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These notes and results are largely based on selected chapters from the book
[Bôcher & Duval, 1907], and most notation and terminology is that of the author
of the book. Frequent reference will also be made to the lectures [Sturmfels, 2014].
The proofs are my own, and I refer to results and proofs from the book or lecture
notes when appropriate.

1. Polynomials

Definition 1.1 (Homogeneous). A polynomial all of whose terms are of the same
degree is homogeneous. We often refer to such polynomials as forms although this
convention varies among other authors.

Definition 1.2 (Homogeneous Coordinates). When describing points in n-dimensional
Euclidean space it is sometimes helpful to use an n + 1th quantity. For example, in
the Cartesian plane we have points specified by (x, y). Using a third quantity t we
have:

X =
x

t
Y =

y

t
. (1)

Here (X, Y ) will be the Cartesian coordinates of a point.

A couple remarks on the above definition:

� We exclude the point (0, 0, . . . , 0) from consideration.

� The point (x1, . . . , xn, 0) is “the point at ∞”. This follows logically from a
limiting argument noting that as the last (t) coordinate becomes smaller and
smaller the point described by the homogeneous coordinates moves farther and
farther away from the origin.

As an example we can consider a degree 2 polynomial in the Cartesian plane.

Example 1.3. Let AX2 + BXY + CY 2 + DX + EY + F = 0 be a polynomial in
the 2 Cartesian coordinates X and Y . Writing this in homogeneous coordinates, it
becomes:

A
x2

t2
+B

xy

t2
+ C

y2

t2
+D

x

t
+ E

y

t
+ F = 0. (2)
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Rewriting Eq. (2) we have:

Ax2 +Bxy + Cy2 +Dxt+ Eyt+ Ft2 = 0. (3)

This formulation of our original polynomial equation has two advantages:

1. We have obtained a homogeneous polynomial.

2. This provides a dictionary between homogeneous polynomials in 3 dimensions
of this form, and 2 dimensional polynomials.

Item 2 is worth noting because in this special case we can view an inherently 3
dimensional object by drawing a 2 dimensional picture.

2. Matrices And Quadratic Forms

Fix V ∼= Rn. Quadratic forms on V are represented by symmetric n×n matrices.
When X is a symmetric n× n matrix, and φ is the quadratic form corresponding to
X, we have:

φ :V → R (4)

~u 7→ ~uTX~u. (5)

Where there is no possibility of ambiguity, we will often drop the vector notation
instead representing vectors by lower case math script letter.

We now recall that for the quadratic form φ, the associated symmetric bi linear
form B(x, y) = 1

2
(φ(x+ y)− φ(x)− φ(x)) is equivalent to xTXy. We also recall the

spectral theorem in it’s general form:

Fact 2.1. We can diagonal ice the matrix X over R, that is there exists Λ such that

ΛTXΛ = diag(λ1, . . . , λn). (6)

The entries λi are the (real) eigenvalues of X, and Λ is an orthogonal matrix
whose columns are the corresponding age vectors of X.

We now remark that, in addition to the “inner product” representation for φ, we
also have a sum of squares representation for φ:
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Theorem 2.2. For any quadratic form q(x) = q(x1, . . . , xn) =
∑n

j=1

∑n
i=1 aijxixj

we have a representation of q(u) as a sum of squares in the entries of u whenever
there is at least one coefficient aii that is nonzero.

Proof. We provide an algorithm to obtain the desired sum of squares representation.
We begin by assuming without loss of generality, that a11 6= 0. Our goal will be to
successively remove the non squared terms from the sum. We start by getting rid of
those terms involving x1. Consider

p(x2, x3, . . . , xn) = q(x)− 1

a11
(a11x1 + · · ·+ a1nxn)2 . (7)

Rearranging, q(x) = 1
a11

(a11x1 + · · ·+ a1nxn)2 + p(x2, x3, . . . , xn).
Changing coordinates so that u1 = a11x1 + · · · + a1nxn, with u2 = x2, . . . , u3 =

x3, . . . , un = xn remaining the same, we can write:

q(u) =
1

a11
u21 + p(x2, x3, . . . , xn) (8)

=
1

a11
u21 + p(u2, u3, . . . , un). (9)

Iterating, we obtain a representation for q = q(u) as a sum of squares in the terms
ui.

Theorem 2.3. We have the following explicit representation for φ(u):

φ(u) =
n∑
j=1

λj

(
n∑
i=1

Λijui

)2

. (10)

Proof. We let D = diag(λ1, . . . , λn) be the diagonal matrix of eigenvalues. Then,
X = ΛDΛT . Thus, φ(u) = uTΛDΛTu.

(
ΛTu

)
i

=
n∑
j=1

Λjiuj. (11)

Using this, we have: (
DΛTu

)
i

=
n∑
j=1

λiΛjiuj. (12)
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Finally,

(
uTΛ

)
i

=
n∑
j=1

ujΛji. (13)

Combining Eq. (13) and Eq. (12) we have

φ(u) =
n∑
i=1

λi

(
n∑
j=1

ujΛji

)2

. (14)

Using our algorithm from Theorem 2.2 we can obtain:

φ(u) =
n∑
j=1

λj`ju
2
j . (15)

We now shift our focus to determinants.

3. Determinants

3.1. Complementary Determinants

Definition 3.1 (Rank). A matrix is rank r if it contains at least one r-rowed deter-
minant which is not zero, while all determinants of order higher than r are 0.

We will often speak about the determinant of rank r by which we mean the rank
of the matrix of the determinant being r.

Definition 3.2 (Complement). As usual, to each element of a matrix (or determi-
nant) we can find a corresponding first minor obtained by striking out the row and
column of the determinant in which the given element lies. Since the elements of a
determinant of nthe order can be regarded as the (n− 1)the minors of that determi-
nant, we have a natural pairing between 1 rowed minors (elements of the matrix)
and (n− 1)-rowed minors. We can do this in a similar fashion for 2 rowed minors in
which we will pair these with (n − 2)-rowed minors. This procedure can be carried
out for any r-rowed minor (and its corresponding (n− r)-rowed minor). In general,
the two minors we pair up will be called complementary.

For example, we consider the case of a 5× 5 determinant below.
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Example 3.3. ∣∣∣∣∣∣∣∣∣∣
a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55

∣∣∣∣∣∣∣∣∣∣
where the two minors: ∣∣∣∣a21 a23

a31 a33

∣∣∣∣ and

∣∣∣∣∣∣
a12 a14 a15
a42 a44 a45
a52 a54 a55

∣∣∣∣∣∣
are complementary.

We now define a slightly more nuanced version of complements that was stated
above.

Definition 3.4 (Algebraic Complement, Principal Minor). If M is the m-rowed
minor of D in which the rows k1, . . . , km and the columns l1, . . . , lm are represented,
then the algebraic complement of M is defined by the equation

(−1)k1+···+km+l1+···+lm · [complement of M ]. (16)

We also remark now the well known convention that the minor of a determinant
obtained by striking out the same rows as columns is referred to as the principal
minor.

Theorem 3.5. The algebraic complement of any principal minor is equal to its plain
complement.

Proof. This follows from noting that k1 = l1 in the notation used in Definition 3.4, as
well as k2 = l2, . . . , km = lm. The sign term (−1)k1+···+km+l1+···+lm is always positive
and the result follows.

Theorem 3.6. If M and N are complementary minors either M and N are the
algebraic complements of one another, or −N is the algebraic complement of M and
−M is the algebraic complement of N .

Proof. We begin by (utilizing the notation of Definition 3.4) considering M as the
minor obtained when crossing out rows k1, . . . , km, and columns l1, . . . , lm. Then,
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since it is complementary to M , N is obtained by crossing out the (n − m) rows
km+1, . . . , kn and the (n−m) columns lm+1, . . . , ln.

There are n total rows and n total columns, thus

n∑
i=1

(ki + li) = n(n+ 1) (17)

which is even.
Finally, we utilize the fact that if we partition an even number into a sum of two

numbers those two numbers must have the same sign. Realizing that k1 + · · ·+km +
l1 + · · ·+ lm provides such a partition of n(n+ 1) we conclude the result.

It is also useful in this section to remark some determinant identities that will be
useful later:

3.2. Determinant Identities

For the following identities we assume that all dimensions line up, and in partic-
ular det is always called on a square matrix.

1. (Algebraic Definition) For an n× n matrix A we can write the determinant as
a polynomial in the entries (aij) of A:∑

σ∈Sn

n∏
i=1

sgn(σ)ai,σ(i) (18)

where Sn is the symmetric group on n elements.

2. The homomorphism identity: det (AB) = det(A) det(B).

3. (Schur Decomposition Identity) If A is invertible, then

det

(
A B
C D

)
= det(A) det

(
D − CA−1B

)
. (19)

4. (Dodgson Condensation Identity) Let n ≥ 3 and M an n× n matrix with M i
j

denoting the (n − 1) × (n − 1) submatrix with the ith row and jth column
removed. If Mh,i

j,k denotes the matrix with the ith and hth row and jth and kth

column removed, then

det(M) det
(
M1,n

1,n

)
= det

(
M1

1

)
det(Mn

n )− det
(
M1

n

)
det(Mn

1 ). (20)
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5. (Sylvester’s Identity) In [Tao, 2017] A more general form of Item 4 is given as
Sylvester’s Identity. Here, 1 ≤ k < n and S, S ′ are k-element subsets of [n].
MS

S′ is the matrix formed from M by removing the rows associated to S and
the columns associated to S ′. We have:

det(M) det
(
MS

S

)k−1
= det

(
det
(
M

S\{i}
S\{j}

))
i,j∈S

(21)

6. Another identity for block matrices of determinants is given below. Here
X, Y, Z,W are column vectors, and A is an n× (n− 2) matrix.

det

(
det(X, Y,A) det(X,W,A)
det(Z, Y,A) det(Z,W,A)

)
= det(X,Z,A) det(Y,W,A). (22)

4. The Spectral Theorem

We start this section (which will be useful later) by stating the spectral theorem
for Hermitian matrices. We recall the definition of Hermitian below:

Definition 4.1 (Hermitian). An n × n matrix A = (aij)
n
i,j=1 is Hermitian or Self-

Adjoint if it is equal to its own conjugate transpose. That is, if aij = aji.

A few useful remarks about Hermitian matrices are:

� A is Hermitian if and only if it is equal to its adjoins, that is it satisfies

w(Av)T = 〈w,Av〉
= 〈Aw, v〉
= (Aw)bT

� A is Hermitian if and only if it has real quadratic form, that is:

〈v, Av〉 ∈ R (23)

where Eq. (23) holds for all vectors v.

We can now state the spectral theorem for Hermitian matrices:

Theorem 4.2. If A is Hermitian, there exists an orthonormal basis of V consisting
of eigenvectors of A. Moreover, each eigenvalue is real.
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The spectral theorem holds for the more broader class of matrices known as
Normal matrices.

Definition 4.3. An n× n matrix A is Normal if

A∗A = AA∗ (24)

where A∗ represents the conjugate transpose of the matrix, i.e. (aij)
∗ = (aji).
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