
Exam: Monday April 6th

§ 4.5

can be units
of labor!

independent var: q - quantity

$$\left\{ \begin{array}{l} \text{Cost} = C(q) \rightarrow \text{cost at quantity } q \\ \text{Revenue} = R(q) \rightarrow \text{Revenue at quantity } q. \end{array} \right.$$

$\pi(q) \rightarrow$ profit at quantity q .

!!

$$\text{Revenue} - \text{Cost} = R(q) - C(q)$$

utilize Ch. 2!

$R'(q) = \text{Marginal Revenue}$ \leftarrow Derivative

$C'(q) = \text{Marginal Cost}$ \leftarrow Derivative

Utilize Ch. 4:

Marginal Revenue & Marginal cost
allow us to optimize profits.

Ch. 2:

Interpretations:

"how much R changes
when we increase by
1 unit of q "

approximating $R'(q)$, $C'(q)$, $\pi'(q)$
using "real world" ideas.

$$C'(10) \approx \frac{C(11) - C(10)}{11 - 10} \approx \frac{C(10.1) - C(10)}{10.1 - 10}$$

Benefit was that we could get a feel
for things in terms of their real world
"units".

Chapter 4. Allowed us to max and minimize functions.

• $\pi(q)$ is a function of quantity we would like to optimize our profit!

→ optimization relies on finding critical pts.

$$\pi'(q) = 0, \quad \pi'(q) \text{ undefined}$$

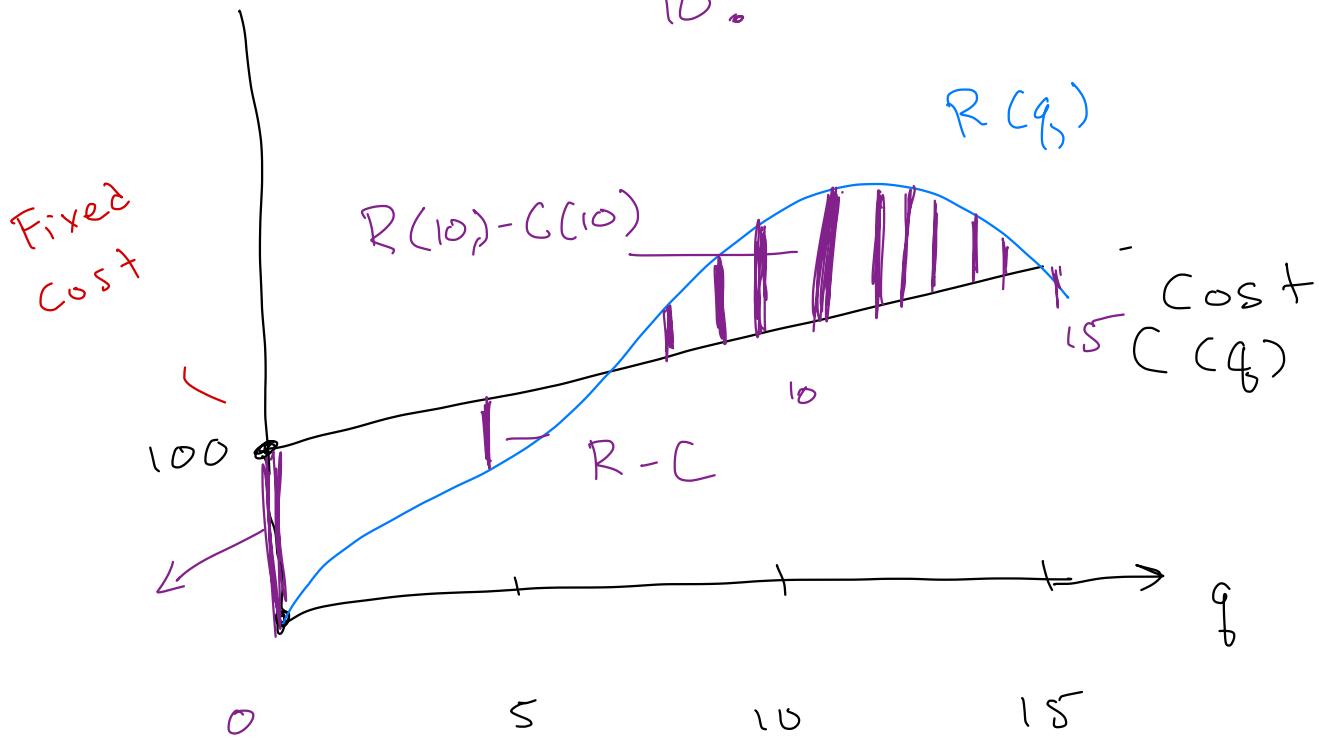
$$R'(q) - C'(q) = 0 \rightsquigarrow R'(q) = C'(q)$$

Once we've set $\text{Marginal revenue} = \text{Marginal cost}$
 then maximization boils down to performing a first derivative test.

Eg:

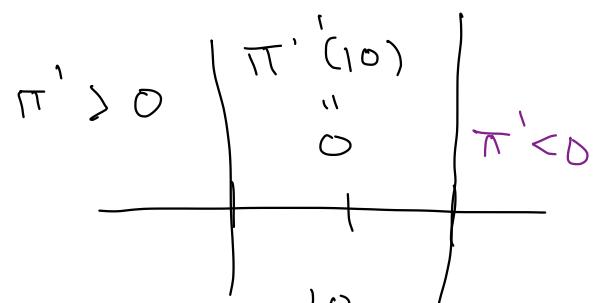
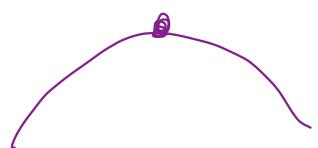
In practice π could be maximized at any of 0, 10, 15

BUT: in our case only at 10.



Derivative Geometrically:

slope of tangent line.



2 visible points when doing this

- Always check your endpoints
- Perform an HONEST sign test / first derivative test

Eg:

Revenue :

$$R(q) = 20q - \frac{1}{q}$$

as $q \rightarrow \infty$

$$R(q) \rightarrow \infty$$

$$C(q) = 10q$$

as $q \rightarrow 0$

$$R(q) \rightarrow -\infty$$

We make $20q - \frac{1}{q}$ dollars

when q units are produced.

But it costs $10q$ dollars when q units are produced

Fix domain to be

$$q \in [1, 10]$$

Ensures π' not undefined.

optimize $\pi(q)$:-

$$\pi'(q) = R'(q) - C'(q) := 0 \Leftrightarrow R'(q) = C'(q)$$

$$R'(q) = 20 + \frac{1}{q^2}$$

$$C'(q) = 10$$

Finding
critical
points

Set

$$R'(q) = C'(q)$$

$$20 + \frac{1}{q^2} = 10$$

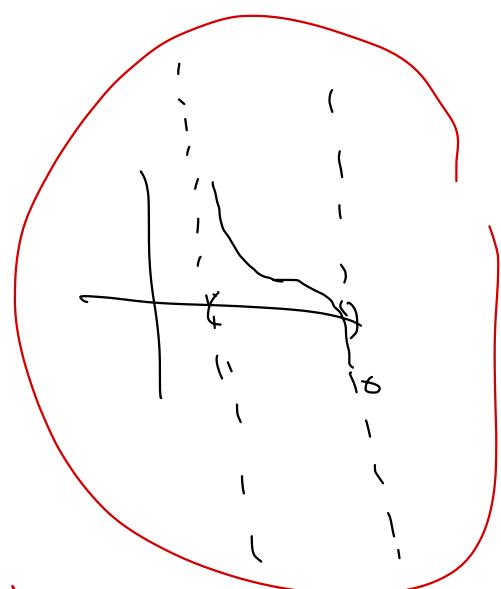
Have no
extrema

$$-10 = \frac{1}{q^2}$$

$$q = \pm \sqrt{-1/10}$$

Not a real #

Not in $[1, 10]$

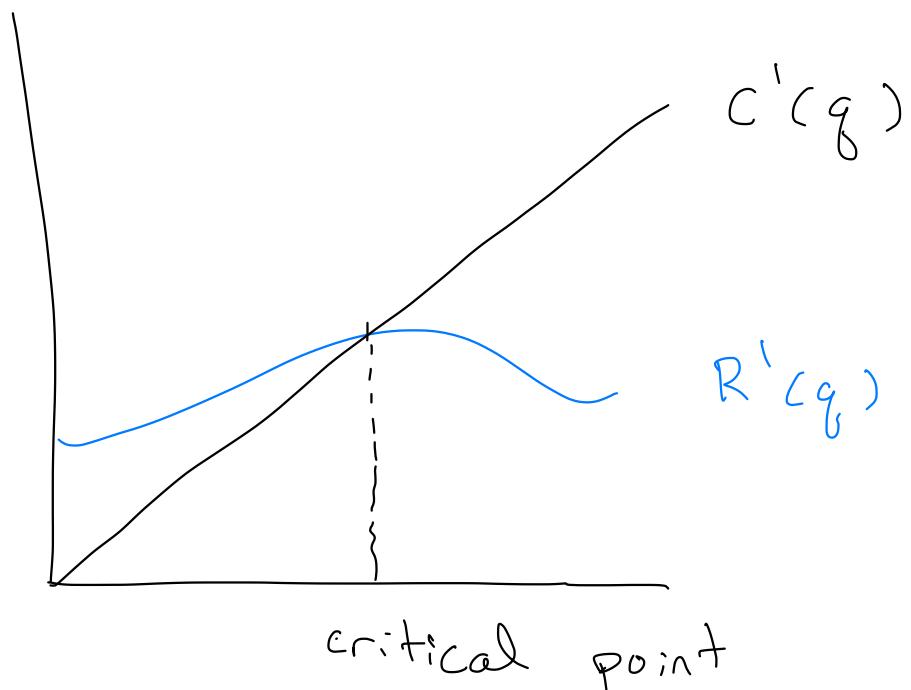


$$\Pi(1) = 20 - \frac{1}{1} - 10 = 9$$

$$\Pi(10) = 200 - \frac{1}{10} - 100 = 100 + \frac{9}{10}$$

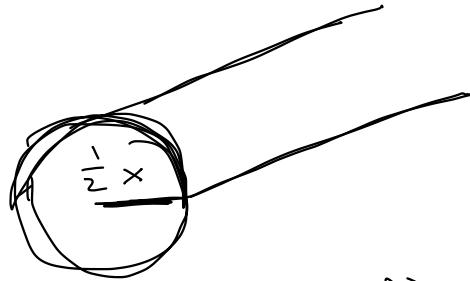
Global max

variant on previous exercise.



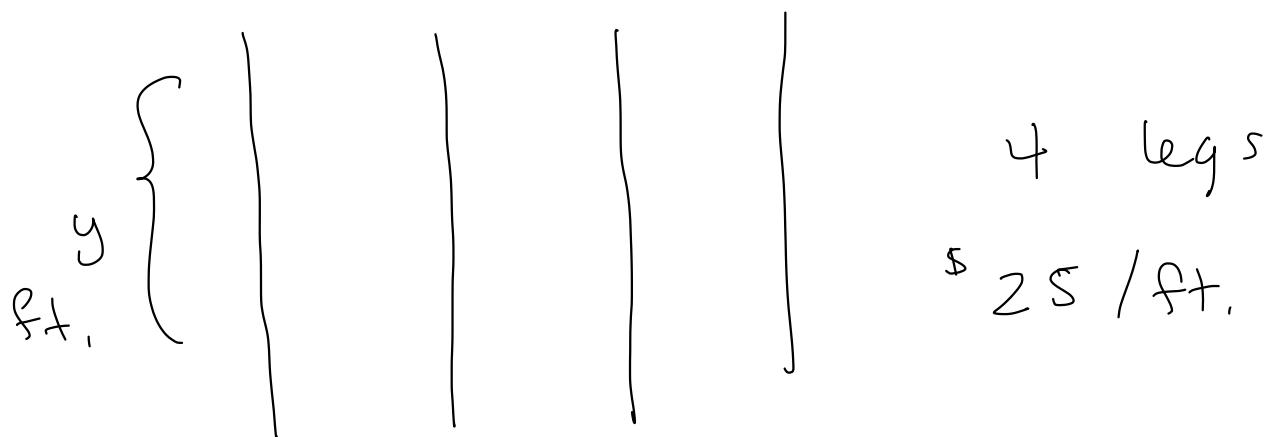
Review :

Q 3 - Ex 2 - W 18

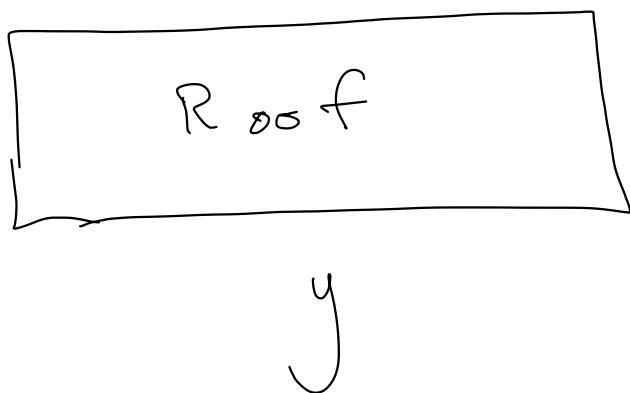


$$\frac{1}{2}(2\pi(\frac{1}{2}x))$$

Total is \$ 5,000.



$4 \cdot y \cdot 25 \rightarrow$ amt spent on legs



$$\frac{1}{2}(\text{circumference})$$

$$\frac{1}{2}(\pi x)$$

$$SA \text{ of root} = \frac{1}{2} \pi \times y$$

$$5,000 = 25 \cdot y \cdot 4 + \left(\frac{\pi}{2} \times\right) 40$$

$\underbrace{\hspace{10em}}_{\text{legs}}$ $\underbrace{\hspace{10em}}_{\text{root}}$

a)

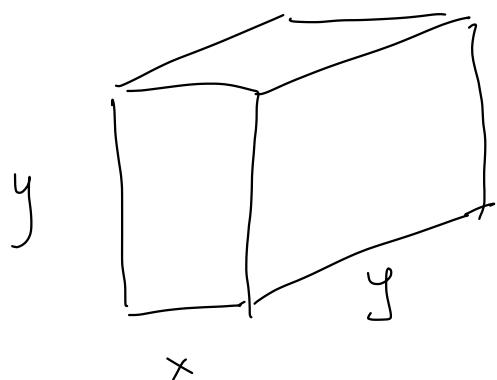
$$5000 - \left(\frac{\pi}{2}\right) 40 \times = 25 y \cdot 4$$

100

$$y = \frac{5000 - 20\pi \times}{100}$$

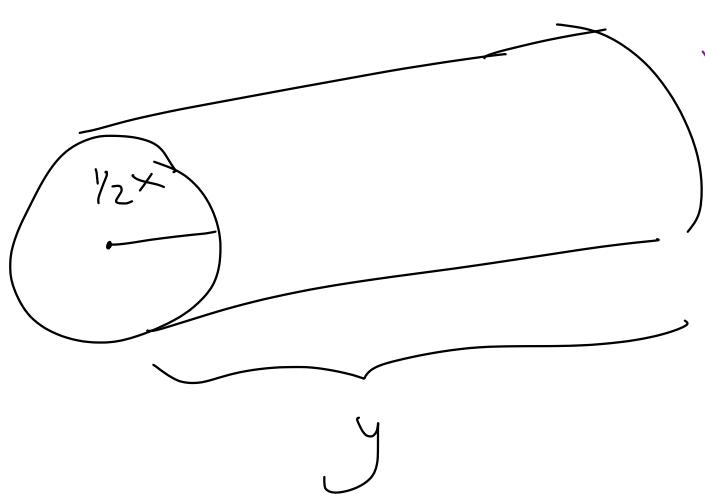
b) Formula for the volume enclosed;

rectangle star box:



$$\text{Volume} = x \cdot y^2$$

cylinder (half of this)



$$\text{Volume} = \frac{1}{2} \left(\pi \left(\frac{1}{2} x \right)^2 y \right)$$

$$V(x) = x \left(\frac{5000 - 20\pi x}{100} \right)^2 \quad \frac{\pi}{8} x^2 \frac{5000 - 20\pi x}{100}$$

c) "sides" = $x \geq 5$

"height" = $y \geq 8$

Domain: $\sqrt{x} \rightarrow$ function of x

$$5 \leq x \leq \frac{210}{\pi} \approx 66.87$$

$$8 \leq y \iff 8 \leq \frac{5000 - 20\pi x}{100}$$

$$800 \leq 5000 - 20\pi x$$

$$x \leq \frac{4200}{20\pi}$$

2.5 - using 2^{nd} derivatives 1.
concavity

2.6 - Differentiability:

- functions need to have continuous derivative

exam problems! \curvearrowleft

$f(x) = \begin{cases} Ax^2 & 1 \leq x < 3 \\ e^{Bx} & 3 \leq x \leq 5 \end{cases}$

at $x=3$ what happens.

- Ch. 3:
- Gateway
- LINEARITY $\rightarrow \frac{d}{dx}(af(x) + g(x)) =$
 - powers
 - product \ quotient $a \frac{d}{dx}f + \frac{d}{dx}g$
 - Chain rule
 - Exponential & log $z^x \rightarrow \ln(z) z^x$
 - Trigonometric
 - Inverse function \rightarrow on car^2
 - Implicit derivatives

3.9 - Linear (and Quadratic) Approximation

$$f(x) \approx f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2$$

near a or card if you
don't know it!

3.10 - Theorems:

- ↙
- MVT
 - EVT
- Be careful of hypothesis!

Exam:

multiple
choice

MVT: $[a,b]$ continuous
 (a,b) differentiable

4.1 - 1st & 2nd derivs.

critical & inflection points

$f' = 0$, f' DNE concavity changes

4.2 & 4.3 - Optimization & Modeling

1st derivative test

4.5 - Applications to (marginality.) Economics

Coaching Note:

- Tonight: practice
- I'll collect them until

Sat 7:00 pm, Grade Sun 7:00 pm.