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1 ABSTRACT

A study was carried out comparing two distinct al-
gorithms which approximate two different partition
functions for a given model – one determined by
certain combinatorial properties of the underlying
graph, and the other by a graphical model. In the
first case [4] a recently developed ”approximation
by interopolation” method is used, while in the
second [9] the approximation is done in order to
compute a constant factor approximation of a gen-
eral integral over an exponentially large set.

While it was initially proposed that the two par-
tition functions were equivalent, we soon found that
this was not in fact true. It is possible though under
certain models to achieve the sought equivalence.

A novel application of the first partition func-
tion we mention to community detection was also
considered. This application uses the well known
Erdős-Rényi graph to empirically obtain a well
known result regarding the planted clique. Im-
plementation of both approximations took place,
where computation was a major factor due the
nature of the partition functions. It was shown the
algorithm in [9] does not work for relatively small
random graphs, something we later found to be
stated in [1].

2 INTRODUCTION

2.1 What is a partition function?
From Barvinok in [3]: ”The answer depends on
who you ask. You get one (multi)set of answers if
you ask physicists, and another (multi)set if you
ask mathematicians (we allow multisets, in case we

want to account for the popularity of each answer)”.
We will adopt a combinatorial view of partition
functions for our purposes, but their applications
to physics need not be understated. In particular, it
was shown in the seminal work of Heilman Lieb
[12] that the Monomer-Dimer model from physics
exhibits no phase transitions. Their proof utilizes a
partition function and via showing that the partition
function has no singularities near the positive real
axis conclude the result.

Given a family F , of subsets of the set [n], we
define the partition function of F as the polynomial
in n real or complex variables x1, . . . , xn as:

pF (x1, . . . , xn) =
∑
S∈F

∏
i∈S

xi.

In general it is computationally difficult to com-
pute exact values of partition functions for arbitrary
choices of the x1, however efficient approximation
algorithms do exist for some partition functions
such as the independence polynomial, the match-
ing polynomial, the permanent, and the partition
function of cliques described below.

2.2 Partition Function of Cliques

Throughout this report, we focus greatly on two
specific partition functions. The first being the parti-
tion function of cliques [4] (defined for a given n×n
matrix W and 1 < m ≤ n):

Pm(W ) =
∑
S⊆[n]
|S|=m

∏
{i,j}⊆S
i 6=j

wi,j . (1)
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This function is interesting in the context of
graph theory, as well as random graph theory for
our purposes, in which we show a novel applica-
tion. If known exactly for the adjacency matrix W
of a graph G, then Pm(W ) is the number of cliques
in the graph G of size m. Recall a clique of size m
is a totally connected component or equivalently a
copy ofKm, the complete graph onm vertices found
within the graph G. Moreover, in [4] an algorithm is
given which provided we can approximate Pm(W )
efficiently, allows us to efficiently and with high
probability find highly connected collections of m
vertices (i.e. an approximate clique).

2.3 WISH Algorithm
In [9] a similar partition function to that of the par-
tition function of cliques is approximated utilizing
a randomization procedure. The algorithm they use
to approximate this is given the acronym WISH, for
Weighted-Integrals-And-Sums-By-Hashing.

A prespecified graphical model is considered
as a factor graph, with N = |V | discrete random
variables xi ∈ Xi for i ∈ V and X = X1 × ... × XN .
The factors taken into account are defined as ψα :
{x}α → R+, for which α is taken from an index set
I and {x}α ⊆ V .

For the model we focus on, we take Xi = Z/2Z.
Therefore X = Z/2ZN is the set of all possible
configurations. The weight function w : X → R+

we use is w(x) =
∏
α∈I

ψα({x}α), and the partition

function in [9] is then defined by:

Z =
∑
x∈X

∏
α∈I

ψα({x}α). (2)

Computing Z above is computationally expen-
sive and intractable, as it involves a sum over an
exponential number of configurations over the field
of two elements. Below is the pseudocode of the
algorithm, as presented in [9].

The inputs of the algorithm are the weight func-
tion w, the fixed constants δ and α which arise in the
analysis of the algorithm with the only restriction
that they are positive, though further work is shown
to bound α from above by 0.00042, in order to relate
it with δ in the MAP problem. As shown n is taken
as input, and for our purposes we use it within
WISH to construct the set of all configurations Σ.

2.4 Planted Clique Problem
The planted clique problem is often stated in terms
of random Erdős-Rényi graphs as follows.

Algorithm 1 WISH (w : Σ→ R+, n = log2|Σ|, δ, α)

T ← round-up
(
ln(1/δ)
α ln(n)

)
for i = 0, ..., n do

for t = 1, ..., T do
Sample A ∈ {0, 1}i×n and b ∈ {0, 1}i
wti ← maxσw(σ) subject to Aσ ≡ b mod 2
Assume access to an optimization oracle above

end for
Mi ←Median(w1

i , ..., w
T
i )

end for
return Z ≈M0 +

n−1∑
i=0

Mi+12i

Suppose G ∼ G(n, p) is an Erdős-Rényi graph
with vertex set V = {1, . . . , n} and probability of
edge connection p ∈ [0, 1]. There are many combi-
natorial questions that have been asked regarding
Erods Renyi random graphs, such as:

• when does G have a giant component?
• when is G connected?
• what is the largest clique inside G?

There are (at least partial) answers to these prob-
lems. More information is provided in the related
work section below as well as the survey.

We can plant a clique on a random Erdős-Rényi
graph with the following process. First we sample
G ∼ G(n, p), and then add a clique to a random
subset of m vertices of G with m ≤ n. Later, calling
the class of graphs generated from this procedure
G(n, p,m), we wish to find the vertices where the
clique was planted given a graph G ∼ G(n, p,m).

When m ≤ 2 log2(n) + 1 there is no hope for
recovery, while for m > 2 log2(n) + 1 there is a
naive nO(logn) algorithm for finding the m desired
vertices. An important question is then to determine
the smallest value of m for which we have a poly-
nomial time algorithm which can locate the vertices
inducing the clique. From the plots below, we get
a sense as to why (while an easy problem in low
dimension n) finding such sub graphs is difficult.

2.5 Applications of the Partition Function of
Cliques
The question above regarding the largest clique in
a graph was one of the first applications found for
the partition function of cliques. The authors utilize
the algorithm in [4] in the results section on graphs
with planted cliques in order to provide evidence
that this function could lead to progress beyond the
current state of the art. In particular, the partition
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Fig. 1: On the top left is a regular graph G ∼ G(15, .1) with no planted clique. To the right is G with a
planted K5. The bottom plot shows a graph G ∼ G(80, 0.1) and then to the right is the same graph with a
planted copy of K9.

function Pm considered therein provides a way of
calculating the number of cliques in a in a graph G.
Thus, to find the largest clique it suffices to compute
the function Pm on the adjacency matrix W (G) for
successive values of m. At the first such k where
Pm(W ) = 0, we conclude that the largest clique in
G is k − 1.

Applying the partition function of cliques to
this problem appears to be novel and utilizes the
density functional described in the implementa-
tions section. In particular, there is a threshold
given in [4] which given Densitym(G), states that
if Densitym(G) ≤ f(σ) then there are no subsets of
G with density higher than σ. Using this result, the
paper gives an algorithm which allows us to find
a subset of m vertices in G with high density in
polynomial time. Thus, we can detect and produce
our clique on m vertices.

2.6 Clique Structured Ising Model

The Ising model is one of the most studied models
nowadays, originating from the 1920’s when it was
invented by physicists Wilhelm Lenz and Ernst
Ising. Our focus regarding the WISH algorithm was
mainly on the Clique Structured Ising Model, for
which not much literature was found. We chose to
study this model mainly due to it lending itself most
readily to the comparison with (2).

We therefore considered the clique structured
Ising model on n binary variables xi ∈ {0, 1} for
i ∈ {1, ..., n}, where the the weight between two
variables wij is taken from a uniform distribution
ranging from [0, w

√
|i− j|], for which the authors

of [9] set the parameter w to be constant at w = 0.2.
The factors are then defined as ψij(xi, xj) = e−wij

when xi 6= xj and ψij(xi, xj) = 1 when xi = xj .
Then, given these factors a corresponding
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weighted adjacency matrix Ψ =
(
ψij(xi, xj)

)n
i,j=1

is
set up. This yields two cliques (which all edges have
weight 1) for each binary string of length n (other
than the strings consisting of only 0’s or only 1’s)
which have factors of weight 1 between all variables
of the same assignment (1 or 0).

2.7 Comparison of Algorithms
Initially we planned to tackle the two algorithms
separately and then combine our work and imple-
mentations, compare the algorithms’ performances
and complexity. This comparison was to be done
both through simulations and on real world data
sets. It became clear that we would have to show
that after some adaptations the one partition func-
tion would yield the other and vice versa.

This comparison procedure was found to be
impossible in the general setting due to the non-
equivalence of the partition functions. We further
discuss this in section 5.

3 RELATED WORK

3.1 Combinatorics and Partition Functions
There have been several recent bodies of work per-
taining to partition functions in the same manner
we are considering them, that is to say not moti-
vated by theoretical physics.

Firstly, there have been connections to the com-
putational complexity of these partition functions
which is tied into the complex zeros of the corre-
sponding function.

Secondly, there is a notion of phase transitions in
physics which correlates (but not directly translates)
to the domain of combinatorial partition functions
as we study here.

The results regarding (1) owe themselves to the
first body of work – by carefully examining the
zeros of the partition function on the complex plane,
the author was able to establish the algorithm using
the interpolation method. This technique has been
extended to find “good” algorithms for other parti-
tion functions as well such as the Permanent, the
graph homomorphism partition function and the
Hafnian. For further references see: [6],[7],[5], and
for an overall introduction to the theory: [3].

3.2 Planted Clique Problem
The planted clique problem drew our interest later
in the projects lifecycle – thus, the results are lim-
ited, but a fairly detailed account of the known
results for the problem as well as future directions

follows. Given a graph G ∼ G(n, .5,m) (i.e. Erdős-
Rényi with planted clique of size m on n vertices) a
naive algorithm exists to answer the problem when
m > 2 log2(n) + 1. The idea behind the algorithm
is to check all subsets S with |S| = 2 log2(n) + 2
which induce a clique on G, then outputs S ∪ {v}
for v a vertex with (v, w) an edge for all w in S.
This procedure will produce a desired clique of size
m. This algorithm doesn’t run in polynomial time
however and only accomplishes nO(log(n)) time.

A natural question to ask at this point is what is
the smallest m for which we have a polynomial time
algorithm. The proof for m ≥ c(n log n)1/2 relies
on elementary techniques from probability such as
the Hoeffding inequality and union bound. In [2] it
was shown that for m = cn1/2 such an algorithm
exists. The problem overall has been resistant to a
solution, and a possible reason for this was given
in [10] with a follow up paper in 2015. This result is
interesting as it extended the statistical query model
to optimization problems.

3.3 Optimization Through Binary Codes

The idea of using a binary constraint, such asAσ ≡ b
mod 2 described in our report over randomly sam-
pled hash functions A, has a purpose of reducing
computation.

In [8], an improvement on the WISH algorithm
proposed. The authors compute both lower and
upper bounds on the partition function, which are
tighter than those derived from other methods. For
the improvement of WISH, the hash function A is
not chosen totally in random from Z/2Zi×n, but
rather to being a random Toeplitz matrix in the given
space. The constraint considered is also reformu-
lated to being a Linear Integer Program.

One of the issues we show in our work, how
the sampling of the hash functions considered for
WISH need be over large values of n. In [11] the
authors propose a generalized importance sampling
scheme based on the idea of randomly selecting
exponentially large to obtain estimates of statistics,
such as the partition function of undirected graphi-
cal models.

One of the more important papers following up
on the WISH algorithm, is [1]. This paper helps bet-
ter understand the performance of WISH and how
to (partially) resolve some of its the major obstacles
one faces when using it. It also reassures two of
our findings and what made it difficulty to draw
satisfactory results using the algorithm. By this we
mean that XORs are computationally intractable
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with many variables, and have poor statistical per-
formance with few variables. To go around these
issues, they maximize the unnormalized probability
function f , and solve systems of linear equations.

Further details on these can be found in our
survey.

4 PROPOSED METHODS

4.1 Initial Equivalence

At the onset of the project, we planned to show
the equivalence of the two partition functions being
described in the papers [4] and [9]. The goal of
showing this equivalence was to provide us the
ability to compare the two algorithms presented
in the papers. We hoped to show superiority of
one algorithm over the other empirically, and then
compare this result to the theoretical bounds given
in each reference.

If such a correspondence was shown it would
be useful to forwarding progress on the community
detection problem as a whole. Had the correspon-
dence been shown, we would have used one of the
current state of the art method of community detec-
tion (i.e. the spectral method [13]) to compare our
results using the implementations of the algorithms
below.

In particular, we planned to test on a real world
data set, the Chicago taxi data. We had several
issues in doing so, mainly due to the complexity
of the data set and the fact that this data set consists
primarily of relational data rather than the better
suited associational data.

4.2 Implementation of Partition Function of
Cliques Approximation Algorithm

The algorithm of Barvinok [4] for computing the
clique partition function relies on three primary
phases:

• Modification of adjacency matrix.
• Computation of kth derivatives of g(t).
• Recovery of Taylor approximation of f(t) via

linear equation solution.

Phase one of the algorithm sees a modification
to the adjacency matrix W of our given graph. The
particular modification depends on the size m of
cliques that are desired for detection. In particular,
for the adjacency matrix W of the graph, we change
all instances of 0 (indicating there is no edge in be-
tween the corresponding vertices) to a parameter α.
α is chosen so that |wij−1| ≤ γ/(m−1) where γ > 0

is an absolute constant. In [4], choosing γ = .07
suffices, while in the case of large graphs we can
increase this to γ = .27 provided the size of cliques
desired is sub linear in the number of vertices of
the graph. A current area of research for the second
author is determining the extent to which γ can be
pushed to 1. See the discussion below regarding γ
for more information on the theory behind why this
change is necessary.

Phase two of the algorithm computes the deriva-
tives dj

dtj
g(t) where g(t) is the shifted clique partition

function: Pm(J + t(W − J)) with J the matrix of all
1′s.

Phases and two are completed using the C++
language. Initially this was done in Python, how-
ever due to the computationally intensive nature of
the problem a more optimized version of the code
was written in C++ to improve results.

With access to these derivatives, the third phase
of the algorithm computes a Taylor approximation
to f(t) = ln g(t) at 1 where f(1) = lnPm(W ).
The method consists of solving a triangular sys-
tem of equations obtained from the derivatives
d1

dt1
, d2

dt2
, . . . , dk

dtk
. Here, the order of the Taylor poly-

nomial determines the quality of the approximation,
however it suffices to choose k on the order of ln(m).
This result in [4] is the main driving force behind
the speed of the algorithm and is what gives the
interpolation method it’s power.

No numerical work has yet been done in com-
puting Pm for specific graphs. It was one of the aims
of this project to determine (using both simulated
data and the data sets provided in the course) some
exact instances of Pm to compare the algorithm
above to. Unfortunately due to the nature of the
data sets, this application never came to light. Simu-
lated data was obtained from the Networkx python
package however and the algorithm was run on
these graphs. The theory states that by paying an
nln(ε) factor in computation one can calculate an ε
approximation of Pm.

The procedure for generating random graphs
consisted of using networkx’s built in Erdős-Rényi
graph method. Random Erdős-Rényi graphs were
generated and their adjacency matrix ran through
the algorithm. Then, the solution of the triangular
system of equations was done in Mathematica with
the built in equation solver. Code is provided in the
supplement.

The table below represents data obtained from
the algorithm. Each entry represents one generation
of a graph on n = 15 vertices with vertex incidence
probability corresponding to the p value in the first



6

column. Going across rows determines the value of
the clique that was being “tested“. Formally, each
value in the table is a degree 2 Taylor approximation
of the quantity lnPm(W ) with W taken to be the
modified adjacency matrix:

wij =

1 +
γ

m− 1
if (i, j) ∈ E

1− γ

m− 1
if (i, j) 6∈ E

.

Here, γ was chosen to be .45 which agrees with
results from the second author extending those in
[4].

For a given subset S of vertices of a graph G,
we let σ(S) be the density (that is ratio of possible
edges to appearing edges) between nodes in S. σ(S)
is always a quantity between 0 and 1 for simple
graphs and is 0 precisely when S is an independent
set. Suppose that we are given a graph G with n
vertices and an integer 1 < m ≤ n. We can then
define the density functional:

Densitym(G) =
∑
S⊆V
|S|=m

exp{γmσ(S)− ε(m)}

where 0 ≤ ε(m) ≤ .1

m− 1

and γ is an absolute constant. We can view our par-
tition function then as enumerating dense subsets
except where we weigh down those sets with few
inter connections being weighed down by a factor
of 1 − γ to a power corresponding to the number
of missing connections. Also noted in [4] is the
equality:

Densitym(G) = exp{γm}
(

1 +
γ

m− 1

)−(m2 )
Pm(W ).

This interpretation as well as the following facts ex-
plain why this density functional is a good indicator
of the existence of cliques in a graph. Fix two real
numbers 0 ≤ ς < ς ′ ≤ 1. If there are no m subsets S
with density ς or higher then

Densitym(G) ≤
(
n

m

)
exp{γmς − ε(m)}.

On the other hand, if there are sufficiently many
dense m− subsets S with density ς ′ or higher, then

Densitym(G) ≥ 2

(
n

m

)
exp{γmσ − ε(m)

Moreover, we can distinguish between these two
cases with the above algorithm in nO(lnm) time.

These inequalities also give rise to the procedure
for producing an m-subset with

exp{γmσ(S)} ≥ 1

2

(
n

m

)−1

Densitym(G).

Density of Erdős-Rényi
p-values m=3 m=5 m=7
p=0.05 7.296 9.357 9.761
p=0.10 7.303 9.403 9.872
p=0.15 7.300 9.450 9.835
p=0.20 7.310 9.498 10.093
p=0.25 7.313 9.529 10.204
p=0.35 7.315 9.359 10.333
p=0.35 7.326 9.601 10.370
p=0.40 7.326 9.581 10.481
p=0.45 7.326 9.568 10.647
p=0.50 7.341 9.687 10.536
p=0.55 7.345 9.740 10.776
p=0.60 7.345 9.727 10.795
p=0.65 7.349 9.792 10.850
p=0.70 7.353 9.766 11.016
p=0.75 7.355 9.865 11.053
p=0.80 7.359 9.865 11.219
p=0.85 7.364 9.938 11.404
p=0.90 7.372 9.984 11.386
p=0.95 7.372 10.003 11.533

4.3 Implementation of WISH algorithm

Our second algorithm of interest, the WISH algo-
rithm, was implemented for the given clique struc-
tured Ising model described in section 2.6. One
difficulty we faced was the optimization given the
constraint Aσ ≡ mod 2.

In order to take into account all possible con-
figurations of a fixed size, we construct a matrix
Σ ∈ Z/2Z2N×N where each row is a distinct con-
figuration. The implementation took place solely in
matlab.

5 RESULTS

5.1 Non Equivalence

From the description of the clique structured Ising
model, along with (1) and (2), it first seemed as
if the matrix Ψ was very similar to the weighted
adjacency matrix defined in the process of the al-
gorithm described in [4]. In this matrix the weights
are assigned to wij = 1 if {i, j} ∈ E and wij = α if
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{i, j} /∈ E where α is a constant between 0 and 1, as
described below in (7).

The overall picture is not that simple, as for
(2) we consider all possible configurations. This
can be viewed as ”averaging” through all possible
structures.

Looking at these closer, the difference between
the two is that in WISH the summands which are
defined as the weights w(x) =

∏
α∈I

ψα({x}α), are

each taken as the product of output of the factor
ψα (which depends on the model) for all possible
configurations x ∈ X (in our case X = Z/2ZN ,
so simply all binary strings of length N ). On the
other hand, the summands of the partition function
in [4] are the product of the weights wij for all
i 6= j of all subsets S of the entire set of nodes, of
a predetermined cardinality |S| = m. Comparing
the weights defined in [4] with the factors (ψij) of
the weights of the Clique-structured Ising model in
section 6 of [9], from [4] we have wij = 1 if and only
if an edge between i and j exists, and [9] ψij = 1
if and only if the random variables Xi and Xj have
the same discrete value.

5.2 Results on Partition Function of Cliques
For a given graph G = (V,E), the accuracy of the
partition function of cliques algorithm described in
[4] is decided by the choice of α below where we
consider the modified adjacency matrix W = (wij)
(which can be thought of as a weighted adjacency
matrix) defined by:

wij =

{
1 if (i, j) ∈ E
α if (i, j) 6∈ E

.

As mentioned above, the algorithm has compu-
tational guarantees only for these modified adja-
cency matrices.

The authors generated multiple sets Erdős-Rényi
graphs for varying values of p and n, and the
algorithm was run on these graphs. Due to the
combinatorial difficulty of the problem, it was diffi-
cult to obtain exact data for the graphs in order to
make comparisons. Thus, the authors relied heavily
on results regarding the probabilistic connectivity
thresholds of the Erdős-Rényi model described in
the related work section. Some small instances of
graphs (i.e. G ∼ G(n, p) with small n) were sam-
pled and Densitym(G) computed. However these
should be taken as toy examples and do not greatly
reflect the practical applications of the algorithm
in answering computationally difficult problems. In

particular, for these cases the networkx package was
able to determine the largest clique as well as the
density functional readily, so there is no apparent
gain to using a more optimal algorithm than the
naive one given in the discussion in the related
work.

5.3 Results on WISH Algorithm

5.4 WISH Algorithm

The WISH algorithm was implemented for the de-
scribed Clique-structured Ising model. It is impor-
tant to point out that the hardest part was the
optimization with the constraint Aσ ≡ mod 2,
where the developers of WISH assume they have
access to an optimization oracle that can solve the
constrained optimization problem.

In order to handle this constraint, we did a brute
force search. This makes our implementation very
inefficient, as for a fixed |V | = n we go over 2n(n−1)

hash functions and a total of 2n
2

total combinations
of A, b.

The authors of [9] did not consider the case of
small graphs, for which WISH does not perform as
one would hope for. The reason for this is that for
small enough n, one needs to select the parameters
of the algorithm appropriately in order to be defi-
nite that T solutions exist in order get the median
weight, where T is defined in the algorithm. One
simple counterexample is the following:

A =

1 0 1
0 0 1
1 1 0

 b =

1
0
0


for which there does not exist a solution x to satisfy
the constraint Ax ≡ b mod 2.

5.5 Alteration of Clique-structured Ising model

One way to go around the issue of not having
solutions satisfying the given constraint, is to re-
define the distribution of the weights wij assigned
to the pair of variables xi and xj . In [9] this
weight is defined as being uniformly sampled from
[0, w

√
|i− j|] where w is a parameter set to 0.2.

Since Z ≈
∑

σ∈Σw(σ), after some calculations we
concluded that a sufficient condition would be to
assign w =max(i, j)loge2. This still only applies for
large enough n, as we demonstrate in our results.
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5.6 Study on Frequency of Non Existing Solu-
tion
A study was carried out on the frequency of how
often it would be impossible to meet the constraint
Ax ≡ b mod 2. This was done through a simulation
by increasing n and traversing all i ∈ {1, ..., n}, in
order to go through all possible combinations ofA ∈
Z/2Zi×n and b ∈ Z/2Zi. The following results took
over 20 hours of computation on CAEN.

Percentage of non existing solution
n=1 n=2 n=3 n=4 n=5

i=1 0.7500 0.8750 0.9375 0.9688 0.9844
i=2 ∗ 0.3906 0.4414 0.4697 0.4846
i=3 ∗ ∗ 0.1985 0.2216 0.2351
i=4 ∗ ∗ ∗ 0.1000 0.1110
i=5 ∗ ∗ ∗ ∗ 0.0502

In Figure 2 are two plots drawn from the results
of the fifth column above, where we assume the
frequency of ”faulty combinations” of pairs A, b
which never satisfy the desired constraint can be
approximated for higher values, based on n = 5.
We observe through the rows of our table that such
a a conclusion can be drawn (up to small difference
for our calculations), with possibility that for each i
as n increases, the frequency will be slightly higher.

The fitted equation on n = 100 is approximately
2e−0.72i.

5.7 Applications to the Planted Clique Problem
The plots depicted in Figure 1 represent two cases
of the planted clique procedure described in the
introduction: the first is a graph G ∼ G(15, 0.1) with
no planted clique. The second figure sees a planted
clique of size 5 (K5) placed on 5 randomly chosen
vertices of the previously sampled G. The third
figure represents the same graphGwith aK9 placed
on 9 of the vertices. For comparison purposes, the
authors placed the K9 on 5 of the same vertices
used in the previous figure. The algorithm was run
on three similar cases and produced the results in
Figure 3.

Here, the columns correspond to the graph G
with either no planted clique, or a planted copy
of K4,K6, or K8. The algorithm was run with m
chosen to match the planted clique. Note that the
state of the art bound of n1/2 obtained in [2] agrees
with our data at least for small p. Namely, if we
place a large clique of that size on the graph (here
n = 30) there is a significant difference in terms of

Average Approximation using WISH
over 10 simulations - Figure 4

Length of String Average approx.
Regular model

Average approx.
Altered model

N=2 13 13
N=3 26 24
N=4 42 41
N=5 67 63
N=6 89 91
N=7 116 115
N=8 146 145
N=9 191 198
N=10 232 248
N=11 330 329
N=12 380 387
N=13 596 575
N=14 686 685
N=15 1061 1177

the density as compared to that computed when the
graph has no clique.

5.8 WISH on Small Graphs
As was previously stated, computing the partition
function is computationally expensive. For this rea-
son, we were only able to run the WISH algorithm
on small graphs, which unfortunately does not
match well with our conclusion described in section
5.6. Depicted in Figure 4 are approximated values
for the partition function based on the clique struc-
tured Ising model. Each data point corresponds to
one of 10 trials for a fixed N representing the length
of the string, where we take N from two to fifteen.
We also provide a similar plot on the alteration
of the clique structured Ising model we proposed,
which does not yield much difference.

This is also clear from the corresponding average
values for Figure 4 in the provided table, where
for small sized graphs the values are very close
to each other. We would need results from much
larger graphs to draw meaningful results (rather
than from a theoretical point of view) on whether
or not what we propose would actually yield any
improvements. Where the assigned weights are by
default 0 (solution to constraint does not exist), we
project those out.

We also looked into using an implementation
provided for the MAP problem (Maximum a Pos-
teriori assignment), though we did not use it at the
end as it was difficult to adapt and generalize to the
model we were dealing with.

5.9 Potential Equivalence
As future work, some investigation will be done
into whether or not there is an alternative model
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Fig. 2: To the left is a plot of how frequency of Hash functions of size n = 5 which
cannot meet constraint, drops as i increases. To the right is a fitted plot for

n = 100, expressed by 2e−0.72i.

Planted Clique
p-values G G+K4 G+K6 G+K8

p=0.01 0.7732 9.6226 13.5876 16.1301
p=0.02 0.9272 9.6235 13.5876 16.1301
p=0.10 1.7584 9.6283 13.5876 16.1301
p=0.50 7.1156 9.6612 13.5876 16.1301

Fig. 3: Table of Partition Function of Cliques Algo-
rithm Run on Graphs with Planted Cliques

(other than the clique structured Ising model) which
would allow an equivalence between partition func-
tions to be shown. It is possible that such a change
could render the WISH algorithm no longer valid
so this investigation may not come to light. The
author of [4] has suggested that considering bipar-
tite graphs may offer a solution to the problem if a
suitable Ising model could be found that lends itself
to the WISH algorithm.

Alternatively, the problem could be phrased in a
probabilistic sense: i.e. find a distribution of graphs
which satisfy the clique structured Ising model,
or another model. Then, with this distribution we
can sample graphs (and their adjacency matrices).
From this sample we can perform an explorative
statistical analysis on this set of graphs using the
Barvinok algorithm.

From the perspective of the WISH algorithm, we
could change it such that we only consider subsets
of a fixed size m � N , so all the configurations in

Z/2Zm which will also save a lot of computational
time. We do not believe that in the case of the Ising
model setting a constant weight as is done in [4] is
ideal, as it defeats the purpose of the model, and the
WISH algorithm might not work on such a model.

All in all, the main difficulty is that the algorithm
in [4] does not take into account before hand the
features of the graph itself, whereas in [9] the graph
is being constructed from a given model. This poses
the problem of coming up with a factor graph to
adapt WISH to [4].

6 CONCLUSIONS AND FUTURE WORK

The problem we dealt with has many potential im-
provements which could take place. Due to the time
constraint, we were unable to complete everything
we had hoped to. A major concern from the very
start was complexity, which limited the conclusions
we could draw through our simulations.

Our first major finding which conflicted a lot
with what we proposed on doing at the beginning
of the project, was that the two partition functions
we describe are in fact not the same. While we
initially knew the random setting of the WISH
algorithm would lead to difficulty showing the
equivalence, we were not expecting a total non
equivalence (in the general setting) to be found. At
the very start, we were prepared to explore both
paths: showing that (1) was equivalent to (2) under
randomness, and that in a deterministic setting, (2)
is equivalent to (1). In the future we plan to look
at specific cases of graphs where the two partition
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Fig. 4: To the left is a plot of a simulation of WISH on the clique structured Ising model, where we project
out the assigned zero weights wit. To the right is a similar plot, for a simulation on the alternation we
proposed to the clique structured Ising model.

functions are equivalent. In particular, we would
like to follow through on the suggestion to look at
the case of bipartite graphs.

Regarding the partition function of cliques algo-
rithm, we were unable to check our results against
large graphs due to the computational difficulty of
finding exact solutions to the density functional.
The algorithm performed up to the standard as de-
scribed in [4] on small graphs of size n = 5 however
this shouldn’t be considered evidence. Due to the
mathematical proof behind the algorithm it stands
to reason that the results should be valid. There is
another potential application of the approximation
to (1). The true incidence probability p could be
estimated (in a statistical sense) by computing the
approximation to the density Densitym(G) of the
graph for various values of m, and then compar-
ing this with known bounds on the true value of
Densitym(G).

As for the WISH algorithm, it is clear from our
table in section 5.6 that a much larger set of random
variables need be considered, which is also evident
from our plots in Figure 4. It would have been
more useful if we tried using other optimization
oracles, i.e. CPLEX in order to deal with this prob-
lem, though the computational problem in general
would still be an issue.
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