Notes on Self Concordant Barrier Functions

Anthony Della Pella Math Department, University of Michigan

Contents

1	Background on Cones	3
	1.1 The Descent Cone	3
	1.2 Polyhedral Cones	3
2	A New Metric 2.1 Angular and S Distance	3 3
3	Relation to Barrier Parameters	4

<u>Topic 1</u> Self-Concordant Barrier Function Parameters: A Result for the Conic Hausdorff Metric

1 Background on Cones

1.1 The Descent Cone

Definition 1.1 (Cone). A <u>cone</u> is a set $K \subseteq \mathbb{R}^n$ that is positively homogeneous: $K = \tau K$ for all $\tau > 0$. A <u>convex cone</u> is a cone which is also a convex set.

Definition 1.2 (Descent Cone). The <u>descent cone</u> $\mathcal{D}(f, x)$ associated with a proper convex function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$, and a point $x \in \mathbb{R}^d$ is the set:

$$\mathcal{D}(f,x) = \bigcup_{\tau > 0} \{ u \in \mathbb{R}^n : f(x + \tau u) \le f(x) \}.$$

It is worth noting that the descent cone of a convex function is itself a convex cone. While we have this guarantee, there are examples where the descent cone may not be closed.

1.2 Polyhedral Cones

Definition 1.3 (Polyhedral Cone). A cone C is <u>polyhedral</u> if it can be expressed as the intersection of a finite number of half spaces, i.e.

$$C = \bigcap_{i=1}^{N} \{ x \in \mathbb{R}^{n} : \langle u_{i}, x \rangle \geq 0 \} \text{ for some } u_{i} \in \mathbb{R}^{n}.$$

We will denote the set of all closed convex cones in \mathbb{R}^n by \mathcal{C}_n .

Definition 1.4 (Polar). The <u>polar cone</u> associated with a general cone in \mathbb{R}^n is the closed convex cone

$$K^{\circ} = \{ v \in \mathbb{R}^n : \langle v, x \rangle \le 0 \text{ for all } x \in K \}.$$

Fact 1.5. The polar P° of a polyhedral cone P is itself polyhedral.

2 A New Metric

2.1 Angular and S Distance

Definition 1.6 (Angular Distance). The angular distance between two non zero vectors x and y

dist_S(x, y) = arccos
$$\left(\frac{\langle x, y \rangle}{||x|||y||}\right)$$
 for $x, y \in \mathbb{R}^n \setminus \{0\}$.

Definition 1.7 (S Distance). Using the above definition as well as the conventions that: $dist_S(\mathbf{0}, \mathbf{0}) = 0$ and $dist_S(\mathbf{0}, x) = dist_S(x, \mathbf{0}) = \pi/2$ for $x \neq 0$, we can define the S distance between two cones C, C' as

$$\operatorname{dist}_{S}(C, C') = \inf_{x \in C, y \in C'} \operatorname{dist}_{S}(x, y)$$

given that $C, C' \neq \{\mathbf{0}\}$. In this case, we use the notions above to define distances involving $\{\mathbf{0}\}$.

Definition 1.8 (Angular Expansion). The <u>angular expansion</u> $T_S(C, \alpha)$ of a cone $C \in C_n$ by an angle $0 \le \alpha \le 2\pi$ is the set

$$T_S(C, \alpha) = \{x \in \mathbb{R}^n : \operatorname{dist}_S(x, y) \leq \alpha \text{ for some } y \in C\}$$

Fact 1.9. The angular expansion of a convex cone is not necessarily convex for all $\alpha > 0$. An easy to see example of this phenomenon is to consider C a proper subspace which has an angular expansion that is never (i.e. for all α) convex.

Combining all of the above we can define a metric on C_n as follows:

Definition 1.10 (Conic Hausdorff Metric). For $C_1, C_2 \in \mathcal{C}_n$ we define:

$$\operatorname{dist}_{H}(C_{1}, C_{2}) = \inf \left\{ \alpha \geq 0 : T_{S}(C_{1}, \alpha) \supseteq C_{2} \text{ and } T_{S}(C_{2}, \alpha) \supseteq C_{1} \right\}.$$

Fact 1.11. The metric space $(C_n, \operatorname{dist}_H)$ equipped with the conic Hausdorff metric is a compact metric space. Moreover polarity is a local isometry on C_n , that is: For $\alpha < \pi/2$, $\operatorname{dist}_H(C_1, C_2) = \alpha$ implies $\operatorname{dist}_H(C_1^\circ, C_2^\circ) = \alpha$.

We now come to the most important fact of this section:

Fact 1.12. Let $C \in C_n$ be a closed convex cone. For each $\varepsilon > 0$, there is a polyhedral cone $C_{\varepsilon} \in C_n$ that satisfies dist_H $(C, C_{\varepsilon}) < \varepsilon$. That is to say, the set of polyhedral cones is dense in C_n .

3 Relation to Barrier Parameters

Theorem 1.13. Let a cone $C \in C_n$ have optimal barrier parameter $\vartheta(C) = K$. Then for an arbitrary cone D with dist_H $(C, D) < \delta$, we have $\vartheta(D) \sim K \pm O(n\delta^{3/2})$.

In [1] it was shown that for any polyhedral cone C, we can calculate the characteristic (and thus universal barrier) function for C in an algorithmic way needing only a simplicial decomposition of the dual cone C^* . Using the above result along with the density of the polyhedral cones in C_n we can produce a "good" approximation to a desired barrier function for a cone D, by using a close approximation via polyhedral cones and a corresponding barrier for these cones. Moreover, our approximate barrier function has certain guarantees in terms of optimality of the barrier parameter.

References

 Osman Güler. Barrier functions in interior point methods. Mathematics of Operations Research, 21(4):860–885, 1996.