
Reproducing Kernel Spaces and Regret Analysis of
Multi-Armed Bandits

Anthony Della Pella

April 15, 2016

Anthony Della Pella Reproducing Kernel Spaces and Regret Analysis of Multi-Armed BanditsApril 15, 2016 1 / 11



Motivating Example

Consider a “casino” which has K slot machines, which pay out some
reward when played. The machines are free to play, however only one lever
can be pulled at a time (that is you pull an arm, then receive a reward).
Additionally, you’re given that the machines each follow some probabilistic
payout table.
The natural problem then is to maximize your winnings. In particular, we
wish to find some strategy which, regardless of the underlying probability
distribution on the payouts, will give a good reward total once we have
finished pulling the arms.

Anthony Della Pella Reproducing Kernel Spaces and Regret Analysis of Multi-Armed BanditsApril 15, 2016 2 / 11



Multi Armed Bandits

Definition

The Multi-Armed Bandit Setting (MAB) is characterized by a set of arms
i ∈ {1, 2, . . . ,K} = [K] each corresponding to a probability distribution
νi. In addition to the K arms, we consider a sequence of time steps
t = 1, 2, . . ., where at each step, the player (or forecaster) chooses an arm
It and receives some reward XIt,t, where XIt,t ∼ νIt independently of the
past.

Anthony Della Pella Reproducing Kernel Spaces and Regret Analysis of Multi-Armed BanditsApril 15, 2016 3 / 11



Variants on the MAB Setting

Note that there are many variants on this general framework. For instance
in the adversarial bandit setting one has adversaries choosing the payouts
XIt,t on an adaptive basis based on which arm we chose previously.

Another common stipulation on the general bandit framework is that we
are in the full information setting where the payouts of every arm on a
given round are observed (yet we only receive the payout of the arm
played).

Anthony Della Pella Reproducing Kernel Spaces and Regret Analysis of Multi-Armed BanditsApril 15, 2016 4 / 11



Naive Approaches (FTL & Max Outlook)

Perhaps the most naive approach in the non-full information setting is to
use a Max Outlook Algorithm, which will play every arm several times and
then based on what we have received play the best arm for the remainder
of the game.

A similar update based approach (specific to the full information setting)
is to choose the arm that has been performing best (on the whole) in
previous rounds:

It = argmax
i∈[K]

t−1∑
i=1

Xi,t

Neither approach is very good, and once we try to cross over into different
frameworks comparing approaches becomes difficult.

Anthony Della Pella Reproducing Kernel Spaces and Regret Analysis of Multi-Armed BanditsApril 15, 2016 5 / 11



A Machine Learning Problem – Linear Classifiers

Anthony Della Pella Reproducing Kernel Spaces and Regret Analysis of Multi-Armed BanditsApril 15, 2016 6 / 11



Approach I - Increase Dimensions

We could throw in an extra dimension along the z-axis of the data which
would measure the radius from the origin so that our data is now
represented by passing a data vector x under the transformation
T : R2 → R3 defined as:

T (x) = (x1, x2,
√
x21 + x22).

I now show what happens when we have x represent an unlabeled data
point shown in the figure. A plot of T applied to our data set is shown on
the next slide.

Anthony Della Pella Reproducing Kernel Spaces and Regret Analysis of Multi-Armed BanditsApril 15, 2016 7 / 11



Visualizing T (x)

Anthony Della Pella Reproducing Kernel Spaces and Regret Analysis of Multi-Armed BanditsApril 15, 2016 8 / 11



The Kernel Trick

The technique of finding a linear classifier to identify differences between
red and blue points by finding some other representation of our data say
ϕ(x) is known as the kernel trick. We would like to allow the possibility
that ϕ(x) lives in a higher, even infinite dimensional, space. In the case
that there exists a function κ(x,y) = 〈ϕ(x), ϕ(y)〉, where 〈·, ·〉 is an
inherited inner product from a Hilbert space H, we say that κ is the
reproducing kernel of H.

Anthony Della Pella Reproducing Kernel Spaces and Regret Analysis of Multi-Armed BanditsApril 15, 2016 9 / 11



Back to Bandits

In the general multi armed bandit framework (which is itself just an
instantiation of the even more general notion of a random process) we can
use the kernel trick to do many things which would otherwise be
impossible.

The main use of the kernel trick as it pertains to multi armed bandits is to
show that algorithms in different settings can be transformed via some
kernel to apply to another setting. For instance, one could apply an
appropriate kernel to a full information setting and achieve desirable
results which generalize to the adversarial setting.

Anthony Della Pella Reproducing Kernel Spaces and Regret Analysis of Multi-Armed BanditsApril 15, 2016 10 / 11



One Main Caveat

The main flaw is that finding a proper reproducing kernel and its
underlying Hilbert space can be challenging. In particular general random
processes only require a metric space to be defined. Thus, it is beneficial
to have an easier framework (namely Banach spaces) to work over.

While in general Banach spaces have no such kernel (due to the lack of an
inner product) we can weaken our requirements and define an appropriate
kernel using a semi-norm. See for instance the work of Zhang & Zhang
(”Reproducing Kernel Banach Spaces for Machine Learning”).

Anthony Della Pella Reproducing Kernel Spaces and Regret Analysis of Multi-Armed BanditsApril 15, 2016 11 / 11


