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1 Background Information

We set out to generalize a result of Barvinok [2] which showed that the partition
function of the Boolean cube defined therein is zero free when polynomial coefficients
are taken in a certain circular domain centered on the real axis. We show that a
similar result holds for a thin strip stretched along the real axis. Our main result is
presented as Theorem [5| below.

2 Useful Preliminaries

We recall definitions pertaining to functions on the boolean cube and their par-
tition function. First, we have f : {—1,1}" — C a polynomial (indexed by subsets I
of [n] ={1,...,n}) of the form:

flz) = Z arx!

where x! = [Lic; zi- For a given f we can define quantities:
L(f) = max ¥ o]
i=1,....,n
Iiel
and

deg(f) = Jnax. 1]

We define the partition function of the boolean cube for a given polynomial f as:

ze{-1,1}"

We recall that a face of the boolean cube F' C {—1,1}" is determined by the
choice of some subset of indices as well as signs (£1) for each chosen index where we
fix the index to have that sign and then vary all other indices over 1. In notation if
I (F) represents the subset of indices to have positive values, and I_(F’) the subset
of indices to have negative values, we have:

F={(xy,...,2,) where z; =1 fori € I, (F) and x; = —1 fori € [_(F)} C {—1,1}".
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Moreover, the dimension of a face is the number of “free” indices (those without a
specification) and the codimension is the ambient dimension 7 minus the dimension
of the face. For a given face F' and a subset J C I (F) U I_(F) we define the sign
of the subset to be the quantity signp(J) = [[;c; z:.

Finally, we can fix subsets of free indices in a face. For a subset J C [n] we denote
by {—1,1}7 the set of all points z = (z; : j € J) where z; is fixed as either +1 (and
all other x; are varied over {—1,1}). For a face F' C {—1,1}" of the boolean cube
we define I(F) as the free indices of F, that is the elements of [n] not fixed in the
definition of F. We can then define for J C I(F), F° where ¢ € {—1,1}’ to be:

Fe={xeFao=(ry,...,x,) xj=¢;for j€ JCI(F)} CF.

Taking a conditional expectation with respect to a face of the boolean cube, we
have:

1
E[ef ‘ F} _ mzef(x)_

zeF
We now recall a key geometric lemma from [IJ.

Lemma 1. Let uq,...,u, € C be non-zero complex numbers viewed as vectors in the
plane such that the angle between any two doesn’t exceed /2. Let

n n
v = E a;u; and w = E Biu;
=1 j=1

where |1 — Rea;| < 9,]1 —RefB;| <6, and |[Imoy| < 7,|Imp;| <7 forj=1,...,n
and some 0 <) <1 and0<7<1—0. Then, v,w # 0 and the angle between v and
w doesn’t exceed:

2 arctan d + 2 arcsin

-
1—46

Lemma 2. Let uy,...,u, € C be as in the lemma, and suppose a > 0. Then, setting

n n
v = E au; and w = E Biu;
J=1 Jj=1



we have the v,w # 0 and the angle between v and w doesn’t exceed 2 arctand +
2arcsin 175 provided |1 —aReay| < 90,|1—-aRe ;| <6, and |[aIlma;| < 7, ]aIm 3;| <
T where 0 <d<landd<7<1-54.

Proof. Note that we can write

and

The vectors (le) u; satisfy the conditions of Lemma (1| and by assumption |1 —
Reawy| < 6,]1 —ReaB;| < 0 and |Imaa;| < 7,|Imaf;[ < 7 so applying Lemma 1]
to v and w written as above we obtain the desired result. [

The following definition will be useful to save on bulky notation:

Definition 3. Let ( = s+ it be a complex number with 0 < s < 0.5, and —0.2 <t <

2el 2el*l sin(|t
0.2. Then, we define ¢'(¢) = e 1 and 7'(¢) = T _(|_| e|)_5)

. Further, we

define the quantity

<(¢) = 2arctan(6'(¢)) + 2 arcsin (%) .

Corollary 4. Suppose that uy,...,u, are as above, and fix some complex number
z. Then, if «; is chosen so that o; = exp(a;) = exp(£z), while B; = exp(b;) where
b; = Fz, we have the angle between u and v not exceeding:

<(z) = 2arctan(d'(2)) + 2 arcsin (%) :

Proof. Set

2
(eRez 4 e=Rez) cos(Im z)




with @ > 0. Then, we apply Lemma [2f with a and note that:
9 eRe a;

1—aReaqy| < |1 - cRea; | o—Rea,

2€|Reai|

= ¢Rea; 4 p—Rea;
= d'(2),
while
2elReail sin (| Im ay))
cos(Im a;) (eReai 4 e~ Rear)

=7'(2).

Since similar inequalities hold for §;, we can apply Lemma [2to obtain our result. [

laIm(a;)| <

3 The Main Theorem

Theorem 5. Let n be a positive integer. Consider the domain in C*", denoted
U(S,T), and defined to be the set

{f(x) = Z ax! {-1,1}" — C‘

IC[n]
6 T
Vj € [n], Z |Reay| < and Z \ImaJ|<—}.
JC[nl:jeJ deg(f) JC[n]:jed deg(f)

For a fizted0 < 6 < 7/4, set T = %(% —6)%. Then, those polynomials f € U(5,T)

have the property that ]E[ef} 18 nonzero.

As an expository remark, we mention here that this is similar to a theorem in
the prequel [2] where instead a circular zero free region was obtained.

Proof. We will use descending induction on the codimension r of faces F' of the
boolean cube. We use three Statements:

e Statement 1.r: Let F be a face of codimension r. Then:

Ele/ | F] #0
for all f € U(J, 7).



e Statement 2.r: Let F' be a face of codimension r — 1. For every element
j € I(F), we denote by j© € {—1,1}U} the set of points with coordinate j
fixed to +1 and similarly for j~. Then, for any f € U(d, 7), the angle between:

E[ef ‘ Fﬁ] #0 and E[ef ‘ ij} #0 (1)

doesn’t exceed 7. Moreover, choosing J C I(F), we have for any €,¢ €
{—1,1}7, the same statement as above for

E[e/ | FF] #0 and E[e/ | F?] #0, (2)

where now f is a polynomial in U(9, 7) with |J| < deg(f).
e Statement 3.r: Let f,g € U(J, T) be two polynomials which differ only on the
coefficient corresponding to x” where the signs of the coefficients, oy and §;,

corresponding to x” are flipped. Then, for any face F of codimension 7, the
angle between

Ele/ | F] #0and E[e? | F] #0

%))

doesn’t exceed <t(ay) = 2arctand’(cvy) + 2 arcsin T

We now show that each Statement holds for » = n i.e. faces with dimension 0.

e Statement 1.n: This holds trivially since E[ef | F } = /(@) where x € F is the
single element in the face. We can write:

el @) — H porx! (3)
IC[n]

which is certainly nonzero provided f € U(6, 7).

e Statement 2.n: Since the codimension of F is n — 1, we note that F/" and Fi~
each correspond to one vertex on the cube, call it x. Thus, we can write:

E[ef Fﬁ}: H eorx! H g%’
IC[n]:j¢I JC[n]:jed

and

E[ef Fr}: H e’ H emox’

IC[n]:j¢I JCnl:jed

Each expectation is nonzero (being a product of nonzero exponential terms).

Moreover, by dividing the two expressions, we note that the angle between the

two expectations is at most ﬁb) <7



e Statement 3.n: Let F' be a face of codimension n, that is a point in the cube
(call it x). Then, Statement 3.n holds by utilizing the representation Eq. (3).

Namely, for f(z) = Zlc[n] arx’ and g = > Ic] arx!+8;x7, (where By = —ay)
1£]

we have
[/ | F] H e (4)
while
Ele? | F] = > [ e (5)
IC[n]
I#J

where the products differ only by a factor e*/~#/. We claim then that the angle
between the expectations is smaller than 2(Im a;) which in turn is bounded
above by 2<t(ay) whenever f € U(9, 7).

Indeed, letting ooy = s 4 @t, we have:

2¢l*l sin(|t])
/ ) —
s+ i) cos(t) (e* + e~*)

S sin(|¢])

~ cos(t)
which for small ¢t < 7/2,

= tan(|t]).
Similarly, we have:

%elsl
1 (s +it) =2 — —=¢
e’ +e?

<1.
Thus, by considering the arcsin term of <t(«;) we have:
2Im(ay) =2t
< 2arcsin(tan(|¢]))
/ t
< 2arctan(d'(s + it)) + 2 arcsin ( s+ it) )

11— (s+1it)

(s +1t)
<

(@)



where it is worth remarking that 1—0’(s-+it) is non-negative since el*l < es4-e7.
This proves the claim.

With the base case of our induction verified, we will show that Statements 1.7, 2.7,
and 3.r imply Statements 1.(r — 1),2.(r — 1), and 3.(r — 1).

Statement 1.(r — 1) follows from an application of 2.r to a decomposition of
E[ef ‘ F } In particular, suppose that F' is a face of codimension » — 1. Then, we

have for some j € I(F): 2E[ef | F] = ]E[ef ’ Fﬁ} +E[ef ‘ ij} where as before,
§7 € {—1,1 U} is the set of points with a 1 in the j™ entry and similarly for j~. By
L.r each summand is itself nonzero and the angle between them is bounded by 7 via
2.r, thus the sum cannot possibly be zero.

For Statement 3.(r — 1) we note that there are two possible cases for E[ef ‘ F }
and E[e? | F]. Let J be the coefficient on which f and g differ. If J C I (F)UI_(F)
then signy(J) is well defined and we can factor out the J coefficient which is equal
up to sign in f and g as follows:

f}F Zf

el
— Z e1cin) @rx!
zeF
— Z eZIC[n]:I;éJ O‘leeaJXJ
zeF
— eassignp(J) Z E2ICn):I AT arx!
zeF
and
Elef | F] = Z eI
zeF
— Z ercin X!
zeF
- Z e icinprs arx! oBox’
zeF
— Pusignp(J) Z eZlc[n]:I;éJ arx!
z€eF

Then, dividing the common parts we have the angle between the two is at most
|Im ay| + |Im 8] = 2|Im ay| and noting that f € U(J, 7) we get the desired result.
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Contrarily, if J is not fixed by F', there is some nonempty, and maximal subset of J
say J of elements whose sign is not fixed in F, i.e. J C I(F). Then we can write:

B | Pl =i X S

ee{-1,1}J  x€F*

Similarly,
1 I J
g - Ynresorx Brx
E[e |F] or+|J| Z ) Ze e € ’
ee{-1,1}/  w€F*°
We now note that each e leads to a complex number u = Y . Xtz o<yl

tiplied by either an e®’ factor or an e’/ factor (up to the sign of x”/). Since
by Statement 2.r the wu. differ in angle no more than 7 (taking for instance a
function h : {—1,1}" — C which agrees with f = g on all other coefficients
than J and is 0 for coefficient J) by use of Statement 2.r. We can apply Corol-
lary ] and obtain that the angle between E[ef | F| and E[e? | F] doesn’t exceed

(o)
1-6(eg) "

We now prove Statement 2.(r — 1) assuming the higher codimension statements
1,2, and 3 hold. Let F' be a face of codimension r — 2. For any f = Zlc[n] arx! €
U6, 7) and any J C I(F), we can define a family of subsets F C P([n]), where
K € F precisely when K NJ # () and ax # 0. Moreover, (for any €,¢ € {—1,1}7)

we can write:

<(ay) = 2arctan §'(ay) + 2 arcsin

s/ | )= I e ] e

el I.JNI=0 K:JNK#£0)

and

SRS o L SRS

z€F$ I.JNI=0 K:JNK#0

We now note that the rightmost product in both expressions is over subsets K € F.
Consider an algorithm which remedies the discrepancy between the signs of the
coefficients of f between F¢ and F¢. For each each K € F we can define a function
h which agrees with f in all coefficients except that corresponding to K. For the
coefficient corresponding to K, h will have the sign corresponding to whether the



sign (for fixed x € F) of x¥ differs between ¢ and ¢ or not. In the case that the
sign does flip, we let the coefficient corresponding to K of h have the opposite sign
of the coefficient K in f. By Statement 3.(s) (with s > r) we note that the rotation
between any two expectations in our process is at most <((ax ). After we have made
the signs of every coefficient corresponding to K € F correct we have rotated an
angle at most ) -, » <V(ak).

We let ag = s+ it and compute the the Maclaurin series (as an upper bound)

(oK)
1-6'(ok)

for arctan(é’(ak)) and an elementary upper bound on arcsin( ) assuming

feu,r).

Is|
arctan(d'(s + it)) = arctan ( Qj - 1) (6)
e’ +e’?
2s]>  2|s’
< Js) = 280 2B oy )
< lsl. (8)

Also,
arcsin M S arcsin M
11— (ak) 0.3 cos(t)

which follows from upper and lower bounds on §'(s+it) and 1—0’(s+it) respectively.
The Maclaurin series here (5.666¢| + 32.21666|¢|> + O(|t|*)) is upper bounded by 6t
for |t] < 5Z=. With these upper bounds, we have that the sum

> <o) (9)

is bounded above by

5™ 2R + 12/m(ae)] < deg() ( (10)

KeF

20 12T>
deg(f) = deg(f)

We see that choosing § < 7 suffices to obtain the required  bound needed for the
induction to proceed since T = 2 (% — 6)? in our definition of U(6, 7).
4 Sharpening for the Degree 2 Case

We notice that the bound for arctan(d’(s + it)) in Eq. (6) is weak — namely the
linear behavior of arctan(d’) in the real part (s) of the argument is suboptimal as s
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increases. In particular, for large values of |s| the linearization [s| is too crude. It
is better to use a linearization centered at 0.43: 0.717792(s — 0.43) + 0.385085. For
deg(f) = 2, we note that the family F is small, and so we can bound Eq. (9) with
our linearization at 0.43. In this case, we can choose § = .44 since:

> 2| Re(ak)| < 4(0.717792(]s| — 0.43) + 0.385085)
KeF

4(0.392263)
< 4(0.3926...)

1(5)

in Theorem [5] and still obtain Eq. (9) with a proper tuning of 7. The theorem for
the degree 2 case follows.

Theorem 6. Let n be a positive integer. Consider the domain in C*", denoted
U0, T), and defined to be the set

deg(f) =2 and

{f(x) = Z ax! {~1,1}" = C

1C[n]

J
Vi € [n], Z |ReaJ|<§and Z |Imaﬂ<%}.

JC[n]:jed JC[n]:jed

For a fited 0 < § < 0.44, set 7 = %(0.44 — 0)%.  Then, those polynomials
feU(d, ) have the property that ]E[ef] is nonzero.

]
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