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1 Background Information

We set out to generalize a result of Barvinok [2] which showed that the partition
function of the Boolean cube defined therein is zero free when polynomial coefficients
are taken in a certain circular domain centered on the real axis. We show that a
similar result holds for a thin strip stretched along the real axis. Our main result is
presented as Theorem 5 below.

2 Useful Preliminaries

We recall definitions pertaining to functions on the boolean cube and their par-
tition function. First, we have f : {−1, 1}n → C a polynomial (indexed by subsets I
of [n] = {1, . . . , n}) of the form:

f(x) =
∑
I:I⊆[n]

αIx
I

where xI =
∏

i∈I xi. For a given f we can define quantities:

L(f) = max
i=1,...,n

∑
I:i∈I

|αI |

and

deg(f) = max
I:αI 6=0

|I|.

We define the partition function of the boolean cube for a given polynomial f as:

E
[
ef
]

=
1

2n

∑
x∈{−1,1}n

ef(x).

We recall that a face of the boolean cube F ⊂ {−1, 1}n is determined by the
choice of some subset of indices as well as signs (±1) for each chosen index where we
fix the index to have that sign and then vary all other indices over ±1. In notation if
I+(F ) represents the subset of indices to have positive values, and I−(F ) the subset
of indices to have negative values, we have:

F = {(x1, . . . , xn) where xi = 1 for i ∈ I+(F ) and xi = −1 for i ∈ I−(F )} ⊂ {−1, 1}n.
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Moreover, the dimension of a face is the number of “free” indices (those without a
specification) and the codimension is the ambient dimension n minus the dimension
of the face. For a given face F and a subset J ⊂ I+(F ) ∪ I−(F ) we define the sign
of the subset to be the quantity signF (J) =

∏
j∈J xi.

Finally, we can fix subsets of free indices in a face. For a subset J ⊂ [n] we denote
by {−1, 1}J the set of all points x = (xj : j ∈ J) where xj is fixed as either ±1 (and
all other xi are varied over {−1, 1}). For a face F ⊂ {−1, 1}n of the boolean cube
we define I(F ) as the free indices of F , that is the elements of [n] not fixed in the
definition of F . We can then define for J ⊂ I(F ), F ε where ε ∈ {−1, 1}J to be:

F ε = {x ∈ F, x = (x1, . . . , xn) : xj = εj for j ∈ J ⊂ I(F )} ⊂ F.

Taking a conditional expectation with respect to a face of the boolean cube, we
have:

E
[
ef
∣∣ F ] =

1

2dim(F )

∑
x∈F

ef(x).

We now recall a key geometric lemma from [1].

Lemma 1. Let u1, . . . , un ∈ C be non-zero complex numbers viewed as vectors in the
plane such that the angle between any two doesn’t exceed π/2. Let

v =
n∑
j=1

αjuj and w =
n∑
j=1

βjuj

where |1− Reαj| ≤ δ, |1− Re βj| ≤ δ, and | Imαj| ≤ τ, | Im βj| ≤ τ for j = 1, . . . , n
and some 0 ≤ δ < 1 and 0 ≤ τ < 1− δ. Then, v, w 6= 0 and the angle between v and
w doesn’t exceed:

2 arctan δ + 2 arcsin
τ

1− δ
.

Lemma 2. Let u1, . . . , un ∈ C be as in the lemma, and suppose a > 0. Then, setting

v =
n∑
j=1

αjuj and w =
n∑
j=1

βjuj
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we have the v, w 6= 0 and the angle between v and w doesn’t exceed 2 arctan δ +
2 arcsin τ

1−δ provided |1−aReαj| ≤ δ, |1−aRe βj| ≤ δ, and |a Imαj| ≤ τ, |a Im βj| ≤
τ where 0 ≤ δ < 1 and 0 ≤ τ < 1− δ.

Proof. Note that we can write

v =
n∑
j=1

aαi

(
1

a

)
uj

and

w =
n∑
j=1

aβi

(
1

a

)
uj.

The vectors
(
1
a

)
uj satisfy the conditions of Lemma 1 and by assumption |1 −

Re aαj| ≤ δ, |1 − Re aβj| ≤ δ and | Im aαj| ≤ τ, | Im aβj| ≤ τ so applying Lemma 1
to v and w written as above we obtain the desired result.

The following definition will be useful to save on bulky notation:

Definition 3. Let ζ = s+ it be a complex number with 0 < s < 0.5, and −0.2 < t <

0.2. Then, we define δ′(ζ) =
2e|s|

es + e−s
− 1 and τ ′(ζ) =

2e|s| sin(|t|)
cos(t)(es + e−s)

. Further, we

define the quantity

^(ζ) = 2 arctan(δ′(ζ)) + 2 arcsin

(
τ ′(ζ)

1− δ′(ζ)

)
.

Corollary 4. Suppose that u1, . . . , un are as above, and fix some complex number
z. Then, if αi is chosen so that αi = exp(ai) = exp(±z), while βi = exp(bi) where
bi = ∓z, we have the angle between u and v not exceeding:

^(z) = 2 arctan(δ′(z)) + 2 arcsin

(
τ ′(z)

1− δ′(z)

)
.

Proof. Set

a =
2

(eRe z + e−Re z) cos(Im z)
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with a > 0. Then, we apply Lemma 2 with a and note that:

|1− aReαi| ≤
∣∣∣∣1− 2eRe ai

eRe ai + e−Re ai

∣∣∣∣
≤ 2e|Re ai|

eRe ai + e−Re ai
− 1

= δ′(z),

while

|a Im(αi)| ≤
2e|Re ai| sin(| Im ai|)

cos(Im ai) (eRe ai + e−Re ai)

= τ ′(z).

Since similar inequalities hold for βi, we can apply Lemma 2 to obtain our result.

3 The Main Theorem

Theorem 5. Let n be a positive integer. Consider the domain in C2n, denoted
U(δ, τ), and defined to be the set

{
f(x) =

∑
I⊂[n]

αIx
I : {−1, 1}n → C

∣∣∣∣
∀j ∈ [n],

∑
J⊂[n]:j∈J

|ReαJ | <
δ

deg(f)
and

∑
J⊂[n]:j∈J

| ImαJ | <
τ

deg(f)

}
.

For a fixed 0 < δ < π/4, set τ = 1
50

(π
4
− δ)2. Then, those polynomials f ∈ U(δ, τ)

have the property that E
[
ef
]

is nonzero.

As an expository remark, we mention here that this is similar to a theorem in
the prequel [2] where instead a circular zero free region was obtained.

Proof. We will use descending induction on the codimension r of faces F of the
boolean cube. We use three Statements:

� Statement 1.r: Let F be a face of codimension r. Then:

E
[
ef
∣∣ F ] 6= 0

for all f ∈ U(δ, τ).
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� Statement 2.r: Let F be a face of codimension r − 1. For every element
j ∈ I(F ), we denote by j+ ∈ {−1, 1}{j} the set of points with coordinate j
fixed to +1 and similarly for j−. Then, for any f ∈ U(δ, τ), the angle between:

E
[
ef
∣∣∣ F j+

]
6= 0 and E

[
ef
∣∣∣ F j−

]
6= 0 (1)

doesn’t exceed π
2
. Moreover, choosing J ⊂ I(F ), we have for any ε, φ ∈

{−1, 1}J , the same statement as above for

E
[
ef
∣∣ F ε

]
6= 0 and E

[
ef
∣∣ F φ

]
6= 0, (2)

where now f is a polynomial in U(δ, τ) with |J | ≤ deg(f).

� Statement 3.r: Let f, g ∈ U(δ, τ) be two polynomials which differ only on the
coefficient corresponding to xJ where the signs of the coefficients, αJ and βJ ,
corresponding to xJ are flipped. Then, for any face F of codimension r, the
angle between

E
[
ef
∣∣ F ] 6= 0 and E[eg | F ] 6= 0

doesn’t exceed ^(αJ) = 2 arctan δ′(αJ) + 2 arcsin τ ′(αJ )
1−δ′(αJ )

.

We now show that each Statement holds for r = n i.e. faces with dimension 0.

� Statement 1.n: This holds trivially since E
[
ef
∣∣ F ] = ef(x) where x ∈ F is the

single element in the face. We can write:

ef(x) =
∏
I⊂[n]

eαIx
I

(3)

which is certainly nonzero provided f ∈ U(δ, τ).

� Statement 2.n: Since the codimension of F is n− 1, we note that F j+ and F j−

each correspond to one vertex on the cube, call it x. Thus, we can write:

E
[
ef
∣∣∣ F j+

]
=

∏
I⊂[n]:j 6∈I

eαIx
I
∏

J⊂[n]:j∈J

eαJx
J

and

E
[
ef
∣∣∣ F j−

]
=

∏
I⊂[n]:j 6∈I

eαIx
I
∏

J⊂[n]:j∈J

e−αJx
J

.

Each expectation is nonzero (being a product of nonzero exponential terms).
Moreover, by dividing the two expressions, we note that the angle between the
two expectations is at most 2τ

deg(f)
< π

2
.
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� Statement 3.n: Let F be a face of codimension n, that is a point in the cube
(call it x). Then, Statement 3.n holds by utilizing the representation Eq. (3).
Namely, for f(x) =

∑
I⊂[n] αIx

I and g =
∑

I⊂[n]
I 6=J

αIx
I+βJx

J , (where βJ = −αJ)

we have

E
[
ef
∣∣ F ] =

∏
I⊂[n]

eαIx
I

(4)

while

E[eg | F ] = eβJx
J
∏
I⊂[n]
I 6=J

eαIx
I

(5)

where the products differ only by a factor eαJ−βJ . We claim then that the angle
between the expectations is smaller than 2(ImαJ) which in turn is bounded
above by 2^(αJ) whenever f ∈ U(δ, τ).

Indeed, letting αJ = s+ it, we have:

τ ′(s+ it) =
2e|s| sin(|t|)

cos(t) (es + e−s)

≥ sin(|t|)
cos(t)

which for small t < π/2,

= tan(|t|).
Similarly, we have:

1− δ′(s+ it) = 2− 2e|s|

es + e−s

≤ 1.

Thus, by considering the arcsin term of ^(αJ) we have:

2 Im(αJ) = 2t

≤ 2 arcsin(tan(|t|))

≤ 2 arctan(δ′(s+ it)) + 2 arcsin

(
τ ′(s+ it)

1− δ′(s+ it)

)
= ^(s+ it)

= ^(αJ)
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where it is worth remarking that 1−δ′(s+it) is non-negative since e|s| ≤ es+e−s.
This proves the claim.

With the base case of our induction verified, we will show that Statements 1.r, 2.r,
and 3.r imply Statements 1.(r − 1), 2.(r − 1), and 3.(r − 1).

Statement 1.(r − 1) follows from an application of 2.r to a decomposition of
E
[
ef
∣∣ F ]. In particular, suppose that F is a face of codimension r − 1. Then, we

have for some j ∈ I(F ): 2E
[
ef
∣∣ F ] = E

[
ef
∣∣∣ F j+

]
+ E

[
ef
∣∣∣ F j−

]
where as before,

j+ ∈ {−1, 1}{j} is the set of points with a 1 in the jth entry and similarly for j−. By
1.r each summand is itself nonzero and the angle between them is bounded by π

2
via

2.r, thus the sum cannot possibly be zero.
For Statement 3.(r − 1) we note that there are two possible cases for E

[
ef
∣∣ F ]

and E[eg | F ]. Let J be the coefficient on which f and g differ. If J ⊂ I+(F )∪ I−(F )
then signF (J) is well defined and we can factor out the J coefficient which is equal
up to sign in f and g as follows:

E
[
ef
∣∣ F ] =

∑
x∈F

ef(x)

=
∑
x∈F

e
∑
I⊂[n] αIx

I

=
∑
x∈F

e
∑
I⊂[n]:I 6=J αIx

I

eαJx
J

= eαJ signF (J)
∑
x∈F

e
∑
I⊂[n]:I 6=J αIx

I

and

E[eg | F ] =
∑
x∈F

eg(x)

=
∑
x∈F

e
∑
I⊂[n] αIx

I

=
∑
x∈F

e
∑
I⊂[n]:I 6=J αIx

I

eβJx
J

= eβJ signF (J)
∑
x∈F

e
∑
I⊂[n]:I 6=J αIx

I

Then, dividing the common parts we have the angle between the two is at most
| ImαJ | + | Im βJ | = 2| ImαJ | and noting that f ∈ U(δ, τ) we get the desired result.
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Contrarily, if J is not fixed by F , there is some nonempty, and maximal subset of J
say Ĵ of elements whose sign is not fixed in F , i.e. Ĵ ⊂ I(F ). Then we can write:

E
[
ef
∣∣ F ] =

1

2r+|Ĵ |

∑
ε∈{−1,1}Ĵ

∑
x∈F ε

e
∑
I:I 6=J αIx

I

eαJx
J

.

Similarly,

E[eg | F ] =
1

2r+|Ĵ |

∑
ε∈{−1,1}Ĵ

∑
x∈F ε

e
∑
I:I 6=J αIx

I

eβJx
J

.

We now note that each ε leads to a complex number uε =
∑

x∈F ε e
∑
I:I 6=J αIx

I

mul-
tiplied by either an eαJ factor or an eβJ factor (up to the sign of xJ). Since
by Statement 2.r the uε differ in angle no more than π

2
(taking for instance a

function h : {−1, 1}n → C which agrees with f ≡ g on all other coefficients
than J and is 0 for coefficient J) by use of Statement 2.r. We can apply Corol-
lary 4 and obtain that the angle between E

[
ef
∣∣ F ] and E[eg | F ] doesn’t exceed

^(αJ) = 2 arctan δ′(αJ) + 2 arcsin τ ′(αJ )
1−δ′(αJ )

.

We now prove Statement 2.(r − 1) assuming the higher codimension statements
1, 2, and 3 hold. Let F be a face of codimension r − 2. For any f =

∑
I⊂[n] αIx

I ∈
U(δ, τ) and any J ⊂ I(F ), we can define a family of subsets F ⊂ P([n]), where
K ∈ F precisely when K ∩ J 6= ∅ and αK 6= 0. Moreover, (for any ε, φ ∈ {−1, 1}J)
we can write:

E
[
ef
∣∣ F ε

]
=
∑
x∈F ε

∏
I:J∩I=∅

eαIx
I
∏

K:J∩K 6=∅

eαKxK

and

E
[
ef
∣∣ F φ

]
=
∑
x∈Fφ

∏
I:J∩I=∅

eαIx
I
∏

K:J∩K 6=∅

eαKxK .

We now note that the rightmost product in both expressions is over subsets K ∈ F .
Consider an algorithm which remedies the discrepancy between the signs of the
coefficients of f between F φ and F ε. For each each K ∈ F we can define a function
h which agrees with f in all coefficients except that corresponding to K. For the
coefficient corresponding to K, h will have the sign corresponding to whether the
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sign (for fixed x ∈ F ) of xK differs between φ and ε or not. In the case that the
sign does flip, we let the coefficient corresponding to K of h have the opposite sign
of the coefficient K in f . By Statement 3.(s) (with s ≥ r) we note that the rotation
between any two expectations in our process is at most ^(αK). After we have made
the signs of every coefficient corresponding to K ∈ F correct we have rotated an
angle at most

∑
K∈F ^(αK).

We let αK = s + it and compute the the Maclaurin series (as an upper bound)

for arctan(δ′(αK)) and an elementary upper bound on arcsin
(

τ ′(αK)
1−δ′(αK)

)
assuming

f ∈ U(δ, τ).

arctan(δ′(s+ it)) = arctan

(
2e|s|

es + e−s
− 1

)
(6)

≤ |s| − 2|s|3

3
+

2|s|5

3
+O(|s|8) (7)

≤ |s|. (8)

Also,

arcsin

(
τ ′(αK)

1− δ′(αK)

)
≤ arcsin

(
1.7 sin(|t|)
0.3 cos(t)

)
which follows from upper and lower bounds on δ′(s+it) and 1−δ′(s+it) respectively.
The Maclaurin series here (5.666|t|+ 32.21666|t|3 +O(|t|5)) is upper bounded by 6t
for |t| < π

200
. With these upper bounds, we have that the sum∑

K∈F

^(αK) (9)

is bounded above by∑
K∈F

2|Re(αK)|+ 12|Im(αK)| ≤ deg(f)

(
2δ

deg(f)
+

12τ

deg(f)

)
. (10)

We see that choosing δ < π
4

suffices to obtain the required π
2

bound needed for the
induction to proceed since τ = 1

50
(π
4
− δ)2 in our definition of U(δ, τ).

4 Sharpening for the Degree 2 Case

We notice that the bound for arctan(δ′(s+ it)) in Eq. (6) is weak – namely the
linear behavior of arctan(δ′) in the real part (s) of the argument is suboptimal as s
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increases. In particular, for large values of |s| the linearization |s| is too crude. It
is better to use a linearization centered at 0.43: 0.717792(s− 0.43) + 0.385085. For
deg(f) = 2, we note that the family F is small, and so we can bound Eq. (9) with
our linearization at 0.43. In this case, we can choose δ = .44 since:∑

K∈F

2|Re(αK)| ≤ 4(0.717792(|s| − 0.43) + 0.385085)

= 4(0.392263)

≤ 4(0.3926...)

= 4
(π

8

)
in Theorem 5 and still obtain Eq. (9) with a proper tuning of τ . The theorem for
the degree 2 case follows.

Theorem 6. Let n be a positive integer. Consider the domain in C2n, denoted
U(δ, τ), and defined to be the set

{
f(x) =

∑
I⊂[n]

αIx
I : {−1, 1}n → C

∣∣∣∣ deg(f) = 2 and

∀j ∈ [n],
∑

J⊂[n]:j∈J

|ReαJ | <
δ

2
and

∑
J⊂[n]:j∈J

| ImαJ | <
τ

2

}
.

For a fixed 0 < δ < 0.44, set τ = 1
50

(0.44 − δ)2. Then, those polynomials
f ∈ U(δ, τ) have the property that E

[
ef
]

is nonzero.
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