P in the domain of a continuous function where the function changes concavity.

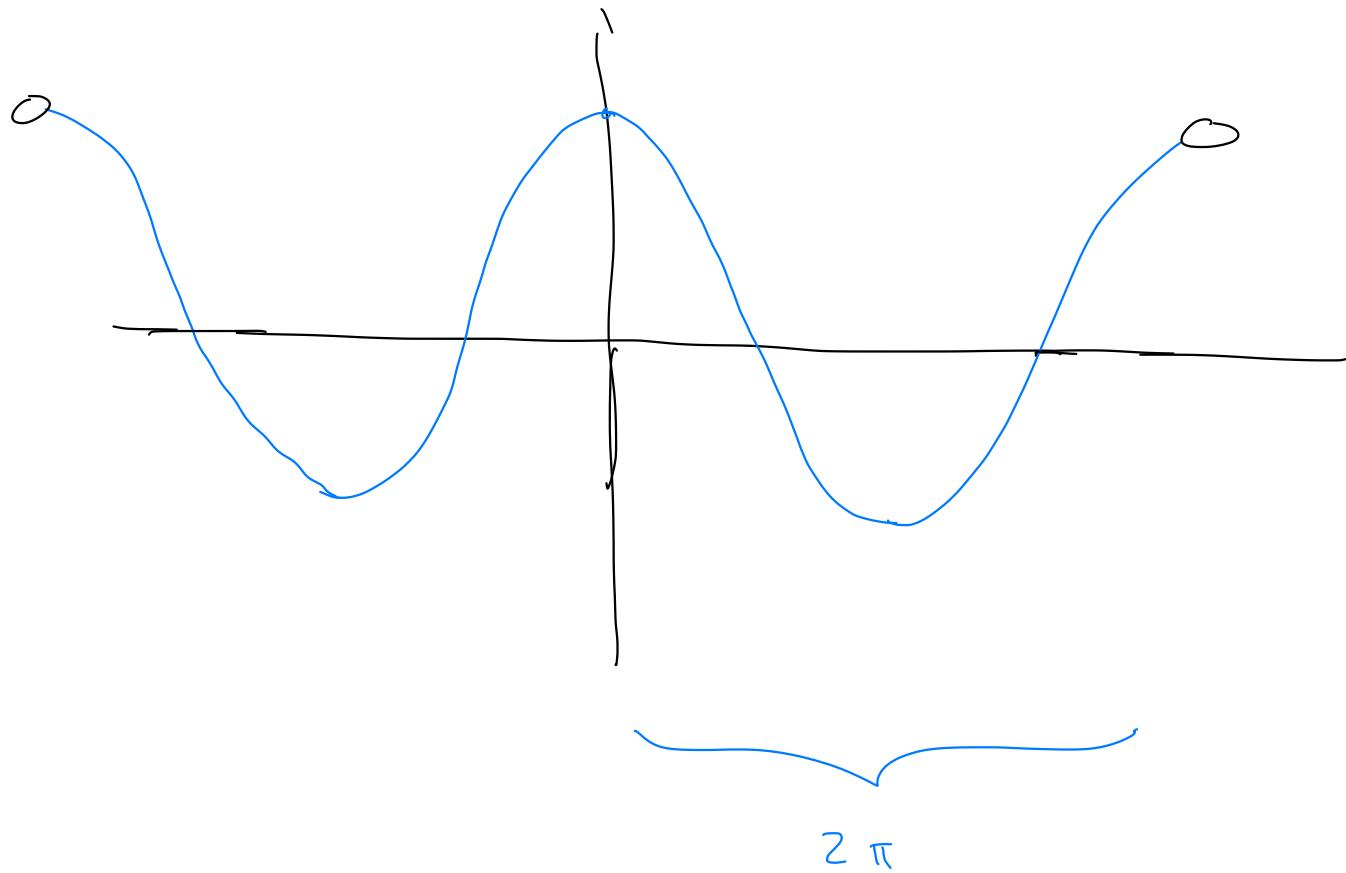


$f''(0) = 0$, but doesn't change concavity here.

- to check whether concavity changes look at second derivatives

Optimization (for functions) :

consider $f(x) = \cos(x)$ on $(-2\pi, 2\pi)$



- Find local maxes and local mins
- Find inflection points.

$$f'(x) = -\sin(x)$$

$$f''(x) = -\cos(x)$$

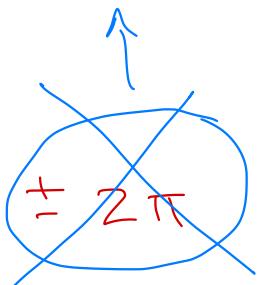
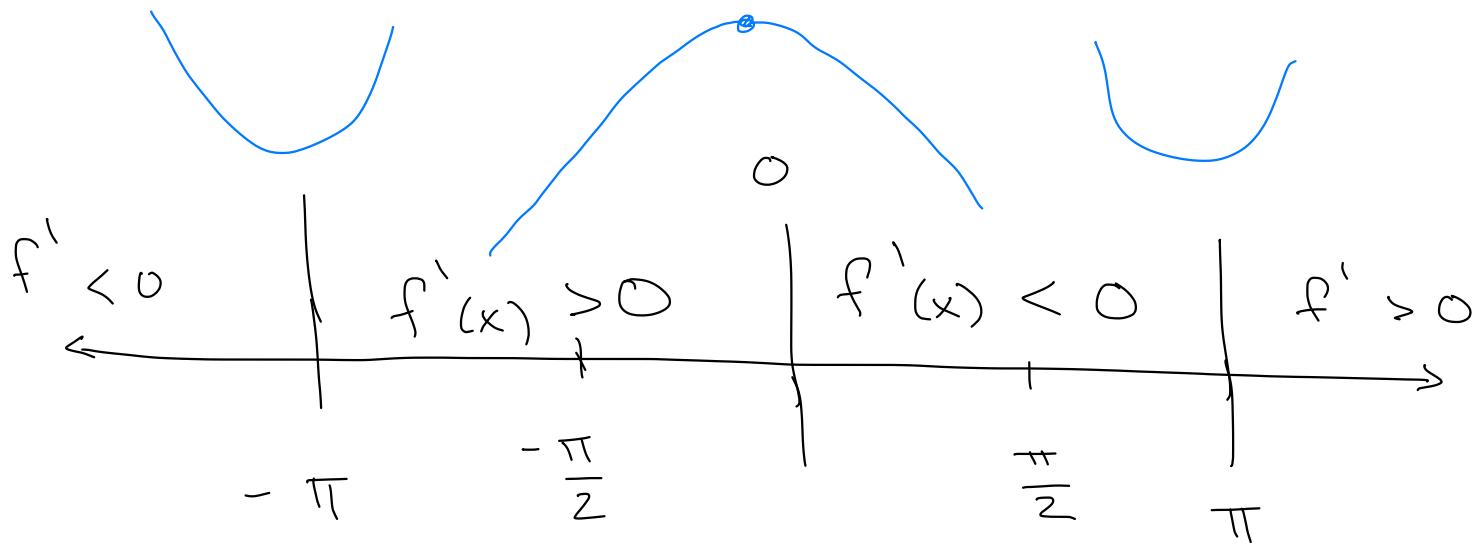
Critical Points:

$$f'(x) = 0$$

$$-\sin(x) = 0$$

Not in the domain.

$$x = 0, \pm\pi, \pm 2\pi$$



$$f'(-\pi/2) = -\sin(-\pi/2) = -(-1) = + \quad \left. \begin{array}{l} \\ \end{array} \right\} 0 \text{ is a local max}$$

$$f'(\pi/2) = -\sin(\pi/2) = -1 = -1$$

Similarly: $-\pi, \pi$ are local mins

We were using an open interval for our domain so

$\lim_{x \rightarrow -2\pi} f(x) \stackrel{?}{>} \text{previously found local max.}$

if $\stackrel{?}{>} \text{ holds then no global max.}$

local max at $0, f(0) = 1$

$\lim_{x \rightarrow -2\pi} f(x) = 1 \text{ so } 0 \text{ is a}$

global max.

We found 2 local minima using

F.D.T. $\pm \pi. f(-\pi) = -1, f(\pi) = -1$

$\lim_{x \rightarrow \pm 2\pi} f(x) \stackrel{?}{<} \text{previously found local mins}$

Then no global min.

We can conclude there are 2 global minima at $-\pi \pm \pi$.

We said before

$$f''(x) = -\cos(x)$$

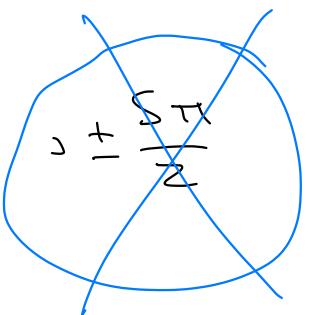
Potential Inflection Points:

$$f''(x) = 0$$

outside
of domain

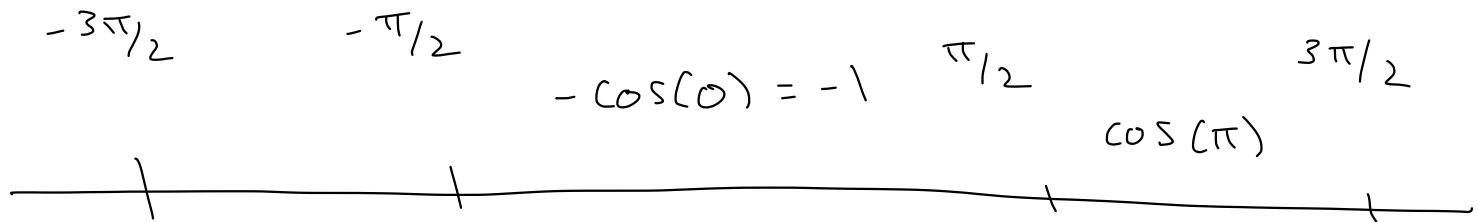
$$-\cos(x) = 0 \quad @ \quad \pm \frac{\pi}{2} \rightarrow \pm \frac{3\pi}{2}$$

Go to 115 webpage!



winter 2020 exams \rightarrow Exam 2 \rightarrow

justification



$$f'' < 0 \quad f'' > 0 \quad f'' < 0 \quad f'' > 0 \quad f'' < 0$$

Conclusion: $\pm \frac{3\pi}{2}$, $\pm \frac{\pi}{2}$ are indeed

inflection pts b/c second derivative
(concavity) changes sign.