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Topic 1

Self-Concordant Barrier Function Parameters: A
Result for the Conic Hausdorff Metric

1 Background on Cones

1.1 The Descent Cone

Definition 1.1 (Cone). A cone is a set K ⊆ Rn that is positively homogeneous: K = τK for all
τ > 0. A convex cone is a cone which is also a convex set.

Definition 1.2 (Descent Cone). The descent cone D(f, x) associated with a proper convex function
f : Rn → R, and a point x ∈ Rd is the set:

D(f, x) =
⋃
τ>0

{u ∈ Rn : f(x+ τu) ≤ f(x)}.

It is worth noting that the descent cone of a convex function is itself a convex cone. While we
have this guarantee, there are examples where the descent cone may not be closed.

1.2 Polyhedral Cones

Definition 1.3 (Polyhedral Cone). A cone C is polyhedral if it can be expressed as the intersection
of a finite number of half spaces, i.e.

C =

N⋂
i=1

{x ∈ Rn : 〈ui, x〉 ≥ 0} for some ui ∈ Rn.

We will denote the set of all closed convex cones in Rn by Cn.

Definition 1.4 (Polar). The polar cone associated with a general cone in Rn is the closed convex
cone

K◦ = {v ∈ Rn : 〈v, x〉 ≤ 0 for all x ∈ K}.

Fact 1.5. The polar P ◦ of a polyhedral cone P is itself polyhedral.

2 A New Metric

2.1 Angular and S Distance

Definition 1.6 (Angular Distance). The angular distance between two non zero vectors x and y

distS(x, y) = arccos

(
〈x, y〉
||x||||y||

)
for x, y ∈ Rn\{0}.
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Definition 1.7 (S Distance). Using the above definition as well as the conventions that: distS(0,0) =
0 and distS(0, x) = distS(x,0) = π/2 for x 6= 0, we can define the S distance between two cones
C,C ′ as

distS(C,C ′) = inf
x∈C,y∈C′

distS(x, y)

given that C,C ′ 6= {0}. In this case, we use the notions above to define distances involving {0}.

Definition 1.8 (Angular Expansion). The angular expansion TS(C,α) of a cone C ∈ Cn by an
angle 0 ≤ α ≤ 2π is the set

TS(C,α) = {x ∈ Rn : distS(x, y) ≤ α for some y ∈ C}

Fact 1.9. The angular expansion of a convex cone is not necessarily convex for all α > 0. An
easy to see example of this phenomenon is to consider C a proper subspace which has an angular
expansion that is never (i.e. for all α) convex.

Combining all of the above we can define a metric on Cn as follows:

Definition 1.10 (Conic Hausdorff Metric). For C1, C2 ∈ Cn we define:

distH(C1, C2) = inf {α ≥ 0 : TS(C1, α) ⊇ C2 and TS(C2, α) ⊇ C1} .

Fact 1.11. The metric space (Cn,distH) equipped with the conic Hausdorff metric is a compact
metric space. Moreover polarity is a local isometry on Cn, that is: For α < π/2,distH(C1, C2) = α
implies distH(C◦1 , C

◦
2 ) = α.

We now come to the most important fact of this section:

Fact 1.12. Let C ∈ Cn be a closed convex cone. For each ε > 0, there is a polyhedral cone Cε ∈ Cn
that satisfies distH(C,Cε) < ε. That is to say, the set of polyhedral cones is dense in Cn.

3 Relation to Barrier Parameters

Theorem 1.13. Let a cone C ∈ Cn have optimal barrier paramater ϑ(C) = K. Then for an
arbitrary cone D with distH(C,D) < δ, we have ϑ(D) ∼ K ±O(nδ3/2)).

In [1] it was shown that for any polyhedral cone C, we can calculate the characteristic (and thus
universal barrier) function for C in an algorithmic way needing only a simplicial decomposition of
the dual cone C∗. Using the above result along with the density of the polyhedral cones in Cn we
can produce a “good” approximation to a desired barrier function for a cone D, by using a close
approximation via polyhedral cones and a corresponding barrier for these cones. Moreover, our
approximate barrier function has certain guarantees in terms of optimality of the barrier paramater.
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