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TESTING FOR DENSE SUBSETS IN A GRAPH VIA THE
PARTITION FUNCTION\ast 

ALEXANDER BARVINOK\dagger AND ANTHONY DELLA PELLA\dagger 

Abstract. For a set S of vertices of a graph G, we define its density 0 \leq \sigma (S) \leq 1 as the ratio

of the number of edges of G spanned by the vertices of S to
\bigl( | S| 

2

\bigr) 
. We show that, given a graph G

with n vertices and an integer m \ll n, the partition function
\sum 

S exp\{ \gamma m\sigma (S)\} , where the sum is
taken over all m-subsets S of vertices and 0 < \gamma < 1 is fixed in advance, can be approximated within
relative error 0 < \epsilon < 1 in quasi-polynomial nO(lnm - ln \epsilon ) time. We discuss numerical experiments
and observe that for the random graph G(n, 1/2) one can afford a much larger \gamma , provided the ratio
n/m is sufficiently large.
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1. Introduction and main results. Let G = (V,E) be an undirected graph,
without loops or multiple edges. For a nonempty subset S \subset V of vertices, we define
the density \sigma (S) as the fraction of the pairs of vertices of S that span an edge of G:

\sigma (S) =

\bigm| \bigm| \bigm| \bigl( S2\bigr) \cap E
\bigm| \bigm| \bigm| \bigl( | S| 

2

\bigr) ,

where
\bigl( 
S
2

\bigr) 
is the set of all unordered pairs of vertices from S. Hence 0 \leq \sigma (S) \leq 1 for

all subsets, \sigma (S) = 0 if S is an independent set and \sigma (S) = 1 if S is a clique.
We are interested in the following general problem: given a graph G = (V,E)

with | V | = n vertices and an integer m \leq n, estimate the highest density of an m-
subset S \subset V . This is, of course, a hard problem: for example, testing whether a
given graph contains a clique of a given size, or even estimating the size of the largest
clique within a factor of n1 - \epsilon for any \epsilon > 0, fixed in advance, is already an NP-
hard problem [12], [15]. Moreover, modulo some plausible complexity assumptions,
it is hard to approximate the highest density of an m-subset for a given m, within a
constant factor, fixed in advance [5]. The best known efficient approximation achieves
the factor of n1/4 in quasi-polynomial nO(lnn) time [6]. There are indications that the
factor n1/4 might be hard to beat [7]. We note that the most interesting case is when
m grows and n \gg m, since the highest density of an m-subset can be computed in
polynomial time up to an additive error of \epsilon n2/m2 for any \epsilon > 0, fixed in advance [10]
(and if m is fixed in advance, the densest m-subset can be found by the exhaustive
search in polynomial time).

1.1. Partition function. In this paper, we approach the problem of finding the
densest, or just a reasonably dense subset, via computing the partition function
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denm(G; \gamma ) =

\biggl( 
n

m

\biggr)  - 1 \sum 
S\subset V :
| S| =m

exp \{ \gamma m\sigma (S)\} ,(1.1)

where \gamma > 0 is a parameter. We are interested in computing (approximating)
denm(G; \gamma ) efficiently. The exponential tilting, \sigma (S) \mapsto  - \rightarrow exp \{ \gamma m\sigma (S)\} (see, for ex-
ample, section 13.7 of [14]), puts greater emphasis on the sets of higher density. Let
us consider the set

\bigl( 
V
m

\bigr) 
of all m-subsets of V as a probability space with the uniform

measure. By the Markov inequality, for any 0 < \sigma 0 < 1, we have

\sigma 0 +
lnP (\sigma (S) \geq \sigma 0)

\gamma m
\leq ln denm(G; \gamma )

\gamma m
\leq max

S\subset V :
| S| =m

\sigma (S),(1.2)

so the larger \gamma we can afford, the better approximation for the densest m-subset we
get. In particular, if we could choose \gamma \gg lnn, then from (1.2) we could approximate
the highest density of an m-subset within an arbitrarily small additive error.

The partition function (1.1) was introduced in [3], where an algorithm of quasi-
polynomial nO(lnm - ln \epsilon ) complexity was constructed to compute (1.1) within relative
error 0 < \epsilon < 1, when \gamma = 0.07 and when \gamma = 0.27, under additional assumptions that
n \geq 8m and m \geq 10. It follows from (1.2) that if the probability to hit an m-subset
S of density at least \sigma 0 at random is e - o(m), then we can certify the existence of an
m-subset of density at least \sigma 0  - o(1) in quasi-polynomial time, just by computing
(1.1). It is also shown in [3] that by successive conditioning, one can find in quasi-
polynomial time an m-subset S with density at least as high as certified by the value
of (1.1).

In this paper, we present an algorithm, which, for any 0 < \gamma < 1, fixed in
advance, and a given 0 < \epsilon < 1, computes the value of (1.1) within relative error \epsilon in
quasi-polynomial nO(lnm - ln \epsilon ) time, provided n > \omega (\gamma )m for some constant \omega (\gamma ) > 1.
This improvement from \gamma = 0.27 to \gamma = 1 makes the algorithm competitive in some
situations where it was not competitive before. Suppose, for example, we want to
separate efficiently the graphs that have sufficiently many m-cliques from the graphs
that are sufficiently far from having a single m-clique. Below we show that for \gamma < 0.5
our algorithm is inferior to a simple test based on the Kruskal--Katona Theorem, while
for \gamma > 0.5 the former can cover a greater range than the latter.

Example 1 (Testing graphs for m-cliques). Let us fix two numbers 0 < \delta < 1 and
\alpha > 0 and consider the following two mutually exclusive conditions.

Condition 1.1. For every S \subset V such that | S| = m we have \sigma (S) \leq 1 - \delta 

and

Condition 1.2. If S \subset V is a random subset, sampled uniformly from the set\bigl( 
V
m

\bigr) 
of all m-sets of vertices, then the probability that S is a clique is at least e - \alpha m.

Suppose further, we are presented with a graph G = (V,E) and told that either
Condition 1.1 or Condition 1.2 holds. Our goal is to decide which one. This is
somewhat in the spirit of ``property testing"" [11].

We observe that if Condition 1.1 holds, then denm(G; \gamma ) \leq e\gamma m(1 - \delta ) and if Con-
dition 1.2 holds, then denm(G; \gamma ) \geq e(\gamma  - \alpha )m. Consequently, if

\alpha < \gamma \delta (1.3)

and we can approximate denm(G; \gamma ) efficiently, we can efficiently tell Condition 1.1
and Condition 1.2 apart.



310 ALEXANDER BARVINOK AND ANTHONY DELLA PELLA

An anonymous referee to [3] noticed that another, much simpler, algorithm can
be inferred from the Kruskal--Katona Theorem. Let | V | = n. If Condition 1.1 holds,
then | E| \leq (1 - \delta )

\bigl( 
n
2

\bigr) 
. The Kruskal--Katona Theorem (see, for example, section 5 of

[8]) implies that if Condition 1.2 holds, then for every k such that
\bigl( 
k
m

\bigr) 
\leq e - \alpha m

\bigl( 
n
m

\bigr) 
,

we must have | E| \geq 
\bigl( 
k
2

\bigr) 
, the model case being a graph G consisting of a k-clique and

n - k isolated vertices. A computation shows that as n  - \rightarrow \infty , we can tell Condition
1.1 and Condition 1.2 apart just by counting the edges of G, provided

\alpha <  - 1

2
ln(1 - \delta ).(1.4)

Comparing (1.3) and (1.4), we observe that the algorithm based on computing the
partition function denm(G; \gamma ) is not competitive as long as \gamma < 0.5, which is the case
in [3], but becomes competitive at least for small values of \delta as soon as \gamma > 0.5.
Numerical estimates show that as long as we can choose \gamma > 0 arbitrarily close 1, the
condition (1.3) serves a wider range of \alpha than the condition (1.4) provided \delta < 0.7968.

We still don't know, however, if (1.1) can be efficiently computed for any \gamma > 0,
fixed in advance, and as we remarked above, it is unlikely that (1.1) can be efficiently
computed for \gamma \gg lnn. Our numerical experiments seem to indicate that we can
afford a substantially larger \gamma . This can be partially explained by the fact that for
the Erd\H os--R\'enyi random graph G(n, 0.5) indeed a much larger \gamma can be used with
high probability; see Theorem 1.4 below.

The improvement from \gamma = 0.27 to an arbitrary \gamma < 1 required the addition of
some new ideas to the technique of [3]. The approach of [3] and of this paper are based
on the ``interpolation method"" [4]. As applied to our case, the idea of the method
is to consider denm(G; z) for a complex parameter z. We can efficiently approximate
denm(G; z) at z = \gamma if there is a connected open set U \subset \BbbC , not dependent on m or
G, such that 0 \in U , \gamma \in U and denm(G; z) \not = 0 for all z \in U . In [3], the set U is
a disc centered at z = 0, whereas in the current paper it is a thin neighborhood of
the interval [0, \gamma ], which allows us to reach larger \gamma , but also requires a more refined
analysis to establish zero-freeness. We give some more details now.

1.2. Multivariate partition function. Given n\times n symmetric complex matrix
Z = (zij) and 2 \leq m \leq n, we define

Pm(Z) =
\sum 

S\subset \{ 1,...,n\} 
| S| =m

exp

\left\{       
\sum 

\{ i,j\} \subset S
i\not =j

zij

\right\}       .(1.5)

Note that the diagonal entries of Z are irrelevant, so we assume that zii = 0 for all i.
Given a graph G = (V,E) with set V = \{ 1, . . . , n\} of vertices and \gamma > 0, we

define Z0 = (zij) by

zij =

\Biggl\{ 
\gamma 

m - 1 if \{ i, j\} \in E

 - \gamma 
m - 1 if \{ i, j\} /\in E

and observe that

Pm(Z0) =
\sum 

S\subset \{ 1,...,n\} 
| S| =m

exp
\Bigl\{ 
m\gamma \sigma (S) - \gamma m

2

\Bigr\} 

=exp
\Bigl\{ 
 - \gamma m

2

\Bigr\} \biggl( n

m

\biggr) 
denm(G; \gamma ).

(1.6)
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Hence to compute (1.1) it suffices to compute Pm(Z0). We compute Pm(Z0) by
interpolation; see [3], [4]. For that, it suffices to show that Pm(Z) \not = 0 in some
neighborhood of a path connecting the zero matrix to Z0 in the space of complex
matrices.

We prove the following result.

Theorem 1.3. For any 0 < \delta < 1 there exist \eta = \eta (\delta ) > 0 and \omega = \omega (\delta ) > 1 such
that if n \geq \omega m, then Pm(Z) \not = 0 for any n\times n symmetric complex matrix Z = (zij)
such that

| \Re zij | \leq \delta 

m - 1
and | \Im zij | \leq \eta 

m - 1
for all 1 \leq i \not = j \leq n.

We prove Theorem 1.3 in sections 2 and 3. Using Theorem 1.3, in section 4 we
present an algorithm of quasi-polynomial nO(lnm) complexity to compute Pm(Z0) and
hence denm(G; \gamma ) for any 0 < \gamma < 1, fixed in advance.

In [3] it was established that Pm(Z) \not = 0 in a polydisc

\scrD m,n =

\biggl\{ 
Z = (zij) : | zij | \leq 

0.27

m - 1
for all 1 \leq i \not = j \leq n

\biggr\} 
provided n \gg m and m is large enough. In Theorem 1.3, we establish that Pm(Z) \not = 0
in a more ``economical"" domain, ``stretched"" along the real part of the complex space
of matrices. This allows us to improve the constant \gamma for which denm(G; \gamma ) is still
efficiently computable.

In section 5, we discuss some results of our numerical experiments, which seem
to indicate that we can afford an essentially bigger \delta in Theorem 1.3. This can be
partially explained by the fact that for the Erd\H os--R\'enyi random graph G(n, 0.5) this
is indeed the case. Namely, we prove the following result in section 6.

Theorem 1.4. Let us choose positive integers n and 2 \leq m \leq n. For n \times n
symmetric matrix W = (wij) of independent random variables, where

P (wij = 1) = P (wij =  - 1) =
1

2
,

we define the polynomial

hW (z) =

\biggl( 
n

m

\biggr)  - 1 \sum 
S\subset \{ 1,...,n\} 

| S| =m

\prod 
\{ i,j\} \subset S

(1 + zwij) .

Let r > 0 and \tau > 1 be real numbers. If n \geq 2m2
\bigl( 
1 + r2

\bigr) m
+2m, then the probability

that hW (z) has a root in the disc | z| < r/
\surd 
2\tau does not exceed 1/\tau .

In particular, if n \gg m2, then with high probability hW (z) has no roots in the disc
| z| < c/

\surd 
m, for an arbitrary large c > 0, fixed in advance. Similarly, if lnn \gg m,

then with high probability hW (z) has no roots in the disc | z| < c for an arbitrary
large c > 0, fixed in advance.

The polynomial hW (z) is easily translated into the partition function denm(G; \gamma ),
where G is the graph with set V = \{ 1, . . . , n\} of vertices and two vertices \{ i, j\} span
an edge if and only if wij = 1: for 0 < \alpha < 1, we have

hW (\alpha ) = (1 - \alpha )(
m
2 ) denm(G; \gamma ) where \gamma =

m - 1

2
ln

1 + \alpha 

1 - \alpha 
.(1.7)
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Consequently, with high probability we can can approximate denm(G; \gamma ) in quasi-
polynomial time for \gamma as large as \gamma =

\surd 
m provided n \gg m2 and as large as \gamma = m

provided lnn \gg m. Since the graphs we experimented on were to a large degree
random (but not necessarily Erd\H os--R\'enyi G(n, 0.5)), we may have obtained overly
optimistic numerical evidence.

As is easily seen, EhW (\alpha ) = 1 and from our proof in section 6 it follows that
hW (\alpha ) is strongly concentrated. For example, in the regime of n = \Omega (m2) and
\alpha = 1/

\surd 
m, we have varhW (\alpha ) = O(1). This concentration, however, does not allow

us to predict with high probability the value of hW (\alpha ) with the precision that the
interpolation technique based on Theorem 1.4 allows for.

In section 6, we also discuss what may happen if G is a random graph G(n, 0.5)
with a planted m-clique.

2. Preliminaries. We consider the partition function Pm of section 1.2 within a
family of partition functions, which will allow us to prove Theorem 1.3 by induction.

2.1. Functionals \bfitP \bfOmega (\bfitZ ). Let us fix integers n and 2 \leq m \leq n. For a subset
\Omega \subset \{ 1, . . . , n\} and n\times n complex symmetric matrix Z = (zij), we define

P\Omega (Z) =
\sum 

S\subset \{ 1,...,n\} :
| S| =m,\Omega \subset S

exp

\left\{       
\sum 

\{ i,j\} \subset S
i \not =j

zij

\right\}       ,

where we agree that P\Omega (Z) = 0 if | \Omega | > m. In other words, we restrict the sum (1.5)
defining Pm(Z) onto subsets S containing a given set \Omega . In particular,

P\Omega (Z) = Pm(Z) if \Omega = \emptyset .

The induction will be built on the following straightforward formulas:

P\Omega (Z) =
1

m - | \Omega | 
\sum 

j\in \{ 1,...,n\} \setminus \Omega 

P\Omega \cup \{ j\} (Z) provided | \Omega | < m(2.1)

and for i \not = j, we have

\partial 

\partial zij
P\Omega (Z) =

\left\{         
P\Omega (Z) if i, j \in \Omega ,

P\Omega \cup \{ j\} (Z) if i \in \Omega , j /\in \Omega ,

P\Omega \cup \{ i\} (Z) if i /\in \Omega , j \in \Omega ,

P\Omega \cup \{ i,j\} (Z) if i, j /\in \Omega .

(2.2)

We will often consider complex numbers as vectors in the plane, by identifying
\BbbC = \BbbR 2 and measuring, in particular, angles between nonzero complex numbers. We
will use the following geometric lemma.

Lemma 2.1. Let u1, . . . , un \in \BbbC be nonzero complex numbers such that the angle
between any two does not exceed \theta for some 0 < \theta < \pi /2. Suppose that

\Im 

\left(  n\sum 
j=1

uj

\right)  = 0 and

n\sum 
j=1

| uj | = c.

Then
n\sum 

j=1

| \Im uj | \leq c sin
\theta 

2
.
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Proof. Scaling uj , if necessary, without loss of generality we assume that c = 1.
Without loss of generality, we assume that arg uj \not = 0 for j = 1, . . . , n. Indeed,

if arg uj = 0 for some j, we can remove the vector from the collection, which would
make the sum

n\sum 
j=1

| uj | (2.3)

only smaller. Rescaling uj \mapsto  - \rightarrow \tau uj for some real \tau > 1, we make (2.3) equal to 1 and
increase

n\sum 
j=1

| \Im uj | .(2.4)

Reflecting the vectors uj in the coordinate axes if necessary, without loss of generality
we may assume that \Re u1 \geq 0 and \Im u1 > 0. Hence there is a vector, say u2, such
that \Im u2 < 0. We necessarily have \Re u2 \geq 0, since otherwise the angle between u1

and u2 exceeds \pi /2. Then for any vector uj , we must have \Re uj \geq 0, since otherwise
one of the angles formed by uj with u1 or u2 will exceed \pi /2.

Hence without loss of generality, we assume that \Re uj > 0 for j = 1, . . . , n. Let

\alpha = max
j=1,...,n

arg uj ,

so that
0 < \alpha < \theta ,

and let
 - \beta = min

j=1,...,n
arg uj < 0.

Then \alpha + \beta \leq \theta .
Let

J+ = \{ j : arg uj > 0\} and J - = \{ j : arg uj < 0\} .

Next, without loss of generality, we assume that arg uj = \alpha for all j \in J+ and that
arg uj =  - \beta for all j \in J - . Indeed, suppose that arg u1 = \alpha 1, where 0 < \alpha 1 < \alpha . We
can modify

u1 \mapsto  - \rightarrow sin\alpha 1

sin\alpha 
ei(\alpha  - \alpha 1)u1

(we rotate and shrink u1 so as to make its argument equal to \alpha and leave \Im u1 intact).
The sum (2.3) gets smaller while all other conditions and the sum (2.4) remain intact.
Rescaling uj \mapsto  - \rightarrow \tau uj for some real \tau > 1, we make (2.3) equal to 1 and increase (2.4),
while keeping other constraints of the lemma intact. The case of arg uj >  - \beta for
some j \in J - is handled similarly.

Next, without loss of generality, we assume that \alpha + \beta = \theta . Indeed, if \alpha + \beta < \theta ,
we can rotate and scale vectors uj as above, so that the sum (2.4) increases while all
other conditions are satisified.

Now, let

u+ =
\sum 
j\in J+

uj and u - =
\sum 
j\in J - 

uj .

Then arg u+ = \alpha , arg u - =  - \beta , \Im (u+ + u - ) = 0, | u+| + | u - | = 1, and (2.4) is equal
to | \Im u+| + | \Im u - | .
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Denoting a = | u+| and b = | u - | , we have a+ b = 1 and a sin\alpha  - b sin\beta = 0, from
which

a =
sin\beta 

sin\alpha + sin\beta 
and b =

sin\alpha 

sin\alpha + sin\beta 
,

and so

| \Im u+| + | \Im u - | =
2 sin\alpha sin\beta 

sin\alpha + sin\beta 
.

Now, the function

\alpha \mapsto  - \rightarrow 1

sin\alpha 
for 0 \leq \alpha \leq \pi 

2

is convex and hence the minimum of

sin\alpha + sin\beta 

sin\alpha sin\beta 
=

1

sin\alpha 
+

1

sin\beta 

on the interval \alpha + \beta = \theta , \alpha , \beta \geq 0, is attained at \alpha = \beta = \theta /2. The proof now
follows.

We need another geometric lemma.

Lemma 2.2. Let u1, . . . , un \in \BbbC be nonzero complex numbers such that the angle
between any two does not exceed \theta for some 0 \leq \theta < 2\pi /3. Let u = u1 + \cdot \cdot \cdot + un.
Then

| u| \geq 
\biggl( 
cos

\theta 

2

\biggr) n\sum 
k=1

| uk| .

Proof. This is Lemma 3.1 of [3] and Lemma 3.6.3 of [4].

3. Proof of Theorem 1.3. We identify the space of n\times n zero-diagonal complex

symmetric matrices Z = (zij) with \BbbC (
n
2). Given \delta \geq \eta > 0, we define a domain

\scrU (\delta , \eta ) = \scrU n,m(\delta , \eta ) \subset \BbbC (
n
2) by

\scrU (\delta , \eta ) =
\biggl\{ 
Z = (zij) : | \Re zij | \leq \delta 

m - 1
and | \Im zij | \leq \eta 

m - 1

\biggr\} 
.

If Z \prime =
\bigl( 
z\prime ij
\bigr) 
and Z \prime \prime =

\bigl( 
z\prime \prime ij
\bigr) 
are two matrices from \scrU (\delta , \tau ), then

\bigm| \bigm| z\prime ij  - z\prime \prime ij
\bigm| \bigm| \leq 

\sqrt{} 
(2\delta )2 + (2\eta )2

m - 1
\leq 2

\surd 
2\delta 

m - 1
for all i, j.

We will prove by descending induction on | \Omega | that P\Omega (Z) \not = 0 for all Z \in \scrU (\delta , \eta ) and
that, moreover, a number of stronger conditions are met. The induction is based on
the following two lemmas that describe how P\Omega (Z) changes when only the entries in
the ith row and column of Z change. The first lemma deals with the case of i \in \Omega .

Lemma 3.1. Let us fix \Omega \subset \{ 1, . . . , n\} such that | \Omega | < m. Suppose that for any
Z \in \scrU (\delta , \eta ) and any j, k /\in \Omega , we have P\Omega \cup \{ j\} (Z) \not = 0, P\Omega \cup \{ k\} (Z) \not = 0 and the angle
between the two nonzero complex numbers does not exceed \theta for some 0 < \theta \leq \pi /2.
Then

\bullet Part 1: We have

P\Omega (Z) \not = 0 for all Z \in \scrU (\delta , \eta ).
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\bullet Part 2: Suppose additionally that \Omega \not = \emptyset , and let us fix an i \in \Omega . Let
Z \prime , Z \prime \prime \in \scrU (\delta , \eta ) be two matrices that differ only in the coordinates zij = zji
for j \not = i. Then \bigm| \bigm| \bigm| \bigm| P\Omega (Z

\prime )

P\Omega (Z \prime \prime )

\bigm| \bigm| \bigm| \bigm| \leq e6\delta ,

and the angle between P\Omega (Z
\prime ) \not = 0 and P\Omega (Z

\prime \prime ) \not = 0 does not exceed

2\delta tan
\theta 

2
+ 5\eta .

Proof. It follows from (2.1) and Lemma 2.2 that

| P\Omega (Z)| \geq cos(\theta /2)

m - | \Omega | 
\sum 
j /\in \Omega 

\bigm| \bigm| P\Omega \cup \{ j\} (Z)
\bigm| \bigm| \geq 1

(m - 1)
\surd 
2

\sum 
j /\in \Omega 

\bigm| \bigm| P\Omega \cup \{ j\} (Z)
\bigm| \bigm| .(3.1)

In particular, Part 1 follows.
To prove Part 2, let us choose a branch of lnP\Omega (Z) for Z \in \scrU (\delta , \eta ). For 0 \leq t \leq 1,

let Z(t) = tZ \prime \prime + (1 - t)Z \prime . Then

lnP\Omega (Z
\prime \prime ) - lnP\Omega (Z

\prime ) =

\int 1

0

d

dt
lnP\Omega (Z(t)) dt

=

\int 1

0

\sum 
j: j \not =i

\bigl( 
z\prime \prime ij  - z\prime ij

\bigr) \partial 

\partial zij
lnP\Omega (Z)

\bigm| \bigm| \bigm| 
Z=Z(t)

dt.

Using (2.2), we conclude that

\partial 

\partial zij
lnP\Omega (Z) =

\Biggl\{ 
1 if j \in \Omega ,

P\Omega \cup \{ j\} (Z)/P\Omega (Z) if j /\in \Omega ,

and hence

lnP\Omega (Z
\prime \prime ) - lnP\Omega (Z

\prime ) =
\sum 

j\in \Omega ,j \not =i

\bigl( 
z\prime \prime ij  - z\prime ij

\bigr) 
+

\int 1

0

\sum 
j /\in \Omega 

\bigl( 
z\prime \prime ij  - z\prime ij

\bigr) P\Omega \cup \{ j\} (Z(t))

P\Omega (Z(t))
dt.

(3.2)

Using (3.1), we get from (3.2) that

| \Re lnP\Omega (Z
\prime \prime ) - \Re lnP\Omega (Z

\prime )| \leq 2\delta + (m - 1)
\surd 
2max

j /\in \Omega 

\bigm| \bigm| z\prime \prime ij  - z\prime ij
\bigm| \bigm| 

\leq 2\delta + 4\delta = 6\delta ,

and hence \bigm| \bigm| \bigm| \bigm| P\Omega (Z
\prime )

P\Omega (Z \prime \prime )

\bigm| \bigm| \bigm| \bigm| \leq e6\delta ,

as claimed.
From (2.1), for all Z \in \scrU (\delta , \eta ) we have that\sum 

j /\in \Omega 

P\Omega \cup \{ j\} (Z)

P\Omega (Z)
= m - | \Omega | 
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is real, while from (3.1), we conclude that\sum 
j /\in \Omega 

\bigm| \bigm| \bigm| \bigm| P\Omega \cup \{ j\} (Z)

P\Omega (Z)

\bigm| \bigm| \bigm| \bigm| \leq m - | \Omega | 
cos(\theta /2)

\leq m - 1

cos(\theta /2)
.

Applying Lemma 2.1 with uj = P\Omega \cup \{ j\} (Z)/P\Omega (Z), we conclude that

\sum 
j /\in \Omega 

\bigm| \bigm| \bigm| \bigm| \Im P\Omega \cup \{ j\} (Z)

P\Omega (Z)

\bigm| \bigm| \bigm| \bigm| \leq (m - 1) tan
\theta 

2
.

Therefore, from (3.2),

| \Im lnP\Omega (Z
\prime \prime ) - \Im lnP\Omega (Z

\prime )| \leq 2\eta + (m - 1) tan
\theta 

2
max
j /\in \Omega 

\bigm| \bigm| \Re z\prime \prime ij  - \Re z\prime ij
\bigm| \bigm| 

+ (m - 1)
\surd 
2max

j /\in \Omega 

\bigm| \bigm| \Im z\prime \prime ij  - \Im z\prime ij
\bigm| \bigm| 

\leq 2\delta tan
\theta 

2
+ 5\eta .

Hence the angle between P\Omega (Z
\prime \prime ) and P\Omega (Z

\prime ) does not exceed 2\delta tan \theta 
2 + 5\eta , as

claimed.

The second lemma shows that P\Omega (Z) does not change much if only the entries of
Z in the ith row and column are changed for some i /\in \Omega , assuming that n \gg m.

Lemma 3.2. Let us fix an \Omega \subset \{ 1, . . . , n\} , | \Omega | \leq m - 1. Suppose for any i, j /\in \Omega 
and all Z \in \scrU (\delta , \eta ) we have P\Omega \cup \{ i\} (Z) \not = 0, P\Omega \cup \{ j\} (Z) \not = 0 and the angle between the
two complex numbers does not exceed \pi /2 and that\bigm| \bigm| \bigm| \bigm| P\Omega \cup \{ i\} (Z)

P\Omega \cup \{ j\} (Z)

\bigm| \bigm| \bigm| \bigm| \leq \lambda 

for some \lambda \geq 1.
In addition, suppose that if | \Omega | \leq m  - 2, then for any distinct i, j, k /\in \Omega and all

Z \in \scrU (\delta , \eta ) we have P\Omega \cup \{ i,j\} (Z) \not = 0, P\Omega \cup \{ i,k\} (Z) \not = 0, and the angle between the two
complex numbers does not exceed \pi /2.

Let us fix an i /\in \Omega , and let Z \prime , Z \prime \prime \in \scrU (\delta , \eta ) be two matrices that differ only in
the coordinates zij = zji for j \not = i. Then\bigm| \bigm| \bigm| \bigm| P\Omega (Z

\prime )

P\Omega (Z \prime \prime )

\bigm| \bigm| \bigm| \bigm| \leq exp

\biggl\{ 
10\delta \lambda m

n - 1

\biggr\} 
,

and the angle between P\Omega (Z
\prime ) \not = 0 and P\Omega (Z

\prime \prime ) \not = 0 does not exceed

10\delta \lambda m

n - 1
.

Proof. It follows from Lemma 3.1 that P\Omega (Z) \not = 0 for all Z \in \scrU (\delta , \eta ).
Arguing as in the proof of Lemma 3.1, we introduce Z(t) = tZ \prime \prime + (1 - t)Z \prime and

write

lnP\Omega (Z
\prime \prime ) - lnP\Omega (Z

\prime ) =

\int 1

0

\sum 
j: j \not =i

\bigl( 
z\prime \prime ij  - z\prime ij

\bigr) \partial 

\partial zij
lnP\Omega (Z)

\bigm| \bigm| \bigm| 
Z=Z(t)

dt.
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From (2.2), we write

lnP\Omega (Z
\prime \prime ) - lnP\Omega (Z

\prime ) =

\int 1

0

\sum 
j\in \Omega 

\bigl( 
z\prime \prime ij  - z\prime ij

\bigr) P\Omega \cup \{ i\} 
\bigl( 
Z(t)

\bigr) 
P\Omega 

\bigl( 
Z(t)

\bigr) 
+

\sum 
j /\in \Omega ,j \not =i

\bigl( 
z\prime \prime ij  - z\prime ij

\bigr) P\Omega \cup \{ i,j\} 
\bigl( 
Z(t)

\bigr) 
P\Omega 

\bigl( 
Z(t)

\bigr) dt.

(3.3)

Suppose first that | \Omega | \leq m - 2. From (2.1), we have

P\Omega \cup \{ i\} (Z) =
1

m - | \Omega |  - 1

\sum 
j /\in \Omega ,j \not =i

P\Omega \cup \{ i,j\} (Z).

Applying Lemma 2.2, we get that\sum 
j /\in \Omega ,j \not =i

\bigm| \bigm| P\Omega \cup \{ i,j\} (Z)
\bigm| \bigm| \leq (m - 1)

\surd 
2
\bigm| \bigm| P\Omega \cup \{ i\} (Z)

\bigm| \bigm| (3.4)

for all Z \in \scrU (\delta , \eta ).
Since by (2.1) we also have

P\Omega (Z) =
1

m - | \Omega | 
\sum 
j /\in \Omega 

P\Omega \cup \{ j\} (Z)

applying Lemma 2.2, we conclude that\sum 
j /\in \Omega 

\bigm| \bigm| P\Omega \cup \{ j\} (Z)
\bigm| \bigm| \leq (m - | \Omega | )

\surd 
2 | P\Omega (Z)| .

Hence for all i /\in \Omega , we have

\bigm| \bigm| P\Omega \cup \{ i\} (Z)
\bigm| \bigm| \leq \lambda (m - | \Omega | )

\surd 
2

n - | \Omega | 
| P\Omega (Z)| \leq \lambda m

\surd 
2

n
| P\Omega (Z)| .(3.5)

Combining (3.5) and (3.4), we get\sum 
j /\in \Omega ,j \not =i

\bigm| \bigm| P\Omega \cup \{ i,j\} (Z)
\bigm| \bigm| \leq 2\lambda m(m - 1)

n
| P\Omega (Z)| .(3.6)

Combining (3.3), (3.4), (3.5), and (3.6), we get

| lnP\Omega (Z
\prime \prime ) - lnP\Omega (Z

\prime )| \leq 2
\surd 
2\delta 

m - 1
\cdot \lambda | \Omega | (m - | \Omega | )

\surd 
2

n - | \Omega | 
+

2
\surd 
2\delta 

m - 1
\cdot 2\lambda m(m - 1)

n

\leq 4\delta \lambda m

n - 1
+

4
\surd 
2\delta \lambda m

n
\leq 10\delta \lambda m

n - 1
.

If | \Omega | = m - 1, then from (3.3) and (3.5), we get

| lnP\Omega (Z
\prime \prime ) - lnP\Omega (Z

\prime )| \leq 2
\surd 
2\delta 

m - 1
\cdot \lambda m

\surd 
2

n
\leq 4\delta \lambda m

n - 1
,

which concludes the proof.
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Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Given 0 < \delta < 1, we choose 0 < \theta < \pi /2 so that

2\delta tan
\theta 

2
< \theta .

We then choose \eta > 0 such that

2\delta tan
\theta 

2
+ 5\eta < \theta .

We choose
\lambda > e6\delta 

and choose \omega > 1 so that

2\delta tan
\theta 

2
+ 5\eta +

10\delta \lambda m

n - 1
\leq \theta and exp

\biggl\{ 
6\delta +

10\delta \lambda m

n - 1

\biggr\} 
\leq \lambda 

whenever n \geq \omega m.
Suppose that n \geq \omega m. We prove by descending induction on r = m,m - 1, . . . , 1

that if \Omega 1,\Omega 2 \in \{ 1, . . . , n\} are two sets such that | \Omega 1| = | \Omega 2| = r and | \Omega 1\Delta \Omega 2| = 2,
then for all Z \in \scrU (\delta , \eta ) we have P\Omega 1

(Z) \not = 0, P\Omega 2
(Z) \not = 0, the angle between P\Omega 1

(Z)
and P\Omega 2

(Z) does not exceed \theta while the ratio of | P\Omega 1
(Z)| and | P\Omega 2

(Z)| does not
exceed \lambda .

Assume that r = m. Without loss of generality, we assume that \Omega 1 = \Omega \cup \{ 1\} 
and \Omega 2 = \Omega \cup \{ 2\} for some \Omega \subset \{ 3, . . . , n\} such that | \Omega | = m - 1. We have

P\Omega 1(Z) = exp

\left\{   \sum 
\{ i,j\} \subset \Omega 

zij

\right\}   exp

\Biggl\{ \sum 
i\in \Omega 

z1i

\Biggr\} 
and

P\Omega 2(Z) = exp

\left\{   \sum 
\{ i,j\} \subset \Omega 

zij

\right\}   exp

\Biggl\{ \sum 
i\in \Omega 

z2i

\Biggr\} 
.

Clearly, P\Omega 1
(Z) \not = 0, P\Omega 2

(Z) \not = 0, the angle between P\Omega 1
(Z) and P\Omega 2

(Z) does not
exceed 2\eta \leq \theta while the ratio of | P\Omega 1(Z)| and | P\Omega 2(Z)| does not exceed e2\delta \leq \lambda .

Suppose now that the statements hold for all subsets \Omega \subset \{ 1, . . . , n\} of cardinality
at least r + 1 for some r \leq m  - 1, and let \Omega 1,\Omega 2 \subset \{ 1, . . . , n\} be two subsets of
cardinality r \geq 1 such that | \Omega 1\Delta \Omega 2| = 2. Again, without loss of generality, we
assume that \Omega 1 = \Omega \cup \{ 1\} and \Omega 2 = \Omega \cup \{ 2\} for some \Omega \subset \{ 3, . . . , n\} such that
| \Omega | = r  - 1. Then we observe that P\Omega 2

(Z) = P\Omega 1
(Z \prime ), where

z\prime 1i = z\prime i1 = z2i = zi2 and z\prime 2i = z\prime i2 = z1i = zi1 for i \not = 1, 2,

while all other entries of Z and Z \prime coincide. Applying Lemma 3.1 and Lemma 3.2
and the induction hypothesis to sets \Omega 1 \cup \{ j\} for j /\in \Omega 1 and \Omega 1 \cup \{ j, k\} for j, k /\in \Omega 1,
we conclude that the angle between P\Omega 1(Z) \not = 0 and P\Omega 2(Z) \not = 0 does not exceed

2\delta tan
\theta 

2
+ 5\eta +

10\delta \lambda m

n - 1
\leq \theta ,

while the ratio of | P\Omega 1(Z)| and | P\Omega 2(Z)| does not exceed

exp

\biggl\{ 
6\delta +

10\delta \lambda m

n - 1

\biggr\} 
\leq \lambda .
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This proves that P\{ i\} (Z) \not = 0 for all i \in \{ 1, . . . , n\} and all Z \in \scrU (\delta , \eta ) and that the
angle between P\{ i\} (Z) \not = 0 and P\{ j\} (Z) \not = 0 does not exceed \theta for all i, j \in \{ 1, . . . , n\} .
From (2.1) we conclude that Pm(Z) = P\emptyset (Z) \not = 0 for all Z \in \scrU (\delta , \eta ).

4. Computing the partition function. Here we show how to compute the
density partition function denm(G; \gamma ). First, we make a change of coordinates to
convert the partition function Pm(Z) of section 1.2 into a multivariate polynomial.

4.1. A polynomial version of \bfitP \bfitm (\bfitZ ). For an n\times n complex symmetric matrix
W = (wij) with zero diagonal, we define

pm(W ) =

\biggl( 
n

m

\biggr)  - 1 \sum 
S\subset \{ 1,...,n\} 

| S| =m

\prod 
\{ i,j\} \subset S

i\not =j

(1 + wij) .

Hence pm(W ) is a polynomial of degree
\bigl( 
m
2

\bigr) 
in the entries wij and, assuming that

| wij | < 1 for all i, j, we can write

pm(W ) =

\biggl( 
n

m

\biggr)  - 1

Pm(Z), where Z = (zij) and zij = ln (1 + wij)

(we choose the standard branch of the logarithm in the right half-plane of \BbbC ). Theorem
1.3 implies that for every 0 < \delta < 1 there is \eta = \eta (\delta ) > 0 and \omega = \omega (\delta ) > 1 such that

pm(W ) \not = 0 whenever | \Re ln (1 + wij)| \leq \delta 

m - 1
,

| \Im ln (1 + wij)| \leq \eta 

m - 1
, and

n \geq \omega m.

(4.1)

To compute denm(G; \gamma ) for a given 0 < \gamma < 1 and a given graph G = (V,E), we
define

wij =

\left\{   exp
\Bigl\{ 

\gamma 
m - 1

\Bigr\} 
 - 1 if \{ i, j\} \in E,

exp
\Bigl\{ 
 - \gamma 

m - 1

\Bigr\} 
 - 1 if \{ i, j\} /\in E.

(4.2)

Then, by (1.6), we have

denm(G; \gamma ) = exp
\Bigl\{ \gamma m

2

\Bigr\} 
pm(W ).(4.3)

The interpolation method is based on the following simple lemma.

Lemma 4.1. Let g : \BbbC  - \rightarrow \BbbC be a univariate polynomial, and suppose that g(z) \not =
0 provided | z| < \beta , where \beta > 1 is some real number. Let us choose a branch of
f(z) = ln g(z) in the disc | z| < \beta , and let

Tr(z) = f(0) +

r\sum 
k=1

f (k)(0)

k!
zk

be the Taylor polynomial of f of degree r computed at z = 0. Then

| f(1) - Tr(1)| \leq deg g

\beta r(\beta  - 1)(r + 1)
.
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Proof. This is Lemma 2.2.1 of [4]; see also Lemma 1.1 of [3].

The gist of Lemma 4.1 is that to approximate f(1) within an additive error \epsilon ; it
suffices to compute the Taylor polynomial of f(z) at 0 of degree r = O\beta (ln deg g  - ln \epsilon ),
where the implicit constant in the ``O"" notation depends on \beta alone. We would like
to apply Lemma 4.1 to the univariate polynomial

h(z) =

\biggl( 
n

m

\biggr)  - 1 \sum 
S\subset \{ 1,...,n\} 

| S| =m

\prod 
\{ i,j\} \subset S

i \not =j

(1 + zwij) ,(4.4)

where wij are defined by (4.2). Indeed, the value we are ultimately interested is
h(1) = pm(W ). However, Lemma 4.1 requires that h(z) \not = 0 in a disc of some radius
\beta > 1, whereas (4.1) only guarantees that h(z) \not = 0 for z in a neighborhood of the
interval [0, 1] \subset \BbbC . To remedy this, we compose h with a polynomial \phi : \BbbC  - \rightarrow \BbbC 
such that \phi (0) = 0, \phi (1) = 1 and \phi maps the disc | z| < \beta for some \beta > 1 inside the
prescribed neighborhood of [0, 1] \subset \BbbC . We then apply Lemma 4.1 to the composition
g(z) = h((\phi (z)). The following lemma provides an explicit construction of \phi .

Lemma 4.2. For 0 < \rho < 1, we define

\alpha = \alpha (\rho ) = 1 - e - 
1
\rho , \beta = \beta (\rho ) =

1 - e - 1 - 1
\rho 

1 - e - 
1
\rho 

> 1,

N = N(\rho ) =

\biggl\lfloor \biggl( 
1 +

1

\rho 

\biggr) 
e1+

1
\rho 

\biggr\rfloor 
, \sigma = \sigma (\rho ) =

N\sum 
k=1

\alpha k

k
, and

\phi (z) = \phi \rho (z) =
1

\sigma 

N\sum 
k=1

(\alpha z)k

k
.

Then \phi : \BbbC  - \rightarrow \BbbC is a polynomial of degree N such that \phi (0) = 0, \phi (1) = 1,

 - \rho \leq \Re \phi (z) \leq 1 + 2\rho , and | \Im \phi (z)| \leq 2\rho ,

provided | z| \leq \beta .

Proof. This is Lemma 2.2.3 of [4].

Lemma 4.1 also requires the derivatives f (k)(0) of f(z) = ln g(z) at z = 0. Those,
however, can be easily computed from the derivatives g(k)(0), as described in section
2.2.2 of [4]; see also section 2.1 of [3]. We briefly sketch how.

4.2. Computing derivatives. Suppose that f(z) = ln g(z) as in Lemma 4.1.
Then

f \prime (z) =
g\prime (z)

g(z)
and g\prime (z) = f \prime (z)g(z).

Differentiating the product k  - 1 times, we obtain

g(k)(0) =

k - 1\sum 
j=0

\biggl( 
k  - 1

j

\biggr) 
f (k - j)(0)g(j)(0) for k = 1, . . . , r.(4.5)

We interpret (4.5) as a system of linear equations in variables f (k)(0) for k = 1, . . . , r
with coefficients g(k)(0) for k = 0, . . . , r. This is a triangular system of linear equations
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with nonzero entries g(0)(0) = g(0) on the diagonal, that can be solved in O(r2) time,
provided the values of g(k)(0) are known.

To supply the last ingredient of the algorithm, we show how to compute h(k)(0)
for k = 0, . . . , r, where h is the polynomial defined by (4.4). This is also done in [3],
but we reproduce it here for completeness.

We have

h(k)(0) =

\biggl( 
n

m

\biggr)  - 1 \sum 
S\subset \{ 1,...,n\} 

| S| =m

\sum 
\{ i1,j1\} ,...,\{ ik,jk\} \subset S

wi1j1 . . . wikjk ,

where the inner sum is taken over all ordered collections of distinct unordered pairs
\{ i1, j1\} , . . . , \{ ik, jk\} \subset S. For such a collection, say I, let \nu (I) be the number of

distinct vertices among i1, j1, . . . , ik, jk. Then there are exactly ( n - \nu (I)
m - \nu (I)

) different

m-subsets S containing the edges from I, and we can rewrite the above sum as

h(k)(0) =

\biggl( 
n

m

\biggr)  - 1 \sum 
I=(\{ i1,j1\} ,...,\{ ik,jk\} )

\biggl( 
n - \nu (I)

m - \nu (I)

\biggr) 
wi1j1 . . . wikjk ,(4.6)

where the sum is taken over all ordered collections of k unordered pairs \{ is, js\} . It is
clear now that h(k)(0) can be computed in nO(k) time by the exhaustive enumeration
of all possible collections of k pairs.

In section 5 we present faster formulas for computing h(2)(0) and h(3)(0) that we
used for our numerical experiments.

4.3. The algorithm. Let us fix 0 < \gamma < 1. Below we summarize the algorithm
for computing denm(G; \gamma ) within relative error 0 < \epsilon < 1, by which we understand
computing ln denm(G; \gamma ) within additive error \epsilon . We assume that m \geq 4 and that
n \geq \omega m for some \omega = \omega (\gamma ) > 1, to be specified below.

Given a graph G = (V,E) with set V = \{ 1, . . . , n\} of vertices, and an integer
m \leq n, we compute the n \times n symmetric matrix W = (wij) by (4.2). Since m \geq 4,
we have | wij | \leq 0.4 for all i, j.

Our goal is to compute pm(W ) = h(1), where h is the univariate polynomial
defined by (4.4). We note that deg h =

\bigl( 
m
2

\bigr) 
.

Let us choose 1 > \delta > \gamma , and let \eta = \eta (\delta ) > 0 and \omega = \omega (\delta ) > 1 be the numbers
of Theorem 1.3 and in (4.1). We find \rho = \rho (\delta ) > 0 such that

| \Re ln (1 + zwij)| \leq \delta 

m - 1
and | \Im ln (1 + zwij)| \leq \eta 

m - 1

as long as

 - \rho \leq \Re z \leq 1 + \rho and | \Im z| \leq \rho .(4.7)

Indeed, if z \in [0, 1], then

 - \gamma 

m - 1
\leq ln (1 + zwij) \leq \gamma 

m - 1
,

and for | z| \leq 2, we have\bigm| \bigm| \bigm| \bigm| ddz ln (1 + zwij)

\bigm| \bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| wij

1 + zwij

\bigm| \bigm| \bigm| \bigm| \leq 10

m - 1
,

so the desired \rho can indeed be found.
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It follows by (4.1) that h(z) \not = 0 as long as n \geq \omega m and (4.7) holds.
Using Lemma 4.2, we construct a polynomial \phi : \BbbC  - \rightarrow \BbbC of some degree N =

N(\rho ) = N(\delta ) such that \phi (0) = 0, \phi (1) = 1 and

 - \rho \leq \Re \phi (z) \leq 1 + \rho and | \Im \phi (z)| \leq \rho 

as long as | z| \leq \beta for some \beta = \beta (\rho ) = \beta (\delta ) > 1. We define

g(z) = h(\phi (z)),

and our goal is to compute g(1) = h(\phi (1)). We note that

deg g \leq N deg h = N

\biggl( 
m

2

\biggr) 
.

We choose a branch of f(z) = ln g(z) for z satisfying (4.7).
Using Lemma 4.1, we find an integer r = O\rho (lnm - ln \epsilon ) = O\delta (lnm - ln \epsilon ) such

that

| Tr(1) - f(1)| \leq \epsilon ,

where Tr(z) is the Taylor polynomial of f(z) of degree r, computed at z = 0. The
implicit constant in the ``O"" notation depends only on \rho , which in turn depends only
on \delta . Hence our goal is to compute Tr(1), for which we need to compute f (k)(0) for
k = 1, . . . , r. As in section 4.2, we reduce it in O(r2) time to computing g(k)(0) for
k = 1, . . . , r. Note that

g(0) = h(\phi (0)) = h(0) = 1.

Let \phi r(z) be the truncation of the polynomial \phi (z) obtained by discarding all mono-
mials of degree higher than r. Similarly, let hr(z) be the truncation of the polynomial
h(z), obtained by discarding all monomial of degree higher than r. We compute hr(z)
as in section 4.2 in nO(r) time. Finally, we compute the truncation of the composition
hr(\phi r(z)). A fast (polynomial in r) way to do it, is to use Horner's method: assuming
that

hr(z) =

r\sum 
k=0

bkz
k,

we successively compute

br\phi r(z) + br - 1, (br\phi r(z) + br - 1)\phi r(z) + br - 2,

((br\phi r(z) + br - 1)\phi r(z) + br - 2)\phi r(z) + br - 3, . . .

discarding on the way all monomials of degree higher than r. In the end, we have
computed g(k)(0) for k = 0, . . . , r, and hence f (k)(0) for k = 0, . . . , r, and hence Tm(1)
approximating f(1) = lnh(1) within additive error \epsilon . From (4.3), we compute

denm(G; \gamma ) = exp
\Bigl\{ \gamma m

2

\Bigr\} 
h(1)

within relative error \epsilon > 0.
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5. Remarks on the practical implementation. We implemented a much
simplified version of the algorithm. Given a graph G = (V,E) with set V = \{ 1, . . . , n\} 
of vertices and an integer 2 \leq m \leq n, we define the n\times n matrix = (wij) by

wij =

\Biggl\{ 
\alpha if \{ i, j\} \in E

 - \alpha if \{ i, j\} /\in E,

where 0 < \alpha < 1 is a parameter.
We consider the polynomial h(z) defined by (4.4) and let f(z) = lnh(z).
Our goal is to approximate f(1) = lnh(1), and hence

h(1) =
\sum 

S\subset \{ 1,...,n\} 
| S| =m

(1 + \alpha )(
m
2 )\sigma (S)(1 - \alpha )(

m
2 )(1 - \sigma (S))

= (1 - \alpha )(
m
2 ) denm(G; \gamma ), where \gamma =

m - 1

2
ln

1 + \alpha 

1 - \alpha 
.

We approximate f(1) by the degree r Taylor polynomial of f(z) computed at z =
0. The results of [3] suggest that for \alpha = O (1/m), we should get a reasonable
approximation if we use r \sim lnm. The results of our numerical experiments suggest
that we get reasonable approximations if we use \alpha = \Omega (1) and r = 2 or r = 3. In
short, on the examples we tested, the quality of approximation was more consistent
with the quality of the Taylor polynomial approximation of ln(1\pm \alpha ).

More precisely, we ran the algorithm typically with parameters n = 50, 100 and
m = 10, although occasionally we chose n as large as n = 300. For the parameters
n = 50 and m = 10 we were able to compare our approximation with the exact value.
Typically, choosing \alpha = 0.5 or lower produced an approximation of f(1) within 1\%
accuracy. For \alpha = 0.7, the accuracy went down to 10\%  - 20\% and for \alpha > 0.7 the
approximation was not accurate. For higher values of n, where the exact value of
f(1) was unavailable, we compared the approximations obtained for r = 2 and r = 3.
If the approximations were close to each other, we considered it as an indication
that they are also close to the true value of f(1). Again, we observed that up to
\alpha = 0.5, the approximations agreed but were beginning to essentially differ at \alpha = 0.7
and higher. For the graphs, we used the Erd\H os--R\'enyi models G(n, 0.5), G(n, 0.4),
those graphs with planted cliques of size m, and occasionally manually constructed
``random-looking"" graphs.

We provide below the explicit formulas for the approximations up to degree 3, in
case the reader will be interested to do some numerical experiments. We interpret
wij as weights on the edges of a complete graph with n vertices. Borrowing an
idea from [13], we express the derivatives f (k)(0) in terms of various sums associated
with connected subgraphs, since it improves the computational complexity of the
algorithm. We remark, however, that it looks unlikely that the methods of [13] can
be pushed to improve the complexity of our algorithm in the general situation from
quasi-polynomial to genuinely polynomial, since we work with graphs of unbounded
degrees.

It is convenient to introduce the following sums:

A1 =
\sum 
\{ i,j\} 

wij ,

where the sum is taken over all unordered pairs \{ i, j\} of distinct indices;

B1 =
\sum 
\{ i,j\} 

w2
ij , B2 =

\sum 
j,\{ i,k\} 

wijwjk,
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where in the formula for B1 the sum is taken oven all unordered pairs \{ i, j\} of distinct
indices and in B2 the sum is taken over all pairs consisting of an index j and an
unordered pair \{ i, k\} , so that all three indices are distinct; and

C1 =
\sum 
\{ i,j\} 

w3
ij , C2 =

\sum 
(i,j,k)

w2
ijwjk, C3 =

\sum 
\{ i,j,k\} 

wijwjkwki,

C4 =
\sum 

(i,j,k,l)

wijwjkwkl, C5 =
\sum 

\{ j,k,l\} ,i

wilwijwik,

where in C1 the sum is taken over all unordered pairs \{ i, j\} of distinct indices, in
C2 the sum is taken over all ordered triples (i, j, k) of distinct indices, in C3 the sum
is taken over all unordered triples of distinct integers, in C4 the sum is taken over
all ordered 4-tuples (i, j, k, l) of distinct indices, and in C5 the sum is taken over all
pairs consisting of an index i and an unordered triple \{ j, k, l\} so that all four indices
\{ i, j, k, l\} are distinct.

5.1. First-order approximation. Clearly, h(0) = 1. From (4.6), we have

h\prime (0) =

\biggl( 
n

m

\biggr)  - 1\biggl( 
n - 2

m - 2

\biggr) \sum 
\{ i,j\} \subset \{ 1,...,n\} 

wij =
m(m - 1)

n(n - 1)
A1.

Since f(0) = lnh(0) = 0 and f \prime (0) = h\prime (0)/h(0) = h\prime (0), we obtain the first order
approximation

f(1) \approx h\prime (0),

where h\prime (0) is defined as above. The complexity of computing the first order approx-
imation is O(n2).

5.2. Second-order approximation. From (4.6), we have

h\prime \prime (0) =

\biggl( 
n

m

\biggr)  - 1 \sum 
I=(\{ i1,j1\} ,\{ i2,j2\} )

\biggl( 
n - \nu (I)

m - \nu (I)

\biggr) 
wi1j1wi2j2 .

Here \nu (I) = 4 if the pairs \{ i1, j1\} and \{ i2, j2\} are pairwise disjoint and \nu (I) = 3 if
they share exactly one index. Hence we can write

h\prime \prime (0) =

\biggl( 
n

m

\biggr)  - 1\biggl( 
2

\biggl( 
n - 3

m - 3

\biggr) 
B2 +

\biggl( 
n - 4

m - 4

\biggr) \bigl( 
A2

1  - 2B2  - B1

\bigr) \biggr) 
= 2

m(m - 1)(m - 2)

n(n - 1)(n - 2)
B2 +

m(m - 1)(m - 2)(m - 3)

n(n - 1)(n - 2)(n - 3)

\bigl( 
A2

1  - 2B2  - B1

\bigr) 
.

Since

f \prime \prime (0) = h\prime \prime (0) - (h\prime (0))
2
,

we obtain the second order approximation:

f(1) \approx f \prime (0) +
1

2
f \prime \prime (0) = h\prime (0) - 1

2
(h\prime (0))

2
+

1

2
h\prime \prime (0),

where h\prime (0) and h\prime \prime (0) are defined as above. The complexity of computing the second
order approximation is O(n3).
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5.3. Third-order approximation. From (4.6), one can deduce that

h\prime \prime \prime (0) = 6
m(m - 1)(m - 2)

n(n - 1)(n - 2)
C3 +

m(m - 1)(m - 2)(m - 3)

n(n - 1)(n - 2)(n - 3)
(6C5 + 3C4)

+ 6
m(m - 1)(m - 2)(m - 3)(m - 4)

n(n - 1)(n - 2)(n - 3)(n - 4)
(A1B2  - 3C5  - 3C3  - C4  - C2)

+
m(m - 1)(m - 2)(m - 3)(m - 4)(m - 5)

n(n - 1)(n - 2)(n - 3)(n - 4)(n - 5)

\Bigl( 
A3

1 + 12C3  - 6A1B2

+ 12C5 + 3C4 + 6C2  - 3A1B1 + 2C1

\Bigr) 
.

Since we have

f \prime \prime \prime (0) = h\prime \prime \prime (0) - 2f \prime \prime (0)h\prime (0) - f \prime (0)h\prime \prime (0) = 2(h\prime (0))3  - 3h\prime (0)h\prime \prime (0) + h\prime \prime \prime (0),

we obtain the third order approximation approximation

f(1) \approx f \prime (0) +
1

2
f \prime \prime (0) +

1

6
f \prime \prime \prime (0)

= h\prime (0) - 1

2
(h\prime (0))2 +

1

2
h\prime \prime (0) +

1

3
(h\prime (0))3  - 1

2
h\prime (0)h\prime \prime (0) +

1

6
h\prime \prime \prime (0).

The complexity of computing the third order approximation is O
\bigl( 
n4
\bigr) 
.

6. Proof of Theorem 1.4 and concluding remarks. We got the idea of the
proof from [9], where a similar question about complex zeros of the permanents of
matrices with independent random entries was treated.

Proof of Theorem 1.4. Applying Jensen's formula (see, for example, section 5.3
of [1]), we obtain

ln | hW (0)| =
N\sum 
s=1

ln
| as,W | 

r
+

1

2\pi 

\int 2\pi 

0

ln
\bigm| \bigm| hW

\bigl( 
rei\theta 

\bigr) \bigm| \bigm| d\theta ,(6.1)

where as,W , s = 1, . . . , N are the roots of the polynomial hW (z) in the disc | z| < r,
and we assume that hW (z) has no zeros on the circle | z| = r (since there are only
finitely many values of r with roots on the circle | z| = r, this assumption is not
restrictive). We have

ln | hW (0)| = 0,

and furthermore, applying Jensen's inequality, we bound:

1

2\pi 

\int 2\pi 

0

ln
\bigm| \bigm| hW

\bigl( 
rei\theta 

\bigr) \bigm| \bigm| d\theta =
1

2
\cdot 1

2\pi 

\int 2\pi 

0

ln
\bigm| \bigm| hW

\bigl( 
rei\theta 

\bigr) \bigm| \bigm| 2 d\theta 

\leq 1

2
ln

\biggl( 
1

2\pi 

\int 2\pi 

0

\bigm| \bigm| hW

\bigl( 
rei\theta 

\bigr) \bigm| \bigm| 2 d\theta 

\biggr) 
.

(6.2)

For a fixed \theta \in [0, 2\pi ], we compute the expectation
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E
\bigm| \bigm| hW

\bigl( 
rei\theta 

\bigr) \bigm| \bigm| 2 =

\biggl( 
n

m

\biggr)  - 2 \sum 
S1,S2\subset \{ 1,...,n\} 
| S1| =| S2| =m

E

\Biggl( \prod 
\{ j,k\} \subset S1

\bigl( 
1 + rei\theta wjk

\bigr) 

\times 
\prod 

\{ j,k\} \subset S2

\bigl( 
1 + re - i\theta wjk

\bigr) \Biggr) 

=

\biggl( 
n

m

\biggr)  - 2 \sum 
S1,S2\subset \{ 1,...,n\} 
| S1| =| S2| =m

\bigl( 
1 + r2

\bigr) (| S1\cap S2| 
2 )

.

A subset S \subset \{ 1, . . . , n\} of cardinality l = | S| \leq m can be represented as the inter-
section S = S1 \cap S2 of m-subsets S1, S2 in ( n - l

m - l )(
n - m
m - l ) ways. Hence

E
\bigm| \bigm| hW

\bigl( 
rei\theta 

\bigr) \bigm| \bigm| 2 =

\biggl( 
n

m

\biggr)  - 2 m\sum 
l=0

\biggl( 
n

l

\biggr) \biggl( 
n - l

m - l

\biggr) \biggl( 
n - m

m - l

\biggr) \bigl( 
1 + r2

\bigr) (l
2) .(6.3)

To bound (6.3), we consider the ratio of the (l + 1)st term to the lth term:

n - l

l + 1
\cdot m - l

n - l
\cdot m - l

n - 2m+ l + 1
\cdot 
\bigl( 
1 + r2

\bigr) l
=

(m - l)2
\bigl( 
1 + r2

\bigr) l
(l + 1)(n - 2m+ l + 1)

\leq m2(1 + r2)m

n - 2m+ 1
.

In particular, if

n \geq 2m2(1 + r2)m + 2m,(6.4)

the ratio does not exceed 1/2, and hence we can bound the sum (6.3) by

E
\bigm| \bigm| hW

\bigl( 
rei\theta 

\bigr) \bigm| \bigm| 2 \leq 2

\biggl( 
n

m

\biggr)  - 2\biggl( 
n

m

\biggr) \biggl( 
n - m

m

\biggr) 
\leq 2.

Integrating over \theta , we conclude that if (6.4) holds, then

E

\biggl( 
1

2\pi 

\int 2\pi 

0

\bigm| \bigm| hW

\bigl( 
rei\theta 

\bigr) \bigm| \bigm| d\theta 

\biggr) 
\leq 2.

By the Markov inequality, for any \tau \geq 1, we get

P

\biggl( 
1

2\pi 

\int 2\pi 

0

\bigm| \bigm| hW

\bigl( 
rei\theta 

\bigr) 
d\theta 
\bigm| \bigm| \geq 2\tau 

\biggr) 
\leq 1

\tau 
.

Consequently, from (6.1) and (6.2), we have

P

\Biggl( 
N\sum 
s=1

ln
| as,W | 

r
\leq  - 1

2
ln 2\tau 

\Biggr) 
\leq 1

\tau 
,

and the proof follows.

An anonymous referee asked what happens if G is a random graph G(n, 0.5) with
a planted m-clique. The most interesting asymptotic regime is when m2 \ll n \leq 
mO(1) and m grows; see [2] for results and references. Here we are interested in a
polynomial time algorithm which, with high probability, tells G from G(n, 0.5). A
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quasi-polynomial time algorithm is readily available (by an exhaustive search for a
clique of size at least 3 log2 n, say). Our proof of Theorem 1.4 does not seem to extend
to random graphs with a planted clique. We note, however, that if the radius of zero-
free region is roughly the same r = \Omega (1/

\surd 
m) as in Theorem 1.4 or even weaker,

r = \Omega (m - 1+\epsilon ) for some \epsilon > 0, we do obtain a desired polynomial time algorithm.
Indeed, in the latter case, we can choose \gamma = m\epsilon \prime with some 0 < \epsilon \prime < \epsilon . If G is a
graph with a planted m-clique, we have

denm(G; \gamma ) \geq exp
\Bigl\{ 
m1+\epsilon \prime  - O(m lnm)

\Bigr\} 
;

cf. (1.2). If G is a random graph G(n, 0.5), our proof Theorem 1.4 implies that

denm(G; \gamma ) \leq exp

\Biggl\{ 
m1+\epsilon \prime 

2
+O(1)

\Biggr\} 
with high probability; cf. (1.7). Note that by choosing \epsilon \prime < \epsilon , we choose \gamma sufficiently
``deep"" inside the purported zero-free region, and hence we can get a genuinely poly-
nomial, as opposed to a quasi-polynomial, algorithm by computing a constant, as
opposed to logarithmic, number of terms in the Taylor polynomial approximation; cf.
Lemma 4.1.
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