Counting Cliques Using Polynomials

 Joint With Alexander BarvinokAnthony Della Pella

October 24, 2020

Bipartite Matchings

Bipartite Matching as a Polynomial

We can create the biadjacency matrix of a bipartite graph by having the (i.j) entry be a 1 if there is an edge between i (on the left) and j (on the right), and 0 otherwise.

Permanent

Given a real (or complex) matrix $A=\left(a_{i j}\right)$ of dimension $n \times n$, we define the permanent:

$$
\operatorname{Per}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} a_{i \sigma(i)}
$$

If A is a biadjacency matrix with $a_{i j} \in\{0,1\}$, then $\operatorname{Per}(A)$ counts the number of perfect matchings in the bipartite graph G with biadjacency matrix A. This is a known \#P problem in complexity theory.

The Interpolation Method

Lemma (Barvinok)

Let $g(z)$ be a complex polynomial of degree d and suppose $g(z) \neq 0$ for all $|z| \leq \beta$ where $\beta>1$. Choose a branch of $f(z)=\ln g(z)$ for $|z| \leq 1$, and consider the $n^{\text {th }}$ order Taylor polynomial of f :

$$
p_{n}(z)=f(0)+\sum_{k=1}^{n}\left(\left.\frac{\mathrm{~d}^{k}}{\mathrm{~d} z^{k}} f(z)\right|_{z=0}\right) \frac{z^{k}}{k!}
$$

Then,

$$
\left|f(z)-p_{n}(z)\right| \leq \frac{d}{(n+1) \beta^{n}(\beta-1)} \text { for all }|z| \leq 1
$$

The Interpolation Method

- The "interpolation method" is then applying this lemma to a sufficient polynomial representing our combinatorial problem. For the permanent/bipartite matching problem, we use the function $g(z)=\operatorname{Per}(J+z(A-J))$ where J is the all 1 s matrix.
- We will see another function below when we study the problem of counting cliques in a graph.
- Note: the Taylor polynomial from the previous slide depends on the absence of zeros in our polynomial $g(z)$ in a region around the origin (in the complex plane). This is to ensure that $\operatorname{lng}(z)$ is well defined!

Permanent Approximation Result

Theorem (Barvinok)

Fix $0<\delta<0.5$. Then, there is $\gamma=\gamma(\delta)>0$ such that for any $\epsilon>0$, and positive integer n, there is a polynomial $p=p_{n, \delta, \epsilon}$ in the entries of an $n \times n$ complex matrix A satisfying

$$
\operatorname{deg} p \leq \gamma(\ln n-\ln \epsilon)
$$

and

$$
|\ln \operatorname{Per}(A)-p(A)| \leq \epsilon
$$

provided

$$
\left|1-a_{i j}\right| \leq \delta
$$

The proof relies on the interpolation method which "smoothes out" the computation allowing approximation.

Cliques in Graphs

We consider the following graph and its (regular) adjacency matrix A.

1
2
3
4
5 $\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0\end{array}\right)$

Notice the clique (complete graph) of size 4 on the vertices 1,2,3 and 4 .

Dense Subsets of a Graph

Let $G=(V, E)$ be an undirected simple graph. For a non-empty subset $S \subseteq V$ of vertices, define the density $\sigma(S)$ as

$$
\sigma(S)=\frac{\left|\binom{S}{2} \cap E\right|}{\binom{|S|}{2}}
$$

Partition Function of Cliques

We define the partition function of cliques as:

$$
\operatorname{den}_{m}(G ; \gamma)=\binom{n}{m}^{-1} \sum_{S \subseteq V,|S|=m} \exp \{\gamma m \sigma(S)\}
$$

The exponential tilting of $\sigma(S)$ puts greater emphasis on sets of higher density. As γ grows this partition function approximates the density of the densest subset.

Definition

A "Partition Function" for Cliques

Let $Z=\left(z_{i j}\right)_{i, j=1}^{n}$ be an $n \times n$ real or complex matrix. Then for an integer $1<m \leq n$, we define the polynomial

$$
P_{m}(Z)=\sum_{\substack{S \subset[n] \\|S|=m}} \exp \left\{\prod_{\substack{i, j \subset S \\ i \neq j}} z_{i j}\right\}
$$

Note that $P_{m}\left(Z_{0}\right)=\exp \{-\gamma m / 2\}\binom{n}{m} \operatorname{den}_{m}(G ; \gamma)$ if $Z_{0}=\left(z_{i j}\right)$ satisfies:

$$
z_{i j}= \begin{cases}\gamma /(m-1) & \text { if }\{i, j\} \in E \\ -\gamma /(m-1) & \text { if }\{i, j\} \notin E\end{cases}
$$

We approximate $P_{m}\left(Z_{0}\right)$ using the interpolation method by showing $P_{m}(Z) \neq 0$ in a suitable region.

Polynomial Version of $P_{m}(Z)$

Polynomial Version

For W an $n \times n$ complex matrix with zero diagonal, write:

$$
p_{m}(W)=\binom{n}{m}^{-1} \sum_{\substack{S \subseteq[n] \\|S|=m}} \prod_{\substack{i, j \in S \\ i \neq j}}\left(1+w_{i j}\right)
$$

so that for $z_{i j}=\ln \left(1+w_{i j}\right),\binom{n}{m} p_{m}(W)$ coincides with $P_{m}(Z)$.
From $p_{m}(W)$, we can define $h(z)$:

$$
h(z)=\binom{n}{m}^{-1} \sum_{\substack{S \subset[n] \\|S|=m}} \prod_{\substack{\{i, j\} \subset S \\ i \neq j}}\left(1+z w_{i j}\right) .
$$

We note that $h(1)=p_{m}(W)$.

Non-Vanishing Theorem

Theorem (Barvinok,ADP)

For any $0<\delta<1$ there exist $\eta=\eta(\delta)$ and $\omega=\omega(\delta)>1$ such that if $n \geq \omega m$ then $P_{m}(Z) \neq 0$ for any $n \times n$ symmetric complex matrix Z such that

$$
\left|\operatorname{Re}\left(z_{i j}\right)\right| \leq \frac{\delta}{(m-1)} \text { and }\left|\operatorname{Im}\left(z_{i j}\right)\right| \leq \frac{\eta}{(m-1)}
$$

- The interpolation trick applied to $h(z)$ then allows us to (for a fixed $0<\gamma<1)$ efficiently approximate $\operatorname{den}_{m}(G ; \gamma)$ within relative error ϵ. In particular, we have an algorithm running in quasi-polynomial $n^{O(\ln m)}$ complexity to compute $P_{m}\left(Z_{0}\right)$ for any $0<\gamma<1$ fixed in advance.

References

(1) A.Barvinok, Combinatorics and Complexity of Partition Functions, Springer, 2017
(2) A.Barvinok, A.Della Pella, Testing for Dense Subsets in a Graph via the Partition Function

Thank You

Many thanks to the organizers for setting up the Mathematics Continued Conference, and to you for your attention. Questions?

