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Topic 1

Self-Concordant Barrier Function Parameters: A
Result for the Conic Hausdorftf Metric

1 Background on Cones

1.1 The Descent Cone

Definition 1.1 (Cone). A cone is a set K C R™ that is positively homogeneous: K = 7K for all
7> 0. A convex cone is a cone which is also a convex set.

Definition 1.2 (Descent Cone). The descent cone D(f,x) associated with a proper conver function
f:R™ 5 R, and a point x € R? is the set:

D(f,x) = |J{ueR": flz+ru) < f(x)}.

>0

It is worth noting that the descent cone of a convex function is itself a convex cone. While we
have this guarantee, there are examples where the descent cone may not be closed.

1.2 Polyhedral Cones

Definition 1.3 (Polyhedral Cone). A cone C' is polyhedral if it can be expressed as the intersection
of a finite number of half spaces, i.e.

N
C= ﬂ{x e R™ : (u;, z) > 0} for some u; € R™.
i=1
We will denote the set of all closed convex cones in R™ by C,,.

Definition 1.4 (Polar). The polar cone associated with a general cone in R™ is the closed convex
cone

K°={veR": (v,z) <0 forallx € K}.

Fact 1.5. The polar P° of a polyhedral cone P is itself polyhedral.

2 A New Metric

2.1 Angular and S Distance

Definition 1.6 (Angular Distance). The angular distance between two non zero vectors x and y

(z,y)
(e

distg(z,y) = arccos ( ) for z,y € R™\{0}.
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Definition 1.7 (S Distance). Using the above definition as well as the conventions that: dists(0,0) =
0 and distg(0,z) = dists(x,0) = 7/2 for x # 0, we can define the S distance between two cones
C,C" as

dists(C,C") = xecirbfe(:/ dists(x,y)

given that C,C" # {0}. In this case, we use the notions above to define distances involving {0}.

Definition 1.8 (Angular Expansion). The angular expansion Ts(C,«) of a cone C € C, by an
angle 0 < a < 271 is the set

Ts(C,a) = {x € R" : dists(x,y) < « for some y € C}

Fact 1.9. The angular expansion of a conver cone is not necessarily convex for all a > 0. An
easy to see example of this phemomenon is to consider C' a proper subspace which has an angular
expansion that is never (i.e. for all a) convex.

Combining all of the above we can define a metric on C,, as follows:

Definition 1.10 (Conic Hausdorff Metric). For Cy,Cs € C,, we define:
distg (C1,C2) = inf {a > 0: Ts(C1,a) 2 Cq and Ts(Ca, ) 2 Cy}.

Fact 1.11. The metric space (Cn,disty) equipped with the conic Hausdorff metric is a compact
metric space. Moreover polarity is a local isometry on Cy, that is: For a < 7/2,distg(C1,Cs) = «
implies dist g (C7,C3) = a.

We now come to the most important fact of this section:

Fact 1.12. Let C € C,, be a closed convex cone. For each € > 0, there is a polyhedral cone C. € C,
that satisfies dist g (C,Ce) < €. That is to say, the set of polyhedral cones is dense in Cy,.

3 Relation to Barrier Parameters

Theorem 1.13. Let a cone C € C, have optimal barrier paramater 9(C) = K. Then for an
arbitrary cone D with distg (C, D) < &, we have 9(D) ~ K + O(nd>/?)).

In [1] it was shown that for any polyhedral cone C, we can calculate the characteristic (and thus
universal barrier) function for C' in an algorithmic way needing only a simplicial decomposition of
the dual cone C*. Using the above result along with the density of the polyhedral cones in C, we
can produce a “good” approximation to a desired barrier function for a cone D, by using a close
approximation via polyhedral cones and a corresponding barrier for these cones. Moreover, our
approximate barrier function has certain guarantees in terms of optimality of the barrier paramater.
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