TESTING FOR DENSE SUBSETS IN A GRAPH VIA THE PARTITION FUNCTION*

ALEXANDER BARVINOK ${ }^{\dagger}$ AND ANTHONY DELLA PELLA ${ }^{\dagger}$

Abstract

For a set S of vertices of a graph G, we define its density $0 \leq \sigma(S) \leq 1$ as the ratio of the number of edges of G spanned by the vertices of S to $\binom{|S|}{2}$. We show that, given a graph G with n vertices and an integer $m \ll n$, the partition function $\sum_{S} \exp \{\gamma m \sigma(S)\}$, where the sum is taken over all m-subsets S of vertices and $0<\gamma<1$ is fixed in advance, can be approximated within relative error $0<\epsilon<1$ in quasi-polynomial $n^{O(\ln m-\ln \epsilon)}$ time. We discuss numerical experiments and observe that for the random graph $G(n, 1 / 2)$ one can afford a much larger γ, provided the ratio n / m is sufficiently large.

Key words. graph, density, partition function, algorithm, complex zeros

AMS subject classifications. 05C31, 82B20, 05C85, 05C69, 68Q25

DOI. 10.1137/19M1247413

1. Introduction and main results. Let $G=(V, E)$ be an undirected graph, without loops or multiple edges. For a nonempty subset $S \subset V$ of vertices, we define the density $\sigma(S)$ as the fraction of the pairs of vertices of S that span an edge of G :

$$
\sigma(S)=\frac{\left|\binom{S}{2} \cap E\right|}{\binom{|S|}{2}}
$$

where $\binom{S}{2}$ is the set of all unordered pairs of vertices from S. Hence $0 \leq \sigma(S) \leq 1$ for all subsets, $\sigma(S)=0$ if S is an independent set and $\sigma(S)=1$ if S is a clique.

We are interested in the following general problem: given a graph $G=(V, E)$ with $|V|=n$ vertices and an integer $m \leq n$, estimate the highest density of an m subset $S \subset V$. This is, of course, a hard problem: for example, testing whether a given graph contains a clique of a given size, or even estimating the size of the largest clique within a factor of $n^{1-\epsilon}$ for any $\epsilon>0$, fixed in advance, is already an NPhard problem [12], [15]. Moreover, modulo some plausible complexity assumptions, it is hard to approximate the highest density of an m-subset for a given m, within a constant factor, fixed in advance [5]. The best known efficient approximation achieves the factor of $n^{1 / 4}$ in quasi-polynomial $n^{O(\ln n)}$ time [6]. There are indications that the factor $n^{1 / 4}$ might be hard to beat [7]. We note that the most interesting case is when m grows and $n \gg m$, since the highest density of an m-subset can be computed in polynomial time up to an additive error of $\epsilon n^{2} / m^{2}$ for any $\epsilon>0$, fixed in advance [10] (and if m is fixed in advance, the densest m-subset can be found by the exhaustive search in polynomial time).
1.1. Partition function. In this paper, we approach the problem of finding the densest, or just a reasonably dense subset, via computing the partition function

[^0]\[

$$
\begin{equation*}
\operatorname{den}_{m}(G ; \gamma)=\binom{n}{m}^{-1} \sum_{\substack{S \subset V: \\|S|=m}} \exp \{\gamma m \sigma(S)\} \tag{1.1}
\end{equation*}
$$

\]

where $\gamma>0$ is a parameter. We are interested in computing (approximating) $\operatorname{den}_{m}(G ; \gamma)$ efficiently. The exponential tilting, $\sigma(S) \longmapsto \exp \{\gamma m \sigma(S)\}$ (see, for example, section 13.7 of [14]), puts greater emphasis on the sets of higher density. Let us consider the set $\binom{V}{m}$ of all m-subsets of V as a probability space with the uniform measure. By the Markov inequality, for any $0<\sigma_{0}<1$, we have

$$
\begin{equation*}
\sigma_{0}+\frac{\ln \mathbf{P}\left(\sigma(S) \geq \sigma_{0}\right)}{\gamma m} \leq \frac{\ln \operatorname{den}_{m}(G ; \gamma)}{\gamma m} \leq \max _{\substack{S \subset V: \\|S|=m}} \sigma(S) \tag{1.2}
\end{equation*}
$$

so the larger γ we can afford, the better approximation for the densest m-subset we get. In particular, if we could choose $\gamma \gg \ln n$, then from (1.2) we could approximate the highest density of an m-subset within an arbitrarily small additive error.

The partition function (1.1) was introduced in [3], where an algorithm of quasipolynomial $n^{O(\ln m-\ln \epsilon)}$ complexity was constructed to compute (1.1) within relative error $0<\epsilon<1$, when $\gamma=0.07$ and when $\gamma=0.27$, under additional assumptions that $n \geq 8 m$ and $m \geq 10$. It follows from (1.2) that if the probability to hit an m-subset S of density at least σ_{0} at random is $e^{-o(m)}$, then we can certify the existence of an m-subset of density at least $\sigma_{0}-o(1)$ in quasi-polynomial time, just by computing (1.1). It is also shown in [3] that by successive conditioning, one can find in quasipolynomial time an m-subset S with density at least as high as certified by the value of (1.1).

In this paper, we present an algorithm, which, for any $0<\gamma<1$, fixed in advance, and a given $0<\epsilon<1$, computes the value of (1.1) within relative error ϵ in quasi-polynomial $n^{O(\ln m-\ln \epsilon)}$ time, provided $n>\omega(\gamma) m$ for some constant $\omega(\gamma)>1$. This improvement from $\gamma=0.27$ to $\gamma=1$ makes the algorithm competitive in some situations where it was not competitive before. Suppose, for example, we want to separate efficiently the graphs that have sufficiently many m-cliques from the graphs that are sufficiently far from having a single m-clique. Below we show that for $\gamma<0.5$ our algorithm is inferior to a simple test based on the Kruskal-Katona Theorem, while for $\gamma>0.5$ the former can cover a greater range than the latter.

Example 1 (Testing graphs for m-cliques). Let us fix two numbers $0<\delta<1$ and $\alpha>0$ and consider the following two mutually exclusive conditions.

Condition 1.1. For every $S \subset V$ such that $|S|=m$ we have $\sigma(S) \leq 1-\delta$
and
Condition 1.2. If $S \subset V$ is a random subset, sampled uniformly from the set $\binom{V}{m}$ of all m-sets of vertices, then the probability that S is a clique is at least $e^{-\alpha m}$.

Suppose further, we are presented with a graph $G=(V, E)$ and told that either Condition 1.1 or Condition 1.2 holds. Our goal is to decide which one. This is somewhat in the spirit of "property testing" [11].

We observe that if Condition 1.1 holds, then $\operatorname{den}_{m}(G ; \gamma) \leq e^{\gamma m(1-\delta)}$ and if Condition 1.2 holds, then $\operatorname{den}_{m}(G ; \gamma) \geq e^{(\gamma-\alpha) m}$. Consequently, if

$$
\begin{equation*}
\alpha<\gamma \delta \tag{1.3}
\end{equation*}
$$

and we can approximate $\operatorname{den}_{m}(G ; \gamma)$ efficiently, we can efficiently tell Condition 1.1 and Condition 1.2 apart.

An anonymous referee to [3] noticed that another, much simpler, algorithm can be inferred from the Kruskal-Katona Theorem. Let $|V|=n$. If Condition 1.1 holds, then $|E| \leq(1-\delta)\binom{n}{2}$. The Kruskal-Katona Theorem (see, for example, section 5 of [8]) implies that if Condition 1.2 holds, then for every k such that $\binom{k}{m} \leq e^{-\alpha m}\binom{n}{m}$, we must have $|E| \geq\binom{ k}{2}$, the model case being a graph G consisting of a k-clique and $n-k$ isolated vertices. A computation shows that as $n \longrightarrow \infty$, we can tell Condition 1.1 and Condition 1.2 apart just by counting the edges of G, provided

$$
\begin{equation*}
\alpha<-\frac{1}{2} \ln (1-\delta) . \tag{1.4}
\end{equation*}
$$

Comparing (1.3) and (1.4), we observe that the algorithm based on computing the partition function $\operatorname{den}_{m}(G ; \gamma)$ is not competitive as long as $\gamma<0.5$, which is the case in [3], but becomes competitive at least for small values of δ as soon as $\gamma>0.5$. Numerical estimates show that as long as we can choose $\gamma>0$ arbitrarily close 1 , the condition (1.3) serves a wider range of α than the condition (1.4) provided $\delta<0.7968$.

We still don't know, however, if (1.1) can be efficiently computed for any $\gamma>0$, fixed in advance, and as we remarked above, it is unlikely that (1.1) can be efficiently computed for $\gamma \gg \ln n$. Our numerical experiments seem to indicate that we can afford a substantially larger γ. This can be partially explained by the fact that for the Erdős-Rényi random graph $G(n, 0.5)$ indeed a much larger γ can be used with high probability; see Theorem 1.4 below.

The improvement from $\gamma=0.27$ to an arbitrary $\gamma<1$ required the addition of some new ideas to the technique of [3]. The approach of [3] and of this paper are based on the "interpolation method" [4]. As applied to our case, the idea of the method is to consider $\operatorname{den}_{m}(G ; z)$ for a complex parameter z. We can efficiently approximate $\operatorname{den}_{m}(G ; z)$ at $z=\gamma$ if there is a connected open set $U \subset \mathbb{C}$, not dependent on m or G, such that $0 \in U, \gamma \in U$ and $\operatorname{den}_{m}(G ; z) \neq 0$ for all $z \in U$. In [3], the set U is a disc centered at $z=0$, whereas in the current paper it is a thin neighborhood of the interval $[0, \gamma]$, which allows us to reach larger γ, but also requires a more refined analysis to establish zero-freeness. We give some more details now.
1.2. Multivariate partition function. Given $n \times n$ symmetric complex matrix $Z=\left(z_{i j}\right)$ and $2 \leq m \leq n$, we define

$$
\begin{equation*}
P_{m}(Z)=\sum_{\substack{S \subset\{1, \ldots, n\} \\|S|=m}} \exp \left\{\sum_{\substack{\{i, j\} \subset S \\ i \neq j}} z_{i j}\right\} . \tag{1.5}
\end{equation*}
$$

Note that the diagonal entries of Z are irrelevant, so we assume that $z_{i i}=0$ for all i.
Given a graph $G=(V, E)$ with set $V=\{1, \ldots, n\}$ of vertices and $\gamma>0$, we define $Z_{0}=\left(z_{i j}\right)$ by

$$
z_{i j}= \begin{cases}\frac{\gamma}{m-1} & \text { if }\{i, j\} \in E \\ -\frac{\gamma}{m-1} & \text { if }\{i, j\} \notin E\end{cases}
$$

and observe that

$$
\begin{align*}
P_{m}\left(Z_{0}\right) & =\sum_{\substack{S \subset\{1, \ldots, n\} \\
|S|=m}} \exp \left\{m \gamma \sigma(S)-\frac{\gamma m}{2}\right\} \tag{1.6}\\
& =\exp \left\{-\frac{\gamma m}{2}\right\}\binom{n}{m} \operatorname{den}_{m}(G ; \gamma)
\end{align*}
$$

Hence to compute (1.1) it suffices to compute $P_{m}\left(Z_{0}\right)$. We compute $P_{m}\left(Z_{0}\right)$ by interpolation; see [3], [4]. For that, it suffices to show that $P_{m}(Z) \neq 0$ in some neighborhood of a path connecting the zero matrix to Z_{0} in the space of complex matrices.

We prove the following result.
THEOREM 1.3. For any $0<\delta<1$ there exist $\eta=\eta(\delta)>0$ and $\omega=\omega(\delta)>1$ such that if $n \geq \omega m$, then $P_{m}(Z) \neq 0$ for any $n \times n$ symmetric complex matrix $Z=\left(z_{i j}\right)$ such that

$$
\left|\Re z_{i j}\right| \leq \frac{\delta}{m-1} \quad \text { and } \quad\left|\Im z_{i j}\right| \leq \frac{\eta}{m-1} \quad \text { for all } \quad 1 \leq i \neq j \leq n
$$

We prove Theorem 1.3 in sections 2 and 3 . Using Theorem 1.3 , in section 4 we present an algorithm of quasi-polynomial $n^{O(\ln m)}$ complexity to compute $P_{m}\left(Z_{0}\right)$ and hence $\operatorname{den}_{m}(G ; \gamma)$ for any $0<\gamma<1$, fixed in advance.

In [3] it was established that $P_{m}(Z) \neq 0$ in a polydisc

$$
\mathcal{D}_{m, n}=\left\{Z=\left(z_{i j}\right):\left|z_{i j}\right| \leq \frac{0.27}{m-1} \quad \text { for all } \quad 1 \leq i \neq j \leq n\right\}
$$

provided $n \gg m$ and m is large enough. In Theorem 1.3, we establish that $P_{m}(Z) \neq 0$ in a more "economical" domain, "stretched" along the real part of the complex space of matrices. This allows us to improve the constant γ for which $\operatorname{den}_{m}(G ; \gamma)$ is still efficiently computable.

In section 5, we discuss some results of our numerical experiments, which seem to indicate that we can afford an essentially bigger δ in Theorem 1.3. This can be partially explained by the fact that for the Erdős-Rényi random graph $G(n, 0.5)$ this is indeed the case. Namely, we prove the following result in section 6.

ThEOREM 1.4. Let us choose positive integers n and $2 \leq m \leq n$. For $n \times n$ symmetric matrix $W=\left(w_{i j}\right)$ of independent random variables, where

$$
\mathbf{P}\left(w_{i j}=1\right)=\mathbf{P}\left(w_{i j}=-1\right)=\frac{1}{2}
$$

we define the polynomial

$$
h_{W}(z)=\binom{n}{m}^{-1} \sum_{\substack{S \subset\{1, \ldots, n\} \\|S|=m}} \prod_{\{i, j\} \subset S}\left(1+z w_{i j}\right) .
$$

Let $r>0$ and $\tau>1$ be real numbers. If $n \geq 2 m^{2}\left(1+r^{2}\right)^{m}+2 m$, then the probability that $h_{W}(z)$ has a root in the disc $|z|<r / \sqrt{2 \tau}$ does not exceed $1 / \tau$.
In particular, if $n \gg m^{2}$, then with high probability $h_{W}(z)$ has no roots in the disc $|z|<c / \sqrt{m}$, for an arbitrary large $c>0$, fixed in advance. Similarly, if $\ln n \gg m$, then with high probability $h_{W}(z)$ has no roots in the disc $|z|<c$ for an arbitrary large $c>0$, fixed in advance.

The polynomial $h_{W}(z)$ is easily translated into the partition function $\operatorname{den}_{m}(G ; \gamma)$, where G is the graph with set $V=\{1, \ldots, n\}$ of vertices and two vertices $\{i, j\}$ span an edge if and only if $w_{i j}=1$: for $0<\alpha<1$, we have

$$
h_{W}(\alpha)=(1-\alpha)\left(\begin{array}{c}
\binom{m}{2} \tag{1.7}
\end{array} \operatorname{den}_{m}(G ; \gamma) \quad \text { where } \quad \gamma=\frac{m-1}{2} \ln \frac{1+\alpha}{1-\alpha} .\right.
$$

Consequently, with high probability we can can approximate $\operatorname{den}_{m}(G ; \gamma)$ in quasipolynomial time for γ as large as $\gamma=\sqrt{m}$ provided $n \gg m^{2}$ and as large as $\gamma=m$ provided $\ln n \gg m$. Since the graphs we experimented on were to a large degree random (but not necessarily Erdős-Rényi $G(n, 0.5)$), we may have obtained overly optimistic numerical evidence.

As is easily seen, $\mathbf{E} h_{W}(\alpha)=1$ and from our proof in section 6 it follows that $h_{W}(\alpha)$ is strongly concentrated. For example, in the regime of $n=\Omega\left(m^{2}\right)$ and $\alpha=1 / \sqrt{m}$, we have $\operatorname{var} h_{W}(\alpha)=O(1)$. This concentration, however, does not allow us to predict with high probability the value of $h_{W}(\alpha)$ with the precision that the interpolation technique based on Theorem 1.4 allows for.

In section 6 , we also discuss what may happen if G is a random graph $G(n, 0.5)$ with a planted m-clique.
2. Preliminaries. We consider the partition function P_{m} of section 1.2 within a family of partition functions, which will allow us to prove Theorem 1.3 by induction.
2.1. Functionals $\boldsymbol{P}_{\boldsymbol{\Omega}}(\boldsymbol{Z})$. Let us fix integers n and $2 \leq m \leq n$. For a subset $\Omega \subset\{1, \ldots, n\}$ and $n \times n$ complex symmetric matrix $Z=\left(z_{i j}\right)$, we define

$$
P_{\Omega}(Z)=\sum_{\substack{S \subset\{1, \ldots, n\}: \\|S|=m, \Omega \subset S}} \exp \left\{\sum_{\substack{\{i, j\} \subset S \\ i \neq j}} z_{i j}\right\}
$$

where we agree that $P_{\Omega}(Z)=0$ if $|\Omega|>m$. In other words, we restrict the sum (1.5) defining $P_{m}(Z)$ onto subsets S containing a given set Ω. In particular,

$$
P_{\Omega}(Z)=P_{m}(Z) \quad \text { if } \quad \Omega=\emptyset
$$

The induction will be built on the following straightforward formulas:

$$
\begin{equation*}
P_{\Omega}(Z)=\frac{1}{m-|\Omega|} \sum_{j \in\{1, \ldots, n\} \backslash \Omega} P_{\Omega \cup\{j\}}(Z) \quad \text { provided } \quad|\Omega|<m \tag{2.1}
\end{equation*}
$$

and for $i \neq j$, we have

$$
\frac{\partial}{\partial z_{i j}} P_{\Omega}(Z)= \begin{cases}P_{\Omega}(Z) & \text { if } i, j \in \Omega \tag{2.2}\\ P_{\Omega \cup\{j\}}(Z) & \text { if } i \in \Omega, j \notin \Omega \\ P_{\Omega \cup\{i\}}(Z) & \text { if } i \notin \Omega, j \in \Omega \\ P_{\Omega \cup\{i, j\}}(Z) & \text { if } i, j \notin \Omega\end{cases}
$$

We will often consider complex numbers as vectors in the plane, by identifying $\mathbb{C}=\mathbb{R}^{2}$ and measuring, in particular, angles between nonzero complex numbers. We will use the following geometric lemma.

Lemma 2.1. Let $u_{1}, \ldots, u_{n} \in \mathbb{C}$ be nonzero complex numbers such that the angle between any two does not exceed θ for some $0<\theta<\pi / 2$. Suppose that

$$
\Im\left(\sum_{j=1}^{n} u_{j}\right)=0 \quad \text { and } \quad \sum_{j=1}^{n}\left|u_{j}\right|=c .
$$

Then

$$
\sum_{j=1}^{n}\left|\Im u_{j}\right| \leq c \sin \frac{\theta}{2}
$$

Proof. Scaling u_{j}, if necessary, without loss of generality we assume that $c=1$.
Without loss of generality, we assume that $\arg u_{j} \neq 0$ for $j=1, \ldots, n$. Indeed, if $\arg u_{j}=0$ for some j, we can remove the vector from the collection, which would make the sum

$$
\begin{equation*}
\sum_{j=1}^{n}\left|u_{j}\right| \tag{2.3}
\end{equation*}
$$

only smaller. Rescaling $u_{j} \longmapsto \tau u_{j}$ for some real $\tau>1$, we make (2.3) equal to 1 and increase

$$
\begin{equation*}
\sum_{j=1}^{n}\left|\Im u_{j}\right| \tag{2.4}
\end{equation*}
$$

Reflecting the vectors u_{j} in the coordinate axes if necessary, without loss of generality we may assume that $\Re u_{1} \geq 0$ and $\Im u_{1}>0$. Hence there is a vector, say u_{2}, such that $\Im u_{2}<0$. We necessarily have $\Re u_{2} \geq 0$, since otherwise the angle between u_{1} and u_{2} exceeds $\pi / 2$. Then for any vector u_{j}, we must have $\Re u_{j} \geq 0$, since otherwise one of the angles formed by u_{j} with u_{1} or u_{2} will exceed $\pi / 2$.

Hence without loss of generality, we assume that $\Re u_{j}>0$ for $j=1, \ldots, n$. Let

$$
\alpha=\max _{j=1, \ldots, n} \arg u_{j}
$$

so that

$$
0<\alpha<\theta
$$

and let

$$
-\beta=\min _{j=1, \ldots, n} \arg u_{j}<0
$$

Then $\alpha+\beta \leq \theta$.
Let

$$
J_{+}=\left\{j: \arg u_{j}>0\right\} \quad \text { and } \quad J_{-}=\left\{j: \arg u_{j}<0\right\}
$$

Next, without loss of generality, we assume that $\arg u_{j}=\alpha$ for all $j \in J_{+}$and that $\arg u_{j}=-\beta$ for all $j \in J_{-}$. Indeed, suppose that $\arg u_{1}=\alpha_{1}$, where $0<\alpha_{1}<\alpha$. We can modify

$$
u_{1} \longmapsto \frac{\sin \alpha_{1}}{\sin \alpha} e^{i\left(\alpha-\alpha_{1}\right)} u_{1}
$$

(we rotate and shrink u_{1} so as to make its argument equal to α and leave $\Im u_{1}$ intact). The sum (2.3) gets smaller while all other conditions and the sum (2.4) remain intact. Rescaling $u_{j} \longmapsto \tau u_{j}$ for some real $\tau>1$, we make (2.3) equal to 1 and increase (2.4), while keeping other constraints of the lemma intact. The case of $\arg u_{j}>-\beta$ for some $j \in J_{-}$is handled similarly.

Next, without loss of generality, we assume that $\alpha+\beta=\theta$. Indeed, if $\alpha+\beta<\theta$, we can rotate and scale vectors u_{j} as above, so that the sum (2.4) increases while all other conditions are satisified.

Now, let

$$
u_{+}=\sum_{j \in J_{+}} u_{j} \quad \text { and } \quad u_{-}=\sum_{j \in J_{-}} u_{j} .
$$

Then $\arg u_{+}=\alpha, \arg u_{-}=-\beta, \Im\left(u_{+}+u_{-}\right)=0,\left|u_{+}\right|+\left|u_{-}\right|=1$, and (2.4) is equal to $\left|\Im u_{+}\right|+\left|\Im u_{-}\right|$.

Denoting $a=\left|u_{+}\right|$and $b=\left|u_{-}\right|$, we have $a+b=1$ and $a \sin \alpha-b \sin \beta=0$, from which

$$
a=\frac{\sin \beta}{\sin \alpha+\sin \beta} \quad \text { and } \quad b=\frac{\sin \alpha}{\sin \alpha+\sin \beta}
$$

and so

$$
\left|\Im u_{+}\right|+\left|\Im u_{-}\right|=\frac{2 \sin \alpha \sin \beta}{\sin \alpha+\sin \beta}
$$

Now, the function

$$
\alpha \longmapsto \frac{1}{\sin \alpha} \quad \text { for } \quad 0 \leq \alpha \leq \frac{\pi}{2}
$$

is convex and hence the minimum of

$$
\frac{\sin \alpha+\sin \beta}{\sin \alpha \sin \beta}=\frac{1}{\sin \alpha}+\frac{1}{\sin \beta}
$$

on the interval $\alpha+\beta=\theta, \alpha, \beta \geq 0$, is attained at $\alpha=\beta=\theta / 2$. The proof now follows.

We need another geometric lemma.
Lemma 2.2. Let $u_{1}, \ldots, u_{n} \in \mathbb{C}$ be nonzero complex numbers such that the angle between any two does not exceed θ for some $0 \leq \theta<2 \pi / 3$. Let $u=u_{1}+\cdots+u_{n}$. Then

$$
|u| \geq\left(\cos \frac{\theta}{2}\right) \sum_{k=1}^{n}\left|u_{k}\right|
$$

Proof. This is Lemma 3.1 of [3] and Lemma 3.6.3 of [4].
3. Proof of Theorem 1.3. We identify the space of $n \times n$ zero-diagonal complex symmetric matrices $Z=\left(z_{i j}\right)$ with $\mathbb{C}^{\binom{n}{2}}$. Given $\delta \geq \eta>0$, we define a domain $\mathcal{U}(\delta, \eta)=\mathcal{U}_{n, m}(\delta, \eta) \subset \mathbb{C}^{\binom{n}{2}}$ by

$$
\mathcal{U}(\delta, \eta)=\left\{Z=\left(z_{i j}\right):\left|\Re z_{i j}\right| \leq \frac{\delta}{m-1} \quad \text { and } \quad\left|\Im z_{i j}\right| \leq \frac{\eta}{m-1}\right\}
$$

If $Z^{\prime}=\left(z_{i j}^{\prime}\right)$ and $Z^{\prime \prime}=\left(z_{i j}^{\prime \prime}\right)$ are two matrices from $\mathcal{U}(\delta, \tau)$, then

$$
\left|z_{i j}^{\prime}-z_{i j}^{\prime \prime}\right| \leq \frac{\sqrt{(2 \delta)^{2}+(2 \eta)^{2}}}{m-1} \leq \frac{2 \sqrt{2} \delta}{m-1} \quad \text { for all } \quad i, j
$$

We will prove by descending induction on $|\Omega|$ that $P_{\Omega}(Z) \neq 0$ for all $Z \in \mathcal{U}(\delta, \eta)$ and that, moreover, a number of stronger conditions are met. The induction is based on the following two lemmas that describe how $P_{\Omega}(Z)$ changes when only the entries in the i th row and column of Z change. The first lemma deals with the case of $i \in \Omega$.

Lemma 3.1. Let us fix $\Omega \subset\{1, \ldots, n\}$ such that $|\Omega|<m$. Suppose that for any $Z \in \mathcal{U}(\delta, \eta)$ and any $j, k \notin \Omega$, we have $P_{\Omega \cup\{j\}}(Z) \neq 0, P_{\Omega \cup\{k\}}(Z) \neq 0$ and the angle between the two nonzero complex numbers does not exceed θ for some $0<\theta \leq \pi / 2$. Then

- Part 1: We have

$$
P_{\Omega}(Z) \neq 0 \quad \text { for all } \quad Z \in \mathcal{U}(\delta, \eta)
$$

- Part 2: Suppose additionally that $\Omega \neq \emptyset$, and let us fix an $i \in \Omega$. Let $Z^{\prime}, Z^{\prime \prime} \in \mathcal{U}(\delta, \eta)$ be two matrices that differ only in the coordinates $z_{i j}=z_{j i}$ for $j \neq i$. Then

$$
\left|\frac{P_{\Omega}\left(Z^{\prime}\right)}{P_{\Omega}\left(Z^{\prime \prime}\right)}\right| \leq e^{6 \delta}
$$

and the angle between $P_{\Omega}\left(Z^{\prime}\right) \neq 0$ and $P_{\Omega}\left(Z^{\prime \prime}\right) \neq 0$ does not exceed

$$
2 \delta \tan \frac{\theta}{2}+5 \eta
$$

Proof. It follows from (2.1) and Lemma 2.2 that

$$
\begin{equation*}
\left|P_{\Omega}(Z)\right| \geq \frac{\cos (\theta / 2)}{m-|\Omega|} \sum_{j \notin \Omega}\left|P_{\Omega \cup\{j\}}(Z)\right| \geq \frac{1}{(m-1) \sqrt{2}} \sum_{j \notin \Omega}\left|P_{\Omega \cup\{j\}}(Z)\right| \tag{3.1}
\end{equation*}
$$

In particular, Part 1 follows.
To prove Part 2, let us choose a branch of $\ln P_{\Omega}(Z)$ for $Z \in \mathcal{U}(\delta, \eta)$. For $0 \leq t \leq 1$, let $Z(t)=t Z^{\prime \prime}+(1-t) Z^{\prime}$. Then

$$
\begin{aligned}
\ln P_{\Omega}\left(Z^{\prime \prime}\right)-\ln P_{\Omega}\left(Z^{\prime}\right) & =\int_{0}^{1} \frac{d}{d t} \ln P_{\Omega}(Z(t)) d t \\
& =\left.\int_{0}^{1} \sum_{j: j \neq i}\left(z_{i j}^{\prime \prime}-z_{i j}^{\prime}\right) \frac{\partial}{\partial z_{i j}} \ln P_{\Omega}(Z)\right|_{Z=Z(t)} d t
\end{aligned}
$$

Using (2.2), we conclude that

$$
\frac{\partial}{\partial z_{i j}} \ln P_{\Omega}(Z)= \begin{cases}1 & \text { if } j \in \Omega \\ P_{\Omega \cup\{j\}}(Z) / P_{\Omega}(Z) & \text { if } j \notin \Omega\end{cases}
$$

and hence

$$
\begin{align*}
\ln P_{\Omega}\left(Z^{\prime \prime}\right)-\ln P_{\Omega}\left(Z^{\prime}\right)= & \sum_{j \in \Omega, j \neq i}\left(z_{i j}^{\prime \prime}-z_{i j}^{\prime}\right) \\
& +\int_{0}^{1} \sum_{j \notin \Omega}\left(z_{i j}^{\prime \prime}-z_{i j}^{\prime}\right) \frac{P_{\Omega \cup\{j\}}(Z(t))}{P_{\Omega}(Z(t))} d t \tag{3.2}
\end{align*}
$$

Using (3.1), we get from (3.2) that

$$
\begin{aligned}
\left|\Re \ln P_{\Omega}\left(Z^{\prime \prime}\right)-\Re \ln P_{\Omega}\left(Z^{\prime}\right)\right| & \leq 2 \delta+(m-1) \sqrt{2} \max _{j \notin \Omega}\left|z_{i j}^{\prime \prime}-z_{i j}^{\prime}\right| \\
& \leq 2 \delta+4 \delta=6 \delta,
\end{aligned}
$$

and hence

$$
\left|\frac{P_{\Omega}\left(Z^{\prime}\right)}{P_{\Omega}\left(Z^{\prime \prime}\right)}\right| \leq e^{6 \delta}
$$

as claimed.
From (2.1), for all $Z \in \mathcal{U}(\delta, \eta)$ we have that

$$
\sum_{j \notin \Omega} \frac{P_{\Omega \cup\{j\}}(Z)}{P_{\Omega}(Z)}=m-|\Omega|
$$

is real, while from (3.1), we conclude that

$$
\sum_{j \notin \Omega}\left|\frac{P_{\Omega \cup\{j\}}(Z)}{P_{\Omega}(Z)}\right| \leq \frac{m-|\Omega|}{\cos (\theta / 2)} \leq \frac{m-1}{\cos (\theta / 2)}
$$

Applying Lemma 2.1 with $u_{j}=P_{\Omega \cup\{j\}}(Z) / P_{\Omega}(Z)$, we conclude that

$$
\sum_{j \notin \Omega}\left|\Im \frac{P_{\Omega \cup\{j\}}(Z)}{P_{\Omega}(Z)}\right| \leq(m-1) \tan \frac{\theta}{2}
$$

Therefore, from (3.2),

$$
\begin{aligned}
\left|\Im \ln P_{\Omega}\left(Z^{\prime \prime}\right)-\Im \ln P_{\Omega}\left(Z^{\prime}\right)\right| \leq & 2 \eta+(m-1) \tan \frac{\theta}{2} \max _{j \notin \Omega}\left|\Re z_{i j}^{\prime \prime}-\Re z_{i j}^{\prime}\right| \\
& +(m-1) \sqrt{2} \max _{j \notin \Omega}\left|\Im z_{i j}^{\prime \prime}-\Im z_{i j}^{\prime}\right| \\
\leq & 2 \delta \tan \frac{\theta}{2}+5 \eta
\end{aligned}
$$

Hence the angle between $P_{\Omega}\left(Z^{\prime \prime}\right)$ and $P_{\Omega}\left(Z^{\prime}\right)$ does not exceed $2 \delta \tan \frac{\theta}{2}+5 \eta$, as claimed.

The second lemma shows that $P_{\Omega}(Z)$ does not change much if only the entries of Z in the i th row and column are changed for some $i \notin \Omega$, assuming that $n \gg m$.

Lemma 3.2. Let us fix an $\Omega \subset\{1, \ldots, n\},|\Omega| \leq m-1$. Suppose for any $i, j \notin \Omega$ and all $Z \in \mathcal{U}(\delta, \eta)$ we have $P_{\Omega \cup\{i\}}(Z) \neq 0, P_{\Omega \cup\{j\}}(Z) \neq 0$ and the angle between the two complex numbers does not exceed $\pi / 2$ and that

$$
\left|\frac{P_{\Omega \cup\{i\}}(Z)}{P_{\Omega \cup\{j\}}(Z)}\right| \leq \lambda
$$

for some $\lambda \geq 1$.
In addition, suppose that if $|\Omega| \leq m-2$, then for any distinct $i, j, k \notin \Omega$ and all $Z \in \mathcal{U}(\delta, \eta)$ we have $P_{\Omega \cup\{i, j\}}(Z) \neq 0, P_{\Omega \cup\{i, k\}}(Z) \neq 0$, and the angle between the two complex numbers does not exceed $\pi / 2$.

Let us fix an $i \notin \Omega$, and let $Z^{\prime}, Z^{\prime \prime} \in \mathcal{U}(\delta, \eta)$ be two matrices that differ only in the coordinates $z_{i j}=z_{j i}$ for $j \neq i$. Then

$$
\left|\frac{P_{\Omega}\left(Z^{\prime}\right)}{P_{\Omega}\left(Z^{\prime \prime}\right)}\right| \leq \exp \left\{\frac{10 \delta \lambda m}{n-1}\right\}
$$

and the angle between $P_{\Omega}\left(Z^{\prime}\right) \neq 0$ and $P_{\Omega}\left(Z^{\prime \prime}\right) \neq 0$ does not exceed

$$
\frac{10 \delta \lambda m}{n-1}
$$

Proof. It follows from Lemma 3.1 that $P_{\Omega}(Z) \neq 0$ for all $Z \in \mathcal{U}(\delta, \eta)$.
Arguing as in the proof of Lemma 3.1, we introduce $Z(t)=t Z^{\prime \prime}+(1-t) Z^{\prime}$ and write

$$
\ln P_{\Omega}\left(Z^{\prime \prime}\right)-\ln P_{\Omega}\left(Z^{\prime}\right)=\left.\int_{0}^{1} \sum_{j: j \neq i}\left(z_{i j}^{\prime \prime}-z_{i j}^{\prime}\right) \frac{\partial}{\partial z_{i j}} \ln P_{\Omega}(Z)\right|_{Z=Z(t)} d t
$$

From (2.2), we write

$$
\begin{align*}
\ln P_{\Omega}\left(Z^{\prime \prime}\right)-\ln P_{\Omega}\left(Z^{\prime}\right)= & \int_{0}^{1} \sum_{j \in \Omega}\left(z_{i j}^{\prime \prime}-z_{i j}^{\prime}\right) \frac{P_{\Omega \cup\{i\}}(Z(t))}{P_{\Omega}(Z(t))} \\
& +\sum_{j \notin \Omega, j \neq i}\left(z_{i j}^{\prime \prime}-z_{i j}^{\prime}\right) \frac{P_{\Omega \cup\{i, j\}}(Z(t))}{P_{\Omega}(Z(t))} d t . \tag{3.3}
\end{align*}
$$

Suppose first that $|\Omega| \leq m-2$. From (2.1), we have

$$
P_{\Omega \cup\{i\}}(Z)=\frac{1}{m-|\Omega|-1} \sum_{j \notin \Omega, j \neq i} P_{\Omega \cup\{i, j\}}(Z) .
$$

Applying Lemma 2.2, we get that

$$
\begin{equation*}
\sum_{j \notin \Omega, j \neq i}\left|P_{\Omega \cup\{i, j\}}(Z)\right| \leq(m-1) \sqrt{2}\left|P_{\Omega \cup\{i\}}(Z)\right| \tag{3.4}
\end{equation*}
$$

for all $Z \in \mathcal{U}(\delta, \eta)$.
Since by (2.1) we also have

$$
P_{\Omega}(Z)=\frac{1}{m-|\Omega|} \sum_{j \notin \Omega} P_{\Omega \cup\{j\}}(Z)
$$

applying Lemma 2.2, we conclude that

$$
\sum_{j \notin \Omega}\left|P_{\Omega \cup\{j\}}(Z)\right| \leq(m-|\Omega|) \sqrt{2}\left|P_{\Omega}(Z)\right|
$$

Hence for all $i \notin \Omega$, we have

$$
\begin{equation*}
\left|P_{\Omega \cup\{i\}}(Z)\right| \leq \frac{\lambda(m-|\Omega|) \sqrt{2}}{n-|\Omega|}\left|P_{\Omega}(Z)\right| \leq \frac{\lambda m \sqrt{2}}{n}\left|P_{\Omega}(Z)\right| \tag{3.5}
\end{equation*}
$$

Combining (3.5) and (3.4), we get

$$
\begin{equation*}
\sum_{j \notin \Omega, j \neq i}\left|P_{\Omega \cup\{i, j\}}(Z)\right| \leq \frac{2 \lambda m(m-1)}{n}\left|P_{\Omega}(Z)\right| \tag{3.6}
\end{equation*}
$$

Combining (3.3), (3.4), (3.5), and (3.6), we get

$$
\begin{aligned}
\left|\ln P_{\Omega}\left(Z^{\prime \prime}\right)-\ln P_{\Omega}\left(Z^{\prime}\right)\right| & \leq \frac{2 \sqrt{2} \delta}{m-1} \cdot \frac{\lambda|\Omega|(m-|\Omega|) \sqrt{2}}{n-|\Omega|}+\frac{2 \sqrt{2} \delta}{m-1} \cdot \frac{2 \lambda m(m-1)}{n} \\
& \leq \frac{4 \delta \lambda m}{n-1}+\frac{4 \sqrt{2} \delta \lambda m}{n} \leq \frac{10 \delta \lambda m}{n-1}
\end{aligned}
$$

If $|\Omega|=m-1$, then from (3.3) and (3.5), we get

$$
\left|\ln P_{\Omega}\left(Z^{\prime \prime}\right)-\ln P_{\Omega}\left(Z^{\prime}\right)\right| \leq \frac{2 \sqrt{2} \delta}{m-1} \cdot \frac{\lambda m \sqrt{2}}{n} \leq \frac{4 \delta \lambda m}{n-1}
$$

which concludes the proof.

Now we are ready to prove Theorem 1.3.
Proof of Theorem 1.3. Given $0<\delta<1$, we choose $0<\theta<\pi / 2$ so that

$$
2 \delta \tan \frac{\theta}{2}<\theta
$$

We then choose $\eta>0$ such that

$$
2 \delta \tan \frac{\theta}{2}+5 \eta<\theta
$$

We choose

$$
\lambda>e^{6 \delta}
$$

and choose $\omega>1$ so that

$$
2 \delta \tan \frac{\theta}{2}+5 \eta+\frac{10 \delta \lambda m}{n-1} \leq \theta \quad \text { and } \quad \exp \left\{6 \delta+\frac{10 \delta \lambda m}{n-1}\right\} \leq \lambda
$$

whenever $n \geq \omega m$.
Suppose that $n \geq \omega m$. We prove by descending induction on $r=m, m-1, \ldots, 1$ that if $\Omega_{1}, \Omega_{2} \in\{1, \ldots, n\}$ are two sets such that $\left|\Omega_{1}\right|=\left|\Omega_{2}\right|=r$ and $\left|\Omega_{1} \Delta \Omega_{2}\right|=2$, then for all $Z \in \mathcal{U}(\delta, \eta)$ we have $P_{\Omega_{1}}(Z) \neq 0, P_{\Omega_{2}}(Z) \neq 0$, the angle between $P_{\Omega_{1}}(Z)$ and $P_{\Omega_{2}}(Z)$ does not exceed θ while the ratio of $\left|P_{\Omega_{1}}(Z)\right|$ and $\left|P_{\Omega_{2}}(Z)\right|$ does not exceed λ.

Assume that $r=m$. Without loss of generality, we assume that $\Omega_{1}=\Omega \cup\{1\}$ and $\Omega_{2}=\Omega \cup\{2\}$ for some $\Omega \subset\{3, \ldots, n\}$ such that $|\Omega|=m-1$. We have

$$
\begin{aligned}
& P_{\Omega_{1}}(Z)=\exp \left\{\sum_{\{i, j\} \subset \Omega} z_{i j}\right\} \exp \left\{\sum_{i \in \Omega} z_{1 i}\right\} \text { and } \\
& P_{\Omega_{2}}(Z)=\exp \left\{\sum_{\{i, j\} \subset \Omega} z_{i j}\right\} \exp \left\{\sum_{i \in \Omega} z_{2 i}\right\} .
\end{aligned}
$$

Clearly, $P_{\Omega_{1}}(Z) \neq 0, P_{\Omega_{2}}(Z) \neq 0$, the angle between $P_{\Omega_{1}}(Z)$ and $P_{\Omega_{2}}(Z)$ does not exceed $2 \eta \leq \theta$ while the ratio of $\left|P_{\Omega_{1}}(Z)\right|$ and $\left|P_{\Omega_{2}}(Z)\right|$ does not exceed $e^{2 \delta} \leq \lambda$.

Suppose now that the statements hold for all subsets $\Omega \subset\{1, \ldots, n\}$ of cardinality at least $r+1$ for some $r \leq m-1$, and let $\Omega_{1}, \Omega_{2} \subset\{1, \ldots, n\}$ be two subsets of cardinality $r \geq 1$ such that $\left|\Omega_{1} \Delta \Omega_{2}\right|=2$. Again, without loss of generality, we assume that $\Omega_{1}=\Omega \cup\{1\}$ and $\Omega_{2}=\Omega \cup\{2\}$ for some $\Omega \subset\{3, \ldots, n\}$ such that $|\Omega|=r-1$. Then we observe that $P_{\Omega_{2}}(Z)=P_{\Omega_{1}}\left(Z^{\prime}\right)$, where

$$
z_{1 i}^{\prime}=z_{i 1}^{\prime}=z_{2 i}=z_{i 2} \quad \text { and } \quad z_{2 i}^{\prime}=z_{i 2}^{\prime}=z_{1 i}=z_{i 1} \quad \text { for } \quad i \neq 1,2
$$

while all other entries of Z and Z^{\prime} coincide. Applying Lemma 3.1 and Lemma 3.2 and the induction hypothesis to sets $\Omega_{1} \cup\{j\}$ for $j \notin \Omega_{1}$ and $\Omega_{1} \cup\{j, k\}$ for $j, k \notin \Omega_{1}$, we conclude that the angle between $P_{\Omega_{1}}(Z) \neq 0$ and $P_{\Omega_{2}}(Z) \neq 0$ does not exceed

$$
2 \delta \tan \frac{\theta}{2}+5 \eta+\frac{10 \delta \lambda m}{n-1} \leq \theta
$$

while the ratio of $\left|P_{\Omega_{1}}(Z)\right|$ and $\left|P_{\Omega_{2}}(Z)\right|$ does not exceed

$$
\exp \left\{6 \delta+\frac{10 \delta \lambda m}{n-1}\right\} \leq \lambda
$$

This proves that $P_{\{i\}}(Z) \neq 0$ for all $i \in\{1, \ldots, n\}$ and all $Z \in \mathcal{U}(\delta, \eta)$ and that the angle between $P_{\{i\}}(Z) \neq 0$ and $P_{\{j\}}(Z) \neq 0$ does not exceed θ for all $i, j \in\{1, \ldots, n\}$. From (2.1) we conclude that $P_{m}(Z)=P_{\emptyset}(Z) \neq 0$ for all $Z \in \mathcal{U}(\delta, \eta)$.
4. Computing the partition function. Here we show how to compute the density partition function $\operatorname{den}_{m}(G ; \gamma)$. First, we make a change of coordinates to convert the partition function $P_{m}(Z)$ of section 1.2 into a multivariate polynomial.
4.1. A polynomial version of $\boldsymbol{P}_{\boldsymbol{m}}(\boldsymbol{Z})$. For an $n \times n$ complex symmetric matrix $W=\left(w_{i j}\right)$ with zero diagonal, we define

$$
p_{m}(W)=\binom{n}{m}^{-1} \sum_{\substack{S \subset\{1, \ldots, n\} \\|S|=m}} \prod_{\substack{\{i, j\} \subset S \\ i \neq j}}\left(1+w_{i j}\right)
$$

Hence $p_{m}(W)$ is a polynomial of degree $\binom{m}{2}$ in the entries $w_{i j}$ and, assuming that $\left|w_{i j}\right|<1$ for all i, j, we can write

$$
p_{m}(W)=\binom{n}{m}^{-1} P_{m}(Z), \quad \text { where } \quad Z=\left(z_{i j}\right) \quad \text { and } \quad z_{i j}=\ln \left(1+w_{i j}\right)
$$

(we choose the standard branch of the logarithm in the right half-plane of \mathbb{C}). Theorem 1.3 implies that for every $0<\delta<1$ there is $\eta=\eta(\delta)>0$ and $\omega=\omega(\delta)>1$ such that

$$
\begin{align*}
p_{m}(W) \neq 0 \text { whenever } \quad & \left|\Re \ln \left(1+w_{i j}\right)\right| \leq \frac{\delta}{m-1} \\
& \left|\Im \ln \left(1+w_{i j}\right)\right| \leq \frac{\eta}{m-1}, \quad \text { and } \tag{4.1}\\
& n \geq \omega m
\end{align*}
$$

To compute $\operatorname{den}_{m}(G ; \gamma)$ for a given $0<\gamma<1$ and a given graph $G=(V, E)$, we define

$$
w_{i j}= \begin{cases}\exp \left\{\frac{\gamma}{m-1}\right\}-1 & \text { if }\{i, j\} \in E \tag{4.2}\\ \exp \left\{-\frac{\gamma}{m-1}\right\}-1 & \text { if }\{i, j\} \notin E\end{cases}
$$

Then, by (1.6), we have

$$
\begin{equation*}
\operatorname{den}_{m}(G ; \gamma)=\exp \left\{\frac{\gamma m}{2}\right\} p_{m}(W) \tag{4.3}
\end{equation*}
$$

The interpolation method is based on the following simple lemma.
Lemma 4.1. Let $g: \mathbb{C} \longrightarrow \mathbb{C}$ be a univariate polynomial, and suppose that $g(z) \neq$ 0 provided $|z|<\beta$, where $\beta>1$ is some real number. Let us choose a branch of $f(z)=\ln g(z)$ in the disc $|z|<\beta$, and let

$$
T_{r}(z)=f(0)+\sum_{k=1}^{r} \frac{f^{(k)}(0)}{k!} z^{k}
$$

be the Taylor polynomial of f of degree r computed at $z=0$. Then

$$
\left|f(1)-T_{r}(1)\right| \leq \frac{\operatorname{deg} g}{\beta^{r}(\beta-1)(r+1)}
$$

Proof. This is Lemma 2.2.1 of [4]; see also Lemma 1.1 of [3].
The gist of Lemma 4.1 is that to approximate $f(1)$ within an additive error ϵ; it suffices to compute the Taylor polynomial of $f(z)$ at 0 of degree $r=O_{\beta}(\ln \operatorname{deg} g-\ln \epsilon)$, where the implicit constant in the " O " notation depends on β alone. We would like to apply Lemma 4.1 to the univariate polynomial

$$
\begin{equation*}
h(z)=\binom{n}{m}^{-1} \sum_{\substack{S \subset\{1, \ldots, n\} \\|S|=m}} \prod_{\substack{i, j\} \subset S \\ i \neq j}}\left(1+z w_{i j}\right) \tag{4.4}
\end{equation*}
$$

where $w_{i j}$ are defined by (4.2). Indeed, the value we are ultimately interested is $h(1)=p_{m}(W)$. However, Lemma 4.1 requires that $h(z) \neq 0$ in a disc of some radius $\beta>1$, whereas (4.1) only guarantees that $h(z) \neq 0$ for z in a neighborhood of the interval $[0,1] \subset \mathbb{C}$. To remedy this, we compose h with a polynomial $\phi: \mathbb{C} \longrightarrow \mathbb{C}$ such that $\phi(0)=0, \phi(1)=1$ and ϕ maps the disc $|z|<\beta$ for some $\beta>1$ inside the prescribed neighborhood of $[0,1] \subset \mathbb{C}$. We then apply Lemma 4.1 to the composition $g(z)=h((\phi(z))$. The following lemma provides an explicit construction of ϕ.

Lemma 4.2. For $0<\rho<1$, we define

$$
\begin{aligned}
& \alpha=\alpha(\rho)=1-e^{-\frac{1}{\rho}}, \quad \beta=\beta(\rho)=\frac{1-e^{-1-\frac{1}{\rho}}}{1-e^{-\frac{1}{\rho}}}>1 \\
& N=N(\rho)=\left\lfloor\left(1+\frac{1}{\rho}\right) e^{1+\frac{1}{\rho}}\right\rfloor, \quad \sigma=\sigma(\rho)=\sum_{k=1}^{N} \frac{\alpha^{k}}{k}, \quad \text { and } \\
& \phi(z)=\phi_{\rho}(z)=\frac{1}{\sigma} \sum_{k=1}^{N} \frac{(\alpha z)^{k}}{k}
\end{aligned}
$$

Then $\phi: \mathbb{C} \longrightarrow \mathbb{C}$ is a polynomial of degree N such that $\phi(0)=0, \phi(1)=1$,

$$
-\rho \leq \Re \phi(z) \leq 1+2 \rho, \quad \text { and } \quad|\Im \phi(z)| \leq 2 \rho
$$

provided $|z| \leq \beta$.
Proof. This is Lemma 2.2.3 of [4].
Lemma 4.1 also requires the derivatives $f^{(k)}(0)$ of $f(z)=\ln g(z)$ at $z=0$. Those, however, can be easily computed from the derivatives $g^{(k)}(0)$, as described in section 2.2.2 of [4]; see also section 2.1 of [3]. We briefly sketch how.
4.2. Computing derivatives. Suppose that $f(z)=\ln g(z)$ as in Lemma 4.1. Then

$$
f^{\prime}(z)=\frac{g^{\prime}(z)}{g(z)} \quad \text { and } \quad g^{\prime}(z)=f^{\prime}(z) g(z)
$$

Differentiating the product $k-1$ times, we obtain

$$
\begin{equation*}
g^{(k)}(0)=\sum_{j=0}^{k-1}\binom{k-1}{j} f^{(k-j)}(0) g^{(j)}(0) \quad \text { for } \quad k=1, \ldots, r \text {. } \tag{4.5}
\end{equation*}
$$

We interpret (4.5) as a system of linear equations in variables $f^{(k)}(0)$ for $k=1, \ldots, r$ with coefficients $g^{(k)}(0)$ for $k=0, \ldots, r$. This is a triangular system of linear equations
with nonzero entries $g^{(0)}(0)=g(0)$ on the diagonal, that can be solved in $O\left(r^{2}\right)$ time, provided the values of $g^{(k)}(0)$ are known.

To supply the last ingredient of the algorithm, we show how to compute $h^{(k)}(0)$ for $k=0, \ldots, r$, where h is the polynomial defined by (4.4). This is also done in [3], but we reproduce it here for completeness.

We have

$$
h^{(k)}(0)=\binom{n}{m}^{-1} \sum_{\substack{S \subset\{1, \ldots, n\} \\|S|=m}} \sum_{\left\{i_{1}, j_{1}\right\}, \ldots,\left\{i_{k}, j_{k}\right\} \subset S} w_{i_{1} j_{1}} \ldots w_{i_{k} j_{k}}
$$

where the inner sum is taken over all ordered collections of distinct unordered pairs $\left\{i_{1}, j_{1}\right\}, \ldots,\left\{i_{k}, j_{k}\right\} \subset S$. For such a collection, say I, let $\nu(I)$ be the number of distinct vertices among $i_{1}, j_{1}, \ldots, i_{k}, j_{k}$. Then there are exactly $\binom{n-\nu(I)}{m-\nu(I)}$ different m-subsets S containing the edges from I, and we can rewrite the above sum as

$$
\begin{equation*}
h^{(k)}(0)=\binom{n}{m}^{-1} \sum_{I=\left(\left\{i_{1}, j_{1}\right\}, \ldots,\left\{i_{k}, j_{k}\right\}\right)}\binom{n-\nu(I)}{m-\nu(I)} w_{i_{1} j_{1}} \ldots w_{i_{k} j_{k}} \tag{4.6}
\end{equation*}
$$

where the sum is taken over all ordered collections of k unordered pairs $\left\{i_{s}, j_{s}\right\}$. It is clear now that $h^{(k)}(0)$ can be computed in $n^{O(k)}$ time by the exhaustive enumeration of all possible collections of k pairs.

In section 5 we present faster formulas for computing $h^{(2)}(0)$ and $h^{(3)}(0)$ that we used for our numerical experiments.
4.3. The algorithm. Let us fix $0<\gamma<1$. Below we summarize the algorithm for computing $\operatorname{den}_{m}(G ; \gamma)$ within relative error $0<\epsilon<1$, by which we understand computing $\ln \operatorname{den}_{m}(G ; \gamma)$ within additive error ϵ. We assume that $m \geq 4$ and that $n \geq \omega m$ for some $\omega=\omega(\gamma)>1$, to be specified below.

Given a graph $G=(V, E)$ with set $V=\{1, \ldots, n\}$ of vertices, and an integer $m \leq n$, we compute the $n \times n$ symmetric matrix $W=\left(w_{i j}\right)$ by (4.2). Since $m \geq 4$, we have $\left|w_{i j}\right| \leq 0.4$ for all i, j.

Our goal is to compute $p_{m}(W)=h(1)$, where h is the univariate polynomial defined by (4.4). We note that $\operatorname{deg} h=\binom{m}{2}$.

Let us choose $1>\delta>\gamma$, and let $\eta=\eta(\delta)>0$ and $\omega=\omega(\delta)>1$ be the numbers of Theorem 1.3 and in (4.1). We find $\rho=\rho(\delta)>0$ such that

$$
\left|\Re \ln \left(1+z w_{i j}\right)\right| \leq \frac{\delta}{m-1} \quad \text { and } \quad\left|\Im \ln \left(1+z w_{i j}\right)\right| \leq \frac{\eta}{m-1}
$$

as long as

$$
\begin{equation*}
-\rho \leq \Re z \leq 1+\rho \quad \text { and } \quad|\Im z| \leq \rho \tag{4.7}
\end{equation*}
$$

Indeed, if $z \in[0,1]$, then

$$
-\frac{\gamma}{m-1} \leq \ln \left(1+z w_{i j}\right) \leq \frac{\gamma}{m-1}
$$

and for $|z| \leq 2$, we have

$$
\left|\frac{d}{d z} \ln \left(1+z w_{i j}\right)\right|=\left|\frac{w_{i j}}{1+z w_{i j}}\right| \leq \frac{10}{m-1},
$$

so the desired ρ can indeed be found.

It follows by (4.1) that $h(z) \neq 0$ as long as $n \geq \omega m$ and (4.7) holds.
Using Lemma 4.2, we construct a polynomial $\phi: \mathbb{C} \longrightarrow \mathbb{C}$ of some degree $N=$ $N(\rho)=N(\delta)$ such that $\phi(0)=0, \phi(1)=1$ and

$$
-\rho \leq \Re \phi(z) \leq 1+\rho \quad \text { and } \quad|\Im \phi(z)| \leq \rho
$$

as long as $|z| \leq \beta$ for some $\beta=\beta(\rho)=\beta(\delta)>1$. We define

$$
g(z)=h(\phi(z))
$$

and our goal is to compute $g(1)=h(\phi(1))$. We note that

$$
\operatorname{deg} g \leq N \operatorname{deg} h=N\binom{m}{2}
$$

We choose a branch of $f(z)=\ln g(z)$ for z satisfying (4.7).
Using Lemma 4.1, we find an integer $r=O_{\rho}(\ln m-\ln \epsilon)=O_{\delta}(\ln m-\ln \epsilon)$ such that

$$
\left|T_{r}(1)-f(1)\right| \leq \epsilon
$$

where $T_{r}(z)$ is the Taylor polynomial of $f(z)$ of degree r, computed at $z=0$. The implicit constant in the " O " notation depends only on ρ, which in turn depends only on δ. Hence our goal is to compute $T_{r}(1)$, for which we need to compute $f^{(k)}(0)$ for $k=1, \ldots, r$. As in section 4.2, we reduce it in $O\left(r^{2}\right)$ time to computing $g^{(k)}(0)$ for $k=1, \ldots, r$. Note that

$$
g(0)=h(\phi(0))=h(0)=1
$$

Let $\phi_{r}(z)$ be the truncation of the polynomial $\phi(z)$ obtained by discarding all monomials of degree higher than r. Similarly, let $h_{r}(z)$ be the truncation of the polynomial $h(z)$, obtained by discarding all monomial of degree higher than r. We compute $h_{r}(z)$ as in section 4.2 in $n^{O(r)}$ time. Finally, we compute the truncation of the composition $h_{r}\left(\phi_{r}(z)\right)$. A fast (polynomial in r) way to do it, is to use Horner's method: assuming that

$$
h_{r}(z)=\sum_{k=0}^{r} b_{k} z^{k}
$$

we successively compute

$$
\begin{aligned}
& b_{r} \phi_{r}(z)+b_{r-1}, \quad\left(b_{r} \phi_{r}(z)+b_{r-1}\right) \phi_{r}(z)+b_{r-2} \\
& \left(\left(b_{r} \phi_{r}(z)+b_{r-1}\right) \phi_{r}(z)+b_{r-2}\right) \phi_{r}(z)+b_{r-3}, \ldots
\end{aligned}
$$

discarding on the way all monomials of degree higher than r. In the end, we have computed $g^{(k)}(0)$ for $k=0, \ldots, r$, and hence $f^{(k)}(0)$ for $k=0, \ldots, r$, and hence $T_{m}(1)$ approximating $f(1)=\ln h(1)$ within additive error ϵ. From (4.3), we compute

$$
\operatorname{den}_{m}(G ; \gamma)=\exp \left\{\frac{\gamma m}{2}\right\} h(1)
$$

within relative error $\epsilon>0$.
5. Remarks on the practical implementation. We implemented a much simplified version of the algorithm. Given a graph $G=(V, E)$ with set $V=\{1, \ldots, n\}$ of vertices and an integer $2 \leq m \leq n$, we define the $n \times n$ matrix $=\left(w_{i j}\right)$ by

$$
w_{i j}= \begin{cases}\alpha & \text { if }\{i, j\} \in E \\ -\alpha & \text { if }\{i, j\} \notin E\end{cases}
$$

where $0<\alpha<1$ is a parameter.
We consider the polynomial $h(z)$ defined by (4.4) and let $f(z)=\ln h(z)$.
Our goal is to approximate $f(1)=\ln h(1)$, and hence

$$
\begin{aligned}
h(1) & =\sum_{\substack{S \subset\{1, \ldots, n\} \\
|S|=m}}(1+\alpha)^{\binom{m}{2} \sigma(S)}(1-\alpha)^{\binom{m}{2}(1-\sigma(S))} \\
& =(1-\alpha)^{\binom{m}{2}} \operatorname{den}_{m}(G ; \gamma), \quad \text { where } \quad \gamma=\frac{m-1}{2} \ln \frac{1+\alpha}{1-\alpha} .
\end{aligned}
$$

We approximate $f(1)$ by the degree r Taylor polynomial of $f(z)$ computed at $z=$ 0 . The results of [3] suggest that for $\alpha=O(1 / m)$, we should get a reasonable approximation if we use $r \sim \ln m$. The results of our numerical experiments suggest that we get reasonable approximations if we use $\alpha=\Omega(1)$ and $r=2$ or $r=3$. In short, on the examples we tested, the quality of approximation was more consistent with the quality of the Taylor polynomial approximation of $\ln (1 \pm \alpha)$.

More precisely, we ran the algorithm typically with parameters $n=50,100$ and $m=10$, although occasionally we chose n as large as $n=300$. For the parameters $n=50$ and $m=10$ we were able to compare our approximation with the exact value. Typically, choosing $\alpha=0.5$ or lower produced an approximation of $f(1)$ within 1% accuracy. For $\alpha=0.7$, the accuracy went down to $10 \%-20 \%$ and for $\alpha>0.7$ the approximation was not accurate. For higher values of n, where the exact value of $f(1)$ was unavailable, we compared the approximations obtained for $r=2$ and $r=3$. If the approximations were close to each other, we considered it as an indication that they are also close to the true value of $f(1)$. Again, we observed that up to $\alpha=0.5$, the approximations agreed but were beginning to essentially differ at $\alpha=0.7$ and higher. For the graphs, we used the Erdős-Rényi models $G(n, 0.5), G(n, 0.4)$, those graphs with planted cliques of size m, and occasionally manually constructed "random-looking" graphs.

We provide below the explicit formulas for the approximations up to degree 3 , in case the reader will be interested to do some numerical experiments. We interpret $w_{i j}$ as weights on the edges of a complete graph with n vertices. Borrowing an idea from [13], we express the derivatives $f^{(k)}(0)$ in terms of various sums associated with connected subgraphs, since it improves the computational complexity of the algorithm. We remark, however, that it looks unlikely that the methods of [13] can be pushed to improve the complexity of our algorithm in the general situation from quasi-polynomial to genuinely polynomial, since we work with graphs of unbounded degrees.

It is convenient to introduce the following sums:

$$
A_{1}=\sum_{\{i, j\}} w_{i j}
$$

where the sum is taken over all unordered pairs $\{i, j\}$ of distinct indices;

$$
B_{1}=\sum_{\{i, j\}} w_{i j}^{2}, \quad B_{2}=\sum_{j,\{i, k\}} w_{i j} w_{j k}
$$

where in the formula for B_{1} the sum is taken oven all unordered pairs $\{i, j\}$ of distinct indices and in B_{2} the sum is taken over all pairs consisting of an index j and an unordered pair $\{i, k\}$, so that all three indices are distinct; and

$$
\begin{aligned}
C_{1} & =\sum_{\{i, j\}} w_{i j}^{3}, \quad C_{2}=\sum_{(i, j, k)} w_{i j}^{2} w_{j k}, \quad C_{3}=\sum_{\{i, j, k\}} w_{i j} w_{j k} w_{k i}, \\
C_{4} & =\sum_{(i, j, k, l)} w_{i j} w_{j k} w_{k l}, \quad C_{5}=\sum_{\{j, k, l\}, i} w_{i l} w_{i j} w_{i k},
\end{aligned}
$$

where in C_{1} the sum is taken over all unordered pairs $\{i, j\}$ of distinct indices, in C_{2} the sum is taken over all ordered triples (i, j, k) of distinct indices, in C_{3} the sum is taken over all unordered triples of distinct integers, in C_{4} the sum is taken over all ordered 4-tuples (i, j, k, l) of distinct indices, and in C_{5} the sum is taken over all pairs consisting of an index i and an unordered triple $\{j, k, l\}$ so that all four indices $\{i, j, k, l\}$ are distinct.
5.1. First-order approximation. Clearly, $h(0)=1$. From (4.6), we have

$$
h^{\prime}(0)=\binom{n}{m}^{-1}\binom{n-2}{m-2} \sum_{\{i, j\} \subset\{1, \ldots, n\}} w_{i j}=\frac{m(m-1)}{n(n-1)} A_{1} .
$$

Since $f(0)=\ln h(0)=0$ and $f^{\prime}(0)=h^{\prime}(0) / h(0)=h^{\prime}(0)$, we obtain the first order approximation

$$
f(1) \approx h^{\prime}(0)
$$

where $h^{\prime}(0)$ is defined as above. The complexity of computing the first order approximation is $O\left(n^{2}\right)$.
5.2. Second-order approximation. From (4.6), we have

$$
h^{\prime \prime}(0)=\binom{n}{m}^{-1} \sum_{I=\left(\left\{i_{1}, j_{1}\right\},\left\{i_{2}, j_{2}\right\}\right)}\binom{n-\nu(I)}{m-\nu(I)} w_{i_{1} j_{1}} w_{i_{2} j_{2}}
$$

Here $\nu(I)=4$ if the pairs $\left\{i_{1}, j_{1}\right\}$ and $\left\{i_{2}, j_{2}\right\}$ are pairwise disjoint and $\nu(I)=3$ if they share exactly one index. Hence we can write

$$
\begin{aligned}
h^{\prime \prime}(0) & =\binom{n}{m}^{-1}\left(2\binom{n-3}{m-3} B_{2}+\binom{n-4}{m-4}\left(A_{1}^{2}-2 B_{2}-B_{1}\right)\right) \\
& =2 \frac{m(m-1)(m-2)}{n(n-1)(n-2)} B_{2}+\frac{m(m-1)(m-2)(m-3)}{n(n-1)(n-2)(n-3)}\left(A_{1}^{2}-2 B_{2}-B_{1}\right) .
\end{aligned}
$$

Since

$$
f^{\prime \prime}(0)=h^{\prime \prime}(0)-\left(h^{\prime}(0)\right)^{2},
$$

we obtain the second order approximation:

$$
f(1) \approx f^{\prime}(0)+\frac{1}{2} f^{\prime \prime}(0)=h^{\prime}(0)-\frac{1}{2}\left(h^{\prime}(0)\right)^{2}+\frac{1}{2} h^{\prime \prime}(0)
$$

where $h^{\prime}(0)$ and $h^{\prime \prime}(0)$ are defined as above. The complexity of computing the second order approximation is $O\left(n^{3}\right)$.
5.3. Third-order approximation. From (4.6), one can deduce that

$$
\begin{aligned}
h^{\prime \prime \prime}(0)= & 6 \frac{m(m-1)(m-2)}{n(n-1)(n-2)} C_{3}+\frac{m(m-1)(m-2)(m-3)}{n(n-1)(n-2)(n-3)}\left(6 C_{5}+3 C_{4}\right) \\
& +6 \frac{m(m-1)(m-2)(m-3)(m-4)}{n(n-1)(n-2)(n-3)(n-4)}\left(A_{1} B_{2}-3 C_{5}-3 C_{3}-C_{4}-C_{2}\right) \\
& +\frac{m(m-1)(m-2)(m-3)(m-4)(m-5)}{n(n-1)(n-2)(n-3)(n-4)(n-5)}\left(A_{1}^{3}+12 C_{3}-6 A_{1} B_{2}\right. \\
& \left.+12 C_{5}+3 C_{4}+6 C_{2}-3 A_{1} B_{1}+2 C_{1}\right) .
\end{aligned}
$$

Since we have

$$
f^{\prime \prime \prime}(0)=h^{\prime \prime \prime}(0)-2 f^{\prime \prime}(0) h^{\prime}(0)-f^{\prime}(0) h^{\prime \prime}(0)=2\left(h^{\prime}(0)\right)^{3}-3 h^{\prime}(0) h^{\prime \prime}(0)+h^{\prime \prime \prime}(0)
$$

we obtain the third order approximation approximation

$$
\begin{aligned}
f(1) & \approx f^{\prime}(0)+\frac{1}{2} f^{\prime \prime}(0)+\frac{1}{6} f^{\prime \prime \prime}(0) \\
& =h^{\prime}(0)-\frac{1}{2}\left(h^{\prime}(0)\right)^{2}+\frac{1}{2} h^{\prime \prime}(0)+\frac{1}{3}\left(h^{\prime}(0)\right)^{3}-\frac{1}{2} h^{\prime}(0) h^{\prime \prime}(0)+\frac{1}{6} h^{\prime \prime \prime}(0)
\end{aligned}
$$

The complexity of computing the third order approximation is $O\left(n^{4}\right)$.
6. Proof of Theorem 1.4 and concluding remarks. We got the idea of the proof from [9], where a similar question about complex zeros of the permanents of matrices with independent random entries was treated.

Proof of Theorem 1.4. Applying Jensen's formula (see, for example, section 5.3 of [1]), we obtain

$$
\begin{equation*}
\ln \left|h_{W}(0)\right|=\sum_{s=1}^{N} \ln \frac{\left|a_{s, W}\right|}{r}+\frac{1}{2 \pi} \int_{0}^{2 \pi} \ln \left|h_{W}\left(r e^{i \theta}\right)\right| d \theta \tag{6.1}
\end{equation*}
$$

where $a_{s, W}, s=1, \ldots, N$ are the roots of the polynomial $h_{W}(z)$ in the disc $|z|<r$, and we assume that $h_{W}(z)$ has no zeros on the circle $|z|=r$ (since there are only finitely many values of r with roots on the circle $|z|=r$, this assumption is not restrictive). We have

$$
\ln \left|h_{W}(0)\right|=0
$$

and furthermore, applying Jensen's inequality, we bound:

$$
\begin{align*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} \ln \left|h_{W}\left(r e^{i \theta}\right)\right| d \theta & =\frac{1}{2} \cdot \frac{1}{2 \pi} \int_{0}^{2 \pi} \ln \left|h_{W}\left(r e^{i \theta}\right)\right|^{2} d \theta \\
& \leq \frac{1}{2} \ln \left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|h_{W}\left(r e^{i \theta}\right)\right|^{2} d \theta\right) \tag{6.2}
\end{align*}
$$

For a fixed $\theta \in[0,2 \pi]$, we compute the expectation

$$
\begin{aligned}
\mathbf{E}\left|h_{W}\left(r e^{i \theta}\right)\right|^{2} & =\binom{n}{m}^{-2}
\end{aligned} \sum_{\substack{S_{1}, S_{2} \subset\{1, \ldots, n\} \\
\left|S_{1}\right|=\left|S_{2}\right|=m}} \mathbf{E}\left(\prod_{\{j, k\} \subset S_{1}}\left(1+r e^{i \theta} w_{j k}\right)\right.
$$

A subset $S \subset\{1, \ldots, n\}$ of cardinality $l=|S| \leq m$ can be represented as the intersection $S=S_{1} \cap S_{2}$ of m-subsets S_{1}, S_{2} in $\binom{n-l}{m-l}\binom{n-m}{m-l}$ ways. Hence

$$
\begin{equation*}
\mathbf{E}\left|h_{W}\left(r e^{i \theta}\right)\right|^{2}=\binom{n}{m}^{-2} \sum_{l=0}^{m}\binom{n}{l}\binom{n-l}{m-l}\binom{n-m}{m-l}\left(1+r^{2}\right)^{\binom{l}{2}} . \tag{6.3}
\end{equation*}
$$

To bound (6.3), we consider the ratio of the $(l+1)$ st term to the l th term:

$$
\begin{aligned}
\frac{n-l}{l+1} \cdot \frac{m-l}{n-l} \cdot \frac{m-l}{n-2 m+l+1} \cdot\left(1+r^{2}\right)^{l} & =\frac{(m-l)^{2}\left(1+r^{2}\right)^{l}}{(l+1)(n-2 m+l+1)} \\
& \leq \frac{m^{2}\left(1+r^{2}\right)^{m}}{n-2 m+1}
\end{aligned}
$$

In particular, if

$$
\begin{equation*}
n \geq 2 m^{2}\left(1+r^{2}\right)^{m}+2 m \tag{6.4}
\end{equation*}
$$

the ratio does not exceed $1 / 2$, and hence we can bound the sum (6.3) by

$$
\mathbf{E}\left|h_{W}\left(r e^{i \theta}\right)\right|^{2} \leq 2\binom{n}{m}^{-2}\binom{n}{m}\binom{n-m}{m} \leq 2
$$

Integrating over θ, we conclude that if (6.4) holds, then

$$
\mathbf{E}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|h_{W}\left(r e^{i \theta}\right)\right| d \theta\right) \leq 2
$$

By the Markov inequality, for any $\tau \geq 1$, we get

$$
\mathbf{P}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|h_{W}\left(r e^{i \theta}\right) d \theta\right| \geq 2 \tau\right) \leq \frac{1}{\tau}
$$

Consequently, from (6.1) and (6.2), we have

$$
\mathbf{P}\left(\sum_{s=1}^{N} \ln \frac{\left|a_{s, W}\right|}{r} \leq-\frac{1}{2} \ln 2 \tau\right) \leq \frac{1}{\tau}
$$

and the proof follows.
An anonymous referee asked what happens if G is a random graph $G(n, 0.5)$ with a planted m-clique. The most interesting asymptotic regime is when $m^{2} \ll n \leq$ $m^{O(1)}$ and m grows; see [2] for results and references. Here we are interested in a polynomial time algorithm which, with high probability, tells G from $G(n, 0.5)$. A
quasi-polynomial time algorithm is readily available (by an exhaustive search for a clique of size at least $3 \log _{2} n$, say). Our proof of Theorem 1.4 does not seem to extend to random graphs with a planted clique. We note, however, that if the radius of zerofree region is roughly the same $r=\Omega(1 / \sqrt{m})$ as in Theorem 1.4 or even weaker, $r=\Omega\left(m^{-1+\epsilon}\right)$ for some $\epsilon>0$, we do obtain a desired polynomial time algorithm. Indeed, in the latter case, we can choose $\gamma=m^{\epsilon^{\prime}}$ with some $0<\epsilon^{\prime}<\epsilon$. If G is a graph with a planted m-clique, we have

$$
\operatorname{den}_{m}(G ; \gamma) \geq \exp \left\{m^{1+\epsilon^{\prime}}-O(m \ln m)\right\}
$$

cf. (1.2). If G is a random graph $G(n, 0.5)$, our proof Theorem 1.4 implies that

$$
\operatorname{den}_{m}(G ; \gamma) \leq \exp \left\{\frac{m^{1+\epsilon^{\prime}}}{2}+O(1)\right\}
$$

with high probability; cf. (1.7). Note that by choosing $\epsilon^{\prime}<\epsilon$, we choose γ sufficiently "deep" inside the purported zero-free region, and hence we can get a genuinely polynomial, as opposed to a quasi-polynomial, algorithm by computing a constant, as opposed to logarithmic, number of terms in the Taylor polynomial approximation; cf. Lemma 4.1.

REFERENCES

[1] L. V. Ahlfors, Complex Analysis. An introduction to the theory of analytic functions of one complex variable, 3rd ed., McGraw-Hill Book Co., New York, 1978.
[2] M. Alon, M. Krivelevich, and B. Sudakov, Finding a large hidden clique in a random graph, Random Structures Algorithms, 13 (1998), pp. 457-466.
[3] A. Barvinok, Computing the partition function for cliques in a graph, Theory Comput., 11 (2015), pp. 339-355, https://doi.org/10.4086/toc.2015.v011a013.
[4] A. Barvinok, Combinatorics and Complexity of Partition Functions, Springer, Cham, 2016.
[5] A. Bhaskara, Finding dense structures in graphs and matrices, Ph.D. dissertation, Princeton University, 2012, https://www.cs.utah.edu/~bhaskara/files/thesis.pdf.
[6] A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and A. Vijayaraghavan, Detecting high log-densities - an o($n^{1 / 4}$) approximation for densest k-subgraph, in Proceedings of the 2010 ACM International Symposium on Theory of Computing, New York, 2010, ACM, pp. 201-210.
[7] A. Bhaskara, M. Charikar, V. Guruswami, A. Vijayaraghavan, and Y. Zhou, Polynomial integrality gaps for strong sdp relaxations of densest k -subgraph, in Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, New York, 2012, ACM, pp. 388-405.
[8] B. BollobÁs, Combinatorics: Set systems, Hypergraphs, Families of Vectors and Combinatorial Probability, Cambridge University Press, Cambridge, 1986.
[9] L. Eldar and S. Mehraban, Approximating the permanent of a random matrix with vanishing mean, in Proceedings of the 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS 2018), Los Alamitos, CA, 2018, IEEE, pp. 23-34.
[10] A. Frieze and R. Kannan, Quick approximation to matrices and applications, Combinatorica, 19 (1999), pp. 175-220.
[11] O. Goldreich, Introduction to Property Testing, Cambridge University Press, Cambridge, 2017.
[12] J. HÅStad, Clique is hard to approximate within $n^{1-\epsilon}$, Acta Mathematica, 182 (1999), pp. 105-142.
[13] V. Patel and G. Regts, Deterministic polynomial-time approximation algorithms for partition functions and graph polynomials, SIAM J. Comput., 46 (2017), pp. 1893-1919.
[14] C. Terrell, Mathematical Statistics: A Unified Introduction, Springer-Verlag, New York, 1999.
[15] D. Zuckerman, Linear degree extractors and the inapproximability of max clique and chromatic number, Theory Comput., 3 (2007), pp. 103-128, https://doi.org/10.4086/toc.2007. v003a006.

[^0]: *Received by the editors February 28, 2019; accepted for publication (in revised form) November 27, 2019; published electronically January 30, 2020.
 https://doi.org/10.1137/19M1247413
 Funding: The first author was partially supported by NSF grants DMS 1361541 and DMS 1855428.
 ${ }^{\dagger}$ Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043 (barvinok@ umich.edu, adellape@umich.edu).

