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Bipartite Matchings
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Bipartite Matching as a Polynomial

We can create the biadjacency matrix of a bipartite graph by having the
(i .j) entry be a 1 if there is an edge between i (on the left) and j (on the
right), and 0 otherwise.

Permanent

Given a real (or complex) matrix A = (aij) of dimension n × n, we define
the permanent:

Per(A) =
∑
σ∈Sn

n∏
i=1

aiσ(i).

If A is a biadjacency matrix with aij ∈ {0, 1}, then Per(A) counts the
number of perfect matchings in the bipartite graph G with biadjacency
matrix A. This is a known #P problem in complexity theory.
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The Interpolation Method

Lemma (Barvinok)

Let g(z) be a complex polynomial of degree d and suppose g(z) 6= 0 for
all |z | ≤ β where β > 1. Choose a branch of f (z) = ln g(z) for |z | ≤ 1,
and consider the nth order Taylor polynomial of f :

pn(z) = f (0) +
n∑

k=1

(
dk

dzk
f (z)

∣∣∣
z=0

)
zk

k!
.

Then,

|f (z)− pn(z)| ≤ d

(n + 1)βn(β − 1)
for all |z | ≤ 1.
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The Interpolation Method

The “interpolation method” is then applying this lemma to a
sufficient polynomial representing our combinatorial problem. For the
permanent/bipartite matching problem, we use the function
g(z) = Per(J + z(A− J)) where J is the all 1s matrix.

We will see another function below when we study the problem of
counting cliques in a graph.

Note: the Taylor polynomial from the previous slide depends on the
absence of zeros in our polynomial g(z) in a region around the origin
(in the complex plane). This is to ensure that lng(z) is well defined!
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Permanent Approximation Result

Theorem (Barvinok)

Fix 0 < δ < 0.5. Then, there is γ = γ(δ) > 0 such that for any ε > 0, and
positive integer n, there is a polynomial p = pn,δ,ε in the entries of an
n × n complex matrix A satisfying

deg p ≤ γ(ln n − ln ε)

and
| lnPer(A)− p(A)| ≤ ε

provided
|1− aij | ≤ δ.

The proof relies on the interpolation method which “smoothes out” the
computation allowing approximation.
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Cliques in Graphs

We consider the following graph and its (regular) adjacency matrix A.

1 2 3 4 5


1 0 1 1 1 0
2 1 0 1 1 1
3 1 1 0 1 0
4 1 1 1 0 0
5 0 1 0 0 0

Notice the clique (complete graph) of size 4 on the vertices 1,2,3 and 4.
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Dense Subsets of a Graph

Let G = (V ,E ) be an undirected simple graph. For a non-empty subset
S ⊆ V of vertices, define the density σ(S) as

σ(S) =

∣∣∣(S2) ∩ E
∣∣∣(|S |

2

)
Partition Function of Cliques

We define the partition function of cliques as:

denm(G ; γ) =

(
n

m

)−1 ∑
S⊆V ,|S|=m

exp{γmσ(S)}.

The exponential tilting of σ(S) puts greater emphasis on sets of higher
density. As γ grows this partition function approximates the density of the
densest subset.
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Definition
A “Partition Function” for Cliques

Let Z = (zij)
n
i ,j=1 be an n × n real or complex matrix. Then for an integer

1 < m ≤ n, we define the polynomial

Pm(Z ) =
∑
S⊂[n]
|S |=m

exp


∏
i ,j⊂S
i 6=j

zij

 .

Note that Pm(Z0) = exp {−γm/2}
(n
m

)
denm(G ; γ) if Z0 = (zij) satisfies:

zij =

{
γ/(m − 1) if {i , j} ∈ E

−γ/(m − 1) if {i , j} 6∈ E .

We approximate Pm(Z0) using the interpolation method by showing
Pm(Z ) 6= 0 in a suitable region.
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Polynomial Version of Pm(Z )

Polynomial Version

For W an n × n complex matrix with zero diagonal, write:

pm(W ) =

(
n

m

)−1 ∑
S⊆[n]
|S |=m

∏
i ,j∈S
i 6=j

(1 + wij)

so that for zij = ln(1 + wij),
(n
m

)
pm(W ) coincides with Pm(Z ).

From pm(W ), we can define h(z):

h(z) =

(
n

m

)−1 ∑
S⊂[n]
|S|=m

∏
{i ,j}⊂S

i 6=j

(1 + zwij).

We note that h(1) = pm(W ).
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Non-Vanishing Theorem

Theorem (Barvinok,ADP)

For any 0 < δ < 1 there exist η = η(δ) and ω = ω(δ) > 1 such that if
n ≥ ωm then Pm(Z ) 6= 0 for any n × n symmetric complex matrix Z such
that

|Re(zij)| ≤
δ

(m − 1)
and |Im(zij)| ≤

η

(m − 1)
.

The interpolation trick applied to h(z) then allows us to (for a fixed
0 < γ < 1) efficiently approximate denm(G ; γ) within relative error ε.
In particular, we have an algorithm running in quasi-polynomial
nO(lnm) complexity to compute Pm(Z0) for any 0 < γ < 1 fixed in
advance.
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Thank You

Many thanks to the organizers for setting up the Mathematics Continued
Conference, and to you for your attention. Questions?
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