Boolean Cube Partition Function 10/08/2019

Anthony Della Pella

1 Background Information

We set out to generalize a result of Barvinok [2] which showed that the partition function of the Boolean cube defined therein is zero free when polynomial coefficients are taken in a certain circular domain centered on the real axis. We show that a similar result holds for a thin strip stretched along the real axis. Our main result is presented as Theorem 5 below.

2 Useful Preliminaries

We recall definitions pertaining to functions on the boolean cube and their partition function. First, we have $f:\{-1,1\}^{n} \rightarrow \mathbb{C}$ a polynomial (indexed by subsets I of $[n]=\{1, \ldots, n\})$ of the form:

$$
f(x)=\sum_{I: I \subseteq[n]} \alpha_{I} \mathbf{x}^{I}
$$

where $\mathbf{x}^{I}=\prod_{i \in I} x_{i}$. For a given f we can define quantities:

$$
L(f)=\max _{i=1, \ldots, n} \sum_{I: i \in I}\left|\alpha_{I}\right|
$$

and

$$
\operatorname{deg}(f)=\max _{I: \alpha_{I} \neq 0}|I|
$$

We define the partition function of the boolean cube for a given polynomial f as:

$$
\mathbb{E}\left[e^{f}\right]=\frac{1}{2^{n}} \sum_{x \in\{-1,1\}^{n}} e^{f(x)}
$$

We recall that a face of the boolean cube $F \subset\{-1,1\}^{n}$ is determined by the choice of some subset of indices as well as signs (± 1) for each chosen index where we fix the index to have that sign and then vary all other indices over ± 1. In notation if $I_{+}(F)$ represents the subset of indices to have positive values, and $I_{-}(F)$ the subset of indices to have negative values, we have:
$F=\left\{\left(x_{1}, \ldots, x_{n}\right)\right.$ where $x_{i}=1$ for $i \in I_{+}(F)$ and $x_{i}=-1$ for $\left.i \in I_{-}(F)\right\} \subset\{-1,1\}^{n}$.

Moreover, the dimension of a face is the number of "free" indices (those without a specification) and the codimension is the ambient dimension n minus the dimension of the face. For a given face F and a subset $J \subset I_{+}(F) \cup I_{-}(F)$ we define the sign of the subset to be the quantity $\operatorname{sign}_{F}(J)=\prod_{j \in J} x_{i}$.

Finally, we can fix subsets of free indices in a face. For a subset $J \subset[n]$ we denote by $\{-1,1\}^{J}$ the set of all points $x=\left(x_{j}: j \in J\right)$ where x_{j} is fixed as either ± 1 (and all other x_{i} are varied over $\{-1,1\}$). For a face $F \subset\{-1,1\}^{n}$ of the boolean cube we define $I(F)$ as the free indices of F, that is the elements of $[n]$ not fixed in the definition of F. We can then define for $J \subset I(F), F^{\epsilon}$ where $\epsilon \in\{-1,1\}^{J}$ to be:

$$
F^{\epsilon}=\left\{x \in F, x=\left(x_{1}, \ldots, x_{n}\right): x_{j}=\epsilon_{j} \text { for } j \in J \subset I(F)\right\} \subset F .
$$

Taking a conditional expectation with respect to a face of the boolean cube, we have:

$$
\mathbb{E}\left[e^{f} \mid F\right]=\frac{1}{2^{\operatorname{dim}(F)}} \sum_{x \in F} e^{f(x)}
$$

We now recall a key geometric lemma from [1].
Lemma 1. Let $u_{1}, \ldots, u_{n} \in \mathbb{C}$ be non-zero complex numbers viewed as vectors in the plane such that the angle between any two doesn't exceed $\pi / 2$. Let

$$
v=\sum_{j=1}^{n} \alpha_{j} u_{j} \text { and } w=\sum_{j=1}^{n} \beta_{j} u_{j}
$$

where $\left|1-\operatorname{Re} \alpha_{j}\right| \leq \delta,\left|1-\operatorname{Re} \beta_{j}\right| \leq \delta$, and $\left|\operatorname{Im} \alpha_{j}\right| \leq \tau,\left|\operatorname{Im} \beta_{j}\right| \leq \tau$ for $j=1, \ldots, n$ and some $0 \leq \delta<1$ and $0 \leq \tau<1-\delta$. Then, $v, w \neq 0$ and the angle between v and w doesn't exceed:

$$
2 \arctan \delta+2 \arcsin \frac{\tau}{1-\delta}
$$

Lemma 2. Let $u_{1}, \ldots, u_{n} \in \mathbb{C}$ be as in the lemma, and suppose $a>0$. Then, setting

$$
v=\sum_{j=1}^{n} \alpha_{j} u_{j} \text { and } w=\sum_{j=1}^{n} \beta_{j} u_{j}
$$

we have the $v, w \neq 0$ and the angle between v and w doesn't exceed $2 \arctan \delta+$ $2 \arcsin \frac{\tau}{1-\delta}$ provided $\left|1-a \operatorname{Re} \alpha_{j}\right| \leq \delta,\left|1-a \operatorname{Re} \beta_{j}\right| \leq \delta$, and $\left|a \operatorname{Im} \alpha_{j}\right| \leq \tau,\left|a \operatorname{Im} \beta_{j}\right| \leq$ τ where $0 \leq \delta<1$ and $0 \leq \tau<1-\delta$.

Proof. Note that we can write

$$
v=\sum_{j=1}^{n} a \alpha_{i}\left(\frac{1}{a}\right) u_{j}
$$

and

$$
w=\sum_{j=1}^{n} a \beta_{i}\left(\frac{1}{a}\right) u_{j} .
$$

The vectors $\left(\frac{1}{a}\right) u_{j}$ satisfy the conditions of Lemma 11 and by assumption $\mid 1-$ $\operatorname{Re} a \alpha_{j}\left|\leq \delta,\left|1-\operatorname{Re} a \beta_{j}\right| \leq \delta\right.$ and $| \operatorname{Im} a \alpha_{j}\left|\leq \tau,\left|\operatorname{Im} a \beta_{j}\right| \leq \tau\right.$ so applying Lemma 1 to v and w written as above we obtain the desired result.

The following definition will be useful to save on bulky notation:
Definition 3. Let $\zeta=s+$ it be a complex number with $0<s<0.5$, and $-0.2<t<$ 0.2. Then, we define $\delta^{\prime}(\zeta)=\frac{2 e^{|s|}}{e^{s}+e^{-s}}-1$ and $\tau^{\prime}(\zeta)=\frac{2 e^{|s|} \sin (|t|)}{\cos (t)\left(e^{s}+e^{-s}\right)}$. Further, we define the quantity

$$
\varangle(\zeta)=2 \arctan \left(\delta^{\prime}(\zeta)\right)+2 \arcsin \left(\frac{\tau^{\prime}(\zeta)}{1-\delta^{\prime}(\zeta)}\right) .
$$

Corollary 4. Suppose that u_{1}, \ldots, u_{n} are as above, and fix some complex number z. Then, if α_{i} is chosen so that $\alpha_{i}=\exp \left(a_{i}\right)=\exp (\pm z)$, while $\beta_{i}=\exp \left(b_{i}\right)$ where $b_{i}=\mp z$, we have the angle between u and v not exceeding:

$$
\varangle(z)=2 \arctan \left(\delta^{\prime}(z)\right)+2 \arcsin \left(\frac{\tau^{\prime}(z)}{1-\delta^{\prime}(z)}\right) .
$$

Proof. Set

$$
a=\frac{2}{\left(e^{\operatorname{Re} z}+e^{-\operatorname{Re} z}\right) \cos (\operatorname{Im} z)}
$$

with $a>0$. Then, we apply Lemma 2 with a and note that:

$$
\begin{aligned}
\left|1-a \operatorname{Re} \alpha_{i}\right| & \leq\left|1-\frac{2 e^{\operatorname{Re} a_{i}}}{e^{\operatorname{Re} a_{i}}+e^{-\operatorname{Re} a_{i}}}\right| \\
& \leq \frac{2 e^{\left|\operatorname{Re} a_{i}\right|}}{e^{\operatorname{Re} a_{i}}+e^{-\operatorname{Re} a_{i}}}-1 \\
& =\delta^{\prime}(z)
\end{aligned}
$$

while

$$
\begin{aligned}
\left|a \operatorname{Im}\left(\alpha_{i}\right)\right| & \leq \frac{2 e^{\left|\operatorname{Re} a_{i}\right|} \sin \left(\left|\operatorname{Im} a_{i}\right|\right)}{\cos \left(\operatorname{Im} a_{i}\right)\left(e^{\operatorname{Re} a_{i}}+e^{-\operatorname{Re} a_{i}}\right)} \\
& =\tau^{\prime}(z)
\end{aligned}
$$

Since similar inequalities hold for β_{i}, we can apply Lemma 2 to obtain our result.

3 The Main Theorem

Theorem 5. Let n be a positive integer. Consider the domain in $\mathbb{C}^{2^{n}}$, denoted $\mathcal{U}(\delta, \tau)$, and defined to be the set

$$
\begin{aligned}
& \left\{f(x)=\sum_{I \subset[n]} \alpha_{I} \mathbf{x}^{I}:\{-1,1\}^{n} \rightarrow \mathbb{C} \mid\right. \\
& \left.\forall j \in[n], \sum_{J \subset[n]: j \in J}\left|\operatorname{Re} \alpha_{J}\right|<\frac{\delta}{\operatorname{deg}(f)} \text { and } \sum_{J \subset[n]: j \in J}\left|\operatorname{Im} \alpha_{J}\right|<\frac{\tau}{\operatorname{deg}(f)}\right\} .
\end{aligned}
$$

For a fixed $0<\delta<\pi / 4$, set $\tau=\frac{1}{50}\left(\frac{\pi}{4}-\delta\right)^{2}$. Then, those polynomials $f \in \mathcal{U}(\delta, \tau)$ have the property that $\mathbb{E}\left[e^{f}\right]$ is nonzero.

As an expository remark, we mention here that this is similar to a theorem in the prequel [2] where instead a circular zero free region was obtained.

Proof. We will use descending induction on the codimension r of faces F of the boolean cube. We use three Statements:

- Statement 1. r : Let F be a face of codimension r. Then:

$$
\mathbb{E}\left[e^{f} \mid F\right] \neq 0
$$

for all $f \in \mathcal{U}(\delta, \tau)$.

- Statement 2.r: Let F be a face of codimension $r-1$. For every element $j \in I(F)$, we denote by $j^{+} \in\{-1,1\}^{\{j\}}$ the set of points with coordinate j fixed to +1 and similarly for j^{-}. Then, for any $f \in \mathcal{U}(\delta, \tau)$, the angle between:

$$
\begin{equation*}
\mathbb{E}\left[e^{f} \mid F^{j^{+}}\right] \neq 0 \text { and } \mathbb{E}\left[e^{f} \mid F^{j^{-}}\right] \neq 0 \tag{1}
\end{equation*}
$$

doesn't exceed $\frac{\pi}{2}$. Moreover, choosing $J \subset I(F)$, we have for any $\epsilon, \phi \in$ $\{-1,1\}^{J}$, the same statement as above for

$$
\begin{equation*}
\mathbb{E}\left[e^{f} \mid F^{\epsilon}\right] \neq 0 \text { and } \mathbb{E}\left[e^{f} \mid F^{\phi}\right] \neq 0 \tag{2}
\end{equation*}
$$

where now f is a polynomial in $\mathcal{U}(\delta, \tau)$ with $|J| \leq \operatorname{deg}(f)$.

- Statement 3.r: Let $f, g \in \mathcal{U}(\delta, \tau)$ be two polynomials which differ only on the coefficient corresponding to \mathbf{x}^{J} where the signs of the coefficients, α_{J} and β_{J}, corresponding to \mathbf{x}^{J} are flipped. Then, for any face F of codimension r, the angle between

$$
\mathbb{E}\left[e^{f} \mid F\right] \neq 0 \text { and } \mathbb{E}\left[e^{g} \mid F\right] \neq 0
$$

doesn't exceed $\varangle\left(\alpha_{J}\right)=2 \arctan \delta^{\prime}\left(\alpha_{J}\right)+2 \arcsin \frac{\tau^{\prime}\left(\alpha_{J}\right)}{1-\delta^{\prime}\left(\alpha_{J}\right)}$.
We now show that each Statement holds for $r=n$ i.e. faces with dimension 0 .

- Statement 1.n: This holds trivially since $\mathbb{E}\left[e^{f} \mid F\right]=e^{f(x)}$ where $x \in F$ is the single element in the face. We can write:

$$
\begin{equation*}
e^{f(x)}=\prod_{I \subset[n]} e^{\alpha_{I} \mathbf{x}^{I}} \tag{3}
\end{equation*}
$$

which is certainly nonzero provided $f \in \mathcal{U}(\delta, \tau)$.

- Statement 2.n: Since the codimension of F is $n-1$, we note that $F^{j^{+}}$and $F^{j^{-}}$ each correspond to one vertex on the cube, call it \mathbf{x}. Thus, we can write:

$$
\mathbb{E}\left[e^{f} \mid F^{j^{+}}\right]=\prod_{I \subset[n]: j \notin I} e^{\alpha_{I} \mathbf{x}^{I}} \prod_{J \subset[n]: j \in J} e^{\alpha_{J} \mathbf{x}^{J}}
$$

and

$$
\mathbb{E}\left[e^{f} \mid F^{j^{-}}\right]=\prod_{I \subset[n]: j \notin I} e^{\alpha_{I} \mathbf{x}^{I}} \prod_{J \subset[n]: j \in J} e^{-\alpha_{J} \mathbf{x}^{J}}
$$

Each expectation is nonzero (being a product of nonzero exponential terms). Moreover, by dividing the two expressions, we note that the angle between the two expectations is at most $\frac{2 \tau}{\operatorname{deg}(f)}<\frac{\pi}{2}$.

- Statement 3.n: Let F be a face of codimension n, that is a point in the cube (call it \mathbf{x}). Then, Statement 3.n holds by utilizing the representation Eq. (3). Namely, for $f(x)=\sum_{I \subset[n]} \alpha_{I} \mathbf{x}^{I}$ and $g=\sum_{\substack{I \subset[n] \\ I \neq J}} \alpha_{I} \mathbf{x}^{I}+\beta_{J} \mathbf{x}^{J}$, (where $\left.\beta_{J}=-\alpha_{J}\right)$ we have

$$
\begin{equation*}
\mathbb{E}\left[e^{f} \mid F\right]=\prod_{I \subset[n]} e^{\alpha_{I} \mathbf{x}^{I}} \tag{4}
\end{equation*}
$$

while

$$
\begin{equation*}
\mathbb{E}\left[e^{g} \mid F\right]=e^{\beta_{J} \mathbf{x}^{J}} \prod_{\substack{I \subset[n] \\ I \neq J}} e^{\alpha_{I} \mathbf{x}^{I}} \tag{5}
\end{equation*}
$$

where the products differ only by a factor $e^{\alpha_{J}-\beta_{J}}$. We claim then that the angle between the expectations is smaller than $2\left(\operatorname{Im} \alpha_{J}\right)$ which in turn is bounded above by $2 \varangle\left(\alpha_{J}\right)$ whenever $f \in \mathcal{U}(\delta, \tau)$.
Indeed, letting $\alpha_{J}=s+i t$, we have:

$$
\begin{aligned}
\tau^{\prime}(s+i t) & =\frac{2 e^{|s|} \sin (|t|)}{\cos (t)\left(e^{s}+e^{-s}\right)} \\
& \geq \frac{\sin (|t|)}{\cos (t)}
\end{aligned}
$$

which for small $t<\pi / 2$,

$$
=\tan (|t|) .
$$

Similarly, we have:

$$
\begin{aligned}
1-\delta^{\prime}(s+i t) & =2-\frac{2 e^{|s|}}{e^{s}+e^{-s}} \\
& \leq 1
\end{aligned}
$$

Thus, by considering the arcsin term of $\varangle\left(\alpha_{J}\right)$ we have:

$$
\begin{aligned}
2 \operatorname{Im}\left(\alpha_{J}\right) & =2 t \\
& \leq 2 \arcsin (\tan (|t|)) \\
& \leq 2 \arctan \left(\delta^{\prime}(s+i t)\right)+2 \arcsin \left(\frac{\tau^{\prime}(s+i t)}{1-\delta^{\prime}(s+i t)}\right) \\
& =\varangle(s+i t) \\
& =\varangle\left(\alpha_{J}\right)
\end{aligned}
$$

where it is worth remarking that $1-\delta^{\prime}(s+i t)$ is non-negative since $e^{|s|} \leq e^{s}+e^{-s}$. This proves the claim.

With the base case of our induction verified, we will show that Statements 1.r, 2.r, and 3.r imply Statements 1. $(r-1), 2 .(r-1)$, and 3. $(r-1)$.

Statement 1. $(r-1)$ follows from an application of $2 . r$ to a decomposition of $\mathbb{E}\left[e^{f} \mid F\right]$. In particular, suppose that F is a face of codimension $r-1$. Then, we have for some $j \in I(F): 2 \mathbb{E}\left[e^{f} \mid F\right]=\mathbb{E}\left[e^{f} \mid F^{j^{+}}\right]+\mathbb{E}\left[e^{f} \mid F^{j^{-}}\right]$where as before, $j^{+} \in\{-1,1\}^{\{j\}}$ is the set of points with a 1 in the $j^{\text {th }}$ entry and similarly for j^{-}. By 1. r each summand is itself nonzero and the angle between them is bounded by $\frac{\pi}{2}$ via 2.r, thus the sum cannot possibly be zero.

For Statement 3. $(r-1)$ we note that there are two possible cases for $\mathbb{E}\left[e^{f} \mid F\right]$ and $\mathbb{E}\left[e^{g} \mid F\right]$. Let J be the coefficient on which f and g differ. If $J \subset I_{+}(F) \cup I_{-}(F)$ then $\operatorname{sign}_{F}(J)$ is well defined and we can factor out the J coefficient which is equal up to sign in f and g as follows:

$$
\begin{aligned}
\mathbb{E}\left[e^{f} \mid F\right] & =\sum_{x \in F} e^{f(x)} \\
& =\sum_{x \in F} e^{\sum_{I \subset[n]} \alpha_{I} \mathbf{x}^{I}} \\
& =\sum_{x \in F} e^{\sum_{I \subset[n]: I \neq J} \alpha_{I} \mathbf{x}^{I}} e^{\alpha_{J} \mathbf{x}^{J}} \\
& =e^{\alpha_{J} \operatorname{sign}_{F}(J)} \sum_{x \in F} e^{\sum_{I \subset[n]: I \neq J} \alpha_{I} \mathbf{x}^{I}}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbb{E}\left[e^{g} \mid F\right] & =\sum_{x \in F} e^{g(x)} \\
& =\sum_{x \in F} e^{\sum_{I \subset[n]} \alpha_{I} \mathbf{x}^{I}} \\
& =\sum_{x \in F} e^{\sum_{I \subset[n]: I \neq J} \alpha_{I} \mathbf{x}^{I}} e^{\beta_{J} \mathbf{X}^{J}} \\
& =e^{\beta_{J} \operatorname{sign}_{F}(J)} \sum_{x \in F} e^{\sum_{I \subset[n]: I \neq J} \alpha_{I} \mathbf{x}^{I}}
\end{aligned}
$$

Then, dividing the common parts we have the angle between the two is at most $\left|\operatorname{Im} \alpha_{J}\right|+\left|\operatorname{Im} \beta_{J}\right|=2\left|\operatorname{Im} \alpha_{J}\right|$ and noting that $f \in \mathcal{U}(\delta, \tau)$ we get the desired result.

Contrarily, if J is not fixed by F, there is some nonempty, and maximal subset of J say \hat{J} of elements whose sign is not fixed in F, i.e. $\hat{J} \subset I(F)$. Then we can write:

$$
\mathbb{E}\left[e^{f} \mid F\right]=\frac{1}{2^{r+|\hat{J}|}} \sum_{\epsilon \in\{-1,1\}^{\hat{J}}} \sum_{x \in F^{\epsilon}} e^{\sum_{I: I \neq J} \alpha_{I} \mathbf{x}^{I}} e^{\alpha_{J} \mathbf{X}^{J}} .
$$

Similarly,

$$
\mathbb{E}\left[e^{g} \mid F\right]=\frac{1}{2^{r+|\hat{J}|}} \sum_{\epsilon \in\{-1,1\}^{\hat{J}}} \sum_{x \in F^{\epsilon}} e^{\sum_{I: I \neq J} \alpha_{I} \mathbf{x}^{I}} e^{\beta_{J} \mathbf{x}^{J}}
$$

We now note that each ϵ leads to a complex number $u_{\epsilon}=\sum_{x \in F^{\epsilon}} e^{\sum_{I: I \neq J} \alpha_{I} \mathbf{x}^{I}}$ multiplied by either an $e^{\alpha_{J}}$ factor or an $e^{\beta_{J}}$ factor (up to the sign of \mathbf{x}^{J}). Since by Statement 2.r the u_{ϵ} differ in angle no more than $\frac{\pi}{2}$ (taking for instance a function $h:\{-1,1\}^{n} \rightarrow \mathbb{C}$ which agrees with $f \equiv g$ on all other coefficients than J and is 0 for coefficient J) by use of Statement 2.r. We can apply Corollary 4 and obtain that the angle between $\mathbb{E}\left[e^{f} \mid F\right]$ and $\mathbb{E}\left[e^{g} \mid F\right]$ doesn't exceed $\varangle\left(\alpha_{J}\right)=2 \arctan \delta^{\prime}\left(\alpha_{J}\right)+2 \arcsin \frac{\tau^{\prime}\left(\alpha_{J}\right)}{1-\delta^{\prime}\left(\alpha_{J}\right)}$.

We now prove Statement 2. $(r-1)$ assuming the higher codimension statements 1,2 , and 3 hold. Let F be a face of codimension $r-2$. For any $f=\sum_{I \subset[n]} \alpha_{I} \mathbf{x}^{I} \in$ $\mathcal{U}(\delta, \tau)$ and any $J \subset I(F)$, we can define a family of subsets $\mathcal{F} \subset \mathcal{P}([n])$, where $K \in \mathcal{F}$ precisely when $K \cap J \neq \emptyset$ and $\alpha_{K} \neq 0$. Moreover, (for any $\epsilon, \phi \in\{-1,1\}^{J}$) we can write:

$$
\mathbb{E}\left[e^{f} \mid F^{\epsilon}\right]=\sum_{x \in F^{\epsilon}} \prod_{I: J \cap I=\emptyset} e^{\alpha_{I} \mathbf{x}^{I}} \prod_{K: J \cap K \neq \emptyset} e^{\alpha_{K} \mathbf{x}^{K}}
$$

and

$$
\mathbb{E}\left[e^{f} \mid F^{\phi}\right]=\sum_{x \in F^{\phi}} \prod_{I: J \cap I=\emptyset} e^{\alpha_{I} \mathbf{x}^{I}} \prod_{K: J \cap K \neq \emptyset} e^{\alpha_{K} \mathbf{x}^{K}}
$$

We now note that the rightmost product in both expressions is over subsets $K \in \mathcal{F}$. Consider an algorithm which remedies the discrepancy between the signs of the coefficients of f between F^{ϕ} and F^{ϵ}. For each each $K \in \mathcal{F}$ we can define a function h which agrees with f in all coefficients except that corresponding to K. For the coefficient corresponding to K, h will have the sign corresponding to whether the
sign (for fixed $\mathbf{x} \in F$) of \mathbf{x}^{K} differs between ϕ and ϵ or not. In the case that the sign does flip, we let the coefficient corresponding to K of h have the opposite sign of the coefficient K in f. By Statement 3. (s) (with $s \geq r$) we note that the rotation between any two expectations in our process is at most $\varangle\left(\alpha_{K}\right)$. After we have made the signs of every coefficient corresponding to $K \in \mathcal{F}$ correct we have rotated an angle at most $\sum_{K \in \mathcal{F}} \varangle\left(\alpha_{K}\right)$.

We let $\alpha_{K}=s+i t$ and compute the the Maclaurin series (as an upper bound) for $\arctan \left(\delta^{\prime}\left(\alpha_{K}\right)\right)$ and an elementary upper bound on $\arcsin \left(\frac{\tau^{\prime}\left(\alpha_{K}\right)}{1-\delta^{\prime}\left(\alpha_{K}\right)}\right)$ assuming $f \in \mathcal{U}(\delta, \tau)$.

$$
\begin{align*}
\arctan \left(\delta^{\prime}(s+i t)\right) & =\arctan \left(\frac{2 e^{|s|}}{e^{s}+e^{-s}}-1\right) \tag{6}\\
& \leq|s|-\frac{2|s|^{3}}{3}+\frac{2|s|^{5}}{3}+O\left(|s|^{8}\right) \tag{7}\\
& \leq|s| \tag{8}
\end{align*}
$$

Also,

$$
\arcsin \left(\frac{\tau^{\prime}\left(\alpha_{K}\right)}{1-\delta^{\prime}\left(\alpha_{K}\right)}\right) \leq \arcsin \left(\frac{1.7 \sin (|t|)}{0.3 \cos (t)}\right)
$$

which follows from upper and lower bounds on $\delta^{\prime}(s+i t)$ and $1-\delta^{\prime}(s+i t)$ respectively. The Maclaurin series here $\left(5 . \overline{666}|t|+32.21 \overline{666}|t|^{3}+O\left(|t|^{5}\right)\right)$ is upper bounded by $6 t$ for $|t|<\frac{\pi}{200}$. With these upper bounds, we have that the sum

$$
\begin{equation*}
\sum_{K \in \mathcal{F}} \varangle\left(\alpha_{K}\right) \tag{9}
\end{equation*}
$$

is bounded above by

$$
\begin{equation*}
\sum_{K \in \mathcal{F}} 2\left|\operatorname{Re}\left(\alpha_{K}\right)\right|+12\left|\operatorname{Im}\left(\alpha_{K}\right)\right| \leq \operatorname{deg}(f)\left(\frac{2 \delta}{\operatorname{deg}(f)}+\frac{12 \tau}{\operatorname{deg}(f)}\right) \tag{10}
\end{equation*}
$$

We see that choosing $\delta<\frac{\pi}{4}$ suffices to obtain the required $\frac{\pi}{2}$ bound needed for the induction to proceed since $\tau=\frac{1}{50}\left(\frac{\pi}{4}-\delta\right)^{2}$ in our definition of $\mathcal{U}(\delta, \tau)$.

4 Sharpening for the Degree 2 Case

We notice that the bound for $\arctan \left(\delta^{\prime}(s+i t)\right)$ in Eq. (6) is weak - namely the linear behavior of $\arctan \left(\delta^{\prime}\right)$ in the real part (s) of the argument is suboptimal as s
increases. In particular, for large values of $|s|$ the linearization $|s|$ is too crude. It is better to use a linearization centered at 0.43: $0.717792(s-0.43)+0.385085$. For $\operatorname{deg}(f)=2$, we note that the family \mathcal{F} is small, and so we can bound Eq. (9) with our linearization at 0.43 . In this case, we can choose $\delta=.44$ since:

$$
\begin{aligned}
\sum_{K \in \mathcal{F}} 2\left|\operatorname{Re}\left(\alpha_{K}\right)\right| & \leq 4(0.717792(|s|-0.43)+0.385085) \\
& =4(0.392263) \\
& \leq 4(0.3926 \ldots) \\
& =4\left(\frac{\pi}{8}\right)
\end{aligned}
$$

in Theorem 5 and still obtain Eq. (9) with a proper tuning of τ. The theorem for the degree 2 case follows.
Theorem 6. Let n be a positive integer. Consider the domain in $\mathbb{C}^{2^{n}}$, denoted $\mathcal{U}(\delta, \tau)$, and defined to be the set

$$
\begin{aligned}
& \left\{f(x)=\sum_{I \subset[n]} \alpha_{I} \mathbf{x}^{I}:\{-1,1\}^{n} \rightarrow \mathbb{C} \mid \operatorname{deg}(f)=2\right. \text { and } \\
& \left.\quad \forall j \in[n], \sum_{J \subset[n]: j \in J}\left|\operatorname{Re} \alpha_{J}\right|<\frac{\delta}{2} \text { and } \sum_{J \subset[n]: j \in J}\left|\operatorname{Im} \alpha_{J}\right|<\frac{\tau}{2}\right\} .
\end{aligned}
$$

For a fixed $0<\delta<0.44$, set $\tau=\frac{1}{50}(0.44-\delta)^{2}$. Then, those polynomials $f \in \mathcal{U}(\delta, \tau)$ have the property that $\mathbb{E}\left[e^{f}\right]$ is nonzero.

5 Acknowledgments

I am thankful to Dr. Barvinok for his many thoughtful comments on this work.

References

[1] Alexander Barvinok. Combinatorics and complexity of partition functions, volume 276. Springer, 2016.
[2] Alexander Barvinok. Computing the partition function of a polynomial on the boolean cube. In A Journey Through Discrete Mathematics, pages 135-164. Springer, 2017.

