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Abstract. I present a quick introduction to the theory of Differential
Privacy first defined in [7]. Then, I will give a brief overview of a more
general notion of privacy followed by how this notion utilizes kernel
techniques. I will also define a notion of differential privacy which is
valid for functional data. Lastly, I present several applications of this
framework to areas of machine learning and mathematics.
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1. Differential Privacy

The desire for privacy of sensitive data is one that has been increasingly
valid in the past several decades. In particular, one would like to be reassured
that the release of a database containing their information will (given that
they have been promised some type of privacy) not affect their lives. In most
cases this is not an issue, however there are times when an adversary may
wish to obtain information about someone with harmful intentions. Since
such adversaries do exist, there are two potential courses of action:

• Give no information (or similarly give useless or untruthful infor-
mation) when asked to provide details of one’s private life.
• Require a type of security of your information which gives a ”rea-

sonable” promise of privacy.

The second option which is more desirable from the viewpoint of science
and the general utility of acquired data puts a great burden of responsibility
on the person who collects the data. In fact, we’ve seen in the past that
such promises didn’t hold much weight and peoples information could be
recovered from seemingly private releases of data [13], [11]. Cynthia Dwork
has defined a notion of privacy which is both flexible and guarantees a certain
level of privacy for ones information contained in a database.

Definition 1.1 (Differential Privacy). A randomized algorithmM with

domain N|X | is (ε, δ)-differentially private if for all S ⊆ Range(M) and for

all x, y ∈ N|X | such that ||x− y||1 ≤ 1:

P(M(x) ∈ S) ≤ exp(ε)P(M(y) ∈ S) + δ,

where the probability space is over the coin flips of the mechanism M.

1.1. A More General Form. This definition, as taken directly from
[8] is particularly useful (due to its explicit nature) when dealing with his-
tograms of databases, however a more robust, though largely equivalent
definition involving measure theory is needed for our purposes in this paper.

Definition 1.2 (Alternative Differential Privacy). A set of distributions
{PD : D ∈ D} is called (ε, δ)−differentially private whenever for all D ∼
D′ ∈ D we have

PD(A) ≤ exp(ε)PD′(A) + δ, ∀A ∈ A.

Here, we make several notes: PD is representative of the output of func-
tion P : D→ Rn when the input database D is given. Also, more generally,
the algorithms will (on input database from D) give values in some measure
space (Ω,A). In the definition above, we assume A to be the finest σ-field
possible on Ω. Notice that the above definition is very general, and even
when the space Ω is multidimensional (such as Rd) we still can define a very
clear notion of Differential Privacy.
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Remark 1.3. An even stronger notion of differential privacy (ε,0) or
ε−differential privacy is often used, and in fact this was the first form of
privacy featured in [7].

1.2. Implications.

Proposition 1.4. Let X ∼ PD where {PD : D ∈ D} achieves (ε, δ)-
differential privacy. Any level p̂ hypothesis test of: H0 : D = D0 versus
Ha : D 6= D0 has power bounded above by p̂ exp(ε) + δ.

A proposition such as this follows almost immediately from our more
general framework, and while it is also apparent (with a little work) from
the definition in [8], our framework here makes analysis of this type much
more easier.

Also worth noting is that this proposition is where the privacy guarantee
stems from. Namely, notice that is εandδ are sufficiently small, the test is
not much more likely to correctly reject a false hypothesis than it is to
incorrectly reject the true one. This sense that the probability of making a
type 1 error being roughly equal to the probability of not making such an
error is the true provider of the differential privacy guarantee.

2. Functional Data

Many data sets contain information in the form of n-tuples of data. For
instance, on can look at viewers ratings of various movies (such as in [11])
and place each rating in a tuple with the ith entry being that viewers rating
for the ith movie in the list. If we keep the movie positions constant in
the list, that is the rating for movie i recorded for person p in the same
entry (i) as it is for person q, we can put the records of many people in
a matrix just by joining the tuples together as rows of the matrix where
each row represents a different person, and the entries are movie ratings
for a given movie (column). A technique such as this is very common in
data collection especially (but definitely not limited to) the collection of
subjective ”ranking” or ”rating” data.

There is however the need to take readings of data on a continuous (or
near continuous scale). For instance, say one wanted to look at a handwriting
example. You could then take the (x, y)- coordinate of a pen at each instant
of a continuum (often with time denoted by t). Then, instead of having a
tuple of data we may have a continuous function h : R → R2 whose input
is a time t and where h(t) represents the location of our tracked pen at this
time. We could surely approximate our function with a tuple (say sample
h every 60 milliseconds and record the x, y pair in a vector) however this
would be a bad approach in all but a few exceptional cases. The downfalls
of this method are:

• As the time we record goes on, eventually the tuples (and the cor-
responding matrix if we consider multiple recordings) will become
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unwieldy unless our scale is defined in a way which bounds the
number of entries our tuple will contain.
• If we dial back our scaling (say bump up to 600 milliseconds in our

example) then we may lose sight of a bigger picture. That is, our
approximated function h(t) may have finer details which will be
missed by considering time on a larger scale.

In order to combat these two downfalls of the ”tuple” method, it should
be clear that there are occasions in which we NEED functional data. For a
very refined treatment of this notion, as well as some of the techniques used
in this field one can find a great presentation of functional data analysis
in [12].

3. Back to Privacy

We have already shown that privacy is something desirable anytime a
set of data are collected which contain sensitive information. Can we find a
definition of privacy (preferably differential privacy) which works for func-
tional data? That is can we find a guarantee similar to that of Proposition
1.4 This is the subject of [9].

We need two more major theoretic results from [9] before we can gain
utility in our definition of privacy for functional data.

Proposition 3.1. Suppose that for allD ∼ D′ there exists a set A∗D,D′ ∈
A such that for all S ∈ A,

S ⊆ A∗D,D′ =⇒ PD(S) ≤ exp(ε)PD′(S)(3.1)

and

PD(A∗D,D′) ≥ 1− δ.(3.2)

Then the family of distributions {PD} is (ε, δ)-differentially private.

Proposition 3.2. Suppose that for a symmetric p.s.d. matrix M of
dimension d the set of vectors {vD|D ∈ D} ⊂ Rd satisfies

sup
D∼D′

||M−
1
2 (vD − vD′)||2 ≤ ∆.

Then the randomized algorithm which for input database D outputs

ṽD = vD +
c(δ)∆

ε
Z, Z ∼ Nd(0,M)

achieves (ε, δ) differential privacy whenever

c(δ) ≥

√
2 log

(
2

δ

)
.
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4. Privacy for Functions

Now we can begin our definition of differential privacy for functions/functional
data. First, we begin by considering the family of functions fD indexed by
databases D and taking values in T = Rd. That is, the set:

{fD : D ∈ D} ⊂ RT .

As we’ve done with the ”vector” data, we will look to randomized algo-
rithms which on input D output some f̄D ∼ PD where PD is a measure on
RT corresponding to the database D. In order to provide meaning to the
measure above we will define a σ-field below.

4.1. The Field of Cylinders.

Definition 4.1. Cylinder sets of functions (see [5]) are defined for all
finite tuples S = (x1, . . . , xn) where xi ∈ T and Borel sets B of Rn:

CS,B = {f ∈ RT |(f(x1), . . . , f(xn)) ∈ B}.

Put simply, these ”cylinder sets” are just spaces of functions which take
on values (prescribed by the Borel sets B) for given inputs S.

4.2. Privacy via the Field of Cylinders.

Remark 4.2. We can consider the family of sets LS = {CS,B|B ∈
B(Rn)} which forms a σ−field for fixed sets S. Taking the union of these LS
over all finite tuples S (of length n = 1, 2, . . . provides us with the family F0.
This is not quite a σ−field (it is not closed under countable intersections).
We thus will consider a notion of privacy holding over this field of ”cylinder
sets” which considers algorithms such that for all D ∼ D′ ∈ D:

P (f̃D ∈ A) ≤ exp(ε)P (f̃D′ ∈ A) + δ, ∀A ∈ F0.(4.1)

Theorem 4.3. Let x1, . . . , xn be any finite set of points in T chosen
a-priori. Then whenever Equation 4.1 holds, the release of the vector:(

f̃D(x1), . . . , f̃D(xn)
)

satisfies (ε, δ)-differential privacy.

Proof. We have

PD

((
f̃D(x1), . . . , f̃D(xn)

)
∈ A

)
= PD(f̃ ∈ C{x1,...,xn},A.

Finally, the privacy guarantee can be seen to hold from Equation 4.1. �

In [5] it was shown that we can extend the result Equation 4.1 to the
generated σ−field, namely:

F def
= σ(F0) =

⋃
S

LS .
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4.3. A General Notion of Privacy for Functions. Finally, we come
to our most general definition of differential privacy for functions:

Theorem 4.4. Let Equation 4.1 hold. Then the family {PD|D ∈ D} on
(RT ,F) satisfies for all D ∼ D′ ∈ D:

PD(A) ≤ exp(ε)PD′(A) + δ, ∀A ∈ F .

One proof of this theorem is found in [9]. Due to the nature of computers

being unable to provide a ”complete” description of the function f̃D, this
result is mainly for theoretical demonstration.

Remark 4.5. We can also restrict our output functions to a smaller
subclass of functions (say C[0, 1]) and then similarly restrict our measures
PD to these functions. This process provides us with the characterization
that differential privacy over the sub field F0 =⇒ differential privacy over
F , the σ-field generated by F0.

5. Achieving Differential Privacy for Functions

The previous sections have been very theoretical, and all looked at pri-
vacy through a very mathematical lens. Now, we consider some examples
of mechanisms which output functional data in a way which achieves differ-
ential privacy.

5.1. The Exponential Mechanism. The first way that one may think
to provide this guarantee of privacy is via the ”exponential mechanism”.
This technique considered in [10]. Essentially, we will construct a (finite)
set of real valued functions E = {e1, . . . , en} where every fD under consid-
eration has a ”reasonable” representation as one of these ei functions. Note
that here reasonable is taken to mean a good approximation with respect to
a distance function d.

When we are given D as input then, we choose a function to output by
sampling E with probabilities:

PD(ei) ∝ exp

{
ε

2s
d(ei, fD)

}
, s

def
= sup

D∼D′
d(fD, fD′).

In [10] it is shown that in fact this mechanism achieves the even stronger
notion of ε−differential privacy. The similarities between this technique and
discretizing the function space RT are abundant, and in [9] it is claimed that
this is essentially the same process.

5.2. Gaussian Process Noise. The main contributions of [9] are:

• Giving an explicit definition of differential privacy for functions,
and a treatment of this definition in a single source.
• Providing the following technique where adding Gaussian noise in

a specific way to our functions allows us to achieve the differential
privacy guarantee up release of our data.
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Definition 5.1. A Gaussian Process indexed by T is a collection of
random variables {Xt|t ∈ T}, for which each finite subset is distributed
as a multivariate Gaussian for reference see [1] or [2]. A sample from a
Gaussian process may be considered as a function from T → R by examining
the sample path t → Xt. Notice that this Gaussian process is determined
entirely by:

m(t) = E(Xt), K(t1, t2) = Cov(Xt1 , Xt2)

where m(t) : T → R and K(·, ·) : T 2 → R.

For any finite subset S ⊆ T the random vector {Xt|t ∈ S} has a normal
distribution with the means and variances/covariances given by the above
functions.

Theorem 5.2. Let G be the sample path of a Gaussian process having
mean zero and covariance given by K(·, ·). Let m denote the Gram matrix:

M(x1, . . . , xn) =

K(x1, x1) · · · K(x1, xn)
...

. . .
...

K(xn, x1) · · · K(xn, xn)


Let {fD|D ∈ D} be a family of functions indexed by databases. Then the
release of

f̃D = fD +
∆c(δ)

ε
G

is an (ε, δ)-differentially private mechanism whenever:

sup
D∼D′

sup
n<∞

sup
{x1,...,xn}

∣∣∣∣∣
∣∣∣∣∣M−1/2(x1, . . . , xn)

fD(x1)− fD′(x1)
...

fD(xn)− fD′(xn)

∣∣∣∣∣
∣∣∣∣∣
2

≤ ∆.

Proof. See [9] for a complete proof. �

6. Functions from a Reproducing Kernel Hilbert Space

[4] gives a great treatment of the theory of Reproducing Kernel Hilbert
Spaces (RKHS’s). In light of that, we make the following few notes.

A RKHS also known as a Proper Hilbert Space is a Hilbert Space H
generated by considering the closure of those functions in the underlying
space H0 which can be represented as a linear combination of the kernel
K. It is noted in [9] that these spaces give us an easy avenue for which to
acquire bounds of the form required in Theorem 5.2.

This is a result of the following theorem which allows us to bound the
normed quantity in Theorem 5.2 by the || · ||H where H is our RKHS. The
importance of this bound will become clear with the corollary following
Theorem 6.1.
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Theorem 6.1. For f ∈ H where H is the RKHS corresponding to the
kernel function K, and for any finite sequence S = (x1, . . . , xn) of distinct
points in T , we have:∣∣∣∣∣

∣∣∣∣∣
K(x1, x1) · · · K(x1, xn)

...
. . .

...
K(xn, x1) · · · K(xn, xn)


−1/2f(x1)

...
f(xn)

∣∣∣∣∣
∣∣∣∣∣
2

≤ ||f ||H.

Corollary 6.2. For {fD|D ∈ D} ⊆ H, the release of

f̃D
def
= fD +

∆c(δ)

ε
G

is (ε, δ)-differentially private (again, with respect to the cylinder σ-field)
whenever we have

sup
D∼D′

||fD − fD′ ||H,

and G is the sample path of a Gaussian process having mean zero and
covariance function K, given by the reproducing kernel of H.

7. Applications

Below we discuss some potential applications of the machinery developed
in [9].

7.1. Kernel Density Estimation. [9] has a good example of using
(under some smoothness assumptions) this technique to release an esti-
mate for a density function (in the example having two peaks) in an (ε, δ)-
differentially private manner. The key features of the underlying distribution
are preserved.

Additional analysis could be done to find probabilistic bounds on the
risk of such approximations. In [9] an O(h4 + c2

nhd ) rate is given, however
the risk rate for general kernel density estimation (released with no privacy
mechanism) is known up to constants, so determining these constants in this
case could be interesting.

Additionally, a seperate but similar technique for private data release
is sorted out in the article. When the kernel density estimation is done
with this technique, a much ”uglier” (less smooth) curve is obtained for
release. Determining the ”error” of this curve as opposed to that of the
curve obtained with the first method could also be worthwhile.

7.2. Mathematical Application. In certain fields of mathematics
(primarily several complex variables) the underlying kernel function can be
used to define a new metric on our spaces (see [6]). This Bergman metric
can then be used to define local coordinates for multivariate spaces of com-
plex variables. One question of interest (known as Lu-Qi-Keng’s conjecture)
asks whether or not (and if so where) certain Kernel functions obtain zeroes.

Two potential directions arise here:



FUNCTIONAL DATA, DIFFERENTIAL PRIVACY, AND MACHINE LEARNING 9

• Can we release these sets of local coordinates (which take the form
of functions) in a differentially private manner? These types of
questions have practical applications in many cryptographic set-
tings.
• Can we use the density estimation techniques to determine (in a

computationally friendly way) when certain distributions obtain
zeroes?

While the second question is less worked on, I believe that the first bullet
could seriously benefit from work in this direction.

7.3. Machine Learning. In the last week, a Master’s thesis [3] hit
the Arxiv which uses Deep Learning techniques to analyze uses of the
smart watch technology. The primary direction of the paper is to deter-
mine whether smart watches are applicable to ”spying”. While this isn’t
of as much interest to me, the thesis does make me aware that these de-
vices are constantly gathering information about the wearer. Some of this
information may be useful in the sciences and so having a way to release it
differentially privately is important.

Thinking back to the handwriting example, I feel that it would be cu-
rious to see if the data which one of these watches collects (in the form
of x(t)– the horizontal component collected while writing, and y(t) – the
vertical component collected during a writing period) could be used to first
determine with some accuracy what a person was writing, and then whether
this data could be released in a differentially private way which preserved
some of the features of the author’s penmanship.

It seems that looking at the x(t) and y(t) data separately is a trick used
in [12], as these individual curves tend to be much more well behaved (re-
sembling those present in [9]). Then, another question arises where, since
differential privacy in the traditional sense enjoys certain composition prop-
erties, are these results also valid in the functional data setting?
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